

PARALLEL SPATIAL DATA STRUCTURES FOR
INTERACTIVE RENDERING

Ismael GARCÍA FERNÁNDEZ

Dipòsit legal: Gi. 385-2013
http://hdl.handle.net/10803/107998

Parallel spatial data structures for interactive rendering de Ismael García Fernández està
subjecta a una llicència de Reconeixement 3.0 No adaptada de Creative Commons

©2013, Ismael García Fernández

http://hdl.handle.net/10803/107998
http://creativecommons.org/licenses/by/3.0/deed.ca
http://creativecommons.org/licenses/by/3.0/deed.ca

Doctorat del Programa Oficial de Postgrau en Tecnologia

PhD Thesis

Parallel spatial data structures
for interactive rendering

Ismael Garcı́a
2012

Advisor:

Dr. Gustavo Patow

Memòria presentada per optar al tı́tol de Doctor per la Universitat de Girona

Dr. Gustavo Patow, professor agregat del Departament d’Informàtica i Matemàtica Aplicada de
la Universitat de Girona,

CERTIFICA:

Que aquest treball titulat ”Parallel spatial data structures for interactive rendering”, que presenta
Ismael Garcı́a Fernández per a l’obtenció del tı́tol de Doctor, ha estat realitzat sota la meva
direcció.

Signatura

Dr. Gustavo Patow

Girona, 25 de Juliol de 2012

To my lovely wife Cristina, for being there.

Abstract
Advances in graphic processing units (GPUs) introduce new parallel architectures with many
processor cores in single computing devices. Graphic algorithms and data structures should be
adapted to take advantage of the specific aspects of these current and future parallel many-core
architectures – as standard graphics data structures for single or multiple CPUs or fixed-function
GPUs are not scalable and flexible enough to do so. Thus, the problem of defining parallel-
friendly data structures that can be efficiently created, updated, and accessed is still an ongoing
research challenge.

The context of computer graphics is closely related to spatial data, usually defined by points,
lines, rectangles, regions, surfaces, and volumes. The representation of such data has always
played a crucial role in many applications. More imporatantly, quite often it is crucial that
for data be accessed efficiently to improve algorithmic speed. As an example, irregular spatial
data should be fitted or resampled into regular domains in order to support efficient parallel
evaluation in modern GPUs. These regular spatial data structures allow original samples to be
collected and queried in parallel very efficiently.

The main question explored in this thesis is how to define novel parallel random-access data
structures for surface and image spatial data with efficient construction, storage, and query
memory access patterns.

In order to address this question, representations for shape detail mapping over coarse geome-
tries in real-time applications are explored. The key idea is to create a mapping of the input
spatial data on a coarse lattice in which each cell contains a local description of shape and shad-
ing information for rendering this region of the domain. This low-bandwidth localized memory
access pattern is increasingly advantageous in many-core architectures and crucial to provide a
high rendering speed.

Our main contribution is a set of parallel-efficient methods to evaluate irregular, sparse or even
implicit geometries and textures in different applications: a method to decouple shape and shad-
ing details from high-resolution meshes, mapping them interactively onto lower resolution sim-
pler domains; an editable framework to map high-resolution meshes to simpler cube-based do-
mains, generating a parallel-friendly quad-based representation; a new parallel hashing scheme
compacting spatial data with high load factors, which has the unique advantage of exploiting
spatial coherence in input data and access patterns.

7

Resum
Els avenços en les unitats de processament gràfic (GPU) introdueixen noves arquitectures pa-
ral·leles amb molts nuclis processadors en un únic dispositiu. Els algorismes gràfics i les seves
estructures de dades s’han d’adaptar per aprofitar els aspectes especı́fics de les actuals i futures
arquitectures paral·leles - degut a que les estructures de dades estàndards estan diseñades per
CPUs o GPUs no programables y no són prou escalables ni flexibles per integrarse al nou
paradigme de computació paral.lela. Per tant, el problema de definir estructures de dades que
puguin ésser creades de manera eficient, actualitzables i accessibles en paral·lel segueix essent
un repte important en la investigació de computació gráfica interactiva.

El context dels gràfics per ordinador està estretament relacionat amb les dades espacials, en
general definides per punts, lı́nies, rectangles, regions, superfı́cies i volums. La representació
d’aquestes dades sempre ha jugat un paper crucial en moltes aplicacions. De fet molt sovint
és crucial que les dades s’accedeixin de manera eficient per millorar el rendiment en clau de
la complexitat de temps algorı́smic. A tall d’exemple, les dades espacials irregulars s’han de
organitzar o tornar a mostrejar en dominis regulars per tal de donar suport a una l’avaluació
paral·lela eficient en les GPUs avançades. Aquestes estructures de dades espacials regulars
permeten que les mostres originals es puguin recullir i consultar en paral·lel de manera molt
eficient.

La qüestió principal explorada en aquesta tesi doctoral és la forma de definir noves formes
d’accés aleatori paral·lel en estructures de dades amb informació de superfı́cies i d’imatge,
amb una construcció eficient, un emmagatzematge compacte i uns patrons d’accés a memòria
coherents en les operacions de consulta.

Per tal d’abordar aquesta qüestió, s’han explorat representacions per mapejar els detalls de
formes geomètriques complexes en estructures geomètriques simplificades. La idea clau és
crear un mapatge de les dades d’entrada espacials sobre una graella regular i compacte en què
cada cel·la conté una descripció local de la informació de forma i aparença visual dels de-
talls associats a aquesta regió del domini regular. Aquest patró d’accés permet reduir el cost
d’ample de banda en les transferències d’informació essent molt avantatjós en moltes arqui-
tectures multi-nucli. En resum, tots aquests elements són crucials per a proporcionar una alta
velocitat de renderització.

La nostra principal aportació és un conjunt de paral·lels eficients mètodes per avaluar imatges
i geometries irregulars, disperses o implı́cites en diferents aplicacions, i proposem: un mètode
per a separar la forma i els detalls d’aparença visual partint de malles d’alta resolució, mape-
jant de manera interactiva la informació en dominis de més simples de baixa resolució; un
marc d’edició geomètrica per convertir malles irregulars de triangles d’alta resolució en rep-
resentacions més simples basades en un domini de cubs, generant una estructura fàcilment
paral·lelitzable basada en primitives quadrangulars; un nou esquema de hashing paral·lel per a
la organització i compactació de dades espacials en estructues amb un elevat factor de càrrega,
la qual cosa té presenta unes avantatges expecionals per explotar la coherència espacial de les
dades d’entrada i els seus patrons d’accés a memòria.

9

Resumen
Los avances en las unidades de procesamiento gráfico (GPU) introducen nuevas arquitecturas
paralelas con muchos núcleos de procesadores en un único dispositivo. Los algoritmos gráficos
y sus estructuras de datos deben adaptarse para aprovechar los aspectos especı́ficos de las ac-
tuales y futuras arquitecturas paralelas - debido a que las estructuras de datos estándares están
diseñadas para CPUs o GPUs no programables y no son lo suficientemente escalables ni flex-
ibles para integrarse el nuevo paradigma de computación paralela. Por tanto, el problema de
definir estructuras de datos que puedan ser creadas de manera eficiente, actualizables y acce-
sibles en paralelo sigue siendo un reto importante en la investigación de computación gráfica
interactiva.

El contexto de los gráficos por ordenador está estrechamente relacionado con los datos espa-
ciales, en general definidos por puntos, lı́neas, rectángulos, regiones, superficies y volúmenes.
La representación de estos datos siempre ha jugado un papel crucial en muchas aplicaciones.
De hecho muy a menudo es crucial que los datos se accedan de manera eficiente para mejo-
rar el rendimiento en clave de la complejidad de tiempo algorı́tmico. A modo de ejemplo, los
datos espaciales irregulares se deben organizar o volver a muestrear en dominios regulares para
dar soporte a una evaluación paralela eficiente en las GPUs avanzadas. Estas estructuras de
datos espaciales regulares permiten que las muestras originales se puedan recoger y consultar
en paralelo de manera muy eficiente.

La cuestión principal explorada en esta tesis doctoral es la forma de definir nuevas formas de ac-
ceso aleatorio paralelo en estructuras de datos con información de superficies y de imagen, con
una construcción eficiente, un almacenamiento compacto y unos patrones de acceso a memoria
coherentes en las operaciones de consulta.

Para abordar esta cuestión, se han explorado representaciones para mapear los detalles de for-
mas geométricas complejas en estructuras geométricas simplificadas. La idea clave es crear
un mapeo de los datos de entrada espaciales sobre una rejilla regular y compacta en la cual
cada celda contiene una descripción local de la información de forma y apariencia visual de los
detalles asociados a esa región del dominio regular. Este patrón de acceso permite reducir el
coste de ancho de banda en las transferencias de información siendo muy ventajoso en muchas
arquitecturas multi-núcleo. En resumen, todos estos elementos son cruciales para proporcionar
una alta velocidad de renderización.

Nuestra principal aportación es un conjunto de paralelos eficientes métodos para evaluar imágenes
y geometrı́as irregulares, dispersas o implı́citas en diferentes aplicaciones, y proponemos: un
método para separar la forma y los detalles de apariencia visual partiendo de mallas de alta
resolución, mapeando de forma interactiva la información en dominios más simples de baja
resolución; un marco de edición geométrica para convertir mallas irregulares de triángulos de
alta resolución en representaciones más simples basadas en un dominio de cubos, generando
una estructura fácilmente paralelizable basada en primitivas cuadrangulares; un nuevo esquema
de hashing paralelo para la organización y compactación de datos espaciales en estructuras con
un elevado factor de carga, lo que tiene presenta unas ventajas expecionals para explotar la
coherencia espacial de los datos de entrada y sus patrones de acceso a memoria.

11

Acknowledgments

Finally after many days of hard work I have finished my PhD! I have reached the end of this
phase in my life, and all this would not have been possible without the support and motivation
of many people.

I am greatly indebted to my advisor Gustavo Patow, whom I have worked with since my un-
dergraduate years. He brought me unnumbered scientific skills. His enthusiasm and passion
were an invaluable support throughout my thesis, not just as an advisor but also as a colleague
and friend. His natural interest in my work propelled me through the inevitable low points
of research and encouraged me to take my own research directions, giving me the freedom to
explore these paths, making me feel that I always was having his unconditional support.

Additionally I would like to give a strong thank you to Sylvain Lefebvre, for his mentorship
during our collaborations which has helped me in many aspects of my research. His enthusiasm
for Computer Graphics has provided me a great opportunity to learn, introducing me to several
interesting ideas that surely will impact my future in research.

I am also very grateful to the people at the Geometry and Graphics Group (Universitat de
Girona, Spain) for the friendly environment. Thanks to all my colleagues there, Adrià, Oriol,
Carles, Albert, Mei, Raissel, Nacho and Lien (and many others to be listed here...!). In special,
I want to thank to my closer PhD colleagues and friends Fran and Tere. We had countless coffee
breaks and talks, thank you so much for the good moments we had inside and outside the lab.

I also want to thank the people at the ALICE project-team (INRIA Nancy Grand-Est, France).
Bruno Levy, Nico Ray and Rhaleb Zayer gave me always a friendly welcome during my stays.
Thanks to my other PhD colleagues there as well, Anass Lasram and Vincent Nivoliers. All of
them made my stays more pleasant, and motivated me to return every time.

Next, I would like to thank my coauthors for all the pleasant time I had working and discussing
with them. In particular, I want to thank Jiazhi Xia, Ying He and Samuel Hornus. I really
enjoyed our collaboration in every joint project.

Thanks to my family, especially to my sister and parents, for their support and interest in my
work, in spite of not understanding so much of its purpose, they provide me with indescribable
wisdom, perspective, and love.

Last but not least, I want to thank my beloved Cristina. This thesis is dedicated to you, for all
the love you give me and the unconditional support throughout this very long journey. Yet all
of this would be for nothing without you.

13

Publications

The work presented in this thesis resulted in the following international
conferences and journals:

[GP08] IGT: Inverse Geometric Textures
Ismael Garcia, Gustavo Patow
[Journal]
ACM Trans. Graphics (Proc. SIGGRAPH Asia)
DOI 10.1145/1409060.1409090
http://ismaelgarcia.org/papers/igt_siga2008/

[XGH+11] Editable Polycube Map for GPU-based Subdivision Surfaces
Jiazhi Xia, Ismael Garcia, Ying He, Shi-Qing Xin, Gustavo Patow
[Conference]
Proceedings of I3D 2011, Symposium on Interactive 3D Graphics and Games
http://ismaelgarcia.org/papers/epcm_i3d2011/

[GXH12] Editable Polycube Map for GPU-based Subdivision Surfaces
Ismael Garcia, Jiazhi Xia, Ying He, Shi-Qing Xin, Gustavo Patow
[Submitted to journal]
http://ismaelgarcia.org/papers/tvcg_i3d2011/

[GLHL11] Coherent parallel hashing
Ismael Garcia, Sylvain Lefebvre, Samuel Hornus, Anass Lasram
[Journal]
ACM Trans. Graphics (Proc. SIGGRAPH Asia)
DOI 10.1145/2070781.2024195
http://ismaelgarcia.org/papers/cohash_siga2011/

[RLD+12] A Runtime Cache for Interactive Procedural Modeling
Tim Reiner, Sylvain Lefebvre, Lorenz Diener, Ismael Garcia, Bruno Jobard, Carsten
Dachsbacher
[Journal]
SMI 2012, Shape Modeling International, Computer & Graphics
DOI 10.1016/j.cag.2012.03.031
http://ismaelgarcia.org/papers/hashcache_smi2012/

15

Contents

Contents 17

1 Introduction 21
1.1 Rendering strategies . 22
1.2 Spatial data organization and representation 23

1.2.1 Spatial data organization . 23
1.2.2 Surface and volume data representation 24

1.3 Parallel computing . 26
1.3.1 Irregular spatial data and parallelism 26

1.4 Problem statement . 27
1.5 Contributions . 28
1.6 Document organization . 29

2 Background 31
2.1 Digital surface representation . 31

2.1.1 Surface definition . 31
2.1.2 Piecewise linear surface representation 34
2.1.3 Surface parameterization and remeshing 36

2.2 Level-of-detail . 41
2.2.1 Surface simplification . 41
2.2.2 Subdivision surfaces . 43
2.2.3 Multiresolution level of detail . 45
2.2.4 Error metrics . 46

2.3 Real-time rendering . 48
2.3.1 Graphics hardware pipeline . 49
2.3.2 Graphics processors and parallel programming 51

2.4 Detail mapping data structures . 55
2.4.1 Irregular spatial data organization . 56
2.4.2 Spatial addressing . 56
2.4.3 Spatial data memory layout . 56

17

18 CONTENTS

2.4.4 Spatial data and texture mapping . 57
2.4.5 Parallel spatial query access patterns 59
2.4.6 Linear data structures . 59
2.4.7 Grid-based data structures . 62
2.4.8 Tree-based data structures . 69
2.4.9 Hashing data structures . 71

3 Detail mapping and simplification 77
3.1 Context: mesh parameterization and simplification 79

3.1.1 Mesh attribute-preserving simplification 79
3.1.2 Texture-based attribute-preserving simplification 80

3.2 Inverse Geometric Textures . 85
3.2.1 Parameter domains and mappings: (M C−→ P

P−→ T
M−→ D) 86

3.2.2 Data structures (D, L, A) . 90
3.2.3 Constructing the inverse map I . 91
3.2.4 Querying with the inverse map I: (D I−→ P) 92

3.3 Applications . 94
3.3.1 Vertex colors . 95
3.3.2 Volumetric and procedural texturing 96
3.3.3 Texture mapping . 96
3.3.4 Texture transfer . 98

3.4 Results . 98
3.4.1 Geometry & attributes preservation with IGT: experimental evaluation . 99
3.4.2 Query evaluation . 100

3.5 Discussion and limitations . 105
3.5.1 Sparse and inconsistent topological geometries 105
3.5.2 Bijectivity limitations in the mappings C and P 105
3.5.3 Animation compatibility . 106

3.6 Conclusions . 106

4 Editable mapping and subdivision surfaces 107
4.1 Context: mesh parameterization and

subdivision surfaces . 110
4.1.1 Polycube mapping . 110
4.1.2 Quadrangulation . 112
4.1.3 Subdivision surfaces . 112
4.1.4 Cross-parameterization . 113

4.2 Editable Polycube Map . 113
4.2.1 Overview . 115
4.2.2 Constructing Polycube Map . 117
4.2.3 Subdivision surface from the polycube map 123

4.3 Applications . 123
4.3.1 GPU-based subdivision displacement 123
4.3.2 Kit-bashing . 124
4.3.3 Blendshapes . 126
4.3.4 Dual Painting . 127

4.4 Results and Discussion . 128

4.4.1 Results . 128
4.4.2 Tradeoff between accuracy and regularity 129
4.4.3 Stroke drawing . 130
4.4.4 Automatic Tunnel Slitting . 130
4.4.5 Comparison to [HWFQ09] . 132

4.5 Conclusions . 134
4.5.1 Limitations and Future Works . 134

5 Coherent parallel hashing 135
5.1 Context: parallel hashing . 136
5.2 Coherent parallel hashing . 137

5.2.1 Notations and definitions . 138
5.2.2 Main algorithm and data structure . 139
5.2.3 Construction . 142

5.3 Results . 144
5.3.1 Hashing generic data . 145
5.3.2 Hashing in a Computer Graphics setting 146

5.4 Applications . 150
5.5 Discussion, limitations and future work . 150
5.6 Conclusion . 152

6 Conclusions and future work 153
6.1 Summary of contributions . 153
6.2 Perspectives and future work . 154

6.2.1 Real-time simplification and parallel localization
with random access . 154

6.2.2 Efficient and robust semi-automatic parallel
parameterization with interactive control 154

6.2.3 Succinct hashing schemes, dynamic hash tables and
variable-length data elements . 155

Bibliography 157

19

Chapter1
Introduction

The focus of our study is to design and provide time- and space-efficient parallel data
structures and algorithms for real-time rendering applications. This chapter reviews the
main concepts and the problem statement of this dissertation.

IN the computer graphics field, rendering processes transform collections of three-dimensional
geometric objects into realistic-looking images. A scene description is created by first posi-

tioning objects into the scene, then assigning materials and adding light sources. The scene is
viewed from a virtual camera and the interactions between lights and materials are computed
from that viewing position. The result is a computer generated image. The process of com-
puting the color of each pixel on screen from a three-dimensional scene description is often
referred to as rendering an image.

Rendering can be broadly divided in two categories, namely offline and real-time rendering.
The focus of this thesis is on the latter, which thanks to faster processors and better algorithms
allow continuously more advanced visual effects at interactive frame rates.

A large number of operations in computer graphics are concerned with the process of col-
lecting spatial data in a computer’s memory, in such a way that the information can be sub-
sequently recovered as quickly as possible in order to be processed and generate a screen
image in real-time. In this context, it is important to retain and organize the spatial data in
such a way that fast retrieval and evaluation are possible.

In this chapter we will describe the special conditions of most common collect, query and
evaluation operations with spatial data in computer graphics applications. In general we first
need to define some concepts to describe these particular problems in more detail.

21

22 CHAPTER 1. INTRODUCTION

1.1 Rendering strategies

In computer graphics, there are two fundamental techniques
to process the input surface and volume data to generate the
screen images: rasterization and raytracing.

Rasterization based on Z-buffer depth sorting [Cat74], is an
object-order algorithm, processing each scene object one af-
ter the other, and defined by two main steps, sample selection
and interpolation. Sample selection is performed by scanning
the input geometric primitives of each object to generate their
screen surface fragments (see Figure 1.1). Each surface frag-
ment corresponds to a screen pixel coordinate, where addi-
tional surface detail samples may be queried, evaluated and in-
terpolated for the final color computation in a so-called shader
program.

Figure 1.1:
Rasterization object-order
algorithm shading screen sur-
face fragments.

Raytracing [App68] is an image-order algorithm which de-
fines a view ray from the camera through each screen pixel.
Each ray is traced in order to find surface intersections (see
Figure 1.2). At each surface intersection point, a shader pro-
gram may trace additional rays, to then query and interpolate
the surface detail samples and generate the final color.

Rasterization and raytracing are usually managed by broad-
band spatial data structures (see Section 1.2.1). Both tech-
niques also use essentially the same shader programs in sur-
face fragments or in ray intersection coordinates, respectively.
At this fine-grained level, it is required to query and evalu-
ate the additional shape and shading detail samples very effi-
ciently.

We focus our study on this specialized level to provide novel
efficient parallel data structures to improve rendering perfor-
mance in real-time applications, by preparing the input spatial
data to this end (see Section 1.2.2).

Figure 1.2:
Raytracing image-order
algorithm shading screen sur-
face intersections.

This typically involves defining shape and shading representations over a lattice in which each
cell contains the local description required for rendering such regions of the domain, which is
specially adapted to take advantage of specific aspects of many-core architectures so that they
can be efficiently created, updated and accessed.

23

1.2 Spatial data organization and representation

The complexity of rendering very detailed objects should be
balanced by using a reasonable amount of shape and shading
information depending on the distance between the object and
the screen point of view. This means that the object’s data
structures should provide a coarser representation if they ap-
pear far way, but still provide the fine-grained details when
they are visualized in a close view (see Figure 1.3).

Figure 1.3: Level-of-detail
techniques use simplified ob-
jects representations across
the view distance.

This is specially important in order to provide a good interactive visualization performance,
which reduces the rendering cost of querying and evaluating minor, distant or unimportant shape
and appearance information.

1.2.1 Spatial data organization

Describing and evaluating spatial data such as surface and vol-
ume information can be a computationally complex task. For
instance, modeling the interplay of light and the surfaces to
create a screen image can require a high computational cost.
In large scenes composed of many objects, spatial data struc-
tures are used to organize the surface and volumetric objects
in three-dimensional space, grouping nearby objects in order
to process them efficiently, taking advantage of the spatial lo-
cality of their data. (a)

The organization of the spatial data in large scenes is usu-
ally addressed with hierarchical data structures [Sam90]. The
main reason for using a hierarchy is that different types of
queries on the data get significantly faster. Rendering a three-
dimensional scene to create a screen image is usually per-
formed using a hierarchical spatial data structure called scene
graph. A subdivision of the entire space of the scene, with
regular or irregular cells, is done, for instance, with octrees
[Gla84], bounding volume hierarchy trees (BVH) [Cla76] (see
Figure 1.4), or kd-trees [Arv88]. These hierarchical data struc-
tures are used as a broad-band spatial data organization of the
scene. As an example, if some objects of the scene are almost
invisible due to size or position, the scene graph can be used
to determine that this is the case, discarding them, to avoid
unnecessary computations in subsequent rendering pipeline
stages.

(b)

Figure 1.4: Scene objects
organization with a bounding
volume hierarchy (BVH) data
structure. (a) Volumes group-
ing scene objects. (b) BVH tree
of the scene.

24 CHAPTER 1. INTRODUCTION

1.2.2 Surface and volume data representation
Independently of the spatial broad-band object organization, the surface and volume informa-
tion of the scene objects should have a flexible fine-grained representation, with different levels
of detail. This will help to balance the processing time on the selected scene objects that con-
tribute to the final image. The required data structures to this end are extensively used with
a large amount of shading computations to obtain the final appearance. Therefore, they must
allow very efficient parallel collecting and querying operations.

Detail mapping: Our notion of an object’s shape and shad-
ing detail information includes the color data above the base
shape, but also the fine surface and volumetric shape and shad-
ing information that creates the final appearence of the object.
These high frequency details are meant to be mapped to the
base shape of the object and adjusted by a level-of-detail strat-
egy in order to balance the visual quality, the storage and pro-
cessing costs.

In general, a mapping operation is defined in any spatial object
representation in order to link the shape and shading details
onto the base shape of the objects. The map must allow a
flexible representation between the gross shape and the details
of the object.

The thin layer of shape and shading details defines a very
sparse distribution over the 3D spatial domain. In fact, it is
an embedding of a 2D surface layer in the 3D domain. There-
fore, usually a uniform 2D grid is used to encode the samples
of the map between the base shape and the detail layer. In this
process the details are somehow resampled onto the details
onto a planar domain in one or multiple patches called charts,
usually flattening the surface into the rectangular domain of
an image (see Figure 1.5).

Figure 1.5: (Top) 3D Bunny
shape. In dark blue illustrates
the base shape of the bunny,
and in light blue depicts the
layer of shape and shading
fine details mapped over the
base shape. (Bottom) Shows
the cutting and flattening of
the shape and shading details
layer in an image grid.

Here we describe a set of general data structures for spatial data processing that are commonly
used in rendering applications:

• Mesh data structures (like triangle and tetrahedron
meshes) represent three-dimensional objects by piece-
wise linear surfaces and volumes defined by a set of pla-
nar polygons with an explicit, and often irregular con-
nectivity, which means that each polygon does not have
the same fixed number of neighbour polygons aroud it
(see Figure 1.6). Mesh structures can provide an easy
local control, support arbitrarily topologies and give an
efficient display evaluation.

Figure 1.6: A surface triangle
mesh data structure.

25

However, they will only provide a guaranteed continuity, accuracy, and being specially
concise, if they are represented with a parametric or a subdivision geometric scheme
(see Section 2.2.2). Furthermore, they are not an efficient representation for instance, for
intersection operations.

• Linear data structures can represent point-sampled
surfaces and volumes without a mesh connectivity be-
tween the samples (see Figure 1.7), which avoids the
requirement of surface and volume extraction methods
to generate or maintain such connectivity information
during the collection or query evaluation during interac-
tive rendering. They are useful, for instance, in presence
of large sparsity in the distribution of the data elements
in the spatial domain (see Section 2.4.6).

