Continuous acetate production through microbial electrosynthesis from CO2 with microbial mixed culture

Full Text
Continuous-acetate-production.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Microbial electrosynthesis represents a promising approach for renewable energy storage in which chemically stable compounds are produced using CO2 as feedstock. This report describes the continuous production of acetate through microbial electrosynthesis from CO2 and assesses how the production rates could be increased. RESULTS: A continuous acetate production rate of 0.98mmol C LNCC-1 d-1 was obtained using CO2 as feedstock and with pH control around 5.8. These conditions increased substrate availability and favoured microbial electrosynthesis. Cyclic voltammograms demonstrated the electroautotrophic activity on the biocathode surface, which increased with pH control and caused current demand and acetate production rate to rise exponentially. CONCLUSION: pH decrease was shown to be an effective strategy to increase substrate availability and enhance microbial electrosynthesis. By making microbial electrosynthesis a feasible technology, CO2 could become an alternative feedstock for the carboxylate platform. © 2015 Society of Chemical Industry ​
​Tots els drets reservats