Solving weighted CSPs with meta-constraints by reformulation into satisfiability modulo theories

Texto Completo
SolvingWeightedCSPs.pdf embargoed access
Solicita copia
Al rellenar este formulario estáis solicitando una copia del artículo, depositado en el repositorio institucional (DUGiDocs), a su autor o al autor principal del artículo. Será el mismo autor quien decidirá enviar una copia del documento a quien lo solicite si lo considera oportuno. En todo caso, la Biblioteca de la UdG no interviene en este proceso ya que no está autorizada a facilitar artículos cuando éstos son de acceso restringido.
Compartir
We introduce WSimply, a new framework for modelling and solving Weighted Constraint Satisfaction Problems (WCSP) using Satisfiability Modulo Theories (SMT) technology. In contrast to other well-known approaches designed for extensional representation of goods or no-goods, and with few declarative facilities, our approach aims to follow an intensional and declarative syntax style. In addition, our language has built-in support for some meta-constraints, such as priority and homogeneity, which allows the user to easily specify rich requirements on the desired solutions, such as preferences and fairness. We propose two alternative strategies for solving these WCSP instances using SMT. The first is the reformulation into Weighted SMT (WSMT) and the application of satisfiability test based algorithms from recent contributions in the Weighted Maximum Satisfiability field. The second one is the reformulation into an operation research-like style which involves an optimisation variable or objective function and the application of optimisation SMT solvers. We present experimental results of two well-known problems: the Nurse Rostering Problem (NRP) and a variant of the Balanced Academic Curriculum Problem (BACP), and provide some insights into the impact of the addition of meta-constraints on the quality of the solutions and the solving time ​
​Tots els drets reservats