Overexpression of S100A4 in human cancer cell lines resistant to methotrexate
dc.contributor.author
dc.date.accessioned
2018-02-22T07:18:08Z
dc.date.available
2018-02-22T07:18:08Z
dc.date.issued
2010-06-01
dc.identifier.issn
1471-2407
dc.identifier.uri
dc.description.abstract
Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The
efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of
MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate
strategy to prevent the development of this resistance.
Methods: The differential expression pattern between sensitive and MTX-resistant cells was determined by whole
human genome microarrays and analyzed with the GeneSpring GX software package. A global comparison of all the
studied cell lines was performed in order to find out differentially expressed genes in the majority of the MTX-resistant
cells. S100A4 mRNA and protein levels were determined by RT-Real-Time PCR and Western blot, respectively.
Functional validations of S100A4 were performed either by transfection of an expression vector for S100A4 or a siRNA
against S100A4. Transfection of an expression vector encoding for β-catenin was used to inquire for the possible
transcriptional regulation of S100A4 through the Wnt pathway.
Results: S100A4 is overexpressed in five out of the seven MTX-resistant cell lines studied. Ectopic overexpression of this
gene in HT29 sensitive cells augmented both the intracellular and extracellular S100A4 protein levels and caused
desensitization toward MTX. siRNA against S100A4 decreased the levels of this protein and caused a
chemosensitization in combined treatments with MTX. β-catenin overexpression experiments support a possible
involvement of the Wnt signaling pathway in S100A4 transcriptional regulation in HT29 cells.
Conclusions: S100A4 is overexpressed in many MTX-resistant cells. S100A4 overexpression decreases the sensitivity of
HT29 colon cancer human cells to MTX, whereas its knockdown causes chemosensitization toward MTX. Both
approaches highlight a role for S100A4 in MTX resistance
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1186/1471-2407-10-250
dc.relation.ispartof
BMC Cancer, 2010, vol. 10, p. 250
dc.relation.ispartofseries
Articles publicats (D-CM)
dc.rights
Attribution 3.0 Spain
dc.rights.uri
dc.title
Overexpression of S100A4 in human cancer cell lines resistant to methotrexate
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
025879
dc.type.peerreviewed
peer-reviewed