Electronic structure investigation and parametrization of biologically relevant iron-sulfur clusters

Full Text
Electronic-Structure-Investigation.pdf embargoed access ErratumElectronicStructureInvestigation.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
The application of classical molecular dynamics simulations to the study of metalloenzymes has been hampered by the lack of suitable molecular mechanics force field parameters to treat the metal centers within standard biomolecular simulation packages. These parameters cannot be generalized, nor be easily automated, and hence should be obtained for each system separately. Here we present density functional theory calculations on [Fe2S 2(SCH3)4]2+/+, [Fe3S 4(SCH3)3]+/0 and [Fe 4S4(SCH3)4]2+/+ and the derivation of parameters that are compatible with the AMBER force field. Molecular dynamics simulations performed using these parameters on respiratory Complex II of the electron transport chain showed that the reduced clusters are more stabilized by the protein environment, which leads to smaller changes in bond lengths and angles upon reduction. This effect is larger in the smaller iron-sulfur cluster, [Fe2S2(SCH3) 4]2+/+ ​
​Tots els drets reservats