Handling Missing Phenotype Data with Random Forests for Diabetes Risk Prognosis
dc.contributor.author
dc.date.accessioned
2016-10-25T12:06:06Z
dc.date.available
2016-10-25T12:06:06Z
dc.date.issued
2016
dc.identifier.uri
dc.description
Comunicació de congrés presentada a: Workshop on Artificial Intelligence for Diabetes (AID) (1st: 2016: The Hague, Holanda) i European Conference on Artificial Intelligence (ECAI) (22nd: The Hage, Holanda)
Aquest workshop ha rebut finançament del programa d'investigació i innovació EU Horizon 2020 sota el núm. d'ajut 689810
dc.description.abstract
Machine learning techniques are the cornerstone to handle
the amounts of information available for building comprehensive
models for decision support in medical practice. However, the
datasets use to have a lot of missing information. In this work we
analyse how the random forests technique could be used for dealing
with missing phenotype values in order to prognosticate diabetes
type 2
dc.description.sponsorship
This project has received funding from the grant of the University of Girona 2016-2018 (MPCUdG2016) and the European Unions Horizon 2020 research and innovation programme under grant agreement No 689810 (PEPPER). The work has been developed with the support of the research group SITES awarded with distinction by the Generalitat de Catalunya (SGR 2014-2016)
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
European Conference on Artificial Intelligence (ECAI)
dc.relation.isformatof
Versió postprint del document publicat a: http://www.ecai2016.org/content/uploads/2016/08/W7-AID-2016.pdf
dc.relation.ispartof
© López, B., Herrero, P., Martin, C.(eds). (2016). AID: Artificial Intelligence for Diabetes: 1st ECAI Workshop on Artificial intelligence for Diabetes at the 22nd European Conference on Artificial Intelligence (ECAI 2016): 30 August 2016, The Hague, Holland: Proceedings, p. 39-42
dc.relation.ispartofseries
Contribucions a congressos (D-EEEiA)
dc.rights
Tots els drets reservats
dc.subject
dc.title
Handling Missing Phenotype Data with Random Forests for Diabetes Risk Prognosis
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.relation.projectID
info:eu-repo/grantAgreement/EC/H2020/689810/EU/Patient Empowerment through Predictive PERsonalised decision support/PEPPER
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.relation.FundingProgramme
dc.relation.ProjectAcronym