The influence of light exposure, water quality and vegetation on the removal of sulfonamides and tetracyclines: A laboratory-scale study

Text Complet
influence-of-light-exposure.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
The effect of aquatic vegetation (Spyrogira sp. and Zannichellia palustris), light exposure and water quality (secondary-treated wastewater vs. ultrapure water) on the removal efficiency of six antibiotics (sulfonamides and tetracyclines) is studied in laboratory-scale reactors. After 20d of treatment, 3-59% of sulfonamides were eliminated in the reactors exposed to light. Removal was about 10% in unplanted reactors in darkness. The elimination of tetracycline (TC) and oxytetracycline (OTC) ranged between 83% and 97% in both planted and unplanted reactors. However, in dark unplanted reactors, OTC was largely removed (88%) while only 15% of TC was eliminated. These results suggest that TC was mainly removed by photodegradation whereas biodegradation or hydrolysis process seems to be significant processes for OTC. Sulfonamides were mainly eliminated by biodegradation or indirect photodegradation processes. Pseudo-first order kinetics removal rates ranged from 0.003 and 0.007d-1 for Sulfamethazine and TC in the covered control reactors to 0.13 and 0.21d-1 for TC and OTC in the uncovered control reactors, with half-lives from 3 to 350d. A TC photodegradation product was tentatively identified in uncovered reactors. This study highlights the important role played by light exposure in the elimination of antibiotics in polishing ponds ​
​Tots els drets reservats