Figure 1.7: A point sampled
surface with a linear data struc-
ture.

Although they can provide a compact representation without explicitly storing empty
space, they still impose challenges to provide at the same time an efficient collecting
process, a compact representation and random-access queries on the data. For instance,
sorted arrays require a binary search to query the spatial data, and in case of new elements
to be inserted it may require a full reconstruction, sorting again the full array.

• Uniform grid data structures (like 2D and 3D images)
represent the data samples aligned to grid locations as
pixel data (see Figure 1.8). The image grid defines an
implicit connectivity between the neighboring grid lo-
cations. So, it allows constant time query operations
between neighbor pixels in the grid without requiring
any explicit connectivity information for neighbor query
evaluations (see Section 2.4.7). However, they are not
a space-efficient representation in case of sparse data,
leaving most of the records empty.

Figure 1.8: A surface sampled
on a regular grid data structure.

• Adaptive grid data structures (like quadtrees and oc-
trees) provide a subdivision of the bounded object do-
main with variable resolution (see Figure 1.9). They
are useful to organize point-sampled data, boundaries
of curves and surfaces, or interior regions like areas and
volumes; adaptively sampling the spatial information.
However, the query operations require an explicit traver-
sal to get the neighboring data, and also the linked nodes
usually have a large space overhead with respect to the
sampled data and break the coherence in the memory
access pattern (see Section 2.4.8).

Figure 1.9: A surface sampled
on an adaptive grid data struc-
ture.

26 CHAPTER 1. INTRODUCTION

• Hash data structures can also represent point-sampled
data without mesh connectivity between the samples.
They are useful in presence of large sparsity in the dis-
tribution of the data elements in the spatial domain and
they can be constructed to be compact (see Figure 1.10),
and still be able to answer queries in almost constant
time (see Section 2.4.9).

Figure 1.10: A surface sam-
pled on a packed hashing grid
data structure.

1.3 Parallel computing

Graphic processing units (GPUs) are becoming so parallel that standard data structures that
proved very effective for collecting and recovering geometry and image information in CPU
sequential processing, or fixed-function GPUs, are not scalable and practical in current and fu-
ture many-core architectures. Many-core devices, like GPUs, should be exploited by especially
suited data structures to allow collecting and recovering geometry and image information in
parallel. Ideally, the data structures would be constructed on the GPU itself using an efficient
parallel method to avoid being the bottelneck for a parallel application. Several hierarchical spa-
tial data structures have been recently adapted, like octrees [LK10] and k-d trees [ZHWG08].

In general, the problem of defining parallel-friendly data structures that can be efficiently cre-
ated, updated, and accessed is still an on going significant research challenge [LSK+06].

1.3.1 Irregular spatial data and parallelism
On the time of the early appearing graphic processing units, a careful optimization of meshes
and images was required before the graphics processing, e.g. reducing the connectivity of the
mesh to define an irregular but more compact representation, amenable for the computational
capabilities of the available GPUs. These operations often required sequential CPU intensive
processing but allowed to provide low-bandwidth transfer operations between the CPU and the
GPU.
Nowadays the complexity of geometric models used in interactive applications is constantly
increasing due to the need of more convincing, detailed, and usually realistic visualizations,
requiring, for instance, large triangle meshes. However, these large irregular data structures with
explicit connectivity do not scale well for current and future data parallel processing on many-
core architectures. The large amount of shape and shading information should be presented
in a way that allows a more data parallel-friendly evaluation, where each processor is able to
perform the same task on different but regular pieces of the distributed data.

As an example, the geometric data represented in irregular-like mesh data structures should
be somehow resampled into regular-like domains, in order to avoid the storage of the explicit
connectivity. This would give support for a greater parallelism, and at the same time create
coherence by providing a better spatial locality in the access pattern. This is important because
a major restriction of irregular mesh data structures is that they do not allow a random-access
evaluation of the input information, while regular data structures allow to evaluate original
samples into screen pixels, querying input data for different pixels very efficiently with random-
access operations.

27

Furthermore, graphics workloads are non-trivial in many ways. In the graphics processing of
triangle meshes, each incoming triangle may produce a variable number of surface fragments,
the exact number of which is unknown before the rasterization is complete. The number of
fragments can vary wildly between different workloads, and also within a single batch of trian-
gles of a same surface. Also, approximately half of the incoming triangles are usually culled,
producing no fragments at all [Bli96].

1.4 Problem statement

Shape and shading spatial data can be represented in a variety of ways. The representation
ultimately chosen for a specific task is heavily influenced by the type of operations to be per-
formed on the data. Depending on wether the nature of the source data is static or dynamic (i.e.,
if the number of data points can change during execution), whether the data is defined with a
uniform or a sparse spatial distribution, and whether the data fits completely in-core or requires
out-of-core processing, we can take advantage of any of these assumptions to design efficient
specialized parallel data structures.

We focus on the study of novel data structures that should be specialized for in-core parallel-
friendly processing. The main question is how to provide an efficient construction, storage,
and memory access patterns in the queries for spatial data. The proposed data structures
should be compatible with different types of static and dynamic input spatial data com-
monly used in interactive rendering, with a possible large range of sparsity in the spatial
domain.

The set of main conditions that the proposed data structures should follow are:

Algorithmic requirements:

• Exploit parallelism.

• Run on many-core processors (GPUs and CPUs).

• Provide efficient and scalable collecting and querying operations.

• Create coherent access patterns

Spatial data structure requirements:

• Provide a simple and flexible configuration with user-friendly parameters.

• Exploit coherence of the spatial data.

• Provide memory cache alignment patterns (e.g. block memory transfers).

• Exploit available temporal and spatial locality.

28 CHAPTER 1. INTRODUCTION

1.5 Contributions

This thesis introduces three specific representations of spatial data with efficient parallel
random-access for interactive rendering applications. Surface and volume representations of
different topology and sparsity are handled with efficient encoding and rendering algorithms,
where the key idea is to create a mapping of the input data to a virtual grid, which naturally
suits for parallel graphics processing units with a Single Instruction, Multiple Data (SIMD)
programming model.

The proposed approaches create a coarse lattice in which each cell contains a local de-
scription of surface and volume information, required for rendering such regions of the do-
main. This low-bandwidth localized memory access pattern is increasingly advantageous in
many-core architectures, were the usage of random-access parallel data structures is crucial
to provide fast rendering speed and good visual quality.

Basically, this manuscript proposes three main contributions, namely:

A detail mapping method for surface simplification based
on an inverse parameterization. The coarse shape of the ob-
ject representation is decoupled from its surface and shading
details on high resolution triangle meshes, allowing to map
the original shading and surface details onto any lower reso-
lution simpler domain representation of the object. The tri-
angular mesh can be simplified with almost no constraints,
and the inverse parameterization allows accessing the original
high resolution information, resulting in higher quality com-
pact meshes preserving the original high-resolution surface in-
formation.

An editable mapping method for subdivision surfaces
that provides a framework to map high-resolution triangular
meshes to simpler cube-based domains (polycube). These are
the basis to generate a quad-based parallel-friendly represen-
tation. The sketch-based interface allows the users to easily
modify and fine-tune the mapping, and perform other mod-
eling operations between the triangular mesh and the poly-
cube. The quad-based representation is convertd to a subdivi-
sion surface specially built for quad patch-based tessellation
on the GPU.

29

A real-time parallel hashing method that introduces a
parallel-friendly hashing scheme to compact surface and vol-
umetric spatial data with high load factors. It provides the
unique advantage of exploiting spatial coherence of the input
data and in the access pattern. The technique creates and ac-
cesses the data structure in the GPU, in a parallel very efficient
way, leading to increased locality in the memory access, and
an increased coherence in the parallel execution paths access-
ing the data.

These elements form a set of parallel efficient strategies to be able to map, from sparse geome-
tries, irregular meshes, implicit surfaces, vector textures, and raster images, to memory efficient
and random-access data structures for fast interactive rendering applications.

1.6 Document organization

This thesis is structured as follows. After this introduction, a background on level-of-detail,
parallel programming and spatial data structures is given in Chapter 2. From Chapter 3 to
Chapter 5, the three novel techniques are presented in detail. In all they define a set of parallel
spatial data structures to improve the rendering performance of the real-time graphics pipeline.
The thesis is completed by a conclusion in Chapter 6 which also contains a discussion and
perspectives of future work.

See below the main topics of each chapter:

Chapter 1: Introduction

The focus of our study is to design and provide time- and space-efficient practical parallel
data structures and algorithms for real-time rendering applications. This chapter reviews
the main concepts and the problem statements of the study described in this manuscript.

Chapter 2: Background

Shape and shading representations are of great interest in computer graphics. This chap-
ter are presented most relevant and close related developments with level-of-detail from
shape and shading information, describing and identifying their key points that inspired
our proposed contributions.

Chapter 3: Detail mapping and simplification

Surface simplification must deal with a problem of great importance: preserving both
the shape and shading details attached to a geometric mesh structure without con-
straining the final quality. This chapter presents our proposed special setting with a
parameterization-based spatial directory to avoid the limiting issues and generate high
quality compact and parallel-friendly representations.

Chapter 4: Editable mapping and subdivision surfaces

Shape representations require simplicity and regularity on the mesh structure of many
computer graphics applications. This chapter presents a framework with a sketch-based

30 CHAPTER 1. INTRODUCTION

editable mapping from complex shapes onto high quality cube-based parametric do-
mains. The provided representation is specially useful for hardware parallel tessellation
with subdivision surfaces, displacement mapping and other modeling applications.

Chapter 5: Coherent parallel hashing

Collecting sparse spatial data is particularly useful when having some elements of in-
terest sparsely located in the spatial domain. This chapter presents parallel hashing
methods to robustly create smaller tables with only the interesting shape and shading
elements of implicit or irregular surfaces of objects, while exploiting coherence in the
spatial data and the access patterns for fastest random-access parallel queries in many
computer graphics applications.

Chapter 6: Conclusions and future work

The thesis is completed by a conclusion which also contains a discussion and perspec-
tives of future work.

Chapter2
Background

Shape and shading representations are of great interest in computer graphics. This chapter
presents the most relevant and closely related developments about mathematical models
and computer representations from shape and shading information, and describes and
identifies the key points that inspired our proposed contributions.

Advances in 3D digital geometry processing and computer graphics have created a plenitude
of novel concepts for the mathematical representation and interactive manipulation of

graphics models to capture and modify the shape of physical objects. These three-dimensional
geometric models form the basis of many interactive rendering applications.

2.1 Digital surface representation

In this section we describe mathematical models and the discrete geometric representations of
shapes, introducing basic notions of differential geometry and the properties of piecewise linear
surface representations.

2.1.1 Surface definition
Here we introduce the concepts involved in the description and computation of the geometric
aspects of 2D and 3D objects. These concepts are related to the mathematical study of shape
and form – which are essential for some of the geometry processing methods studied in this
manuscript. To begin, we will describe the requirements of a shape as candidate topological
space and then we will formalize the definition of a surface.

Given a topological space (X,Tx), where X is a set, and Tx is a collection of subsets of X , it
satisfies the following axioms:

• The empty set and X are in Tx.

• Tx is closed under arbitrary union.

• Tx is closed under finite intersection.

Given a shape defined as a topological space (X,Tx), it must meet the following four require-
ments to be formaly defined as a surface:

31

32 CHAPTER 2. BACKGROUND

1) The first requirement is that the surface should be in just
one piece. This can be ensured by requiring the surface
to be path-connected, which means that any two points
P andQ on the surface can be joined by a curve that lies
entirely in the surface (see Figure 2.1). In mathematical
terms, this means that there is a continuous map f from
the interval [0, 1] to the surface, such that f(0) = P and
f(1) = Q.

Figure 2.1: A surface must be
path connected, any two points
P and Q can be joined by a
curve.

2) The second requirement is a technical one that is needed
to eliminate certain awkward cases. We require a sur-
face to be a Hausdorff space. This means that, given
any pair of distinct points a and b in the space, there are
disjoint open sets U and V , one containing a and the
other containing b (see Figure 2.2). As R3 with the Eu-
clidean topology is a Hausdorff space, any subset of it
with the induced topology, such as a surface in space, is
also a Hausdorff space. Thus it follows that for a shape
defined as a topological space to be a surface in space,
it must also be a Hausdorff space.

Figure 2.2: A surface must be
a Hausdorff space, for any pair
of distinct points a and b there
are two disjoint open sets U
and V , one containing a and
the other containing b.

3) The third requirement it is to be a compact surface, in
the sense that it can be obtained from a closed polygon
(or a finite number of polygons) by identifying bound-
ary edges. In Figure 2.3 we can see an example of the
construction of the compact surface of a torus: the pro-
cess corresponds to the identification of opposite edges
in pairs following the directions indicated by the arrows.
For ease of reference, we label each pair of edges that is
to be identified with the same letter, a for the first pair
to be identified and b for the second pair. An example
of surface that is not compact is a cylinder without its
bounding circles and the entire plane.

Figure 2.3: A surface must
be a compact surface obtained
from a closed polygon (or a
finite number of polygons) by
identifying boundary edges.

33

4) The fourth requirement is that the topological space
(X,Tx), in order to be a surface, it must satisfy that,
given any point x ∈ X , there is an open set U con-
taining x such that U is homeomorphic either to an
open disc in R2 with the Euclidean topology or to an
open half-disc in the upper half-plane with the subspace
topology inherited from the Euclidean topology on R2.
As an example, in a cylinder –except for the points at
the ends of the cylinder boundaries – each point has a
disc-like neighborhood, but the points at the ends have
no such neighbourhoods (see Figure 2.4). Instead, each
such endpoint x has a half-disc-like neighborhood, be-
ing then a subset that is homeomorphic to an open half-
disc.

Figure 2.4: Surface open sets
must define a homeomorphism
to a disk or half-disk.

Now we can provide the formal definition of a surface:

A surface is a compact path-connected Hausdorff topological space (X,T) with the prop-
erty that, given any point x ∈ X , there is an open set U containing x such that U is home-
omorphic either to an open disk in R2 with the Euclidean topology or to an open half-disk
in the upper half-plane with the subspace topology inherited from the Euclidean topology
on R2. A surface in space is a surface (X,Tx) where X is a subset of R3 and Tx is the
subspace topology on X inherited from the Euclidean topology T on R3.

In a comparison between surfaces we can classify them as topologically equivalent or as differ-
ent according to the homeomorphic relation, which is as follows:

The homeomorphic relation between two topological spaces
(X,Tx) and (Y, Ty) is valid if there is a bijection f : X → Y
that is continuous, and whose inverse f−1 is also continu-
ous with respect to the given topologies. Such a function f
is called a homeomorphism. The relation ’is homeomorphic
to’ between topological spaces is the most fundamental rela-
tion in topology, and an important requirement for the surface
definition. If two topological spaces are homeomorphic, it
means that they are indistinguishable from a topological point
of view, they are topologically equivalent. An alternative def-
inition of a homeomorphism is that a bijection f : X → Y
is a homeomorphism if and only if both f and f−1 map open
sets to open sets. Thus, if (X,Tx) and (Y, Ty) are homeomor-
phic, then not only are the elements of X and Y in one-to-one
correspondence, but so are their open sets. We can thus regard
(Y, Ty) as being essentially the same space as (X,Tx) so far
as its purely topological properties are concerned: (X,Tx) and
(Y, Ty) are merely two different ways of presenting the same
space.

(a) (b)
Figure 2.5: Homeomorphism
between 2 surfaces: (a) Be-
tween cube and sphere (genus
0). (b) Between a torus and a
mug (genus 1).

34 CHAPTER 2. BACKGROUND

Given two topological spaces as surfaces (X,Tx) and (Y, Ty), a bijective map f from X to Y is
called a diffeomorphism if both f : X → Y and its inverse f−1 : Y → X are differentiable. If
these functions are r times continuously differentiable, f is called a Cr − diffeomorphism.
Two surfaces X and Y are diffeomorphic if there is a diffeomorphism between them. As an
example, the relation between a cube and a sphere, and a doughnut and a teacup are homeomor-
phisms too, since both shapes are topologically equivalent (see Figure 2.5).

The idea of orientability is another fundamental concept
necessary for the study of surfaces. Two surfaces that are
homeomorphic have the same orientability number. We
observe that this is not the case between a cylinder and a
Möbius band by noticing that every cylinder has an ’inside’
and an ’outside’, and we can paint one red and the other blue.
But if we try to paint a Möbius band in two colors, we fail,
as it has just one ’side’. Any one-sided surface in space is
non-orientable (see Figure 2.6). (a) (b)

Figure 2.6: Orientable and
non-orientable surfaces.

The genus of a connected, orientable surface is an integer value representing the maximum
number of cuts along non-intersecting closed simple curves without rendering the resultant
manifold disconnected (see Figure 2.7). It is equal to the number of handles on it. Alternatively,
it can be defined in terms of the Euler characteristic X , via the relation X = 2− 2g for closed
surfaces, where g is the genus. For surfaces with b boundary components, the equation reads
X = 2− 2g − b.

(a) (b) (c) (d)
Figure 2.7: Genus of a surface: (a) Sphere (genus 0). (b) Torus (genus 1). (c) Two-ring torus (genus 2).
(d) Three-ring torus (genus 3).

2.1.2 Piecewise linear surface representation

In computer science, polygonal meshes remain the most com-
mon and flexible way to approximate surfaces. A polygonal
surface model, also known as a mesh, is a piecewise linear
surface in the three-dimensional Euclidean space R3. With-
out loss of generality, it can be assumed that the set of planar
polygons defining a mesh consists entirely of triangular faces,
since any non-triangular polygon may be triangulated in a pre-
processing step [Sei91].

Figure 2.8:
Closed mesh 2-manifold. Ev-
ery edge in the mesh is shared
by exactly two faces and the
neighborhood of every vertex
consists of a closed loop of
faces.

35

A polygonal surface is said to be a 2-manifold mesh, called
closed mesh (see Figure 2.8), if every edge in the mesh is
shared by exactly two faces and the neighborhood of every
vertex consists of a closed loop of faces. In the case where
the mesh does have a boundary, it is a 2-manifold called open
mesh (see Figure 2.9), where the boundary edges must have
only one incident face and the neighborhood of boundary ver-
tices consists of a single fan of faces.

2.1.2.1 Face-vertex mesh

A face-vertex mesh M = (V, F) is a structure containing a
list of vertices V , and a list of triangular faces F . The vertices
list V = (v1, v2, · · · , vm) is an ordered sequence where each
vertex may be identified by a unique integer i. The faces list
F = (f1, f2, · · · , fn) is also ordered, assigning a unique inte-
ger to each face. Every vertex vi = (xi, yi, zi) is a vector in the
Euclidean space R3. Each triangle fi = (j, k, l) is an ordered
list of three indices identifying the corners vertices (vj, vk, vl)
of fi.

Figure 2.9:
Open mesh 2-manifold. Any
boundary edge must have only
one incident face and the
neighborhood of boundary ver-
tices consists of a single fan of
faces.

2.1.2.2 Half-edge mesh data structure

A half-edge mesh data structure [Wei85] is an edge-centered
structure capable of maintaining incidence information of ver-
tices, edges and faces, for example for planar maps, polyhe-
dra, or other orientable, two-dimensional surfaces embedded
in an arbitrary dimension. Each edge is decomposed into two
half-edges with opposite orientations. One incident face and
one incident vertex are stored for each half-edge (see Figure
2.10). For each face and each vertex, the first incident half-
edge is stored.

The half-edge data structure provides constant time access
queries to the neighborhood of an arbitrary point without re-
quiring any search operation during traversals. For instance,
we can easily compute a normal for any given face on demand,
even if the vertex locations are changing, or we can traverse
every face touching a vertex (the start of the vertex) to easily
estimate a normal for that vertex. For instance, if we are lo-
cally changing small portions of a mesh, this is much easier
than recomputing the normals for every vertex in the mesh.

Figure 2.10: Half-edge mesh
data structure: one incident
face (shown in light blue) and
one incident vertex (shown in
red) are stored for each half-
edge.

Similarly, mesh simplification or subdivision algorithms such as Loop and Catmull-Clark are
relatively easy to integrate for level-of-detail geometry processing. An overview and com-
parison of these different data structures together with a thorough description of the design
implemented here can be found in [Ket99].

36 CHAPTER 2. BACKGROUND

The orientation of a face is a cyclic order of the incident ver-
tices. A manifold mesh is orientable if any two adjacent faces
have consistent orderings (see Figure 2.11). Let fi and fj be
adjacent faces sharing the edge (vi, vj). If vi and vj occur in
this order for fi, then they must occur in fj in the order vj
followed by vi. The typical choice in computer graphics ap-
plications is based on the visibility of the mesh from the cam-
era location. The vertices are ordered counterclockwise in the
plane of the face viewed from outside the mesh. This assump-
tion defines the normal vectors directed toward the eye.

Figure 2.11:
2-manifold mesh orientation.
(Left) Non-orientable surface.
(Right) Orientable surface.

2.1.3 Surface parameterization and remeshing
Geometry processing methods exploits the mathematical properties of a surface representation
to map the original object surface shape and shading details into more suitable domains (e.g.
a planar domain), or to transfer such details onto a higher quality mesh structure generated
by mapping the input mesh structure to more suitable base-complex domains. Therefore, it is
highly desirable to find a diffeomorphism between a 2-manifold surface and a suitable Euclidean
space domain in many computer graphics applications.

2.1.3.1 Surface planar parameterization

Mesh parameterization was introduced in computer graphics
to find a one-to-one mapping from a suitable parameter do-
main to the given surface. Given any two surfaces with the
same topology (ST and DT), an important goal of parameteri-
zation is to obtain bijective (invertible) maps, where each point
on the parameter domain corresponds to exactly one point of
the given surface. The mapping f between the triangular mesh
ST and the triangulation of the parameter domain DT , is de-
fined as being piecewise linear, associating each triangle of
the original mesh with a triangle in the parameter domain (see
Figure 2.12). The one-to-one mapping from the suitable pa-
rameter domain to the surface must minimize angle distortions
(conformal parameterization) and area distortions (equiareal
parameterization) to obtain a good quality parameterization.

Figure 2.12: Piecewise linear
mapping where each point on
the parameter domain DT cor-
responds to exactly one point
of the given surface ST .

Here, we first focus our interest on methods parameterizing triangulated surfaces which are
homeomorphic to a disk, with piecewise linear mappings onto a planar domain.

Harmonic mapping: The harmonic map objective is to parameterize a given disk-like surface
S ⊂ R3 into a unit disk D in the plane.
A harmonic function is a twice continuously differentiable function: f : S → R2, where S is
an open subset of R2 which satisfies the Laplacian equation4f = 0 everywhere in S, and

4 =
∂2

∂x2
+

∂2

∂y2
(2.1)

37

Harmonic functions can be generalized on arbitrary Riemannian manifolds (i.e. manifolds pos-
sessing a metric tensor such as the geodesic in a Euclidean space) as a Laplace-Beltrami oper-
ator. The Laplace-Beltrami operator is also the divergence of the gradient: 4f = Div(5f).
More details can be found in Schoen and Yau [SY97].
If S and D are two Riemannian manifolds, such as 2-manifold surfaces, then a harmonic map
f : S → D is defined to be a stationary point of the Dirichlet energy

E(f) =
1

2

∫
S

‖ gradSf ‖2 (2.2)

The Radó Theorem [Rad26] – proved independently by Kneser [Kne26] and Choquet [Cho45],
gives the theoretic foundation for harmonic surface mapping between 2D convex domains. Sup-
pose S ∈ R2 is a convex domain with a smooth boundary ∂S, and suppose that D is the unit
disk. Then, given any homeomorphism µ : ∂D → ∂S, there exists a unique harmonic function
f : D → S such that f = µ on ∂D and µ is a diffeomorphism [SY97]. When we focus on
mappings from general surfaces S ∈ R3 to a plane, we find that all of the above properties are
essentially the same [FH05].

These interesting properties attracted a lot of harmonic field-based algorithms [ZH99, WGTtY,
LGW+07, MCK08]. Eck et al. [EDD+95b] introduced discrete harmonic maps into the com-
puter graphics community, working on triangular meshes ST . The basic approach has two main
steps:

1. First, the boundary mapping is fixed by mapping the
polygonal boundary of ST homeomorphically to the
boundary of the unit disk triangle mesh DT . This is
equivalent to choosing the planar image of each vertex
in the mesh boundary [Flo97a].

2. Second, the piecewise linear mapping f : ST → DT is
found, which minimizes the Dirichlet energy. Consider
one triangle T = [v1, v2, v3] in the surface ST , then, re-
ferring to Figure 2.13, one can show that:

2

∫
T

‖ gradTf ‖2=

cotθ3 ‖ f(v1)− f(v2) ‖2 +

cotθ2 ‖ f(v1)− f(v3) ‖2 +

cotθ1 ‖ f(v2)− f(v3) ‖2
(2.3)

Figure 2.13: Atomic map be-
tween a mesh triangle and
the corresponding triangle in
parametric-space.

38 CHAPTER 2. BACKGROUND

The normal equations for the minimization problem, can be
expressed as the linear system of equations,∑

j∈Ni

wij(f(vj)− f(vi)) = 0, vi ∈ VI , (2.4)

where
wij = cotαij + cotβij (2.5)

and the angles αij and βij are shown in Figure 2.14.

Figure 2.14: Angles for the
discrete harmonic map.

