Understanding conjugation and hyperconjugation from electronic delocalization measures

Text Complet
Understanding-Conjugation.pdf embargoed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
The concepts of conjugation and hyperconjugation play an important role to provide an explanation for several fundamental phenomena observed in organic chemistry. Because these effects cannot be directly measured experimentally, their assessment became a primary concern for chemists from the very beginning. In general, the stabilization produced by both phenomena has been studied by means of isodesmic reactions and energy based analysis such as the energy decomposition analysis. In recent years, electronic delocalization measures have been successfully applied to elucidate the nature of chemical bonding and the aromatic character of all kind of molecules. Because conjugation and hyperconjugation stabilizations are strongly linked to the concept of electron delocalization, this paper will give an account of both effects from the point of view of electronic delocalization measures calculated within the framework of the quantum theory of atoms in molecules. In particular, we focus our attention in the controversial case of the stabilization by conjugation in 1,3-butadiyne and 1,3-butadiene. Unexpectedly, theoretical calculations based on the scheme proposed by Kistiakowsky to quantify the extent of stabilization due to conjugation predicted that the conjugation of 1,3-butadiyne was zero. Subsequent energetic analyses contradicted this observation. These studies pointed out the presence of hyperconjugation stabilization in the hydrogenated product of 1,3-butadiyne and 1,3-butadiene that were used as reference systems in the Kistiakowsky's scheme. Consequently, the extra stabilization of 1-butyne due to hyperconjugation hides the stabilization by conjugation of 1,3-butadiyne. Our results based on electron delocalization measures confirm both the presence of conjugation in 1,3-butadiene and 1,3-butadiyne and hyperconjugation stabilization in their respective hydrogenated products, 1-butene and 1-butyne ​
​Tots els drets reservats