Spectroscopic Analyses on Reaction Intermediates Formed during Chlorination of Alkanes with NaOCl Catalyzed by a Nickel Complex

Full Text
Spectroscopic-Analyses-Reaction.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
The spectroscopic, electrochemical, and crystallographic characterization of [(Me,HPyTACN)NiII(CH3CN)2](OTf)2 (1) (Me,HPyTACN = 1-(2-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane, OTf = CF3SO3) is described together with its reactivity with NaOCl. 1 catalyzes the chlorination of alkanes with NaOCl, producing only a trace amount of oxygenated byproducts. The reaction was monitored spectroscopically and by high resolution electrospray-mass spectrometry (ESI-MS) with the aim to elucidate mechanistic aspects. NaOCl reacts with 1 in acetonitrile to form the transient species [(L)NiII-OCl(S)]+ (A) (L = Me,HPyTACN, S = solvent), which was identified by ESI-MS. UV/vis absorption, electron paramagnetic resonance, and resonance Raman spectroscopy indicate that intermediate A decays to the complex [(L)NiIII-OH(S)]2+ (B) presumably through homolytic cleavage of the O-Cl bond, which liberates a Cl• atom. Hydrolysis of acetonitrile to acetic acid under the applied conditions results in the formation of [(L)NiIII-OOCCH3(S)]2+ (C), which undergoes subsequent reduction to [(L)NiII-OOCCH3(S)]2+ (D), presumably via reaction with OCl- or ClO2 -. Subsequent addition of NaOCl to [(L)NiII-OOCCH3(S)]+ (D) regenerates [(L)NiIII-OH(S)]2+ (B) to a much greater extent and at a faster rate. Addition of acids such as acetic and triflic acid enhances the rate and extent of formation of [(L)NiIII-OH(S)]2+ (B) from 1, suggesting that O-Cl homolytic cleavage is accelerated by protonation. Overall, these reactions generate Cl• atoms and ClO2 in a catalytic cycle where the nickel center alternates between Ni(II) and Ni(III). Chlorine atoms in turn react with the C-H bonds of alkanes, forming alkyl radicals that are trapped by Cl• to form alkyl chlorides ​
​Tots els drets reservats