The associated matrix is symmetric and positive definite, and thus the linear system is uniquely
solvable. The matrix is also sparse and iterative methods are effective, e.g., conjugate gradients.
Note that the system has to be solved twice, once for the x and once for the y coordinates of
parameter points f(vi), vi ∈ VI .
The properties of the harmonic map are exploited in our proposed global parameterization de-
scribed in chapter 4.

2.1.3.2 Surface multi-chart parameterization

Segmentation: a planar parameterization is only applicable
to surfaces with disk topology. Hence, closed surfaces and
surfaces with genus greater than zero must be cut prior to pla-
nar parameterization, as shown in Figure 2.15. Furthermore,
complex surfaces usually increase parameterization distortion,
independently of the parameterization technique used. To al-
low parameterizations with low distortion, the surfaces must
be cut to reduce the complexity.

Since cuts introduce discontinuities into the parameterization,
a delicate balance between the conflicting goals of smaller dis-
tortion and shorter cuts has to be achieved. It is possible to
use constrained parameterization techniques to reduce cross-
cut discontinuities.

Cutting and chart generation are most commonly used when
computing parameterizations for mapping of textures and
other signals onto the surface (see Section 3.1). Depending
on the application, mesh segmentation techniques use differ-
ent criteria for creating charts.

Usually, surfaces are broken into several charts until the para-
metric distortion of each chart is sufficiently low, while the
number of charts remains small and their boundaries are kept
as short as possible [MYV93, GWH01, SWG+03].

Chart packing: chartification techniques raise an additional
post-processing challenge. Following the parameterization
of each individual chart, these charts need to be placed, or
packed, in a common planar parameter domain, with a pack-
ing as compact as possible [LPRM02] (see Figure 2.15 (Bot-
tom).

Figure 2.15: Closed surfa-
ces and surfaces with genus
greater than zero must be cut
prior to planar parameteriza-
tion. Following the paramete-
rization, the charts need to be
packed as compact as possi-
ble in the planar parameter do-
main.

39

2.1.3.3 Parameterization distortion metric

A parameterization distortion metric is used to assess the map quality. In general, it is defined
by the relation between the geometric shape of the parameterization domain triangles and the
shape of the original triangles, which in general are slightly different and result in angle and
area distortions. Parameterization methods try to minimize distortion for the whole mesh, but
very few meshes admit isometric (i.e. zero distortion) parameterizations. Maps that minimize
angular distortion, or shear, are called conformal, and maps that minimize area distortion are
called authalic. Most methods focus on angle preservation and then balance it with area preser-
vation.
For each triangle t obji with the 3D object space coordinates pi, qi, and si and the associated
triangle t pari with the parameter domain coordinates ui, vi, and ti, where ∠si, ∠qi, ∠pi are
the angles of each side, and ‖ pi − qi ‖, ‖ pi − si ‖, ‖ qi − si ‖ are the side lengths.

Following Degener et al. [DMK03a], we measure the normalized angle distortion by

Si =
∠s2i cotan(‖ pi − qi ‖) + ∠q2i cotan(‖ pi − si ‖) + ∠p2i cotan(‖ qi − si ‖)

4 area4(ui, vi, ti)
(2.6)

Enorm.angle

∑n
i=0 area4(pi, qi, si)Si∑n
i=0 area4(ui, vi, ti)

(2.7)

And the normalized area distortion is measured by

Enorm.area =
area4(ui, vi, ti)

area4(pi, qi, si)
+
area4(pi, qi, si)

area4(ui, vi, ti)
(2.8)

For an isometric parameterization, the normalized angle and area distortion should be 1. So in
practice the closer the metric is to 1, the better the quality of the parameterization (see Figure
2.16).

Figure 2.16: Angle and area parameterization error metrics following Degener et al. [DMK03a]. (Left)
Parameterized bunny with a geometry image [GGH02a] with large angle distortion (shown in red).
(Right) Parameterized bunny with a spherical geometry image [PH03] shows less area and angle dis-
tortion (shown in blue as the normalized angle distortion equal to 1).

40 CHAPTER 2. BACKGROUND

2.1.3.4 Surface remeshing

Surface remeshing is the process that, given a 3D mesh,
computes another mesh whose elements satisfy some qual-
ity requirements to create a structured regular- or semi-regular
mesh replacing the unstructured input mesh (see Figure 2.17).

A structured mesh, sometimes called regular mesh, has all in-
ternal vertices (except in the boundary) surrounded by a con-
stant number of elements (e.g. edges and faces). This of-
fer certain advantages over an unstructured mesh, because its
connectivity graph is significantly simpler, hence it allows for
efficient traversal and localization queries on the spatial data.

Figure 2.17: Surface quadri-
lateral remeshing: from an
irregular triangle-based mesh
structure to a regular quad-
based mesh structure.

Semi-regular meshes are essentially piecewise-regular where most of the vertices are regular,
meaning that they will have a regular valence of 6 edges for triangles, and 4 edges for quadri-
laterals (see Figure 2.18). However, they also include a small number of extraordinary vertices
(also called irregular or singular vertices), which have a valence different from the ones al-
ready described. In general, semi-regular meshes offer a good tradeoff between the simplicity
of structured meshes and the flexibility of unstructured meshes.

Many techniques for semi-regular remeshing [GVSS00,
GGH02a, RLL+06a] use a parameterization [EDD+95b,
Flo97b, HG00] to find a bijective correspondence. The param-
eterization plays a critical role, and any deficiencies in the pro-
cess will be amplified in the output mesh. In particular, build-
ing a globally smooth parameterization is a difficult research
problem. One challenge is to obtain semi-regular meshes with
a prescribed low number of irregular vertices.

In general, high quality remeshing means generating a new
discretization of the original geometry with a mesh that ex-
hibits the three following properties: well-shaped elements,
uniform or isotropic sampling and smooth gradation sampling.

A well-shaped triangle has aspect ratio as close to 1 as possi-
ble, and a well-shaped quadrilateral contains angles between
two consecutive edges as close to π/2 as possible. Isotropic
sampling means that the sampling is locally uniform in all di-
rections. Requiring uniform sampling is even more restrict-
ing by obliging the sampling to be uniform across the entire
mesh. Smooth gradation means that if the sampling density is
not uniform, it should vary in a smooth manner.

Figure 2.18: Surface semi-
regular quad-based remesh-
ing. (Top) Input irregular trian-
gle mesh. (Middle) [RLL+06b]
quad-based remeshing show-
ing a large number of irregular
vertices. (Bottom) [XGH+11]
another quad-based remesh-
ing showing fewer irregular ver-
tices.

41

2.2 Level-of-detail

In geometric modeling and computer graphics, polygonal mesh structures are commonly used
as the surface representations of objects in simulations and visualization methods. Advances
in acquisition systems, such as laser range scanners and medical imaging devices are easily
able to provide vast spatial databases containing millions of polygons, far more than current
graphics hardware can render at interactive frame rates. The key to an acceptable solution
for real-time graphics of complex scenes is to have a series of geometric approximations that
resemble the original complex objects from all directions, but with increasingly lower rendering
costs. Furthermore, the transitions between one approximation and the next one must be barely
noticeable in order to effectively reveal details as objects approach the viewpoint.

2.2.1 Surface simplification
In polygonal surface applications a tradeoff exists between the accuracy with which a surface
is modeled and the amount of time required to process it. If a simplified representation of those
models is used, potential gains can be obtained. Eliminating redundant geometry will reduce
model representation size and improve the run-time performance of the scene being rendered.
This is one of the main motivations for using surface simplification techniques, where different
aspects such as geometric and visibility properties can be taken into account when simplifying
a model.
Surface simplification is naturally targeted towards large and complex datasets that would be
very hard to manipulate manually. Suppose we have a polygonal model M and we would like
an approximation M ′ having fewer polygons than the original, but being as similar as possible
to M , retaining all its most relevant features. The goal of polygonal surface simplification is
to automatically produce such approximations. It is important to mention that the computation
of the minimal-facet approximation within a certain error bound is a NP-hard problem. A
characterization and classification of surface simplification methods is presented by Andujar
[And99].

The most common surface simplification approach is decimation, working as a top-bottom strat-
egy starting from the original surface and iteratively removing elements at each step using a face
reduction strategy until the desired level of approximation is achieved. The main face reduction
strategies using a local operator are summarized below:

42 CHAPTER 2. BACKGROUND

2.2.1.1 Vertex decimation

Vertex decimation [SZL92, KLS96, Kle98] operates itera-
tively, selecting unimportant vertices for removal and then re-
triangulating the resulting hole (see Figure 2.19). In each step
of the decimation process the vertex vr with the lowest error
metric weight (being the less valuable vertex) is selected for
removal. Then, the operator eliminates all the t incident trian-
gles, resulting in a hole that is reconstructed with t − 2 trian-
gles. The criterion for vertex removal in the simplest case (an
interior vertex not on an edge or a corner) is the distance from
the vertex to the plane approximating its surrounding vertices.
It is worthwhile to note that this criterion only considers devi-
ation from the new mesh to the mesh created in the previous
iteration; deviation from the original mesh is not used in the
strategy. As these algorithms typically rely on somewhat in-
volved manifold mesh operations, they can be complicated to
implement and slow to execute, not being feasible for a paral-
lel implementation.

Figure 2.19:
Vertex decimation simplifica-
tion selects unimportant ver-
tices for removal, and then re-
triangulates the resulting hole.

2.2.1.2 Edge contraction

Edge contraction strategies consist of an iterative removal of
geometric primitives with a local reduction operator chosen
according to a local geometric optimality criteria. The edge-
collapse [HDD+93] takes as a parameter the edge to be col-
lapsed h = {i, j}. The two vertices {i, j} are collapsed in a
single vertex vh, updating all edges that were previously inci-
dent to i and j to reference vh. As a result of the collapse, the
triangles sharing the edge degenerate into a segment and are
removed (see Figure 2.20). The only computed parameter is
the new vertex position, which is usually one of the two old
vertices, or a weighted average.

Figure 2.20:
Edge-collapse simplification it-
eratively removes the triangles
sharing the collapsed edge.

The selection of the edge that will be collapsed is the key ingredient in edge collapse methods.
The process, keps some form of history about the progressively simplified surface to evaluate
the current error.
Using cumulative quadric error matrices is particularly efficient and hence a popular choise
[GH97]. One of the benefits of iterative contraction is the hierarchical structure created, which
naturally leads to a useful multiresolution surface representation [Hop96]. On the other hand,
one issue is that they can be hard to parallelize, given the inherently serial nature of the iterative
process.

43

2.2.1.3 Vertex clustering

Vertex clustering [RB93] consists of spatially partitioning the
initial vertex set into a set of clusters and unifying all vertices
inside a cluster by a single vertex, called cluster representant
(see Figure 2.21). Vertex clustering often produces relatively
poor quality approximations and tends to make alterations to
the topology of the original model. The results of this algo-
rithm can be quite sensitive to the resolution and the placement
of the grid cells, making it incapable of simplifying features
larger than the cell size. Low and Tan [LT97] improve the
basic method by using floating cells rather than a fixed grid
to define the clusters, and Luebke and Erikson [LE97] alter-
natively form a hierarchy of clusters. Both methods improve
the simplification quality, and can be used to perform view-
dependent simplification. Furthermore, the algorithm is based
on a linear pass through the source vertices and then a linear
pass through the source triangles, so it has a relatively coher-
ent memory access pattern, and interacts well with memory
hierarchies, also being feasible for a parallel implementation
[Wil11].

Figure 2.21:
Vertex clustering simplification
consists of spatially partitioning
the initial vertex set into a set
of clusters and unifying all ver-
tices inside a cluster by a single
vertex.

2.2.2 Subdivision surfaces
Subdivision surfaces are an alternative level-of-detail strategy which has become a valuable
tool in geometric modelling and computer graphics due to their simplicity, efficiency and ease
of implementation. The subdivision surface itself is defined as the limit of repeated recursive
refinement and smoothing steps. The refinement phase creates new vertices and reconnects
them to create new smaller triangles, and the smoothing phase computes new positions for the
vertices. The shape of the refined surface is determined by the initial structured mesh of control
points and a set of subdivision rules.

The recursive nature of their definition makes subdivision surfaces suitable for many application
fields, such as animation. Flexible modelling operators for 2-manifold surfaces are used to con-
struct smooth surfaces and multiresolution representations. Subdivision surfaces are ideal for
interactive multiresolution mesh editing, where the overall shape of an object is controlled by a
coarse mesh, while details are added by modifying the control points of a refined mesh. Their
computational efficiency, along with the compatibility with arbitrary topologies and the sup-
port of surface features with complex geometry are its main advantages. In addition to smooth
surfaces, the management of boundaries and sharp features presented by some subdivision ap-
proaches allows more realistic objects to be represented.

Most subdivision schemes operate on triangular or quadrilateral meshes, where a vertex is said
to be ordinary if its valence is six in a triangular mesh or four in a quadrilateral mesh. A mesh
(triangular or quadrilateral) is said to be regular if all their vertices are ordinary.

44 CHAPTER 2. BACKGROUND

Studies in this field proposed several subdivision schemes. A survey of subdivision surfaces
can be found in Zorin and Schröeder [ZS00], here we offer a brief description of a few schemes
with their main properties:

2.2.2.1 Loop scheme

The Loop scheme [Loo87] proposes the following rules: a
new edge point is computed by 3E+E

′

4
whereE is the midpoint

of the edge and E ′ the midpoint of the opposite edge; a new
vertex point is computed by (1 − nβ)V + βP where V is
the old vertex, n is the valence of V , P is the sum of all n
neighbors of V and β = 3

6
for n = 3, or, β = 1

n
(3
8

+ 1
4
cos ∗

2π/n))2) for n > 3. Special rules are needed for boundary
points. Loop surfaces are C2 at ordinary vertices and C1 at the
others. The original scheme (see Figure 2.22) was extended
by Hoppe et al. [HDD+94] to incorporate sharp creases, darts
and corner points. Schweitzer [Sch96] further extended the
scheme with conical and cusp points. A fast parallel method
for the approximation of Loop subdivision surfaces in real-
time is proposed in by Li et al. [LRZM11].

Figure 2.22:
Loop subdivision scheme,
shown highlighted over ordi-
nary vertices of valence 4, and
irregular vertices of valence 3
and 5.

2.2.2.2 Doo-Sabin scheme

The Doo-Sabin scheme [DS98] is conceptually quite simple,
since there is only one mask used to compute the new ver-
tices (see Figure 2.23). Let pi, i = 0..n be the vertices of a
face. The new vertex in the corner i is computed by

∑
j ajpj

where ai = n+5
4n

and ai = 3+2cos(2π(i−j)/n)
4n

for j 6= i. In Pe-
ters and Reif [PR98] the C1 continuity of the limit surface has
been proved. A special rule is required only for boundaries,
where the limit curve is a quadratic spline. A fast GPU paral-
lel rendering of a Loop subdivision surface by a patch-based
tessellation algorithm is presented by Fan and Chen [FC09].

Figure 2.23:
Doo-Sabin subdivision sche-
me, shown highlighted over or-
dinary vertices of valence 4,
and irregular vertices of va-
lence 3 and 5.

45

2.2.2.3 Catmull-Clark scheme

The Catmull-Clark scheme [CC98] defines the following
rules: a new face point is computed as the average of the
vertices of the face; a new edge point as the average of the
endpoints of the edge and the new face points of the adja-
cent faces; a new vertex point is computed by F+2E+(n−3)V

n

where V is the old vertex, n is the valence of V , F is the
average of the new face points of all faces incident to V
and E is the average of the midpoints of all edges incident
to V . Special rules are needed for boundary points. The
scheme produces surfaces that are C2 continuous everywhere
except at extraordinary vertices (see Figure 2.24), where they
are C1 [BS88, PR98]. A patch-based GPU parallel tessel-
lation method for approximate Catmull-Clark surfaces with
displacement mapping is proposed by Loop and Schaefer in
[LS08a].

Figure 2.24:
Catmull-Clark subdivision
scheme, shown highlighted
over ordinary vertices of va-
lence 4, and irregular vertices
of valence 3 and 5.

2.2.3 Multiresolution level of detail

Multiresolution geometric models [LWC+02] support the representation of geometric entities
at different levels-of-details (LODs). Independently of the decomposition scheme adopted, dif-
ferent methodologies have been proposed to handle multiresolution: from a simple collection
of versions of an object at different resolutions, to models that maintain relations between con-
secutive levels-of-detail.

2.2.3.1 Discrete LOD

Discrete LOD (DLOD) methods use a small set of often hand-
crafted representations and try to select the most appropriate
one for a given viewing condition. These sets are small for of
two reasons: memory consumption would explode for multi-
ple representations, and the cost of an artist designing many
representations would be enormous. Subdivision schemes
with integer tessellation factors are another interesting discrete
level-of-detail approach (see Figure 2.25).

The small number of representations of DLOD, switching
from one representation to another becomes visible and causes
popping artifacts [CLE06]. One method to avoid these pop-
ping artifacts is late switching. Here switching is performed
only if the two representations have exactly the same appear-
ance for the current viewing condition. In practice this is quite
unfeasible: first of all, we often do not know when two repre-
sentations will be undistinguishable, because this depends on
numerous factors, such as lighting and surrounding objects,
which we probable do not know beforehand. And secondly,
from the point-of-view of performance we want to switch as
early as possible to speed up rendering as much as possible.

Figure 2.25: Level-of-detail
Discrete LOD with the integer
tessellation factors f = 1.0 and
f = 2.0.

46 CHAPTER 2. BACKGROUND

In order to avoid popping artifacts for discrete LODs, LOD blending [GW07] combines the dif-
ferent LODs in a single frame. To do this the rendering of the two required LODs in each frame
is needed during the transition stage. LOD interpolation [SW08] uses the temporal coherence
between the two required LODs to interpolate them in different subsequent frames during the
LOD transition.

2.2.3.2 Continuous LOD

Continuous LOD (CLOD) methods work by creating an object representation specific for each
viewing condition for each frame. Since similar viewing conditions result in similar represen-
tations, the change of one representation into another is perceived as smooth [Hop96, HSH10].
Continuous LOD specialized methods for a certain type of applications such as in terrain render-
ing [LKR+96] have proven effective. One practical way to allow for continuous level-of-detail
(CLOD) without visual popping, is the fractional tessellation scheme [Mor01]. Fractional tesse-
lation smoothly amplifies the geometric details of a particular mesh by subdividing the polygons
of the mesh into smaller polygons to change the level of detail when a floating point tessellation
factor per edge is provided (see Figure 2.26).

This CLOD tessellation pattern is integrated for triangle and quad primitives in the GPU hard-
ware stages, as described in Section 2.3.1.

Figure 2.26: Level-of-detail Continuous LOD. Four regular fractional tessellation examples are shown
with a common tessellation factor (f) on all edges, from f = 1.0 up to f = 2.0.

2.2.4 Error metrics
The assessment of the level-of-detail results are performed with either geometric error metrics
over the generated surface approximations, or image-based error metrics over the generated
screen images, to measure the fidelity of the shape and shading feature preservation. Both
strategies are described below:

47

2.2.4.1 Geometry-based approximation metric

A geometry-based approximation metric allows one to compare the difference between a pair of
surfaces. The approximation error between two meshes may be defined as the distance between
corresponding sections of the meshes.
When comparing general surfaces, there is no single distinguished direction along which dis-
tances can be measured. Instead, we measure distances between closest pairs of points. If we
denote the set of all points on the surface of a model M by P (M), the distance from a point v
to the model M is defined to be the distance to the closest point on the model:

dv(M) = minw∈P (M) ‖ v − w ‖ (2.9)

where ‖ · ‖ is the usual Euclidean vector length operator.
The Hausdorff distance [CRS98] is a commonly used geometric error measure. The Hausdorff
error measures the maximum deviation between two models (see Figure 2.27). In practice, it is
common to formulate the approximated metric based on sampling the distance dv at a discrete
set of points. Given P (M1) and P (M2), we can select two sets X1 ⊂ P (M1) and X2 ⊂ P (M2)
containing m1 and m2 sample points, respectively. These sets should, at a minimum, contain
all the vertices of their respective models. The formulation of the Hausdorff error metric is

Emax(M1,M2) = max (maxv∈X1dv(M2),maxv∈X2dv(M1)) (2.10)

If Emax(M1,M2) is bounded by some known threshold ε, then we know that every point of the
approximation is within a distance ε of the original surface and that every point of the original
is within the ε distance of the approximation, respectively. The measure of the average squared
distance between the two models can be defined as follows

Eavg(M1,M2) =
1

k1 + k2

(∑
v∈X1

d2v(M2)dv +
∑
v∈X2

d2v(M1)dv

)
(2.11)

where k1, k2 are the surface areas of M1, M2.

UsuallyEavg generally gives a better measurement of the over-
all fit than Emax and is less sensitive to noise, even though it
may over discount localized deviations.

Observe that it is not sufficient to simply consider every point
onM1 and find the closest corresponding point onM2. Closest
distances are measured in both directions betweenM1 andM2

due to the differences in results depending on the direction
of the computation. The geometric error metric measures the
similarity between models independently of the order of the
given models.

Figure 2.27: Hausdorff dis-
tance error metric: (Top) A
bunny high-resolution mesh
M1 and its simplified mesh M2

using [GH97]. (Bottom) The
error is also visualized by col-
oring mesh M2 with respect
to the evaluated approximation
error.

48 CHAPTER 2. BACKGROUND

2.2.4.2 Image-based appearence metric

An image-based appearence metric in rendering systems measure the similarity of visual ap-
pearance as the ultimate criterion for evaluating the quality of an approximation. The visual
appearence of a model M under viewing conditions ξ is determined by the raster image Iξ pro-
duced by the renderer. The similarity of appearence can be seen as an image error metric that
measures the overall difference between the two images. In that sense, it may say that two mod-
els M1 and M2 appear identical in view ξ if their corresponding images Iξ1 and Iξ2 are identical.
If I1 and I2 are both m×m RGB raster images, the difference between them can be defined as
the average sum of the squared differences between all corresponding pixels

‖ I1 − I2 ‖img=
1

m2

∑
u

∑
v

‖ I1(u, v)− I2(u, v) ‖2 (2.12)

where ‖ I1(u, v) − I2(u, v) ‖ is the Euclidean length of the difference of the two RGB vectors
I1(u, v) and I2(u, v). This simple metric makes it possible to measure the visual difference
between a detailed input model and its approximation in a certain view. This can be viewed as a
measure which is equivalent to human perception. Differential weighting for the color channels,
non-linear sensitivity to radiance, and spatial filtering are some factors that can be added to
improve the measure. More elaborate metrics for comparing images have been presented in
[RT98]. If M2 is a good approximation of M1 for the given view ξ, then ‖ I1 − I2 ‖img should
be small. Given this image metric, the total difference in appearance between two models can
be characterized by integrating ‖ Iξ1 − I

ξ
2 ‖img over all possible views ξ.

The main advantage of an appearance-based metric is that it directly measures similarity of ap-
pearance, which is what rendering systems are interested in preserving. It also allows occluded
details to be discarded. Moreover, these error metrics are useful when some finite set of view-
points occurs. Unfortunately, in most cases adequate samples of viewpoints are not possible. If
an incorrect set of samples is evaluated, significant features can be removed. Furthermore, each
sample may involve an expensive rendering step.

2.3 Real-time rendering

The graphics pipeline abstracts the underlying hardware details from the graphics programmer,
while providing a restricted programming model that expresses the inherent parallelism in ren-
dering. For example, each vertex of a geometric model can be transformed in parallel and each
pixel can be colored independently.

In a simplified form of the pipeline, the graphics programmer writes a shader that determines
how one individual vertex should be transformed and another shader that contains instructions
on how the color of one pixel should be computed. The underlying hardware then schedules
and dispatches all instances of vertex and pixel shader programs.

At a coarse level, the graphics pipeline can be divided into three main stages. The first one is
geometry processing, where three-dimensional models are positioned and animated. Addition-
ally, the input geometry can be refined if needed. Rasterization follows next, where the visibility
of each primitive for a specific camera position is determined. Finally, in the pixel processing
stage, materials are applied to the visible parts of the geometry and the pixel color is computed
and written into the resulting image.

49

2.3.1 Graphics hardware pipeline
The hardware graphics pipeline consists of both fixed-function
stages and programmable stages. All programmable stages
of the pipeline can access texture images through the GPU’s
memory system. Figure 2.28 shows a schematic overview
of this pipeline. In the first term the geometry data of a
given application is received at the graphics processor. Three-
dimensional models are represented as collections of triangles,
quadrilaterals or higher order primitives, where the latter are
parametric surface patches. In addition to geometric prim-
itives, the application uploads shader programs for the pro-
grammable stages and buffers holding constant values and
a specific rendering state, such as the tessellation method,
light positions, and camera parameters. A set of texture im-
ages needed for the shader programs are also uploaded to the
GPU’s memory system. With this information available from
the application, below the steps through all the pipeline stages
are described.

Figure 2.28:
Diagram of the hardware ren-
dering pipeline: Showing in
white the fixed pipeline stages
and in blue the programmable
stages.

Input Assembler: The first stage of the pipeline reads arrays containing vertex data, such as
arrays of positions, normal vectors and texture coordinates, and assembles vertex structures
from the individual arrays. The members of the vertex structure are called vertex attributes.
Often, a separate index list with offsets into the vertex arrays is used for more compact storage,
and to avoid transforming the same vertex more than once.

Vertex Shader: The vertex shader is a user-provided program executed once for each ver-
tex in the assembled vertex array. The program outputs a transformed position and all at-
tributes needed by shader programs later in the pipeline. A minimal vertex shader takes a
three-dimensional position, expressed in a coordinate system local to the geometric object, and
multiplies it with a matrix that transforms the position into the camera clip space. This is a
coordinate system independent of the scene scale, convenient for clipping operations against
the camera’s view volume. If tessellation stages are disabled, the vertices are sent directly to
the rasterizer.

