Dynamics of the parabolic restricted three-body problem
dc.contributor.author
dc.date.accessioned
2016-09-13T13:07:46Z
dc.date.available
2016-09-13T13:07:46Z
dc.date.issued
2015-01-01
dc.identifier.issn
1007-5704
dc.identifier.uri
dc.description.abstract
The main purpose of the paper is the study of the motion of a massless body attracted, under the Newton's law of gravitation, by two equal masses moving in parabolic orbits all over in the same plane, the planar parabolic restricted three-body problem. We consider the system relative to a rotating and pulsating frame where the equal masses (primaries) remain at rest. The system is gradient-like and has exactly ten hyperbolic equilibrium points lying on the boundary invariant manifolds corresponding to escape of the primaries in past and future time. The global flow of the system is described in terms of the final evolution (forwards and backwards in time) of the solutions. The invariant manifolds of the equilibrium points play a key role in the dynamics. We study the connections, restricted to the invariant boundaries, between the invariant manifolds associated to the equilibrium points. Finally we study numerically the connections in the whole phase space, paying special attention to capture and escape orbits
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Versió preprint del document publicat a: http://dx.doi.org/10.1016/j.cnsns.2015.05.025
dc.relation.ispartof
© Communications in Nonlinear Science and Numerical Simulation, 2015, vol. 29, núm.1-3, p. 400-415
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Tots els drets reservats
dc.subject
dc.title
Dynamics of the parabolic restricted three-body problem
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.type.version
info:eu-repo/semantics/submittedVersion
dc.identifier.doi
dc.identifier.idgrec
024480