Aryl-copper(III)-acetylides as key intermediates in Csp2-C sp model couplings under mild conditions

Full Text
Aryl-Copper(III)-Acetylides.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
The mechanism of copper-mediated Sonogashira couplings (so-called Stephens-Castro and Miura couplings) is not well understood and lacks clear comprehension. In this work, the reactivity of a well-defined aryl-Cu III species (1 ClO 4) with p-R-phenylacetylenes (R=NO2, CF3, H) is reported and it is found that facile reductive elimination from a putative aryl-CuIII-acetylide species occurs at room temperature to afford the Caryl - Csp coupling species (IR), which in turn undergo an intramolecular reorganisation to afford final heterocyclic products containing 2H-isoindole (PNO2, PCF3, PHa) or 1,2-dihydroisoquinoline (PHb) substructures. Density Functional Theory (DFT) studies support the postulated reductive elimination pathway that leads to the formation of C sp2-Csp bonds and provide the clue to understand the divergent intramolecular reorganisation when p-H-phenylacetylene is used. Mechanistic insights and the very mild experimental conditions to effect C aryl-Csp coupling in these model systems provide important insights for developing milder copper-catalysed Caryl - C sp coupling reactions with standard substrates in the future ​
​Tots els drets reservats