Solving multiple kth smallest dissimilarity queries for non-metric dissimilarities with the GPU

Full Text
Solving-multiple-kth.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
The kth smallest dissimilarity of a query point with respect to a given set is the dissimilarity that ranks number k when we sort, in increasing order, the dissimilarity value of the points in the set with respect to the query point. A multiple kth smallest dissimilarity query determines the kth smallest dissimilarity for several query points simultaneously. Although the problem of solving multiple kth smallest dissimilarity queries is an important primitive operation used in many areas, such as spatial data analysis, facility location, text classification and content-based image retrieval, it has not been previously addressed explicitly in the literature. In this paper we present three parallel strategies, to be run on a Graphics Processing Unit, for computing multiple kth smallest dissimilarity queries when non-metric dissimilarities, that do not satisfy the triangular inequality, are used. The strategies are theoretically and experimentally analyzed and compared among them and with an efficient sequential strategy to solve the problem ​
​Tots els drets reservats