Control Shader: The following three pipeline stages interact to support flexible geometry am-
plification. These are the control shader, a fixed-function tessellator, and the evaluation shader.
The control shader interprets the transformed positions from the vertex shader as control points
for a parametric patch.

They are evaluated and tessellated into a large set of small triangles in the two downstream
tessellation stages. The control shader is applied to the control points of an input patch, and has
two tasks. The user-provided program is executed per control point of the input patch, firstly
to typically change the patch’s control point basis, and secondly, to compute the tessellation
factors of the edges of the patch.

50 CHAPTER 2. BACKGROUND

Tessellator: This is a fixed-function unit that, given a patch, tessellation factors from the pre-
ceding control shader and state parameters, generates a set of barycentric coordinates and con-
nectivity in a planar domain inside the patch. In modern GPU pipelines, the tessellator works
on triangular and quad patches and has a set of modes, including uniform and fractional tessel-
lation. The barycentric positions are fed into the next pipeline stage.

Evaluation Shader: This program takes the role of the vertex shader when tessellation is en-
abled and transforms the geometric positions into the camera clip space. It is executed once
for each generated barycentric position from the tessellator and outputs a displaced vertex. The
shader has access to the transformed control points from the hull shader, and typically evalu-
ates a parametric surface, such as a bi-degree Bézier surface, at a certain parametric coordinate.
Additionally, the shader may use texture images to add local surface detail.

The transformed vertices are then passed on to the rasterizer. Recent research has shown that
the tessellation stages can be combined to represent advanced surface representations, such as
animated approximate subdivision surfaces [LS08b, LSNCn09].

Rasterizer: The first task of the rasterizer is to set up triangles from consecutive indices in
the vertex arrays. After triangle setup, the next task is to determine which pixels on screen
are covered by each triangle. At this point in the pipeline, the triangles have been transformed
by the vertex or evaluation shader into the camera clip space. The rasterization stage handles
clipping of primitives to the view volume and performs culling operations.

After clipping and culling, the clip space coordinates are projected on screen and visibility is
determined. There are several traversal strategies for the visibility test. One simple approach
is, for each triangle, to compute a bounding box on screen and for each screen space visibility
sample within this bounding box, test if the sample is covered by the triangle. This process is
called scan conversion or rasterization.
If a sample is covered, a fragment is generated. For each covered fragment, the vertex attributes
are interpolated using the triangle’s barycentric coordinates at the sample’s hit point. The inter-
polated vertex attributes, including the depth at the hit point, are stored in the fragments. The
fragments are then sent to the next pipeline stage, the pixel shader. In most graphics hardware
pipelines to date, the rasterizer is a fixed-function unit.

Pixel Shader: For each fragment generated by the rasterizer, the final color is computed by
a user-defined program, representing a surface material that takes the fragment’s interpolated
attributes as input. These pixel shader programs often contain several texture map lookups and
advanced material descriptions.

The pixel shader is followed by a depth test, and if the pixel shader is guaranteed not to modify
the depth interpolated in the rasterizer, this test can sometimes be moved before the pixel shader.
The depth values of the currently processed sample are compared to the value stored in a depth
buffer. The depth test is configurable, and a commonly used test is ’less than’: only if the current
fragment’s depth is closer than the depth buffer value, the current color value is written to that
sample position in the frame buffer, and the corresponding entry in the depth buffer is updated.

51

Output Merger: In the final stage of the GPU pipeline, shaded fragments are blended into
the frame buffer, taking color and transparency of each fragment into account. Once the entire
scene has been fully processed, the resulting color buffer is displayed on screen. The output
merger is typically a fixed-function stage, with a user-configurable blending mode.

2.3.2 Graphics processors and parallel programming

2.3.2.1 Evolution to many-core devices

Graphics processing units (GPU) have evolved by outperform-
ing CPUs’ arithmetic throughput and memory bandwidth.
They are designed such that more transistors are devoted to
data processing (ALUs) rather than data caching (memory
caches) and flow control as shown in Figures 2.29 and 2.30.
The introduction of programmable shader stages started to
make them an ideal processor to accelerate a variety of data
parallel applications beyond computer graphics.

Cache

ALU Control

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

Figure 2.29: Diagrams of a
CPU and GPU architectures.
GPUs are designed with more
transistors devoted to data pro-
cessing (ALUs) rather than da-
ta caching (memory caches).

The GPU is especially well-suited to address problems that
can be expressed as data-parallel computation (the same pro-
gram is executed on many data elements in parallel) with high
arithmetic intensity (the ratio of arithmetic operation to mem-
ory operations). This architecture was designed for image ren-
dering (3D) and processing (video playback) but data-parallel
processing can be also found in physics simulation, signal pro-
cessing, computational finance or biology. An algorithm that
is data-parallel is also referred to as embarrassingly parallel.
Those algorithms can be accelerated substantially by using
GPU.

Multicore 1 (1/8)

× 8
Core 9 & 25
Core 10 & 26
Core 11 & 27
Core 12 & 28
Core 13 & 29
Core 14 & 30
Core 15 & 31
Core 16 & 32

Shared memory or

64KB (read-write)

Hardware L1 cache
(configurable at 16 or 48KB)

Global GPU

Interconnection network
L2 cache 768KB

768MB

Constant memory
Texture memory

64KB

Surface memory
Local memory

Core 1 & 17
Core 2 & 18
Core 3 & 19
Core 4 & 20
Core 5 & 21
Core 6 & 22
Core 7 & 23
Core 8 & 24

Registers
32K × 32bits

Special function

Texture memory cache
8KB (read-only)

Texture units
units

64bits 64bits 64bits64bits

Constant

8KB (read-only)
memory cache

memory

Figure 2.30: Diagram of Fermi
GPU architecture [Nvi11].

52 CHAPTER 2. BACKGROUND

2.3.2.2 Organizing data movement

GPU algorithms are typically computation-bound or memory-bound. When the execution time
of the algorithm depends mainly on the access speed of the memory, it means that they are
memory-bound and they can be made faster by reducing the memory footprint of the data they
work on.

Organizing data movement is an important design concept for data structures. When empha-
sizing compute throughput on SIMD programmimg models, the cost of data movement starts
to dominate the processing cost and therefore data movement must be restricted by keeping
data locally as much as possible. In particular, the process of collecting data to build the data
structure defines algorithmic patterns that are typically memory-bound due to the large, and
sometimes incoherent memory accesses, also often including synchronization barriers between
the parallel threads accessing memory.

2.3.2.3 Global memory access patterns

Global memory performance is affected by coalescing, which means that, for a SIMD instruc-
tion that accesses global memory, the individual accesses for each thread can be combined
together by the memory subsystem into a single memory transaction if every reference falls
within the same contiguous global memory segment. The performance discrepancies between
coalesced and non-coalesced accesses can be as large as an order of magnitude. Bus transac-
tions are on the order of 128 bytes, making it particularly wasteful if each thread induces a
separate transaction for a single 4-byte memory reference.

2.3.2.4 GPU memory hierarchy

In the beginning, processors started using a single level of cache, but as their speed increased,
two to three levels of cache hierarchies were introduced to span the growing speed gap between
processor and memory. In these hierarchies, the lowest-level caches are small but fast enough
to match the processor’s needs in terms of high bandwidth and low latency, while higher levels
of the cache hierarchy are optimized for size and speed.

The GPU PRAM memory hierarchy creates a branch in a
modern computer’s CPU memory hierarchy. The GPU, just
like a CPU, has its own caches and registers to accelerate data
access during computation (see Figure 2.31). GPUs also have
their own main memory with its own address space, a fact
that means programmers must explicitly copy data from CPU
to GPU memory. This transfer is often a bottleneck in some
GPU applications where there is a high dependence between
the sequential computations performed on the CPU and the
next processing to be handled on the GPU, especially in appli-
cations with real-time interactive requirements.

thread

Shared Memory L1 Cache

L2 Cache

DRAM

Figure 2.31: Diagram of Fermi
GPU memory hierarchy.

53

Memory accesses are among the slowest operations of a processor. According to the Moore’s
law [Sch97] instruction performance has been increasing at a much greater rate than memory
performance has increased. This difference in performance increase rate means that mem-
ory operations have been getting expensive compared to simple register-to-register instructions.
Modern CPUs integrate large caches in order to reduce the overhead of these expensive mem-
ory accesses. GPUs use another strategy so as to cope with this issue. Massive parallelism
can ’feed’ the GPU with enough computational operations while waiting for pending memory
operations to finish. This different execution strategy requires new implementation ideas to be
sought.

On-chip memory level: a big difference between CPU and GPU is the memory hierarchy.
Registers and shared memory are extremely fast while global memory is several hundred times
slower. It is worth noting that the shared memory is not a hardware cache, but is a scratch-
pad memory [Wik04]. Each streaming multiprocessor (SM) has one of these local high-speed
internal memories. It can be seen as a L1 cache, but there are crucial differences: explicit in-
structions are required to move data from global memory to shared memory and there is no
coherency among scratchpads and global memory. When used as a cache memory, if global
memory changes, scratchpad’s content will not be updated. Shared memory is considered to be
as fast as register memory as long as there are no bank conflicts among threads.

Unified cache memory level: more recent GPU architectures, such as the Fermi [Nvi11] archi-
tecture, introduce a fully coherent L2 cache common to all SMs (referred to as unified cache).
This new cache has the same purpose as the CPU L2 cache and is a significant change from
previous architectures. This key feature shows a real general purpose orientation of GPUs, i.e.,
the direction they are going to take in the near future. This cache does not explicitly accelerate
graphic computations.

Global GPU memory (DRAM) is linked to the GPU chip through a very large data path. In
real programs, the peak global memory bandwidth is difficult to obtain since memory has to
be aligned and thread accesses have to be coalesced. Coalescing allows all independent thread
memory access to be merged into one big access. Several thread access patterns are recognized
by coalescing hardware. It also means there is severe bandwidth degradation for stride access
patterns with large offsets.

2.3.2.5 Stream programming concepts

GPU programming models conceal the number of actual processors from the user. The pro-
grammer specifies only a kernel or shader program and a data stream over which the program is
to be executed. The GPU then maps this data onto the available processors to compute the re-
sult. Simple examples include programs that apply the same affine transformation to every input
point. However, the user cannot query which processor was used, nor is it recommended that
explicit inter-processor communication be performed. Current unified computing architecture
GPUs execute batches of threads in single-instruction, multiple-data (SIMD) style. The size
of a batch of threads varies from tens to hundreds depending on the architecture, and branch
performance is highly dependent on the coherency of the compute operations performed within
a batch.

54 CHAPTER 2. BACKGROUND

Compute Unified Device Architecture (CUDA) is a hardware architecture coupled with an
extension of the C language for GPGPU computing. The programming model is tightly cou-
pled with the architecture of NVidia graphic cards. On the other hand, Open Computing Lan-
guage (OpenCL) [Khr08] is programming language for parallel computing compatible across
heterogeneous platforms consisting of central processing unit (CPUs), graphics processing unit
(GPUs), and other processors including CUDA devices.

The execution of a CUDA kernel program is performed through three general steps. In the first
step, the required input data is allocated and loaded in GPU global memory. The second step
is setting up the kernel call, specifing the threads organization, and finally executing the kernel
program on the GPU.

The kernel call is defined by the programmer to partition the problem into coarse sub-problems
that can be solved independently in parallel by a grid of blocks of threads, and each sub-problem
into finer pieces that can be solved cooperatively in parallel by all threads within the block.

CPU thread vs GPU thread: Despite using the same name, the word thread has a differ-
ent definition on the CPU than on GPU, and can lead to misunderstandings. Unlike in CPU,
GPU threads are managed by hardware. Classic thread programming techniques do not match
GPU thread design. In CUDA threads should not diverge for optimal performances. Divergent
threads are not impossible to implement, but they can dramatically lower the performances.

Every GPU thread in the same warp executes the same instruction in lockstep, although all
threads can branch separately. However, this would lead to extremely bad performances, even
on the newer architectures.
The multiprocessor (SM) creates, manages, schedules, and ex-
ecutes threads in groups of 32 parallel threads called warps.
Individual threads composing a warp start together at the same
program address, but in lastest architectures [Nvi11] they have
their own instruction address counter and register state, and
are therefore free to branch and execute independently. Warp
size is fixed by hardware and is 32 for recent GPU architec-
tures, though this size might change in future architectures. As
the basic unit of execution flow in a multiprocessor is a warp
of 32 thread, it is useless to execute less that 32 threads in a
block.

Communication between threads is achieved by reading and
writing data to various shared memory spaces. The machine
model exposes three levels of explicitly managed storage that
vary in terms of visibility and latency. These levels are: per-
thread registers and local memory, shared memory local to a
collection of warps running on the same processor core, and
finally a large global memory in off-chip DRAM that is acces-
sible by all threads (see Figure 2.32). Threads must explicitly
move data from one memory space to another.

per-thread block
shared memory

global memory

thread

thread block

block (0,0) block (1,0)

block (0,1) block (1,1)

block (0,2) block (1,2)

grid 0

local memory

Figure 2.32: Diagram of GPU
threads organization. Threads
communication within the
same block is performed by
reading and writing data in
shared memory, while between
all the threads of the grid it
must be performed through the
DRAM global memory, which
is considerably slower.

55

Thread divergence: On previous GPU architectures [Nvi08] each conditional branch was se-
rialized. Accordingly to [WPSAM10], the ’else clause’ is always executed first while other
clauses are disabled, then the ’if clause’ is executed (and the ’else clause’ disabled).
However, in newer architectures, such as the Fermi architecture, this issue has been improved
because each multiprocessor features a dual warp scheduler. Each group of 16 cores can exe-
cute a different conditional branch. Our divergent thread example would be executed in parallel
on the Fermi architecture only. Of course, it works for half-warps only.

The CUDA compiler allocates registers memory to threads. If the threads require too many
registers, local memory is used. Actually, local memory does not exist in the hardware itself.
Local memory is the name given to some global memory which was made private to a thread.
This memory is extremely slow compared to register or shared memory, thus exceeding the
maximum register memory leads to significantly slower performance.

For situations where a race condition (process whereby an output of the process is unexpectedly
and critically dependent on the sequence or timing of other events) is difficult or impossible
to avoid, atomic operations can be performed on both shared and global memory. Atomic
operations perform a series of actions that cannot be interrupted; examples include incrementing
a counter and conditionally setting a memory location based on its current value.

These operations are extremely helpful for threads in different thread blocks communicating
with each other. However, they are costlier than a normal memory access, especially when
many threads are performing the same atomic operation on the same memory location.

2.4 Detail mapping data structures

Collecting and querying spatial data of different sparsity and density distributions while preserv-
ing the interactive constraints is one of the main interests in this thesis. In this context, there are
already different approaches that allow the organization of spatial data either in a regular grid, a
parameterized domain, a spatial subdivision or hash table data structure. One example is virtual
grids, where each grid cell defines a specialized description of the local information contained
onto it, behaving as a spatial directory. This section provides a short description of different
methodologies that provide representations for shape and shading detail data.

Note that the values stored in the base data structures could represent indices into another struc-
ture, allowing a spatial query coordinates (or key) to reference more data, as illustrated in the
spatial directory descriptions of this section.

Arguably, one would be willing to incur more time on such operations as opposed to the much
more frequent lookup operations, required in many rendering applications.

Here we consider data structures that may take more time in the collecting process, in order to
place the spatial elements more closely together, to achieve a compact storage, to maximize the
coherency between neighboring spatial data, and to minimize the variable work per retrieval.

56 CHAPTER 2. BACKGROUND

The majority of state-of-the-art work on GPU spatial data structures constructs them on the
CPU as a pre-processing step, then they are later used on the GPU to accelerate rendering
applications. However, more recent work has already focused on producing these data structures
directly on the GPU, using parallel construction algorithms.

2.4.1 Irregular spatial data organization
Defining an indexing of surface and volume spatial data is an
important strategy to create coherence in detail mapping data
structures, where memory access patterns are critical for per-
formance. Data layout greatly influences memory access pat-
terns, and therefore it has a large impact on overall program
performance. Different strategies can be exploited to create
coherence in spatial indexed data.

Data grid embedding allows spatial data to be organized in
regular partitions of the space, like cubically shaped cells,
where each cell contains references to the elements that over-
lap it [RBW04, GPSSK07]. The greater locality of this space
partitioning allows more efficient query operations over the
data, not requiring all the elements of the spatial domain to
be checked when asking for a specific point, but only the ele-
ments attached to the lists in the cells with the interest point.
This greatly reduces the number of evaluation tests (see Figure
2.33).

Figure 2.33: Data grid em-
bedding partitions the spatial
data into regular cells that can
lead to a g reater locally allow-
ing more efficient query opera-
tions.

2.4.2 Spatial addressing
A great amount of graphics algorithms rely on spatial proxim-
ity. Therefore techniques trying to partially preserve the prox-
imity between neighboring data elements, from their multi-
dimensional space, with respect to their location inside the
data structure, it can improve the performance thanks to better
coherency in the memory access patterns, i.e. two cells that
are close in space are likely to be close in the total order.

Space-filling curves [Sag94] allow the definition of a spatial
ordering of data by mapping multi-dimensional elements to a
one-dimensional indexing (see Figure 2.34). The maps enu-
merate each grid location in space to a one-dimensional loca-
tion key following the spatial curve (e.g. Peano-Hilbert curve,
Lebesgue/z-ordering, gray-ordering, etc.)

Figure 2.34: Space-filling
curves allow to define spatial
ordering of data by mapping
multi-dimensional elements to
a one-dimensional indexing.

2.4.3 Spatial data memory layout
In this section we describe two strategies to enhance the spatial locality of data structure memory
data layouts.

57

Alignment: alignment of large indexed spatial datasets, such
as a list of 3D point coordinates, is important [SDZ+11]. The
elements can be stored in the structure-of-arrays (SoA) or
the array-of-structures (AoS) formats. In SoA, the individ-
ual components are stored contiguously for all rows. AoS re-
verses this by storing all components for a single row in or-
der (see Figure 2.35). AoS is the more natural format for an
object-oriented method and is well-suited for cache-based or
pipelined processors. However, SoA is more suited for vec-
tor processing (e.g., SSE and CUDA SIMT). The SoA format
is expected to be more efficient for parallel architectures due
to their coalesced global memory access (see Section 2.3.2.3)
and reduced (or removed) shared memory bank conflicts.

Figure 2.35: Alignment as
Structure-of-Array (SoA) is
more suited for vector pro-
cessing (e.g. SSE and CUDA
SIMT) due to coalesced global
memory access and reduced
(or removed) shared memory
bank conflicts.

Blocking: blocking aims to align the spatial object data in
consistent regularly-sized blocks, taking the data with cer-
tain locality in the spatial domain and putting them together
in a single block (see Figure 2.36). In this way, when a
block is brought to memory, it allows good use of the rest
of the block when similar operations are performed at the
same time on neighboring elements. The block size should be
aligned to a power of two, in order to provide a more coherent
blocking, aligned with memory transaction transfer page sizes
[CNLE09, AVS+11].

Figure 2.36: Blocking neigh-
bor data on regular-sized
blocks (e.g. 2 × 2) allows
efficient access to the rest
of the block when similar
operations are performed at
the same time on neighboring
elements.

2.4.4 Spatial data and texture mapping
In many interactive visualizations triangle meshes require colors computed on any point of the
model, which are typically calculated from an image, called texture. Texture maps are used in
many places in the graphics pipeline. As seen in Figure 2.28, all programmable pipeline stages
can access texture maps.

The textures are stored as 2D and 3D grids of color samples, but there is no obvious way of
automatically mapping a point p on a three-dimensional surface to a point texture space. Each
triangle vertex contains a set of attributes attached, containing, for example, a normal vector,
color values, and texture coordinates. For each fragment generated by the rasterizer, texture
coordinates specified at each vertex are interpolated to give a unique position within the texture
image. The interpolated texture coordinates are used to access a small set of texels in a texture
image stored in memory.

58 CHAPTER 2. BACKGROUND

For each projected point from an object’s surface to a pixel on the screen, many applications
use textured surfaces to determine the color of the pixel. However, a pixel on the screen may
correspond to a large area of the texture for distant objects, which necessitates filtering to avoid
aliasing.

Depending on how distant an object is, a filter may integrate over too many texels of the texture.
Hence, performing too many evaluations and high memory bandwidth for the final contribution
of the distant object in the screen.

Rather than computing exact filter integrals, GPUs use precalculated downsamplings of the
texture that are stored in a MIPmap [Wil83], which avoids aliasing of distant texture details
and achieves a better performance balance, by doing less evaluations requiring a lower memory
bandwidth as well.

Mipmapping: mipmapping [Wil83] is a classic technique for
improving the performance and quality of texture filtering for
real-time rendering. The goal of mipmapping is to accelerate
the calculation of images downsampled to arbitrary scales by
interpolating between precomputed power-of-two scalings of
an image (see Figure 2.37).

Mipmapping has had hardware implementation since the first
texturing hardware, and the original description generated
downsampled images using a box filter, though other higher-
order filters can be used at each level [Bur81]. The total stor-
age takes only 4/3 of the original image’s space.

Figure 2.37: A MIPmap can be
visualized as a stack of overlaid
images as shown on the left.
The alignment between neigh-
boring resolutions is shown on
the right.

Filtering quality: Mipmapping works well for sampling
high-frequency textures. However, despite of improving qual-
ity by reducing texture aliasing, it may not properly sample
triangles with oblique projections onto the screen. There-
fore, mipmapping on certain surfaces makes them look blurry,
and anisotropic filtering [GH86, MPFJ99] with an appropiate
level of anisotropy should be used (see Figure 2.38). Heckbert
[Hec89] described the problem of filtering a warped image in
its full generality. Most subsequent works [MPFJ99, LWW06]
have been on how to sample images with affine transforma-
tions of filters.

Figure 2.38: (Top) Mipmap-
ping on certain surfaces can
make them look blurry, be-
cause of grazing viewing di-
rections or highly warped tex-
ture coordinates. (Bottom)
Anisotropic hardware filtering
with an appropiate anisotropy
level should be used.

59

Texture memory bandwidth: Texture bandwidth is consumed any time a texture fetch request
goes out to memory. Although modern GPUs have texture caches designed to minimize ex-
traneous memory requests, they obviously still occur and consume a fair amount of memory
bandwidth.

Mipmapping should be used on any textured surface that may be minified, because it improves
texture cache utilization by localizing texture-memory access patterns for minified textures.

2.4.5 Parallel spatial query access patterns
Minimizing variable work per retrieval when several elements
are being looked up in parallel at the same time is an important
feature. For instance, when different threads of a block query
neighbor cells of a spatial directory in parallel, and their lists
have largely different lengths to be evaluated, it results in a
variable number of accesses per retrieval in each thread. This
usually results in all threads having to wait for the thread that
performs the most accesses to retrieve its data [ASA+09]. The
spatial directory structure must minimize this variability, pro-
viding similar coherent memory accesses over neighbor data
elements from the spatial domain (see Figure 2.39).

block (0,0)

block (0,1)

block (0,0)

block (0,1)

execution
time [msec.] kernel 1 kernel 2

Figure 2.39: Minimizing vari-
able work per retrieval when
several elements are being
looked up in parallel at the
same time results in all threads
having less idle time within a
block.

2.4.6 Linear data structures
Linear data structures such as sorted arrays, stacks and queues contain the stored elements
arranged linearly in a sequence. Parallel algorithms for linear data structures are a popular
focus of research, and they are powerful building blocks of spatial data structures. Here we will
describe some useful parallel techniques over linear data structures to define efficient spatial
directories.
Prefix-sum: a prefix-sum (also known as a so-called scan) is parallel method which is fun-
damental for list-processing primitive for computing recurrence relations [HSO07, HG11]. It
takes a binary associative operator⊕ with identity I , and an array of n elements, where concur-
rent threads can cooperatively compute scatter offsets for writing data into shared structures. It
takes as input

[a0, a1, · · · , an−1],and returns the array

[I, a0, (a0 ⊕ a1), · · · , (a0 ⊕ a1 ⊕ · · · ⊕ an−2)].

60 CHAPTER 2. BACKGROUND

For example, if ⊕ is addition, and given a count array, where
each record counts the number of elements overlapping the
corresponding cell of the grid G:

[0, 1, 1, 2, 2, 1, 1, 0, 2, 0, 1, 1, 0, 1, 0, 0],

then the prefix-sum operation on the count array would return
the output array scan (see Figure 2.40):

[0, 0, 1, 2, 4, 6, 7, 8, 8, 10, 10, 11, 12, 12, 12, 12].

The last value of the scan result array gives the size of the total
count of elements on the cells of G. Therefore, it allows the
array L to be initialized with the required size, and index all
the elements of each cell as local contiguous lists with the ele-
ments’ IDs pointing to the elements’ array T . There are many

uses for scan, including parallel sorting, stream compaction
and tree-based data structures for spatial data [Ble90].

Figure 2.40: Parallel prefix-
sum is a fundamental list-pro-
cessing primitive for compu-
ting recurrence relations whe-
re concurrent threads can coo-
peratively compute scatter off-
sets for writing data into shared
structures.

