Computing and visualizing popular places

Text Complet
Computing-and-visualizing.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Data analysis and knowledge discovery in trajectory databases is an emerging field with a growing number of applications such as managing traffic, planning tourism infrastructures, analyzing professional sport matches or better understanding wildlife. A well-known collection of patterns which can occur for a subset of trajectories of moving objects exists. In this paper, we study the popular places pattern, that is, locations that are visited by many moving objects. We consider two criteria, strong and weak, to establish either the exact number of times that an object has visited a place during its complete trajectory or whether it has visited the place, or not. To solve the problem of reporting popular places, we introduce the popularity map. The popularity of a point is a measure of how many times the moving objects of a set have visited that point. The popularity map is the subdivision, into regions, of a plane where all the points have the same popularity. We propose different algorithms to efficiently compute and visualize popular places, the so-called popular regions and their schematization, by taking advantage of the parallel computing capabilities of the graphics processing units. Finally, we provide and discuss the experimental results obtained with the implementation of our algorithms ​
​Tots els drets reservats