Aerosol optical depth in a western Mediterranean site: An assessment of different methods

Full Text
Aerosol-optical-depth.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Column aerosol optical properties were derived from multifilter rotating shadowing radiometer (MFRSR) observations carried out at Girona (northeast Spain) from June 2012 to June 2014. We used a technique that allows estimating simultaneously aerosol optical depth (AOD) and Ångström exponent (AE) at high time-resolution. For the period studied, mean AOD at 500 nm was 0.14, with a noticeable seasonal pattern, i.e. maximum in summer and minimum in winter. Mean AE from 500 to 870 nm was 1.2 with a strong day-to-day variation and slightly higher values in summer. So, the summer increase in AOD seems to be linked with an enhancement in the number of fine particles. A radiative closure experiment, using the SMARTS2 model, was performed to confirm that the MFRSR-retrieved aerosol optical properties appropriately represent the continuously varying atmospheric conditions in Girona. Thus, the calculated broadband values of the direct flux show a mean absolute difference of less than 5.9 W m-2 (0.77%) and R = 0.99 when compared to the observed fluxes. The sensitivity of the achieved closure to uncertainties in AOD and AE was also examined. We use this MFRSR-based dataset as a reference for other ground-based and satellite measurements that might be used to assess the aerosol properties at this site. First, we used observations obtained from a 100 km away AERONET station; despite a general similar behavior when compared with the in-situ MFRSR observations, certain discrepancies for AOD estimates in the different channels (R < 0.84 and slope < 1) appear. Second, AOD products from MISR and MODIS satellite observations were compared with our ground-based retrievals. Reasonable agreements are found for the MISR product (R = 0.92), with somewhat poorer agreement for the MODIS product (R = 0.70). Finally, we apply all these methods to study in detail the aerosol properties during two singular aerosol events related to a forest fire and a desert dust intrusion ​
​Tots els drets reservats