Sorting: Sorting parallel methods allow the reordering of spa-
tial data to bring the elements with similar properties together.
However, objects should first be organized by a 1D spatial in-
dex query, created, for instance with space-filling curve co-
ordinates (see Section 2.4.1). In parallel sorting, most works
have focused on producing faster and faster GPU implemen-
tations of the radix sort algorithm, which is highly paralleliz-
able. Parallel radix sorting is currently the fastest approach for
sorting elements based on they query coordinates – so-called
keys – on both CPU and GPU processors [SHG09, MG11].

Sorted arrays can be used as an alternative strategy to define
an ordered spatial directory D, by the z-order query coordi-
nates. This allows the spatial data elements of cells organized
in small lists L to be locally addressed (see Figure 2.41). The
ordered spatial directory can be constructed in parallel at ex-
tremely fast rates [MG11].

Figure 2.41: Parallel sorting
methods allow the spatial data
to be reordered, bringing in-
dexed elements into an or-
dered sequence. Then, a par-
allel binary search can query a
subset of the elements.

After collecting the spatial data in an ordered sequence, a parallel binary search [HB10] is
required to query a subset of the elements in the sequence. Retrieval timings can be highly
varied. Therefore, if the queries are sorted, the branching patterns of the binary search, and
memory reads will tend to be coalesced into fewer memory transactions, reducing the cost of
parallel queries significantly. However, searching random elements in the array incurs as many
as O(lgN) probes in the worst case, which requires many more probes than hash tables (see
Section 2.4.9).

61

Stream compaction: stream compaction parallel methods prove to be effective in case of col-
lecting data with a sparse distribution over the spatial domain. This is particularly useful with
arrays that have some elements that are interesting, but also many uninteresting ones. Stream
compaction produces a smaller array with only the interesting elements (e.g. non-empty records
of the array). More formally, stream compaction takes an input array G and a predicate p, and
outputs only those elements in G for which p(G) is true (see Figure 2.43), preserving the or-
dering of the input elements [Hor05]. With this smaller array D, computation is more efficient
because it only requires the interesting elements to be evaluated, the transfer costs are greatly
reduced (e.g. between the GPU and CPU), and it allows more coherent and efficient memory
access patterns.

Stream compaction requires two steps, scan and scatter:

1. The first step generates a temporary vector A where the
elements that pass the predicate p are set to 1 and the
other elements are set to 0. Then, a scan is performed
over A. For each element that passes the predicate, the
result of the scan contains the destination address for
that element in another temporary vector S.

2. The second step scatters the input elements to the output
vector D using the addresses generated by the scan.

Figure 2.42: Spatial data elements can be embedded in a grid, or-
ganized by a 1D spatial index over the grid domain, and processed
by parallel radix sorting and stream compaction, leaving only an or-
dered linear sequence with the elements of interest. This collecting
operations allows efficient and coherent parallel binary search op-
erations on the spatial data.

Figure 2.43: Stream com-
paction parallel methods col-
lect the elements of interest
from an array A, without the
empty records of the domain
grid G, into a compacted array
D.

In summary, linear data structures generated with parallel sorting and stream compaction allow
the construction of parallel efficient spatial directory, as shown in Figure 2.42, with interesting
properties (see Table 2.1). Furthermore, they represent a procedural step during the construction
of a parallel hierarchical data-structures, such as octrees [ZGHG11], KD-trees [ZHWG08], and
bounding volume hierarchies [LGS+].

62 CHAPTER 2. BACKGROUND

Linear data structures main properties:
Space-filling curve + sorting + stream compaction
√

Convert nD to 1D spatial coherence
√

Compact space overhead (pointerless structure)
√

Easy to update, but not optimal
√

Query as parallel binary search
X Require a full-reconstruction on updates
X Variable work per retrieval specially if searching random ele-
ments

Table 2.1: Linear data structures tradeoffs.

2.4.7 Grid-based data structures
A uniform grid was one the first proposed spatial data struc-
tures [BF79] to achieve fast query evaluations in localized
range searches in regular locations (see Figure 2.44). Building
a grid can be done in linear time, as opposed to other hierarchi-
cal data structures that require super-linear time. Hence, for
dynamic data changing every frame, a shorter build time may
compensate for a longer rendering time. Therefore, a grid can
result in a shorter total time (including build and query evalua-
tion) than other superior acceleration data structures. Building
a grid is a memory-bound algorthim. Therefore, reducing the
memory footprint of a grid can result in shorter build times.

Figure 2.44: A uniform grid
can be used to reference spa-
tial elements that are known
a priori to be uniformly dis-
tributed over the domain.

Compact grid: the compact grid [LD08] is a data structure
that represents a grid with minimal memory requirements:
more specifically, exactly one index per grid cell and exactly
one index per element reference. It can be shown that the al-
gorithm for building the data structure requires linear time.
The number of cells M should be linear in the number of ele-
ments N [BF79] or M = ρN where ρ is called the grid den-
sity.
Inserting the elements into a grid means that all the cell/ele-
ment overlaps have to be determined on the grid domain G
(see Figure 2.45). This can be done using the bounding box
of the element, or with more accurate element / cell overlap
tests. Using the bounding box results in shorter build times
and longer rendering times, because the element is also added
to cells that overlap with its bounding box only, but not the el-
ement. More accurate object cell overlap tests result in longer
build times and shorter query evaluation times.

Figure 2.45: A compact grid
data structure represents a grid
with minimal memory require-
ments: one index per grid cell
and exactly one index per ele-
ment reference.

63

The compact grid data structure for representing a grid consists of two static arrays D and L.
For each cell the array D stores the offset of the corresponding element list in L. The array L
consists of the concatenation of all element lists. This data structure is static; elements cannot
be inserted nor removed.
The size of the element list associated to the cell with 1D index i is given by D[i + 1] −D[i].
Note that this expression is invalid for the last object list, since D[N] does not exist. In order to
avoid an explicit check for this special case, the array D is extended by one more position.

A regular grid can be efficiently used as a spatial directory (see Figure 2.46) when the elements
are known a priori to be uniformly distributed over the domain (see Table 2.2). When it is
not known whether this is the case, one would probably use another method to compact the
directory even further, using hashing strategies (see Section 2.4.9).

Lagae et al. [LD08] suggest a parallel construction of the compact grid combining the com-
pact grid representation with the scalable sort-middle grid build method proposed by Ize et al.
[IWR+06]. However, construction does not scale linearly with respect to the number of threads,
there being a problem for dynamic large spatial data that requires extremely fast reconstructions
at each frame.

Figure 2.46: A regular grid used as an efficient spatial directory when the elements are known a priori
to be uniformly distributed over the domain.

Regular grids main properties:
Grid embedding + lists
√

Block transfers
√

Good cache alignment and behavior
X Empty wasted space for sparse data
X Non-adaptive to irregular data distributions

Table 2.2: Regular grids tradeoffs.

2.4.7.1 Parameterized grid data structures

Another way to collect and retrieve sparse spatial data is by mesh parameterization. Mesh
parameterization was introduced in computer graphics to find a one-to-one mapping from a
suitable parameter domain to the given surface. For instance, a planar mapping is used to flatten
and regularly sample the given surface into an image for texture mapping purposes (see Figure
2.47).

64 CHAPTER 2. BACKGROUND

On the whole, texture mapping is a powerful technique that adds flexibility and control when
designing spatial data structures to be evaluated in a shader. However, the gap between com-
puting power and memory bandwidth is increasing for standard CPUs, and the compute versus
memory access ratio is even higher for dedicated graphics hardware [Joh05]. Hence, it is crit-
ical to reduce the memory bandwidth on the construction and query operations over the data
structure as much as possible.

Planar mapping: Planar parameterizations [GGH02a,
LPRM02, ZSGS04, SLMB05] map a triangle mesh to the pla-
nar domain, which then allow the sampling of the shape and
shading information over the regular structure of an image.

Figure 2.47: Mesh planar pa-
rameterization [ZSGS04], and
resampled shape and shading
data in a texture atlas.

While some surfaces have a natural planar parameterization, on many others the challenge is
to flatten the surface while keeping a low distortion, which often requires the surface to be cut
into independently parameterized charts. These charts are later packed into a single image also
called a texture atlas (see Figure 2.47).

• Geometry image parameterization [GGH02a] maps the
triangle mesh ST into a single chart with the boundary
fixed to the square image (see Figure 2.48). As a re-
sult, it does not have to store any explicit connectivity
anymore between the samples, as the connectivity is im-
plicit in the image itself. During the mapping process,
the surface is cut introducing a set of seams.

Figure 2.48: Mesh geome-
try image parameterization
[GGH02a] flattening the surfa-
ce in a single fixed-boundary
chart.

Thanks to the cuts, the parameterization unfolds the original surface into a square domain,
and then resamples the geometry on the image grid data structure. This regular layout
allows more efficient parallel processing, acting as a spatial directory D either to access
the irregular parameterized data by cell lists L (see Figure 2.49 (Bottom)), or through
a regular quad-based remeshing SQ of the original irregular structure (see Figure 2.49
(Top)). The constant memory access queries to the cells do not require an expensive
hierarchical traversals (opposed to other data structures presented in Section 2.4.8), and
proves to be a very suitable data structure for uniformly distributed spatial data.

65

Figure 2.49: A geometry image parameterization as a spatial directory. (Top) Allows a regular remesh-
ing of the original irregular structure, or (Bottom) to access the irregular parameterized original data by
localized cell lists.

Planar parameterizations work fairly well. However, some applications are quite sensitive to
the parametric distortions and discontinuities introduced by the seams that appear when cutting
non-genus zero surfaces onto the planar domain. These methods cannot avoid the discontinu-
ities generated by the cuts, produced when a 3D edge is mapped to two different edges in the
boundary between different charts, quite often having largely different lengths in the parameter-
ization domain. A mapping of this type will generate a change of scale in the parameterization
which will be quite visible in applications such as texture mapping and require expensive solu-
tions [GP09]. Thus, a base complex (e.g. a polycube) with the same genus as the given input
surface is usually more suitable as an alternative parametric domain.

Base complex parameterizations: Base complex parameterizations such as sphere mapping
[PH03] (for genus-0 surfaces) and polycube mapping [THCM04] (for any arbitrary genus) al-
lows a seamless continuous mapping of a triangle mesh to the faces of regular base complex
domains without requiring the surface to be cut or to the creation of discontinuities.

• Spherical mapping [PH03]: Some shapes are often described by closed, genus-zero sur-
faces. For such shapes, the sphere is the most natural parameterization domain, since it
does not require cutting the surface into a disk (see Figure 2.50). A spherical parame-
terization must prevent parametric foldovers and guarantee a one-to-one spherical map,
which can make it difficult between highly deformed shapes to create a parameterization
adequately sampling all the surface regions.

66 CHAPTER 2. BACKGROUND

A large stretch in any direction about a surface point
means that the reconstruction of the surface signal will
lose high-frequency detail in that region. A coarse-
to-fine optimization strategy penalizes undersampling
using a stretch-based parameterization metric. First,
a spherical parameterization from a spherical domain
D to the given closed shape D → ST is performed.
Next, another spherical parameterization is done from
the sphere domain D to a polyhedron domain P , such
as an octahedron: D → P . Finally, the polyhedron
P is unfolded into an image grid domain I: I → P .
All these maps are invertible, and their composition pro-
vides a map: I → P → D → ST .

A spherical parameterization is created from the orig-
inal surface to a seamless sphere domain. This regu-
lar seamless layout allows more efficient parallel pro-
cessing, acting as a spatial directory either to access
genus-0 irregular parameterized data by cell lists L (see
Figure 2.51 (Bottom)), or through a quad-based regu-
lar remeshing SQ of the original irregular structure (see
Figure 2.51 (Top)). In general, this is done with less
distortion near the cutting boundaries (e.g. compared to
planar geometry images [GGH02a], see comparison of
distortion error metrics in Section 2.1.3.3), and without
creating discontinuities in the parameter domain.

Figure 2.50: Spherical param-
eterization [PH03] of genus-
0 surfaces allows a seamless
continuous map of an irregular
mesh structure to the faces of
a spherical regular parametric
domain, without creating dis-
continuities.

Figure 2.51: A spherical geometry image parameterization as a spatial directory. (Top) Allows a regular
remeshing of the original genus-0 irregular structure by a seamless layout of the mesh without disconti-
nuities, or (Bottom) allows access to the irregular parameterized original data by localized cell lists.

67

• Polycube mapping: A polycube P is a quadrilateral
regular base domain surface defined by the composi-
tion of equal size cubes. Polycube mapping parameter-
izes the triangular mesh ST over the set of square charts
of a polycube domain P . Tarini et al. [THCM04] de-
fines the polycube map from a manually built polycube
domain in five main steps (see Figure 2.52): first, the
user manually warps the polycube P over the surface
ST , obtaining the warped polycube PW . Next, the ver-
tices of ST are projected in the normal direction over the
warped polycube surface PW . This projection may gen-
erate foldovers, mostly in regions with small features.
Then, the projected mesh over PW is warped back to
the surface of P . This gives an initial positioning of the
vertices of ST that are assigned to one of the quads of
the polycube P .

However, this usually does not define a good param-
eterization because the piecewise linear funtion maps
each triangle of ST to a corresponding parameter trian-
gle over P , possibly deforming it considerably or even,
not resulting in a one-to-one map in some parts.

Figure 2.52: Mesh parame-
terization by polycube map al-
lows arbitrary genus surfaces
to be mapped and achieves a
seamless continuous map of
an irregular mesh structure to
the faces of a polycube regular
parametric domain, all without
creating discontinuities in the
parameter domain.

Therefore, to optimize the mapping, the barycentric coordinates are computed by a fixed-
boundary parameterization to drive an iterative process where the vertices can be reas-
signed between the quadrilateral faces. Finally, once the quads are parameterized, inter-
chart smoothness is further optimized by a global relaxation method to obtain the final
polycube map PM .

Wang et al. [WHL+07, WJH+08] introduced two polycube mapping approaches that
first map the 3D model and a manually constructed polycube to the canonical domain
(e.g., sphere, euclidean plane or hyperbolic disc), and then seek the map between the two
canonical domains. The resulting polycube map is guaranteed to be a diffeomorphism
(see Section 2.1.1).

68 CHAPTER 2. BACKGROUND

He et al. [HWFQ09] proposed an automatic polycube construction and mapping scheme,
first by a consistent voxelization, and then by breaking down the model and the polycube
into genus-0 rings by an uniformization metric. Finally, a piecewise map is computed,
with harmonic functions (see Section 2.1.3), independently for each ring. However, har-
monic mapping between rings is known to be a time-consuming non-linear process.

In general, parameterized grids offer an efficient setting for a spatial directory (see Ta-
ble 2.3). In particular, base complex-based schemes are somehow able to map arbitrary
genus surfaces ST into the seamless and regular parameter domain of a polycube P of the
same topology. The polycube map can serve as a spatial directory either to access irreg-
ular parameterized surface data of arbitrary genus, organized in cell lists L (see Figure
2.53 (Bottom)), or through a regular quad-based remeshing SQ of the original irregular
structure (see Figure 2.53 (Top)), with less distortion in general than a planar parametric
mapping. However, it is difficult to control the polycube map process and may not work
for models of complicated geometry and topology. In chapter 4 we explore a more flexi-
ble setting for the polycube map in order to exploit it as a suitable parametric domain for
parallel efficient rendering applications.

Figure 2.53: A polycube map parameterization as a spatial directory. (Top) Allows a regular remeshing
of the original irregular structure by a seamless mapping without discontinuities, or (Bottom) allows
access to the irregular parameterized original data by localized cell lists.

Parameterized grids main properties:
Grid embedding + lists
√

Block transfers
√

Good cache alignment and behavior
X Empty wasted space for sparse data
X Non-adaptive to irregular data distributions

Table 2.3: Parameterized grids tradeoffs.

69

2.4.8 Tree-based data structures
Adaptive tree-based spatial data structures allow shape and shading data to be subdivided inside
a hierarchical regular grid enclosing the object. The data is stored in a spatial hierarchy, such
as an octree [Sam90]. This strategy avoids a number of issues of planar parameterizations,
removing the need for a global parameterization to cut and unfold the mesh in a planar domain.
Furthermore, spatial hierarchical methods usually avoid the interpolation problems between the
discontinuities of different cutted parts, while at the same time the hierarchy can be refined
adaptively in specific areas of interest.

• Octree textures: Debry et al. [DGPR02], and Benson
and Davis [BD02] have shown how 3D hierarchical data
structures called octree textures, can be used as a spa-
tial directory D to efficiently store shape and shading
information of a surface without a spatial parameteri-
zation. The octree textures approach provides low dis-
tortion on the sampled spatial data because the shape is
regularly and adaptively sampled only where the surface
intersects a cell of the subdivided grid (see Figure 2.54).
The memory requirements of an octree texture are lower
compared to a high-resolution regular grid, but the tree
still contains many unused entries in its internal nodes,
and accessing the data requires a long chain of indirec-
tions, as opposed to, for instance, a regular grid. Figure 2.54: Octree texture

data structure [LHN05, Lef06].

Note that octree textures may now be interactively constructed [LHN05, BHGS06, Lef06,
ZGHG08], and their adaptive hierarchical structure is also suitable in the case of acquired
surfaces, where their poor topological guarantees, coupled with their high density, make
them hard to unfold in the plane with the use of planar parameterization over a 2D grid.
Octrees textures are a spatial directory useful in applications with sparse spatial data
[DT07, SZS+08], where they only locally partition the space into increasingly smaller
boxes where it is required (see Figure 2.55).

Figure 2.55: Octree texture used as an spatial directory. The hierarchy can be adaptively refined in
specific areas with sparse irregular spatial data.

70 CHAPTER 2. BACKGROUND

The volumetric hierarchical space subdivision of an octree generates satisfying clustering at
coarse subdivision levels. However, it is also obvious that at finer levels, when the cells come
closer to the surface, the volume-based decomposition leads to imbalanced clustering in areas
where the surface is not aligned with the main directions of the data structure. However, this im-
plies an overhead in access time and storage space, which may limit their use in some interactive
applications. Consequently, other approaches have appeared, which combine the main advan-
tages of volume-based approaches and 2D planar grids at their leaf nodes, by only coarsely
subdividing the volume hierarchy until the surface can be faithfully captured by a simple planar
grid without foldovers. These methods, while removing the need for a global parameterization,
also achieve a more efficient packing and access than a regular octree.

• Volume-surface trees [BHGS06] introduced a data structore to alleviate the foremen-
tioned deficiencies with a modified version of the octree. The volume-surface tree is an
hybrid octree/quadtree structure which combines a 3D scheme for the first levels of the
tree, and a 2D scheme as soon as the surface can be projected onto a plane without folding.
The structure contains three different types of nodes: volume nodes (comparable to octree
nodes), transition nodes (being the leaves of V-nodes) and the roots of 2D hierarchies of
surface nodes (comparable to quadtree nodes).

Note that each transition node carries a local frame that is used to align its correspond-
ing sub-quadtree. The union of all transition nodes defines the volumetric layer under
which it becomes possible to implement 2D algorithms (the transition-layer). Having
the transition-layer at low depth, and switching to quadtrees as soon as possible, reduces
the memory overhead thanks to the 2-dimensional structure, and speeds-up traversals and
tests. Evaluating whether a piece of surface will exhibit folding during the 2D projection
can be done by numerically integrating the curvature over its area. The method relies on
different heuristics to define a height field indicator [PG01] to ensure projections without
foldings.

• TileTree [LD07] proposed an adaptive method more compact than a full-octree. The key
idea is to use an octree to position square texture tiles around the surface. The process
starts by building an octree around the spatial data. However instead of storing a single
sample in each leaf, a set of 2D tiles are mapped onto the faces of the leaf (up to six
tiles per leaf). The octree is subdivided until no more than one fold exists in each leaf.
The tiles are packed together in arbitrary order. The resolution of the tiles can be locally
changed to be adapted to changes in the detail level of the stored data. During the query
evaluation over the spatial data, the surface normal gives the projection onto the tiles, to
then retrieve the shape and shading information from the 2D tile map.

In general, the shape and shading details to be stored in the spatial directoryD are usually
much finer than the general base shape of an object. Therefore, the octree only requires
a few levels where many neighboring samples will be stored in the tiles of a same leaf,
which guarantees good access coherence to the stored data (see Figure 2.56).

71

Figure 2.56: Tiletree [LD07] acting as volume-surface hierarchical spatial directory, it combines a coarse
volume hierarchy, subdivided until the surface is faithfully captured by a simple 2D grid without foldovers.
The 2D grid leaves act as a locally planar spatial subdirectory, achieving a more efficient packing and
access evaluation than a regular octree.

Adaptive tree-based data structures main properties:
Hierarchical regular or irregular subdivision
√

Block transfers
√

Fairly good cache alignment and behavior
√

Support insertion and flexible memory allocation and layout
X Larger space overhead (e.g. pointers)
X Variable depth in hierarchy means variable latency in queries

Table 2.4: Adaptive grid data structures tradeoffs.

2.4.9 Hashing data structures
Another different strategy to collect and retrieve sparse spatial data is spatial hashing. By em-
bedding the spatial data over a grid, hashing should only store those cells where data elements
are located. In the presence of sparse input data, most of the cells will be completely empty,
and only a small fraction of the cells require to be stored. The key idea is place the sparse
data into a hash table by defining a hash function h. This strategy forgoes adaptivity and store
fixed-resolution data in the hash table. The hash function maps each data element from the
query coordinates – also called keys k – on the domain into locations h(k) inside the hash table.
This causes no problems until a record with a key k′ has to be inserted and the location h(k′)
is already occupied by another key k. In this case we say a collision has occurred. Handling
collisions is the central issue in hashing.

72 CHAPTER 2. BACKGROUND

Keys are taken in a universe U of size |U |. We note D ⊂ U as being the set of defined keys,
that is the keys from U which should be stored in the hash table. Keys which do not belong to
D are called empty keys. We consider the load factor d, which corresponds to the ratio of the
number of defined keys to the number of keys that the hash table can hold. A hash table with
load factor d = 1 is a minimal hash, that is, a hash with no wasted space. Each defined key may
be associated with some additional data. The input is thus given as a set of key-data pairs.
Static spatial data should be collected only once, and hence the hash function used to pack the
data can be chosen to avoid any collision between the input keys with collision-free hashing
techniques. On the other hand, dynamic data constantly changing at interactive rates requires
more flexible hashing schemes able to continuolsy reconstruct and update the structure at every
frame.

Collision-free: collision-free hashing methods address the issue of repeated proving by guar-
anteeing that every item can be located in exactly one location in the hash table, allowing all
queries to be answered with a single probe. Next we will describe two different strategies useful
creating compact spatial directories requiring only a single probe to query the spatial data from
the hash table.

• Perfect spatial hashing [LH06a] is a especially inter-
esting setting in the definition of the hash table, where
the hash table should have two properties: one is that
it should be minimal, which means that the hash table
should be as compact as possible, avoiding any wasted
memory space. The second property is that the hash
function has to be perfect, so that any two distinct input
elements are mapped to distinct locations in the hash
table (see Figure 2.57). In other words, there are no col-
lisions in the hash function.

There are theoretical bounds defining the description of
a hash function, which must at least have a complex-
ity of 1.44n bits for the data [FHCD92], where n is the
number of input entries. By this theoretical bound the
description of the hash function in a compact form can-
not be expected, and some auxiliary data is required. Figure 2.57: Perfect spatial

hashing [LH06a].

Lefebvre and Hoppe [LH06a] introduced an auxiliary offset table computed in a prepro-
cessing step, to make a simple hash function perfect. In a query evaluation on the hash
table, the hash function uses the query coordinates to make a look up in the offset ta-
ble to retrieve an offset value. This look up in the offset table is done by using toroidal
addressing.

After retrieving the offset value, it is added to the original query coordinates to obtain a
final look up in the hash table, using a toroidal addressing as well. So the evaluation of
the hash function is extremely simple, just requiring two look ups: one in the offset table
and one in the hash table. Furthermore, as it does not contain branching, it is ideal for
SIMD parallel query evaluation.

73

Note that as hash function h only prevents collisions between non-zero elements of the
spatial grid G, queries on empty locations are not directly supported in the hash table D.
However, by encoding which elements are non-zero using domain bits in a grid B (with
the same dimensions as the grid G), queries on empty locations are also supported.

The main constraint of this method is that finding a perfect hash function for the input
data requires a very slow preprocessing. This means that, once constructed, we are not
allowed to introduce or delete data because we would need to compute a completely new
hash function again. However, the attached values of the data elements already inside the
hash table can be modified without changing the element location.

• Hash grid [LD08] is a data structure that reduces the
memory requirements of a compact grid (see Section
2.4.7), by using perfect hashing based on column dis-
placement compression; being more efficient in both
time and space than traditional compact grid methods
(see Figure 2.58). Given a sparse grid domain G, a hash
function h is computed for a hash table D, such that
each non-zero element G(i, j) is hashed to the position
h(i, j). The hash function h should be perfect and close
to minimal, i.e. the hash table H should contain as few
unused entries as possible. The algorithm works as fol-
lows: The first column of the grid D is copied to the
hash table G at offset 0. Each subsequent column of the
grid G is then copied to the hash table H at the smallest
offset, such that non-zero elements do not overlap. Each
offset is determined starting from the offset of the pre-
vious column. For each column i, this offset is recorded
in a 1D offset table O at position i. Each non-zero el-
ement G(i, j) corresponds to D[O[i] + j], i.e. the hash
function h is given by h(i, j) = O[i]+j. The queries on
empty locations of the spatial grid domain can be sup-
ported by encoding which elements are non-zero using
domain bits in a grid B (with the same dimensions as
the grid G).

Figure 2.58: Perfect hashing
by column displacement com-
pression [LD08].

