Conical intersection optimization based on a double Newton-Raphson algorithm using composed steps

Text Complet
Conical-Intersection-Optimization.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
An algorithm for conical intersection optimization based on a double Newton-Raphson step (DNR) has been implemented and tested in 11 cases using CASSCF as the electronic structure method. The optimization is carried out in redundant coordinates, and the steps are the sum of two independent Newton-Raphson steps. The first step is carried out to reach the energy degeneracy and uses the gradient of the energy difference between the crossing states and the so-called branching space Hessian. The second step minimizes the energy in the intersection space and uses the projected excited state gradient and the intersection space Hessian. The branching and intersection space Hessians are obtained with a Broyden-Fletcher-Goldfarb-Shanno update from the gradient difference and projected excited state gradients, respectively. In some cases, mixing of the quasi-degenerate states near the seam causes changes in the direction of the gradient difference vector and induces a loss of the degeneracy. This behavior is avoided switching to a composed step (CS) algorithm [Sicilia et al. J. Chem. Theory Comput.2008, 4, 27], i.e., a hybrid DNR-CS implementation. Compared to the composed gradient (CG) [Bearpark et al. Chem. Phys. Lett.1994, 223, 269] and hybrid CG-CS algorithms, the DNR-CS algorithm reaches the MECI in 30% and 15% less steps, respectively. The improvement occurs mostly because the approach to the seam is more efficient, and a degeneracy threshold of 0.001 hartree is reached at lower energies than in the CG and CG-CS cases ​
​Tots els drets reservats