Exceedingly fast oxygen atom transfer to olefins via a catalytically competent nonheme iron species

Full Text
ExceedinglyFastOxygen.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
The reaction of [Fe(CF3SO3)2(PyNMe3)] with excess peracetic acid at −40 °C leads to the accumulation of a metastable compound that exists as a pair of electromeric species, [FeIII(OOAc)(PyNMe3)]2+ and [FeV(O)(OAc)(PyNMe3)]2+, in fast equilibrium. Stopped-flow UV/Vis analysis confirmed that oxygen atom transfer (OAT) from these electromeric species to olefinic substrates is exceedingly fast, forming epoxides with stereoretention. The impact of the electronic and steric properties of the substrate on the reaction rate could be elucidated, and the relative reactivities determined for the catalytic oxidations could be reproduced by kinetic studies. The observed fast reaction rates and high selectivities demonstrate that this metastable compound is a truly competent OAT intermediate of relevance for nonheme iron catalyzed epoxidations ​
​Tots els drets reservats