Approximating generalized distance functions on weighted triangulated surfaces with applications

Text Complet
Approximating-generalized.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Given P, a simple connected, possibly non-convex, polyhedral surface composed of positively weighted triangular faces, we consider paths from generalized sources (points, segments, polygonal chains or polygonal regions) to points on P that stay on P and avoid obstacles (segments, polygonal chains or polygonal regions). The distance function defined by a generalized source is a function that assigns to each point of P the cost of the shortest path from the source to the point. In this paper we present an algorithm for computing approximate generalized distance functions. We also provide an algorithm that computes a discrete representation of the approximate distance function and, as applications, algorithms for computing discrete order-k Voronoi diagrams and for approximately solving facility location problems. Finally, we present experimental results obtained with our implementation of the provided algorithms ​
​Tots els drets reservats