The hashed grid representation can be combined with the scalable sort-middle grid build
method of Ize et al. [IWR+06] by parallelizing the computation of the domain bits, and
then parallelizing the computation of the hash function by distributing the columns of the
grid over the threads.

74 CHAPTER 2. BACKGROUND

Multiple-choice hashing: multiple-choice hashing is a hash table scheme where each item is
stored in one of H ≤ 2 hash table buckets. The ability to choose from multiple locations when
storing an item improves space utilization, while the simplicity of such schemes makes them
highly amenable to a GPU-friendly implementation. Some variants, such as cuckoo hashing,
allow items to be moved among theirH choices in order to improve load balance and avoid hash
table overflows. Here we consider hashing schemes that move items on insertion and deletion
operations, as arguably one would be willing to spend more time on such operations as opposed
to more frequent lookup operations.

• Cuckoo hashing [PR04] is a variation on multiple choice hashing schemes. The hash
table is divided into H subtables of the same size. In a sequential construction process,
items are inserted one by one. An item can be placed in one of the possible H slots in the
different subtables, if any of them are empty. But if there is no room for an item at any of
its H choices, instead of causing an overflow, the method considers moving the item in
one of those H records to another consistent location with respect to its own H choices.
This starts a recursive process were the evicted item must be reinserted into the hash table
following the same procedure, or until sufficiently attempts have been made to declare a
failure. Moving the items during an insertion allows them to flow intuitively towards less
contested records in the table. The probability of this happening is small when using two
hash functions, and even more empirically unlikely using more hash functions.

• Two-level cuckoo hashing: [ASA+09] defines a very
efficient parallel hashing construction by relaxing the
requirements on the compaction of a hash table, mak-
ing possible to collect sparse data in a hash table in real-
time with a GPU-friendly parallel construction and sim-
ple hash functions. The hash functions may produce
collisions, but still provide query operations on the data
with very few memory access operations.

Alcantara et al. [ASA+09] modified the standard
cuckoo hashing algorithm to work in parallel, allowing
all of the key-value pairs to be inserted into the structure
simultaneously. In the construction process, all threads
managing items that have not yet been stored, simulta-
neously write their keys into the same subtable using
the associated hash functions; CUDA semantics ensure
that exactly one write will succeed for each record that
is written into.

Figure 2.59: Two-level cuckoo
hashing [ASA+09].

75

This procedure is designed to be efficient with data divided in small datasets by using a
two-level hash table. In a first level, the input is partitioned into smaller buckets using a
hash function g(k). Then, a cuckoo hash h(k) is built for each bucket in parallel, with
a different CUDA thread block handling each bucket. This allows each cuckoo hash
table to be built in shared memory, reducing the cost of the memory accesses incurred
during construction. Moreover, it mitigates the cost of a cuckoo hashing failure since
each cuckoo hash table is independent: failing to build one does not cause the others to
be rebuilt from scratch (for more details see Section 5.1).

Figure 2.60: Hashing spatial directory: using a hash function maps each data element with the query
coordinates into locations inside a compact hash table. This usually only requires a constant number of
memory accesses to query the data elements.

Hashing data structures main properties:
Grid embedding + hashing
√

Compact storage
√

Constant time and simple query accesses
√

Support insertion and flexible memory allocation and layout
X Random nature of hash functions breaks coherence
X Construction process are slow or can easily fail at high load
factors

Table 2.5: Hashing data structures tradeoffs.

77

78 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Chapter3
Detail mapping and simplification

Surface simplification methods must deal with a problem of great importance: preserv-
ing both the shape and the shading details attached to a geometric mesh structure with-
out constraining the final quality. This chapter presents our proposed setting that uses
a parameterization-based spatial directory to avoid some important simplification-limiting
issues and to generate high quality compact and efficient representations.

Highly detailed geometric models are commonplace in
many computer graphics applications to represent ob-

jects’ surface and shading information (see Section 1.2.2).

Polygonal meshes remain the most common and flexible way
to approximate surfaces, typically as dense triangle meshes
(see Section 2.1.2). Nonetheless, beyond the geometric coor-
dinates, the polygonal meshes also store shading information
attached to the vertex, edge and face elements of the mesh, as
so called mesh attributes.

Many applications often require shape and shading attributes
with higher frequencies than the geometric coordinates them-
selves, e.g. fine color and shape details over a base surface
(see Figure 3.1).

These requirements impose the definition of a mesh structure
with support to this high frequency information. A straighfor-
ward method is to define a dense mesh structure, with a den-
sity enough to achieve an accurate sampling of the fine detail
attributes (see Figure 3.1 (Left)). Alternatively, it is possible to
use a mesh parameterization to map these attributes stored in
a texture image, requiring only the storage of the texture map-
ping coordinates as mesh attributes (see Figure 3.1 (Right)).

Figure 3.1: A plane 3D model
with color shading information.
(Left) The color information is
attached to a sufficiently dense
mesh structure as vertex col-
ors, in order to capture the
complex color details spanning
over the surface, as shown be-
low. (Right) The color informa-
tion is stored in a texture atlas
so that the mesh structure can
be coarser but still define con-
sistent chart boundaries, with
lower complexity than the color
field.

79

In general, a geometric model must allow a flexible description with different levels-of-detail
(see Section 2.2), because the number of samples necessary to show the model accurately in the
screen depends on the nature of the model, and its area on screen pixels, which in turn is related
to its distance from the viewpoint. In order to create different levels-of-detail representations
of models, surface simplification algorithms propose to reduce the mesh connectivity while
preserving the surface and shading details.

In this chapter we will illustrate the problems appearing in the context of mesh simplification
and the preservation of both the shape and the shading attributes attached to the mesh struc-
ture, in particular because the mesh structure simplification must deal with a difficult tradeoff
between preserving the geometry coordinates and the mesh attributes.

Here we will show that a special setting of a spatial mesh parameterization can be helpful to
greatly reduce the constraints of attribute preserving simplification methods, which at the same
time allows querying and mapping of the high-resolution mesh attributes in any level-of-detail.

3.1 Context: mesh parameterization and simplification

In general, object fine color and shape details can arbitrarily span over the full mesh structure
with high frequencies(see Figure 3.1 (Left)). If such information is directly stored in the mesh as
vertex attributes, then, it requires a much denser mesh structure than if it were for only capturing
the gross surface of the object.

in Section 2.2.1, we described simplification methods that only focused on preserving the sur-
face properties of geometric objects, while any additional mesh attribute on the mesh structure
would be compromised, or completely lost, as shown in Figure 3.2 (Middle).

3.1.1 Mesh attribute-preserving simplification
Mesh attribute-preserving simplification avoids the degeneration of the mesh attributes signals,
introducing further constraints in the simplification process, to preserve not only the geometric
coordinates, but also any other shape and shading attribute available, such as colors, normals
and texture coordinates attached to mesh vertices.

Hoppe presented a seminal attribute preserving simplification approach [Hop96] to construct
a single progressive mesh representation for all the levels-of-detail, and introduced attribute
preserving metrics for vertex colors, normals and texture coordinates. Independently, Garland
et al. [GH98] presented an extended quadric error metric for attribute-preserving simplification.

80 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Those methods must guarantee an adequate accuracy of the at-
tributes to generate the different levels-of-detail of the mesh,
preserving at the same time the attributes and the surface prop-
erties in the resulting simplified mesh.

However, when the surfaces to be simplified have complex at-
tribute signals attached, preserving them may largely compro-
mise the surface properties preservation on the mesh structure,
and even make it impossible to simplify the mesh structure to
coarse levels, as shown in Figure 3.2 (Bottom).

The main problem is that most edges around a high-frequency
attribute signal changes are not simplified, and consequently
other parts of the surface may be drastically contracted losing
more surface quality than with purely geometric simplification
methods. This geometric degradation can be measured with
the Haussdorf distance between the original and the simplified
meshes, as shown in Figure 3.2, while the attribute preserva-
tion quality can be measured with image-based error metrics
(see Section 2.2.4).

Figure 3.2: (Top) A dense tri-
angle mesh with vertex col-
ors. (Middle) Simplification
does not preserve mesh at-
tributes, such as the vertex
colors. Rather, it destroys
the surface appearance, but al-
lows the surface properties to
be preserved in coarser mesh
structures. (Bottom) Attribute-
preserving simplification must
preserve the mesh structure
around both the surface and
the attribute features. The bal-
ance in this tradeoff can lead to
less geometric fidelity.

3.1.2 Texture-based attribute-preserving
simplification

Texture-based attribute-preserving simplification includes a
range of approaches that try to encode the objects’ complex
shape and shading signals directly in a texture, called a texture
atlas (see Section 2.4.7.1). Therefore, they only require the
storage of set of texture coordinates in the mesh structure, to
map the surface triangles into the texture image. These meth-
ods aim to reduce the simplification limitations produced by
the most complex attributes signals, such as color and shape
detail information.

The first texture-based methods [CMR+99, COM98, TCS03,
C06] defined a per-triangle mapping, placing each triangle as
an independent chart in the planar parameter domain (see Fig-
ure 3.3). Then the triangle mesh attributes are resampled onto
the parameter domain triangles and finally stored in the tex-
ture.

Figure 3.3: (Top) A triangle
mesh with a per-triangle chart
texture atlas. The mesh struc-
ture avoids the dense sam-
pling of the color information by
storing it into a texture atlas.
(Bottom) A different LOD gen-
erated with simplification re-
quires a different set of per-
triangle charts texture atlas.

81

However, when the triangle mesh connectivy is simplified, and
new triangles appear from the collapse operations, the new
coarser levels cannot reuse the same texture map anymore.
The reason for this is that once the connectivity has changed,
the triangles appearing from the collapse operations might not
be in the original texture map.

These methods are not compatible with CLOD level-of-detail
techniques, only with DLOD techniques (see Section 2.2.3),
because the mesh would dynamically change during the vi-
sualization and would forbid the usage of a predefined set of
triangles stored in the texture atlas. Furthermore, they require
a high texture memory footprint to define one texture map per
level, and could also produce severe resampling and filtering
artifacts, as shown in Figure 3.6.

Other attribute-preserving simplification methods [Hop96,
GH98, SSGH01, CH02a, Moo02] take advantage of a mesh
parameterization to resample the original mesh attributes, pre-
serving as much as possible the neighboring relations between
the triangles, and resampling their signals in a set of charts of
a single texture image.

These methods focus on reducing attribute distortion and pre-
serving the most relevant surface properties with respect to
a single texture atlas shared by all the coarser levels-of-detail
(see Figures 3.4). They operate in such a way that, to the great-
est extent, neighboring triangles in the surface mesh are also
meant to be neighbors in the parameter domain of the texture
atlas, in the same chart. Such connectivity-preserving tech-
niques try to use only a few charts as the layout for the param-
eter domain. These later simplification approaches also must
deal with the complex balance of shape and attribute fields
preservation.

Figure 3.4: (Top) A 3D
model with its mesh param-
eterized texture atlas. (Mid-
dle) Attribute-preserving sim-
plification methods that ex-
clude edges of chart bound-
aries, avoid texture sampling
artifacts but considerably re-
duce the geometric quality of
the surface. (Bottom) Attribute-
preserving simplification meth-
ods that only protect the charts
boundaries leaverage better
geometric quality, but results in
the collapse of a few bound-
aries out of the texture chart
bounds, leading to attribute
sampling artifacts (shown in
green).

The texture coordinates of a mesh parameterization also define a smooth scalar field over the
mesh structure, with sharp discontinuities between the different charts in the parameter domain
(see Figure 3.6 (Top)). The charts boundaries follow a subset of the triangle mesh edges, which
must be preserved during the simplification process.

Nevertheless, when preserving all the edges of chart bound-
aries during a simplification process, sampling artifacts may
appear when the collapsed triangles span outside of the corre-
sponding chart in the parameter domain, as shown in Figure
3.6 (Bottom).

Figure 3.5: Armadillo 3D
model with a complex planar
parameterization.

82 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Therefore, the parameterized mapping allows to free the sim-
plification of the mesh structure without the constraints of any
other available attribute. These other attributes usually have
higher complexity than the parameterization itself, so it is ben-
eficial to encode them in a separate texture atlas. Nonethe-
less, the mesh parameterization should be as good as possible,
because the texture coordinates attribute often introduces dis-
continuities that still prevent many of the edge-collapsing op-
erations that would be valid if we only considered geometric
quality degradation.

3.1.2.1 Trade-offs: mesh parameterization
and simplification

Now we are going to overview the properties that each mesh
parameterization has with respect to simplification and detail
mapping.

Many parameterization methods [LPRM02, ZSGS04,
SLMB05] unfold the geometry in charts of irregular and
complex shape boundaries (e.g. non-convex boundaries) that
simplification methods must preserve (see Figure 3.7).

These irregular charts allow a low parametric distortion in the
mapping of the surface attributes on the texture. However, this
setting wastes empty space in between these irregular charts.

Figure 3.6: Armadillo LODs
generated with attribute-
preserving simplification. (Top)
Close-view of the foot texture
chart, showing in red the
chart boundary edges and the
original triangulation in the
parameter domain. (Bottom)
Even if the complex boundary
chart edges of the foot are
preserved, collapsed triangles
can span out of the boundary
in concave regions, leading
to texture sampling artifacts
(shown in red).

Furthermore, the irregular boundaries are difficult to preserve
during the simplification process, i.e. if too many edges are
collapsed from an irregular chart boundary, it may be im-
possible to preserve its original shape. Therefore, as all the
levels-of-detail take samples from the same texture atlas, all
the LODs must preserve the chart boundaries as much as pos-
sible. Otherwise they will be sampling outside of the chart
texture grid bounds, where invalid values would be taken.

This introduces strong limitations in the simplification pro-
cess, where most edges of the coarser mesh belong almost
solely to the charts boundaries, resulting in a much worse ge-
ometric quality for the simplified object (see Figure 3.7 (Bot-
tom)).

Figure 3.7: (Top) Bunny
model parameterized and
simplified with a free bound-
ary chart parameterization
[ZSGS04]. (Bottom) Complex
chart boundaries must be
protected in the simplification
process. They waste texture
space and limit the surface
quality on coarser LODs.

83

Other approaches [COM98, SSGH01, SWG+03] tried to care-
fully create the parameterization charts, so that each bound-
ary is closely aligned with straight line segments, between its
chart neighbors in the surface. Therefore, many edges of the
boundaries are aligned in the same straight line, and they can
be collapsed during simplification without compromising the
charts boundary shapes, and consequently avoiding sampling
the texture information out of the bounds.

As it can be seen in Figure 3.8, this allows the reduction of
the simplification limiting factor, providing a better geometric
quality in the coarser LODs.

Figure 3.8: (Top) Bunny
model parameterized and sim-
plified with a convex straight-
ened boundary chart parame-
terization [SSGH01]. (Bottom)
Convex charts with straight line
boundaries allow a less limited
simplification process, wasting
texture space but producing
relatively good surface quality
on coarser LODs.

The simplification of a texture parameter domain encapsulates
some interesting properties, such as having a reduced number
of chart discontinuities, and making them simpler (e.g. fol-
lowing regular paths over the surface), which helps to reduce
the constraints of the simplification process.

For instance, a single regular chart generated with a geometry
image parameterization [GGH02b] does not waste space in the
texture grid domain but produces a high parametric distortion
(see Section 2.1.3.3). The regular chart boundary allows the
simplification process to generate coarser representations with
better results (see Figure 3.9). However, the geometric quality
of the coarser triangles is still fairly low.

Figure 3.9: (Top) Bunny
parameterized and simplified
with a single regular bound-
ary chart parameterization
[GGH02b]. (Bottom) This
chart does not waste texture
space but it may introduce
large texture parameterization
distortions, and allows a fairly
good geometric quality on
coarser LODs.

84 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Nonetheless, other mesh parameterizations [PH03, THCM04]
try to map the object into a parameter domain of a single regu-
lar structure, but with a similar shape and the same topology as
the object itself. In this case, the parameterizations do not re-
quire the object to be cut to achieve the mapping, and a seam-
less mapping without boundaries in the parameter domain is
obtained.

For example, a spherical geometry image [PH03] allows to
define a seamless unfolding of genus-0 surfaces into a regular
chart to be defined, which connects its boundary in a pair-
wise manner (see Section 2.4.7.1), avoiding the introduction
of irregular discontinuities in the mesh parametererization.

These simplification methods avoid any boundary constraint
in the simplification process, leading to very good quality
LODs, as shown in Figure 3.10 (Bottom), and it remains pos-
sible to sample the encoded attributes in a seamless texture
domain, such a cube-map (see Figure 3.10 (Top)).

An interesting observation is that the spherical domain
coordinates between two different levels-of-detail allow
a projection line to be defined, mapping any point on a
lower LOD to a corresponding point on the highest LOD
without constraints.

Figure 3.10: (Top) A spherical
domain mapping defines a pro-
jection line mapping any point
on a lower LOD to a corre-
sponding point on the highest
LOD without constraints. (Bot-
tom) The simplification process
is not limited by chart bound-
aries, allowing a good sur-
face quality to be provided on
coarser LODs.

In the case of objects of arbitrary topology, i.e. with a genus
greater than 0, or objects with fairly extruded parts and having
shapes not similar to a sphere, the spherical parameterization
would be incompatible or would introduce too a large distor-
tion in the attribute mapping.

Another mesh parameterization that allows a more flexible set-
ting is polycube mapping [THCM04] (see Section 2.4.7.1),
which offers a better trade-off between providing a good at-
tribute mapping quality and, an unconstrained simplification.
The polycube map provides a seamless layout parameterizing
the triangular mesh over the set of square charts of a poly-
cube that allows the object to be simplified without parameter-
domain boundary constraints (see Figure 3.11).

Figure 3.11: A polycube do-
main allows mapping any point
on a lower LOD to a corre-
sponding point on the high-
est LOD. The polycube con-
figurable shape and topology
allows a flexible setting in or-
der to reduce mapping dis-
tortion, while limiting the sim-
plification process, which pro-
vides a good surface quality on
coarser LODs.

85

We explore the usage of the most suitable mesh parameterizations to define a spatial directory
data structure and avoid the aforementioned simplification limitations. In particular, we aim to
be able to sample complex attribute fields on the mesh structure or in texture atlases without re-
sampling them, and with efficient parallel query operations for real-time rendering. The method
is called Inverse Geometric Textures.

3.2 Inverse Geometric Textures

In this section, we introduce Inverse Geometric Textures (IGT)
a spatial data structure that allows preservation of surface
and shading details from a high resolution triangle mesh onto
lower resolution ones, generated with any given simplification
method, and without discontinuity or resampling constraints.
At the same time IGT allows efficient local parallel queries
of the original shading attributes from the high resolution tri-
angle mesh. For this, IGT decouples surface attributes by in-
troducing a so-called decoupling parameterization defined on
the reference triangle mesh to generate an inversely parame-
terized regular grid, also called the spatial directory, where
for each cell, a list stores all triangles that are mapped onto it.

In general, artists usually perform manual corrections on each
representation level, to ensure that consistent surface attributes
and texture maps are provided. In this way, the coarser at-
tribute values do not produce misplacements around the dis-
continuities, especially where the original mesh connectivity
has changed and shading artifacts may appear.

Figure 3.12: Sample models
with color attributes stored in
a texture atlas. The mapping
MT a is an artist parameteriza-
tion for attaching the shape and
shading attributes to the trian-
gle meshes.

Our proposed technique can be successfully used with a high resolution meshM with any shape
and shading attributes A, avoiding manual fixes and constraints on the simplification method.

As an example, the high resolution object can have surface attributes as with artist-provided
parameterized textures (see Figure 3.12), which are not modified or resampled, avoiding addi-
tional effort to directly use the original artist-designed content. We denote the mapping between
the mesh M and the attributes A in the parameter domain, as M MT a−−−→ A.

86 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

The proposed spatial data structure is based on the concepts
of multidimensional searching [Sam90]. In particular, it is re-
lated to the fixed grid range searching scheme [BF79], which
we adapt for real-time level-of-detail to achieve better spa-
tial data locality and more parallel-friendly query operations
on the shape and shading information. With that objective in
mind, we define the inverse mapping I (I =M−1).

Here we will define the parameter domains (P , T , and D)
and the composite of map operations (M, P and C) needed
to consistently define and evaluate IGT. Also, we describe its
construction process and query evaluation method.

We assume that a high resolution triangle mesh M with shad-
ing surface attributes A are provided. The triangle mesh is
defined by N triangles where shading attributes are attached
to the vertices.

Figure 3.13: Sample mod-
els M mapped by the mapping
step C to a parametric surface
P . Next, they are projected by
P to a parametric layout T di-
vided in regular cells.

3.2.1 Parameter domains and mappings:

(M C−→ P
P−→ T

M−→ D)
In this section we introduce the notation and describe the par-
ticular formulation that is relevant to the setting of IGT.

Given a triangle mesh M , the geometric coordinates of ver-
tices in R3 are denoted as vM . A simplified mesh version of
M is noted as Ms, and its respective geometric coordinates as
vMs .

The high resolution mesh M has attribute values vA in the
vertices, such as per-vertex shape and shading information, or
the texture coordinates of a mesh parameterization – called
MT a – in order to attach the surface with any information
stored in a texture atlasA, i.e. M MT a−−−→ A, as shown in Figure
3.12.

IGT requires the definition of a decoupling parameterization
D on the reference triangle mesh M to generate an inverse
parameterized directory grid texture D, where each grid cell
stores a list into a linear memory buffer L, with information
about all the triangles are that mapped onto it (see Section
3.2.3). The decoupling parameterization is composed of three
different mapping stepsD =M◦P◦M described in Sections
3.2.1.1, 3.2.1.2 and 3.2.1.3.

Figure 3.14: (Top) The points
vM of the original mesh M ,
and vMs of the simplified mesh
Ms are mapped by C to cor-
responding points vP and vPs

in a planar parametric surface.
(Middle) The two correspond-
ing points vPs (shown in red)
and vP (shown in blue) are pro-
jected by P into a same cell of
T . (Bottom) The triangles of P
that overlap a same cell of T
are mapped by M and stored
in localized list in L of a 2D spa-
tial directory D. This allows to
define the inverse map I.

87

3.2.1.1 The mapping C:
mesh parameterization (M C→ P)

The decoupling parameterization D should avoid the simplifi-
cation limiting issues appearing over M when aiming to pre-
serve both the surface and the shading properties.

For this reason, as a first step the mesh M should be mapped
into a suitable parameter surface P with a mapping step C. In
this way we can decouple the complex attribute signals from
the surface during the simplification, and then we are able to
map them back efficiently without resampling to any simpli-
fyied mesh Ms.

The mapping C (M C−→ P) should define a parametric sur-
face P as a one-to-one map from M . This map should have
a reduced number of chart discontinuities and should allow a
regular layout (see Section 3.2.1.2). Therefore, it can be any
of the most suitable mesh parameterizations we described in
the previous section (e.g. geometry image [GGH02a], spher-
ical image [PH03], cylindrical map [HSV05] or a polycube
map [THCM04]), as illustrated in Figure 3.13.

The parametric coordinates vP of the surface P are stored
along with the mesh structure M during the simplification
process to generate Ms. In this way, the simplified mesh
keeps the correspondence between a surface point with ge-
ometric coordinates vMs and the parametric coordinates vPs

(i.e. vMs
C−→ vPs), as shown in Figures 3.13 (Top), 3.15 (Top),

3.16 (Top), and 3.17 (Top.

In the case where the mapping C is defined with a seam-
less mesh parameterization method, built in parameter domain
with the same topology and with a shape similar to M , we can
avoid the simplification constraints while preserving other at-
tribute signals, and offer the best flexibility with IGT. Oth-
erwise, in the case where the mapping C is defined with a
mesh parameterization which introduce even simple and reg-
ular boundary discontinuities, they will have to be protected
during the simplification process.

Figure 3.15: (Top) The points
vM of the original mesh M ,
and vMs of the simplified mesh
Ms are mapped by C to corre-
sponding points vP and vPs in
a spherical parametric surface.
(Middle) The two correspond-
ing points vPs (shown in red)
and vP (shown in blue) are pro-
jected by P into a same cell of
T . (Bottom) The triangles of P
that overlap a same cell of T
are mapped by M and stored
in localized list in L of a 2D spa-
tial directory D. This allows the
inverse map I to be defined.

88 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

3.2.1.2 The mapping P:
parametric projection (P P→ T)

A crucial step of our proposed method is that, once we have
the simplified mesh Ms (and equivalently the simplified para-
metric surface Ps) by using the parametric coordinates vPs our
proposed solution should be able to map the original high res-
olution attributes vA and the texture atlas A onto Ms.
For this reason, the parametric surface P is embedded in a
parametric layout T overlappfing P with a set of regular cells
c, with the mapping P (P P−→ T). In this way, each cell is
overlapped by a subset of the parametric surface triangles (see
Figure 3.13 (Middle)).

In other words, the mappings M C−→ P
P−→ T define a coarse

lattice in parametric domain T , where each cell contains a lo-
cal description of the surface defined by the set of triangles
contained in the cell.

At this point we take advantage of the setting defined by the
parameterization C on the surface P , and its simplified counter
part Ps, to define the aforementioned mapping P . P defines
projection lines which allows each parametric point of the
simplified mesh vPs to be mapped onto a point vP of the orig-
inal parametric surface P . At the same time, both points are
mapped by P onto a same point vT on the same cell c of T
(see Figure 3.16).

Depending on the parametric layout of the parameterization
C, a different method may be required to define the projection
line of the mapping P .

