Why bistetracenes are much less reactive than pentacenes in Diels-Alder reactions with fullerenes

Text Complet
WhyBistetracenes.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
The Diels-Alder (DA) reactions of pentacene (PT), 6,13-bis(2-trimethylsilylethynyl)pentacene (TMS-PT), bistetracene (BT), and 8,17-bis(2-trimethylsilylethynyl)bistetracene (TMS-BT) with the [6,6] double bond of [60]fullerene have been investigated by density functional theory calculations. Reaction barriers and free energies have been obtained to assess the effects of frameworks and substituent groups on the DA reactivity and product stability. Calculations indicate that TMS-BT is about 5 orders of magnitude less reactive than TMS-PT in the reactions with [60]fullerene. This accounts for the observed much higher stability of TIPS-BT than TIPS-PT when mixed with PCBM. Surprisingly, calculations predict that the bulky silylethynyl substituents of TMS-PT and TMS-BT have only a small influence on reaction barriers. However, the silylethynyl substituents significantly destabilize the corresponding products due to steric repulsions in the adducts. This is confirmed by experimental results here. Architectures of the polycyclic aromatic hydrocarbons (PAHs) play a crucial role in determining both the DA barrier and the adduct stability. The reactivities of different sites in various PAHs are related to the loss of aromaticity, which can be predicted using the simple Hückel molecular orbital localization energy calculations ​
​Tots els drets reservats