Tsallis Mutual Information for Document Classification
dc.contributor.author
dc.date.accessioned
2015-08-04T06:55:36Z
dc.date.available
2015-08-04T06:55:36Z
dc.date.issued
2011
dc.identifier.uri
dc.description.abstract
Mutual information is one of the mostly used measures for evaluating image similarity. In this paper, we investigate the application of three different Tsallis-based generalizations of mutual information to analyze the similarity between scanned documents. These three generalizations derive from the Kullback–Leibler distance, the difference between entropy and conditional entropy, and the Jensen–Tsallis divergence, respectively. In addition, the ratio between these measures and the Tsallis joint entropy is analyzed. The performance of all these measures is studied for different entropic indexes in the context of document classification and registration
dc.description.sponsorship
This work has been funded in part with Grant Numbers TIN2010-21089-C03-01 from the Spanish Government and 2009-SGR-643 from the Catalan Government.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
info:eu-repo/grantAgreement/MICINN//TIN2010-21089-C03-01/ES/CONTENIDO DIGITAL PARA JUEGOS SERIOS: CREACION, GESTION, RENDERIZADO E INTERACCION/
AGAUR/2009-2014/2009 SGR-643
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.3390/e13091694
dc.relation.ispartof
Entropy, 2011, vol. 13, p. 1694-1707
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Attribution 3.0 Spain
dc.rights.uri
dc.title
Tsallis Mutual Information for Document Classification
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
Cap
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
015583
dc.contributor.funder
dc.relation.ProjectAcronym
dc.identifier.eissn
1099-4300