New insights into the interactions between cork chemical components and pesticides. The contribution of π-π interactions, hydrogen bonding and hydrophobic effect

Text Complet
New-insights-interactions.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
The role of chemical components of cork in the sorption of several pesticides has been investigated. For this purpose raw cork and three cork extracted fractions (i.e. cork free of aliphatic extractives, cork free of all extractives and cork free of all extractives and suberin) were used as sorbent of three ionic pesticides (propazine, 2,4-dichlorophenoxy acetic acid (2,4-D) and alachlor) and five non-ionic pesticides (chlor-pyrifos, isoproturon, metamitron, methomyl and oxamyl) with a logK(ow) within the range -0.47 to 4.92. The effect of cations on the ionic pesticides, propazine and 2,4-D sorption was also analyzed. Results indicated that the highest yields were obtained for chlorpyrifos and alachlor sorption onto raw cork (>55%). After removal of aliphatic extractives sorption of all pesticides increased that ranged from 3% for propazine to 31% for alachlor. In contrast, removal of phenolic extractives caused a sorption decrease. Low sorption yields were obtained for hydrophobic pesticides such as metamitron, oxamyl and methomyl (<11%) by using all cork fractions and extremely low when using raw cork (<1%). FTIR analysis was useful to indicate that lignin moieties were the main components involved on the sorption process. Modelling calculations evidenced that pi-stacking interactions with the aromatic groups of lignin play a major role in determining the adsorption properties of cork toward aromatic pesticides. Results presented in this paper gain insights into the cork affinities for pesticides and the interactions involved in the sorption process and also enables to envisage sorption affinity of cork for other organic pollutants ​
​Tots els drets reservats