For instance, in the case of using a geometry image as C, it
defines a rectangular chart in P with the triangles from M .
If the simplification respects the parameterization boundaries,
the rectangular parametric domain is still consistent in Ps from
Ms (see Figure 3.14 (Top)).

In this setting, in a next step, the mappingP can find the corre-
sponding point vP on P from the simplified mesh Ps, through
a perpendicular projection line starting in vPs from Ps through
P , as shown in Figure 3.14 (Middle).

Equivalently, in case of using a spherical, cylindrical or a poly-
cube mapping as C, we would use a spherical, cylindrical or a
polycube projection [THCM04] to define the respective pro-
jection lines from Ps to P (see Figures 3.15, 3.16, and 3.17).

Figure 3.16: (Top) The points
vM of the original mesh M ,
and vMs of the simplified mesh
Ms are mapped by C to cor-
responding points vP and vPs

in a cylindrical parametric sur-
face. (Middle) The two corre-
sponding points vPs (shown in
red) and vP (shown in blue) are
projected by P into a same cell
of T . (Bottom) The triangles of
P that overlap a same cell of T
are mapped by M and stored
in localized list in L of a 2D spa-
tial directory D. This allows the
inverse map I to be defined.

89

3.2.1.3 The mappingM:
domain unfolding (T M→ D)

Given that the shape and shading data of M is mapped on the
parametric surface P , and projected in a regular layout T , the
texture mapping operation can be used over a 3D voxelization,
to create a 3D spatial directory, capturing the information on
the cells of the parametric domain T , and storing it into local-
ized lists pointed by a grid-of-voxels structure.

However, since most of the voxels would be empty (except
in the 2D surface layer), this option is far too wasteful, so
we may decide to create a 2D spatial directory D to store the
parametric surface information from T .

As illustrated in Figure 3.14 (Middle), the projection line of
the mapping P maps both the point vPs and the corresponding
point vP onto the same cell c of T . This is an important feature
that allos us to define the 2-dimensional spatial directory D
with the cells of T , and to to provide the inverse map I (see
Section 3.2.4). This transformation is done with a mapping
M (i.e. T M−→ D), as described below.

Depending on the mesh parameterization used in the mapping
step C, a convenient mappingM should be used to unfold the
cell layout T in a 2D grid. For instance, a cylindrical or a
spherical map C requires a cylindrical or spherical projection,
as the mappingM to create the spatial directoryD in the plane
(see Figures 3.15 (Middle), 3.16 (Middle)).

In this way each point vPs is mapped into a point vD in a given
cell c of the spatial directory.

In the case of a polycube mapping C, it requires a small 3D
look-up table [THCM04] to map the cells of the polycube pa-
rameter domain T into the planar grid D, as shown in Figure
3.17 (Middle).

Each cell c of the spatial directory D contains a localized list
of parametric triangles stored in L.

Figure 3.17: (Top) The points
vM of the original mesh M ,
and vMs of the simplified mesh
Ms are mapped by C to corre-
sponding points vP and vPs in
a polycube parametric surface.
(Middle) The two correspond-
ing points vPs (shown in red)
and vP (shown in blue) are pro-
jected by P into a same cell of
T . (Bottom) The triangles of P
that overlap a same cell of T
are mapped by M and stored
in localized list in L of a 2D spa-
tial directory D. This allows to
define the inverse map I.

90 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Thanks to an inverse mapping I, for any valid decoupling coordinates vD in the spatial di-
rectory D, we can identify the point vM , and shading attributes vA (e.g. vertex color, texture
coordinates, etc.) of M , and can map them onto Ms, by an inverse mapping I.

In general, an important feature is that the mappingM should provide a uniform sampling dis-
tribution of T over D. Otherwise, ifM has a too large area distortion, some cells of the spatial
directory would correspond to larger regions of the parametric surface, while others would be
undersampled. In the end, this can harm the efficiency of the parallel queries evaluating the
inverse map (see Section 3.2.4).

In following sections we describe the data structures (D, L and A) that define the inverse map
I, how the map is constructed, and the querying process.

3.2.2 Data structures (D, L, A)
The proposed data structure defines the inverse map I to break the dependence between the
triangle mesh connectivity and the original shape and shading attributes. The inverse geometric
textures representation is encoded with this particular setting:

• The Directory Texture (D) is usually a small grid defining a spatial directory in a texture,
where each cell encodes the location of the corresponding list in the List Texture, together
with the length of the corresponding list, with 0 representing an empty list.

• The List Texture (L) is encoded into another texture, where each cell list is consecutively
stored. As the lists have variable-length, we simply concatenate all lists in the raster-scan
order of the 2-D spatial directory D (see Section 2.4.1), letting the 2D spatial directory
D contain pointers to the start of each cell list. Naturally, we also coalesce identical
lists to allow for sharing between cells. Each list record contains parametric coordinates
(vP1 , v

P
2 , v

P
3) for one triangle, and the pointer to other shading attributes stored in A.

• The Attribute Texture (A) stores the additional surface attribute information for each orig-
inal triangle (vertex color, artist-provided parameterization coordinates, etc).

The storage required by IGT is the storage of the spatial director (i.e. the texture grid D) plus
the locations of the list records L, and the compacted surface attributes in A. Usually, the size
cw× ch of the grid D is much smaller than the triangle count N from the original triangle mesh.
The total storage required by the data structures (D,L) for a given mesh M with N triangles,
is O(2N) 1.

The different texture sizes of D, L and A can be found for various examples in Table 3.1 of
Section 3.4, but the overall memory requirements for IGT are fairly small (ranging up to 4 MB
for the gargoyle model in Table 3.1.

1In our paper [GP08], we had a more complex linked data structure for the spatial directory. We simplified
the layout as described here to achieve a better balance between the query evaluation time and the data structure
memory consumption.

91

3.2.3 Constructing the inverse map I
The generation of the data structures (D,L,A) needed for IGT
is performed in an off-line pre-processing stage. This is done
by verifying every parametric triangle (vP1 , v

P
2 , v

P
3) over T ,

and generating a list record in a conservative manner, even
if the triangle slightly touches a cell c of T .

First, the triangles in M are mapped to T by M
C−→ P

P−→
T and are checked for intersection following the projection
coordinates vT , following the projection line of the mapping
P with the corresponding cell region c of T . Note that the
composite mapping C ◦ P is noted as T in Figure 3.18.

Next, each cell c of T is mapped to a grid location of the spatial
directory D with a mapping M (T M−→ D). The cell of the
spatial directory will point to the list with the information of
all the overlapped parametric triangles.

If the intersection between the parametric triangle and the cor-
responding cell c is not empty, then a new record is generated
and added to the respective list in L, with the parametric coor-
dinates of the triangle and a pointer to the additional attributes
stored in A (see Figure 3.18).

The cost of preprocessing N triangles in the 2D directory grid
space is O(2N). The whole process only takes from between
a few seconds to a couple of minutes even for the most so-
phisticated examples we have tried. However, note that there
is room of improvement in this preprocessing step, taking ad-
vantage of the efficient gather and scatter operations of the
lastest GPU architectures [Nvi11] to achieve a faster construc-
tion. However, our main objective is the parallel efficient in-
verse map I in the query evaluations as described in the next
section.

Figure 3.18: The construction
of the spatial directory D and
the lists L through the mapping
T (T = P ◦ C) andM.

92 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

3.2.4 Querying with the inverse map I:

(D I−→ P)
In order to have a parallel efficient query evaluation, the com-
posite mapping M ◦ P and the inverse mapping I = M−1

should be simple, efficient and parallel friendly.

In the mesh structure Ms, each vertex v, has the geometric
and parametric coordinates (vMs|vPs) attached. The transfor-
mation Ps

P−→ T
M−→ D should be efficient in order to query

the information from the high resolution mesh M with the in-
verse map I defined as localized queries inD and L (see these
mappings pseudocode in Listings 3.1, 3.3 and 3.4).

When rendering a low resolution model Ms, the triangles
are rasterized, generating a range of interpolated surface and
parametric coordinates (vMs|vPs) on the triangle surface frag-
ments. Next, a pixel shader takes the parametric coordinates
vPs and the composite mapping (vPs

P−→ vT
M−→ vD) is eval-

uated with the data structure (D,L). This allows querying in
real-time the cell c pointed by vD to check a small list of trian-
gles inL, and to find the corresponding parametric coordinates
vP , and as well as the attributes vA of the original mesh M as
shown in Figure 3.19.

The inverse map I (D I−→ P) is performed from the spatial
directory D, where given the projection line from the frag-
ment parametric coordinates vPs (defined by the mapping P)
it searches the intersection point vP in any of the triangles
in the corresponding localized list from L of the cell c. The
corresponding intersection point vP over the projection line is
found with a simple point-in-triangle method [LAM05] (see
the inverse mapping pseudocode in Listing 3.5).

Once the point vP is found, we can take its attribute coordi-
nates vA from A (see Listing 3.6) to compute the final inter-
polated shading values of the surface fragment as described in
Section 3.4.2.1.

Figure 3.19: The spatial direc-
tory D allows the inverse map
I to be performed and query
the information from the high
resolution mesh M . Given the
projection line from the para-
metric coordinates vPs defined
by the mapping P, we search
the intersection point vP in any
of the triangles in the corre-
sponding localized list from L
of the cell c.

93

Listing 3.1: Planar mappings P and M
(planar unfolding)

1 // Mapping Ps --\mathcal{P}--> T:
2 v_T = v_Ps;
3 // Mapping T --\mathcal{M}--> D:
4 v_D.x = v_T.x;
5 v_D.y = v_T.y;
6 cell_D = texture2D(D, v_D.xy);

Listing 3.2: Cylindrical mappings P and
M with latitude unfolding

1 // Mapping Ps --\mathcal{P}--> T:
2 v_T = v_Ps;
3 // Mapping T --\mathcal{M}--> D:
4 v_D.x = atan2(v_T.y,v_T.x)/PI;
5 v_D.y = v_T.z;
6 cell_D = texture2D(D, v_D.xy);

Listing 3.3: Spherical mappings P andM with octahedron unfolding

1 // Mapping Ps --\mathcal{P}--> T:
2 // Project onto octahedron
3 v_T /= dot(vec3(1.0,1.0,1.0), abs(v_Ps));
4 // Mapping T --\mathcal{M}--> D:
5 // unfolding of the downward faces
6 if (v_T.z < 0.0f)
7 {
8 v_D.xy = (1-abs(v_T.yx))*sign(v_T.xy);
9 }

10 // Mapping to [0;1]ˆ2 texture space of D
11 v_D.xy = v_D.xy * 0.5 + 0.5;
12 cell_D = texture2D(D, v_D.xy);

Listing 3.4: Polycube mappings P andM

1 //--
2 // Mapping Ps --\mathcal{P}--> T:
3 //--
4 // Compute projection line \mathcal{P} depending on the polycube rotation and configuration
5 // Find 3D index of cubic cell
6 v_LUT = floor(v_Ps);
7 // Serialize the 3D index into a 2D index
8 // (the 3D lookup table is stored in a subpart of the 2D texture)
9 v_LUT.x = dot(v_LUT, vec3(1.0, 0.0, 16.0));

10 // Texture access to the 3D lookup table required for the mapping \mathcal{M}
11 v_LUT = v_LUT + vec3(0.5, 0.5, 0.0);
12 v_LUT = v_LUT * text_coord_normalizer + vec3(0.0, 0.0, 0.0);
13 v_T = texture2D(pcmTexture, v_LUT.xy);
14 // The rotation is stored in 1..5 bits of map.z
15 int rot = int(fmod(v_T.z * 255.0, 32.0)); // 31
16 // Configuration is stored in bits 6,7,8 of map.z)
17 int configBits = int(v_T.z * 255.0 / 32.0); //6
18 vec3 a, s, aOut, sOut;
19 // Get cube integer coordinates
20 vec4 cube_icoords = floor(v_Ps);
21 decodeFrom(rot, a, s);
22 P.xyz = apply(v_Ps_norm.xyz, a, s);
23 P.xyz = field(P.xyz, configBits);
24 P.xyz = antiRotateVectorBitWise(P.xyz, rot);
25 P.xyz = ((configBits&1) && !(configBits&2) && !(configBits&4)) ?
26 vec3(-P.x, -P.y, -P.z) : P.xyz;
27 //--
28 // Mapping T --\mathcal{M}--> D:
29 //--
30 vec4 v_D;
31 // Get the normalized [0..1)ˆ3 of the fragment coordinates inside each cube
32 vec4 v_Ps_norm = fract(v_Ps);
33 // Compute the coordinates from the projection linne onto the spatial directory D
34 v_D.xyz = subTextCoord2d(v_P_norm.xyz, rot, configBits);
35 v_D = v_D * text_coord_normalizer_on_TS_0 + text_coord_normalizer_on_TS_1;
36 v_D = v_T * text_coord_normalizer_on_TS_times_255 + v_D;
37 cell_D = texture2D(D, v_D.xy);

94 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Listing 3.5: Inverse mapping I

1 //--
2 // Inverse mapping \mathcal{I} through the spatial directory (D,L)
3 // D --\mathcal{I}--> T (\mathcal{I} = \mathcal{M}ˆ{-1})
4 //--
5 cellListSize = cell_D.w;
6 texelSector = round(cell_D.z);
7 texelSectorUV.x = round(texelSector/16.0)
8 texelSectorUV.y = round(fmod(texelSector, 16.0));
9 cellListUV = (round(cellListInfo.xy) + round(texelSectorUV.xy * 256.0)) *

cellsListsAtlasSize.zz;
10 for (iPolygon = 0; iPolygon < cellListSize; iPolygon++)
11 {
12 step = iPolygon*cellsListsAtlasSize.z;
13 polygon = texture2D(L, vec2(cellListUV.x+step, cellListUV.y), 0.0);
14 v_P0 = unpack(polygon.x);
15 v_P1 = unpack(polygon.y);
16 v_P2 = unpack(polygon.z);
17 inside = intersect_triangle(v_Ps, P, v_P0.xyz, v_P1.xyz, v_P2.xyz, t, u, v);
18 if (inside > 0.5) { break; }
19 }

Listing 3.6: Fetching attributes from A

1 // Get the attribute values from A
2 int attributeCoord = polygon.z;
3 v_A0 = texture2D(A, convert2DCoords(attributeCoord));
4 v_A1 = texture2D(A, convert2DCoords(attributeCoord + 1));
5 v_A2 = texture2D(A, convert2DCoords(attributeCoord + 2));

3.3 Applications

Some applications benefit by decoupling surface attributes from the simplification process, re-
ducing the work to be done by developers once the modeler has delivered a high resolution
triangle mesh M . Information is associated to a reference mesh at three different levels: at the
triangle level, as with per-face constant colors; at the vertex level, as with per-vertex normals or
ambient occlusion factors; and at the texture map level.

In Figure 3.20, we can see the Aikobot Robot model, which is an artist-created model provided
with a multi-charts parameterizationMT a. In this model, there are lots of color and texture dis-
continuities, which pose a serious problem to simplification methods trying to preserve surface
attributes.

95

Figure 3.20: (Left) An artist-created model fully rendered and in
wireframe (197150 triangles, 62 FPS). (Middle) The strongly sim-
plified model (35834 triangles -82% reduction-, 165 FPS) rendered
with our technique. (Right) Notice that in the inset, despite drastic
simplification, the global appearance is maintained from the original
model (Top) to the simplified one (Bottom).

3.3.1 Vertex colors
As mentioned in Section 3.1, simplification methods without
attribute preservation tend to mix colors at the boundaries of
triangles with different solid colors. On the other hand, some
attribute-preserving methods modify the shape of the bound-
ary when simplifying the edges connectivity around it. In-
stead, IGT preserves sharp solid boundaries between colors or
texture borders.

Figure 3.21: The color attributes on the Aikobot body armor defines
complex color boundaries.

Figure 3.22: Solid color
preservation: the Aikobot body
armor model has artist-painted
colors directly at the vertex
level. With traditional meth-
ods, either the colors or the
mesh quality suffer, while IGT
allows their preservation (738
triangles, 650 FPS).

For example, in Figure 3.22 we can see a comparison of some simplification methods used with
and without IGT. In this case, a simple cylindrical parameterization was used as the mapping
step C, and we kept the original per-vertex colors assigned by the artist in the texture buffer A.

In Figure 3.22 the effects of using a simplification method [Hop96] with the attribute preser-
vation disabled can be clearly seen. Also, another example of a method that performs the
attribute-preserving simplification can be seen [Hop99]. In the first case coloring detail is al-
most destroyed, while in the second it is preserved, but with a much lower geometric quality.

However, when a traditional simplification method like [GH97] is used in combination with
IGT, the best of both worlds are achieved: a good geometric quality with correctly preserved
per-vertex colors without constraints.

96 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

3.3.2 Volumetric and procedural texturing
Volumetric functions [KK89] are usually point-wise evaluated on the surface of the reference
model M . For lower resolution models Ms the simplified triangles span a different region of
the texture volume, producing noticeable changes in appearance. One solution for consistently
applying a volumetric texture onto Ms is to resample it for M , transfer that information to
a texture and use it for the successive LODs [CH02b]. However, IGT solves this problem,
directly using the attributes from the reference model M to procedurally texture all the coarser
levels (see Figure 3.23).

Figure 3.23: IGT correctly preserves the shape and appearance of solid textures, while direct application
of the texture onto different LODs leads to non-preserving texturing (304 triangles, 535 FPS).

3.3.3 Texture mapping
As mentioned, one of the key points of IGT is its ability to decouple surface attributes and
parameterized textures from simplification. As an example, in Figure 3.24, the head of the
Aikobot Robot model was independently parameterized and textured for each submesh using a
multi-chart method as the artist-provided parameterizationMT a. Simplification of the model
with traditional techniques results either in mixed textures or lower quality meshes due to the
complex chart discontinuities to be preserved.

With IGT, we provide a decoupling parameterization (M◦P ◦C) that allows the simplification
of a model by any desired method. In the Figure 3.24, the helmet was parameterized with
a spherical parameterization and the head with a cylindrical one, in the mapping step C. As
can be seen, the combination of those seamless parameterizations with geometric simplification
methods leads to a simplified model with a high quality mesh and with correctly preserved
textures (see a further example in Figure 3.26).

97

Figure 3.24: IGT decouples texturing and simplification, allowing simplification of a textured model
(left column) with the most convenient method. Polygon Cruncher (second column) cannot simplify the
helmet to more than 2780 triangles when excluding the attributes boundary edges, while IGT allows
simplification to coarser levels (202 triangles, 450 FPS) and provides better geometric and attributes
preservation. In the insets, a rear view of head details can be observed for each case.

Figure 3.25: (Left) Example showing a plane model simplified [Moo02] preserving the boundaries of
the original parameterization in the left. (Right) simplification with [Moo02] only requires the introduced
geometry image mapping C to be preserved as shown in two coarser LODs. The last two show similar
attribute preservation quality and better geometric preservation.

98 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Figure 3.26: Tiling over a texture domain with IGT. From left to right, the original model (131072 trian-
gles), the model simplified with Polygon Cruncher (only up to 15738 triangles), and the model simplified
with a progressive mesh [Hop96] method (3280 triangles) combined with IGT.

3.3.4 Texture transfer
In applications that do not require dynamically changing the LOD, a resample of surface at-
tributes is performed to map the fine surface details and shading attributes to a simplified mesh
Ms by simple projection (e.g., based on coarse mesh normals [TCS03]). IGT provides access to
the original reference model information A through the inverse parameterization I, to directly
resample the information into the planar gridD. This can help avoiding resampling ambiguities
that may result in concave objects with normal-based methods.
Our texture transfer method is used to create a low resolution resampled texture of the original
shape and shading information from M , to be used in the coarsest level-of-detail in the shader
LOD strategy described in Section 3.4.2.2.

3.4 Results

In Table 3.1, results for different combinations of input models and parameterizations are pre-
sented. In particular, we have implemented the mapping step C with combinations of cylindrical
[HSV05] and spherical mappings [PH03], Least Squares Conformal Maps (LSCM) multi-charts
[LPRM02], Angle Based Flattening (ABF++) multi-charts [SLMB05], Polycube-maps (PCM)
[THCM04], and Geometry Images (GI) [GGH02b].

From this table, we can see that the storage needs of IGT are small, almost always requiring
less than a medium-resolution 10242 normal map (RGBA8 encoded, 4 MB).

99

3.4.1 Geometric & attributes preservation
with IGT: experimental evaluation

As mentioned in Section 3.2.1.1, the coordinates vP gener-
ated with mapping C are stored in M , and processed along the
geometric simplification process, where we have successfully
applied a spherical mapping to the Aikobot helmet, a cylin-
drical mapping to both the Aikobot body armor and the head,
and a geometry image for the Aikobot body, as seen in Figures
3.24 and 3.22.

In the case of mappping C for helmet, head and body armor,
they are defined by seamless mesh parameterizations, hence
simplification algorithms such as [GH97] which can be gener-
ally applied without requiring any attribute preservation con-
straint.

For the rest of the Aikobot body, the simplification method
used [Moo02] was forced to preserve the charts boundaries of
the parametric surface P during the process.

In general, different parameterizations have different behav-
iors when simplified, not only restricting the kind of simplifi-
cation method to choose, but also the quality of the resulting
mesh, as shown in Figure 3.27.

The only requirement imposed on the combination parameter-
ization / simplification algorithm is that the latter should pre-
serve, if present, the chart boundaries of the parameterization
at all LODs.

Multi-chart parameterizations, which are most commonly
used by artists, produce seams, so they require specific con-
strained simplification algorithms to preserve those seams.
Therefore, the model cannot be simplified with good quality,
as the simplification algorithm (e.g. Polygon Cruncher) must
preserve the seams to avoid texture artifacts (see Figure 3.27
(a) where the algorithm cannot simplify the model further than
15440 polygons).

In Figure 3.27 (b), it shows what happens when the texture is
transferred to an Iso-charts parameterization [ZSGS04]: sim-
plification quality is good as long as few charts are used, but
significant texture distortion and blurring is observed in the
close views, compared to the original texture used in Figure
3.27 (a).

But, when IGT is used to query the original artist param-
eterized textures, with Iso-charts [ZSGS04] as mapping C
to fetch the original texture atlas parameterized with LSCM
[LPRM02] (as shown in Figure 3.27 (c)), we can see almost
perfect attribute preservation for medium quality models and a
significant improvement for extremely simplified ones, though
the geometric quality is still constrained as can be seen n the
armadillo hands and fingers.

Figure 3.27: Sensitivity of IGT
to different decoupling parame-
terizations.

100 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Finally, Figure 3.27 (d) shows a much better combination: IGT with artist parameterization
(LSCM), and Polycubes (PCM) in mapping step C. Then the model can be simplified even
with an unconstrained method such as the seminal QEM approach [GH97], providing excel-
lent results in both attributes preservation and geometric quality (as shown with the Hausdorff
distances).

All these comments apply even for a complex model, where IGT would provide LODs with
correctly preserved high resolution details in a completely automatic manner, without requiring
a manual fine-tuning step.

There is one important aspect of our technique that must be mentioned: although IGT is inde-
pendent from both the type of shape and shading attributes and the simplification method used,
it must be clear that simplification methods are not parameterization-independent.

IGT can be successfully combined using those ones in the mapping step C, providing almost
perfect attribute preservation and a significant improvement even for extremely simplified mod-
els.

We can conclude that the best combination with IGT is using a seamless parameterization, such
as spherical, cylindrical or polycube-maps, which tolerate most simplification methods basically
because the texture coordinates can be calculated from the original vertex coordinates for any
LOD, without requiring a manual fine-tuning step (See Figure 3.27, lower row).

3.4.2 Query evaluation
Here we describe the different properties of the query operation performed through the inverse
map I, showing their evaluation cost.

3.4.2.1 Filtering

IGT performs a shader evaluated filtering over the spatial di-
rectory, retrieving the nearest samples (5 in our case) from the
corresponding cells, and then blending them (see Figure 3.28).
As suggested by [LH06b], [NH08] and [THCM04], our find-
ings produced the same shader filtering performance factors:
about x3.9 when using 4 samples per pixel.

In the presence of an attribute texture atlas, the MIP-map level
selection is defined by the approximate derivative functions
(dFdx and dFdy in a GLSL pixel shader) of the fragment at-
tribute texture coordinates vA, once queried by the inverse
map, to map the values with hardware filtering.

Figure 3.28: Shader evalu-
ated filtering of the per-vertex
attribute information queried
from the high-resolution mesh
M (e.g. vertex colors).

However, when an object is viewed at a far distance from the screen, many of the cells of
the spatial directory are mapped into individual screen pixels, and the filtering breaks down,
because noise can be produced if, arbitrarily, one or other of the many cells located in a same
pixel get evaluated in very fast distant views of an object. In such cases, for distant views one
must instead transition to a conventional texture with a MIP-map pyramid (without the spatial
directory query evaluation) as we describe in Section 3.4.2.2.

101

3.4.2.2 Shader LOD

IGT shader evaluation should be used from close to medium-range distances, as its evaluation
is more complex than a standard texture map operation. We have implemented a shader LOD
technique to switch to a simpler shader as soon as the evaluation of most fine detail samples can
be neglected.

When the observer cannot distinguish one another, the shader LOD, using predefined range dis-
tances, swaps to the simpler shader that only fetches the surface attributes from a precomputed
resampled texture, as described in Section 3.3.4. In this way, the MIP-maps of this texture can
then be used for further distances, resulting in a smooth minification of the attributes without
noise.

3.4.2.3 Shader performance

It is important to mention the influence of the spatial grid size in the requirements and perfor-
mance of IGT. As expected, the lists of the cells will get shorter on average, as the spatial grid
increases resolution, but at the expense of an increased memory cost.

