Automated theorem provers for multiple-valued logics with satisfiability modulo theory solvers

Full Text
Automated-theorem-provers.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
There is a relatively large number of papers dealing with complexity and proof theory issues of multiple-valued logics. Nevertheless, little attention has been paid so far to the development of efficient and robust solvers for such logics. In this paper we investigate how the technology of Satisfiability Modulo Theories (SMT) can be effectively used to build efficient automated theorem provers for relevant finitely-valued and infinitely-valued logics, taking the logics of Łukasiewicz, Gödel and Product as case studies. Besides, we report on an experimental investigation that evaluates the performance of SMT technology when solving multiple-valued logic problems, and compares the finitely-valued solvers for Łukasiewicz and Gödel logics with their infinitely-valued solvers from a computational point of view. We also compare the performance of SMT technology and MIP technology when testing the satisfiability on a genuine family of multiple-valued clausal forms ​
​Tots els drets reservats