Multimodal data fusion based on mutual information

Text Complet
Multimodal-Data-Fusion.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Multimodal visualization aims at fusing different data sets so that the resulting combination provides more information and understanding to the user. To achieve this aim, we propose a new information-theoretic approach that automatically selects the most informative voxels from two volume data sets. Our fusion criteria are based on the information channel created between the two input data sets that permit us to quantify the information associated with each intensity value. This specific information is obtained from three different ways of decomposing the mutual information of the channel. In addition, an assessment criterion based on the information content of the fused data set can be used to analyze and modify the initial selection of the voxels by weighting the contribution of each data set to the final result. The proposed approach has been integrated in a general framework that allows for the exploration of volumetric data models and the interactive change of some parameters of the fused data set. The proposed approach has been evaluated on different medical data sets with very promising results ​
​Tots els drets reservats