For the examples shown in Table 3.1 the average list length is short (4 triangles). However, this
can vary for an irregular triangle density.

For instance, in certain cells the list length has a lower bound, as any cell that covers a vertex
shared by, for instance, 6 triangles will have (at least) a length of 6 entries.

In analyzing the search evaluation cost there are two costs to take into account the accesses toD,
and the inclusion tests, which test if the parametric coordinates vPs satisfy the query matching
the original surface point vP .

At most, each surface fragment performs a single query in a cell, requiring one memory access,
and an average of between 3and5 memory accesses in L to find the match (see Figure 3.29).
Finally one additional memory access is required to get the attribute information from A.

Nevertheless, the histograms displayed in Figure 3.29 (Middle) show the correlation of the per-
formance improvement achieved when larger spatial directories are used, because the cell list
lengths became shorter and it translates to better query performance illustrated in the perfor-
mance plot measured in frames-per-second (FPS).

In general, we can observe that our query evaluation performance is bound by the cost and
number of memory accesses needed to obtain the original attribute samples from M .

102 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

Figure 3.29: (Top) The Aikobot high resolution model on the left, and the heatmap visualization of the
spatial directory list lenght on each surface cell (grids size 256 × 256). (Bottom) There is a trade-off
between the shader performance evaluation and the memory footprint of the spatial directory, because
the larger the spatial directories are, the shorter the cells list, providing a faster shader evaluation.

103

3.4.2.4 Level-of-detail experimental evaluation

We can get information of the overhead incurred when using
IGT by doing a comparison between models simplified and
rendered with different techniques to achieve a given fixed
frame-rate, as shown in Figure 3.30 where all methods pro-
duce a similar visual quality without geometry or visual arti-
facts, from each observer distance.

In this comparison, we evaluate the performance of IGT with
respect to rendering the model M simplified with different
LOD techniques [Moo02, GH97, TCS03]. The renderings
are made at 1024 × 768, on a Quad Core Pentium IV with
a GeForce 8800 card.

In all the view distances shown in Figure 3.30, we analyzed the
performance overhead of the shader query evaluation on IGT
by selecting (with an orange box) the LOD changes when the
replacement between LODs. In all the compared techniques,
LOD changes are selected when they produce the smallest the
visual difference (i.e. also known as Late Switching [GW07]),
and using the IGT LOD polygon count to match a fixed frame
rate.

It is important to mention that the better geometry and attribute
preservation with IGT allows LOD replacements to be done
earlier than with other techniques, providing better visual fi-
delity.

In general, better replacement strategies should be used
[GW07] to avoid the popping effect when switching between
discrete LOD, or alternatively CLOD techniques can be used
as permitted with IGT over irregular triangle meshes, or with
our new the representation regular representation described in
chapter 4.

In Figure 3.30 (Bottom), it can also be observed that the mem-
ory footprint overhead introduced by IGT to store the paramet-
ric coordinates vPs in the LODs (Ms) and the data structures
(D,L,A) (as shown in Table 3.1), is small compared to the
other techniques ([LODs Ms] 4.3MB + [D,L,A] 0.81MB =
5.1MB).

This reinforces the idea that IGT can present low overhead
models much earlier than other techniques, as with the normal
projection [TCS03] shown on the right in Figure 3.30), which
requires a different texture map for each LOD.

As a model covers less and less pixels, less pixel shaders are
needed, the overhead of IGT is reduced smoothly.

Figure 3.30: Experimental
evaluation of the perfor-
mance overhead and the
memory footprint required by
IGT compared to two other
LOD techniques: [Moo02]
(excluding boundaries from
simplification), and [GH97] +
[TCS03]. The polygon count
of IGT LODs was adjusted to
match the frame rate of the
compared metrics showing we
can provide similar visual qual-
ity even with lower resolution
geometries.

104 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

In another experiment, shown in Figure 3.31 we do a performance comparison between the
different LOD techniques without constraining to a fixed frame rate. We can observe a smoothly
improved speed for IGT, which can be inferred from the slope in the curves that allows early
switching the given LODs with IGT in Figure 3.31.

Traditional simplification techniques, which produce models without requiring special shaders,
need to process a constant number of triangles for longer distance intervals to avoid the shape
and shading artifacts on the LODs, making the performance curves quite flat.

Dist. [GH97] + IGT [Mootools02] [GH97] + [TH03]

10.5 76 LOD3 46 LOD1 46 LOD1

26.5 100 LOD5 43 LOD2 48 LOD3

50.5 143 LOD6 32 LOD2 58 LOD4

139.9 304 LOD6 (*) 36 LOD3 292 LOD5

264.1 343 LOD6 (*) 44 LOD3 344 LOD6

0

50

100

150

200

250

300

350

400

1 2 3 4 5

[GH97] + IGT [Mootools02] [GH97] + [TH03]
(*) Shader LOD falling back to low-res texture map.

Figure 3.31: Framerates of IGT when compared with two other traditional discrete LOD methods
[Moo02] (excluding boundaries from simplification), and [GH97] + [TCS03].

Polyg. count IGT param. Artist param. Dir. tex. Lists tex. Attrib. tex. Mem.
Models (triangles) (C) (MT a) (D / RGBA8) (L / RGBA32) (A / LA16) (MB)

Armadillo 30000 PCM LSCM 128x128 512x256 512x256 3.06
Gargoyle 131072 GI LSCM 128x128 512x256 512x512 4.06

SpaceShip 15338 ABF++ LSCM 64x64 256x256 256x128 1.26
Laurana 10000 PCM Procedural Tex. 128x128 512x256 512x128 2.43
Bunny 15000 PCM LSCM 128x128 256x256 256x256 1.56

Aikobot Armor 7798 Cylindrical —– 128x128 128x128 128x128 0.43
Aikobot Helmet 6628 Spherical LSCM 128x128 256x128 256x128 0.81

Aikobot Face 39204 Cylindrical LSCM 128x128 512x256 512x256 3.06
Aikobot Body 49858 LSCM LSCM 256x256 512x320 256x480 3.68

Table 3.1: Memory usage information for various examples. Here, the acronym meanings are: LSCM:
Least Squares Conformal Maps, PCM: Polycube-maps, ABF++: Angle Based Flattening, GI: Geometry
Images, RBGA8: a standard 4-byte/texel format, RBGA32: four channels 16-byte/texel format, LA16:
two channels 4-byte/texel format,

105

3.5 Discussion and limitations

In this section we provide a brief discussion of the possibilities and the limitations of IGT.

3.5.1 Sparse and inconsistent topological geometries
The proposed data structure (D, L, A) is defined by the decoupling parameterizationD in order
to break the dependence between the triangle mesh connectivity and the original shape and
shading attributes.

Furthermore, an important feature is that the mapping M allows a uniform unfolding to be
distributed across the spatial grid D in T2 for almost any 2-manifold mesh M . In this way, most
of the cell locations of the grid will be addressing local attributes descriptions.

However, in the case of a very sparse or topologically inconsistent triangle mesh M , with shape
and shading attributes, they cannot be mapped by a mesh parameterization C into a suitable
parametric surface P for our needs.

Another solution would be to define a hashing compacted grid directory D, where a sparse set
of cells would replace the parameter domain P in a packed hash table as proposed in Chapter 5.

3.5.2 Bijectivity limitations in the mappings C and P
IGT can present a problem when applied to non-bijectively parameterized objects either in the
mapping steps C or in some particular cases produced by the simplification process. A drawback
of our technique is that we do not strictly enforce the bijection between the original mesh M
and any simplified mesh Ms generated with any given simplification method.

In the mapping step P , when more than one triangle cover the same point vP in the parametric
surface P , IGT can only resolve the ambiguity with a heuristic –like taking the closest point–
as shown in Figure 3.32.

Figure 3.32: The bunny model parameterized to a spherical parametric surface P . (Top) Close view of
a region of the spherical surface with a set of red triangles which fold over other ones, not allowing a
bijective mapping in the projection line of the mapping P. (Bottom) Increasing the iterative steps of the
spherical mapping C foldovers are avoided and a bijective 1-to-1 map is provided with the mapping P.

106 CHAPTER 3. DETAIL MAPPING AND SIMPLIFICATION

3.5.3 Animation compatibility
It is also worthwhile mentioning that IGT does not affect animation of the model, and can even
be used to improve it. The LOD being visualized can be animated with any technique, and as
IGT works entirely in the parameter domain, this means that animation would work seamlessly
as long as the decoupling parameterization D is not modified by the process. IGT can even
prove beneficial in cases where the use of traditional simplification techniques results in a LOD
with insufficient triangles in joints with large stretching.

Figure 3.33: The armadillo model with skeletal animation. The closets show the attribute preservation
in a LOD Ms with 974 triangles.

3.6 Conclusions

We have presented a new level-of-detail method called Inverse Geometric Textures, which al-
lows better geometric and attribute preservation and provides a real-time mapping and evalua-
tion over simplified triangle meshes.

IGT provides an inverse mapping in parametric space which can be used to apply information
generated for a reference model onto any simplified version with DLOD or CLOD techniques.

IGT makes use of a composite mapping for simplification purposes that is independent of the
attributes provided by the artist. This way, attributes and simplification are decoupled from each
other. The best results are obtained in combination with seamless parameterizations.

For example a cylindrical, spherical, or polycube map can be used in the mapping step C, which
allows the user to choose any simplification method. Being parameterization-independent, IGT
is compatible with both MIP-mapping and filtering techniques in the texture altas attributes.
IGT does not provide filtering by itself, but it enables the combination of the advantages of
different parameterizations in a way that was impossible before without a great deal of work
(e.g. by transferring the texturing information to a texture).

This work opens three main areas of research. Adding geometric detail such as in Porumbescu
et al. [PBFJ05] seems a logical next step, as it would allow addition of detail to the reference
model, not only the simplified versions. Also, allowing animation in the triangles of the refer-
ence model stored in the parameter domain to be mapped on the lower quality models would
permit introduction of interesting effects, such as approximate facial animation.

Finally, geometry compression techniques that would allow even higher resolution models to
be used with IGT should be studied.

Chapter4
Editable mapping and subdivision surfaces

Shape representations require simplicity and regularity on the mesh structure for many
computer graphics applications. This chapter presents a framework with sketch-based ed-
itable mapping operations to map complex shapes onto high quality cube-based parametric
domains. The provided representation is specially useful for hardware parallel tessellation
with subdivision surfaces, displacement mapping and other modeling applications.

Many digitally captured and modeled objects generate sur-
faces defined by dense and irregular triangle meshes

(see Figure 4.1). At the same time, many applications require
a shape data structure with better simplicity, regularity, and a
compact, yet flexible, mesh representation. The main reason
for this is that artist modelers and animators prefer to work
over cleaner and higher level abstractions of a given surface,
rather than with irregular dense triangle meshes, in order to
ease their modeling operations.

In the previous chapter we focused on decoupling shape and
shading attributes from complex irregular triangle meshes, in
order to allow level-of-detail simplification methods.

In this chapter we aim to provide a new spatial data structure
and a user friendly bijective parameterization to convert irreg-
ular triangle meshes into simpler quad-based representations.
This setting allows a hardware-friendly LOD with subdivision
surfaces with displacement mapping, and a set of modeling
applications.

Figure 4.1: Faces of two cha-
racters modeled with triangle
meshes. The mesh structu-
re connectivities are dense, ir-
regular and incompatible be-
tween the two.

107

108 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

For instance, in the digital content creation process, model-
ing artists often would like to have shape transfer operations
between different models. For this, they require user-friendly
operations to map the shape and shading information into an
intermediate parameter domain, from where they would be
able to transfer this information to new models at convenience.

As an example, in character modeling, an artist may want to
transfer the shape information from one character face onto
another one, blending them to create variations of the two (see
Figure 4.2).

Figure 4.2: (Left) / (Right):
Two face models, and (Top) /
(Bottom): two shape blended
combinations generated from
the other two.

Also, it is a well known fact that most artists prefer model-
ing with quads, as quad geometry provides a better flow, tes-
sellates cleaner and deformations under animation are notice-
ably smoother, especially around joints [Oli06]. Therefore,
any available model defined by an irregular triangle mesh, is
required to be converted to a regular- or semi-regular quad-
based mesh structure, in order to be integrated in the artists
modeling pipeline (see Figure 4.5).

Surface parameterization and remeshing are used to transfer
the shape and shading details of a given irregular mesh struc-
ture to a suitable parameter domain. The parameter domain
should allow a flexible configuration to achieve a high quality
surface mapping with respect to the input shape complexity
and topology; i.e. avoiding to introduce surface discontinu-
ities from cutting the mesh to map the surface into a para-
metric domain or losing shape detail (see Section 2.4.7.1 of
Chapter 2).

Figure 4.3: Faces of two
characters modeled with con-
verted to semi-regular quad-
based mesh structures.

The only way to avoid discontinuities is to choose a parameter domain that has both the same
topology as the given input mesh and a similar shape. As an example, while any genus-0 shape
is homeomorphic to a sphere parameter domain, the mapping will only show low distortion if
the input surface has a quasi-spherical shape.

109

The natural idea is to extend the paramenter domain to more
general shapes, such as a polycube (see Figure 4.4). A poly-
cube is a natural generalization of a cubical space, which can
be easily modeleted to resamble the basic shape of any arbi-
trary genus object. Therefore, the polycube proves to be a
useful flexible parametric domain to ease the forementioned
modeling operations, from irregular input models by creating
a regular map of the input spatial data.

Tarini et al. [THCM04] pioneered the concept of polycube
maps as a technique to parameterize 3D shapes to the poly-
cube domain, useful as the parametric domain of shapes with
complicated topology and geometry.

Figure 4.4: (Left) Quasi-sphe-
rical objects can be easily map-
ped to a sphere. (Right) More
complex shapes can be more
easily mapped to a configu-
rable polycube parameter do-
main.

An interesting strategy to follow, would be to map the shape
information from a given model onto a polycube domain with
simple and user-friendly sketch-based operations, giving the
artists a simple way to control the mapping of the shape fea-
tures (see Figure 4.5).

In this chapter, we pursue this objective with a surface param-
eterization and a remeshing strategy (see Section 4.2), where a
consistent parameterized mapping allows to transfer not only
the shape and shading details, but deformations and even ani-
mation properties of the models (see Section 4.3).

Figure 4.5: A sketch-based in-
terface can provide control to
modelers to create a mesh pa-
rameterization for modeling ap-
plications.

Mesh parameterization for surface remeshing plays an im-
portant role to find a bijective mapping (see Section 2.4.7.1
of Chapter 2) between the input surface, with an irregular
triangle-based structure, and a regular parametric domain (e.g.
the polycube).

We aim to remesh the irregular mesh structure, converting
the input mesh to a semi-regular one while enforcing bijec-
tivity. Otherwise, with a non-bijective mapping process we
could lose shape information and create discontinuities in the
mapping.

The research challenge is to build a globally smooth pa-
rameterization, easily controllable by the user, to generate
a new mesh structure with well-shaped elements, a low
number of irregular vertices, and an efficient parametric
representation.

Figure 4.6: Polycube map-
ping and remeshing converts
an irregular triangle mesh into
a semi-regular quad-based
coarse mesh and a set of
regular charts stored in a
texture atlas.

110 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

The definition of the polycube parametric domain has two
main objectives. On one hand, it should skip the original ir-
regular structure complexity by separating the base shape of
the object into a compact structure called control mesh, de-
fined by a regular and simple polycube structure. On the other,
the mapping should allow to parameterize the fine shape and
shading details –guided by user sketches– onto the polycube
quadrilateral faces and stored onto an image grid, as shown in
Figure 4.6.

Figure 4.7: Semi-regular
quad-based LODs rendered
with subdivision and displace-
ment mapping.

This specialized setting will provide a spatial data structure
for efficient hardware-friendly level-of-detail (see Figure 4.7),
using tessellation techniques such as subdivision surfaces (see
Section 4.3.1).

Compared to other global surface parameterization tech-
niques, a polycube map has two unique features that make
them promising for the mentioned graphics applications:
First, the parametric domain has a regular structure that natu-
rally supports quadrangulation, and can be easily constructed,
edited and visualized. Second, the singularities (polycube cor-
ners) have fixed structures, i.e. a valence 3, 5 or 6 (see Section
2.1.3.4 of Chapter 2). The reduced number of possible singu-
larities results in a small number of topological combinations,
which is important for modern tessellation hardware (see Sec-
tion 2.3 of Chapter 2).

Figure 4.8: (Top) Sketching
relevant features of two in-
put models to be mapped on
shared polycube domain al-
lows to perform shape blending
operations to create new mod-
els with shape details from the
two (Bottom).

4.1 Context: mesh parameterization and
subdivision surfaces

In this section we review related works on polycube maps, surface quadrangulation, subdivision
surfaces (compatible with hardware tessellation), and cross-parameterization, which provide
links closely related with the proposed solution.

4.1.1 Polycube mapping
Constructing a polycube map is a challenging work. From the users’ point of view, an ideal
polycube mapping algorithm should have at least the following features:

• Quality: the map is a bijection with low angle and area distortion.

• User control: the user can easily control the mapping by specifying optional features on
the 3D model and their desired locations on the polycube domain.

• Re-use: the user can easily modify the polycube maps and reuse resources from existing
polycube maps.

• Performance: the algorithm is efficient and robust, and it is automatic with the possibility
of adding editable user-specified constraints to control the map.

4.1. CONTEXT: MESH PARAMETERIZATION AND SUBDIVISION SURFACES 111

Table 4.1: Comparison of polycube map construction methods. Symbols: good, G# fair, # poor.

Features [THCM04] [WHL+07] [WJH+08] [LJFW08] [HWFQ09] Our
Map quality G# G#

Bijection #
User control # # G# # #

Editing # # # # #
PC construction # # # #

Automatic # #
Large models # # # G#

General topology # # # # G# G#

There are several approaches to construct a polycube mapping [THCM04, WHL+07, WJH+08,
LJFW08, HWFQ09]. Unfortunately, none of them has all the desired features (see Table
4.1). For instance, Tarini et al. [THCM04] does not guarantee a bijection, while others
[WHL+07, LJFW08, HWFQ09] do not allow user control. Wang et al. [WJH+08] requires
a large amount of user interaction to specify the polycube structure on the 3D model and is not
suitable for large-scale models with complicated geometry and topology. More importantly,
none of them allow the users to edit the polycube map in an easy and intuitive fashion. In
general, current tools for editing in planar parametric domains can be awkward to use; and on
the other hand, editing on a polycube, which more closely resembles the gross structure of the
model, could indeed be simpler, especially when the user is allowed to control the rough shape
of the mapping.

Tarini et al. [THCM04] pioneered the concept of polycube maps. They designed six projection
functions that map the points inside a cell of the dual space to the polycube surface. However,
their method does not produce a bijective mapping since two vertices on the same projection
line share the same image, which is a fundamental feature for a large range of applications.
Furthermore, their method has strict requirements on the shape of the polycube, like that the
dual space should completely enclose a slightly modified version of the input model in an inter-
mediate coordinate space.

Rather than projecting the 3D surface to the polycube, Wang et al. [WHL+07] introduced an
intrinsic approach that first maps the 3D model and the polycube to the canonical domain (e.g.,
sphere, euclidean plane or hyperbolic disc), and then seeks the map between the two canonical
domains. The resulting polycube map is guaranteed to be a diffeomorphism. However, in this
scheme it is difficult to control the polycube map, i.e., a feature on the 3D model may not be
mapped to a desired location on the polycube.

In their follow-up work, Wang et al. [WJH+08] proposed the user-controllable polycube map
where the users can specify the pre-images of the polycube corners. Their method works well
for shapes with simple geometry and topology, but is not feasible for complicated models since
it is very tedious and error-prone to specify the polycube structure manually. Efforts have also
been made to optimize the polycube map automatically.

Wan et al. [WYZ+11] optimized the polycube mapping in the sense of area and angle distortion.
But their method is still not user controllable. Instead, the method presented here provides much
more user control, which allows the user to create polycube maps with a much smaller number
of patches, and gives much more control over the quality of the induced subdivision surface,
which is what makes this method practical for real-time rendering on modern hardware.

It is known that the polycube map quality (in terms of angle and area distortion) highly depends
on the shape of the polycube. There have been some research efforts that aim to construct the

112 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

polycube automatically [LJFW08, HWFQ09].

These techniques usually break down the input model into smaller and simpler components and
then use polycube primitives to approximate each one. For example, the Reeb graphs [LJFW08]
and harmonic functions [HWFQ09] can be used to guide the shape segmentation. As heuristics
are usually used in the segmentation and polycube approximation, these approaches may not
work for models of complicated geometry and topology. As we mentioned before, none of the
existing algorithms allows the users to easily edit the maps.

A well designed polycube map may serve as a boundary constraint in volumetric parameteriza-
tions. Wang et al. [WLL+11] constructed trivariate polycube splines for volume data. Gregson
et al. [GSZ11] generated an all-hex mesh with a polycube domain. They proposed an automatic
volumetric deformation to construct the polycube. The quality of the volumetric parameteriza-
tion is directly related to the quality of surface polycube map.

4.1.2 Quadrangulation

Our work is also related to quadrangulation, which has been extensively studied in the past
few years. Spectral surface quadrangulation [DBG+06] can produce simple parametric quad-
based domains. However, it does not allow control over the quad alignment with respect to the
geometric features. Huang et al. [HZM+08] extended it to take them into account. Other recent
approaches such as Quadcover [KNP07], PGP [RLL+06b] and Mixed Integer [BZK09], use a
set of precomputed quadrilateral-aligned features to generate a quadrilateral mesh.

However, while the generated meshes automatically can have good quality, they lack a simple
user control, and may contain far too many quads to be used as parametrization domains for
practical applications (see Section 4.3).

4.1.3 Subdivision surfaces

Litke et al. [LLS01] developed a technique to fit Catmull-Clark subdivision surfaces to a given
shape within a prescribed tolerance, based on the method of quasi-interpolation. However, the
control mesh of the subdivision surface must be known beforehand. Kin-Shing et al. [CWQ+07]
proposed a fitting method from the point cloud of a given surface, to create an irregular triangle-
based subdivision generated by dual marching cubes, further optimized with non-linear least
squares. In contrast, our main interest is to generate a quad-based regular subdivision scheme.
And, in general, none of the approaches represent a continuous parameterization, while our
proposal provides this feature in a natural way.

Recently, Panozzo et al. [PPT+11] presented a technique for the automatic construction of
adaptive quad-based subdivision surfaces. Their technique is based on a set of maps called
fitmaps, which roughly estimate how well the mesh can be locally modeled by patches.

One difference of their method with respect to ours is that it is a ”one-click” solution, where in
our case the modeler has to sketch a base polycube to control the coarse domain of the provided
quad-based subdivision surface. However, this base polycube and the user strokes represent
the basis of our approach, which provides high flexibility to recreate complex surfaces. Also,
our technique uses vector-based displacement mapping, which allows to have surfaces with
concavities represented in a simple manner without requiring a more fine base tessellation level.
Finally, our approach, given the necessary user-controlling strokes, can reproduce surfaces with

4.2. EDITABLE POLYCUBE MAP 113

fine detailed features, something which cannot be guaranteed with the scalar field of the fitmaps
approach.

In the last few years there has been a growing trend to use the tessellation capabilities of modern
graphics hardware to generate high-resolution models from a coarse base mesh [Bun05] [Tat08].
Loop et al. [LS08b, LSNCn09] presented a method for approximating subdivision surfaces
with hardware-accelerated parametric patches. Our method presents a uniform, regular and
user-controllable quads-only mesh with a parameterized representation suitable for subdivision
surfaces, compatible with such approaches (see Section 4.3.1), and which also nicely fits into the
subdivision modeling pipeline (see Sections 4.3.2, 4.3.3, and 4.3.4), with the already-mentioned
benefits for the user.

4.1.4 Cross-parameterization

Another related topic is cross-parameterization. Recently, many algorithms have been devel-
oped for building the mapping between general surfaces of the same topology. A common
approach is to parameterize the models over a common base mesh [LDSS99, MKFC01, PSS01,
KS04]. In these approaches, the meshes are split into matching patches, each set of which is
then parameterized on a common planar domain. A given set of matching feature points serve
as patch corners and feature correspondences. In particular, Yeh et al. [YLSL10] proposed an
interactive interface for correspondence placement.

However, all the mentioned approaches use points for feature correspondences, while our method
supports user sketches. In practice, we find it more intuitive to draw feature lines than to only
place points, which allowed us to extend the strategy to blendshape modeling (see Section
4.3.3).

4.2 Editable Polycube Map

In this chapter, we present the editable polycube map to overcome the limitations of the existing
approaches (see Figure 4.9). Our method allows the user to construct the polycube map in an
intuitive and easy manner: given a 3D model M and its polycube domain P , the user is able
to sketch features on M and P to specify feature correspondences. Then, our system will
automatically compute the map in such a way that the features on M are mapped to the user-
specified locations on P .

Later on, the user is allowed to edit the features on M , P , or both, providing precise control
over the mapping. This way, the editable features can help to mark and preserve fine-grained
features on the provided polycube-mapped subdivision surface.

We demonstrate the proposed editable polycube map framework with applications like GPU-
friendly interpolative subdivision surfaces. The positive properties enumerated above allow
an extremely efficient implementation of GPU-based subdivision surfaces. Also, the reduced
number of combinations, together with watertight sampling, allow for a continuous subdivision
method that smoothly integrates with current production pipelines. Finally, we are able to
provide coarse regular base meshes with a reduced memory footprint.

The whole process should be compared with the traditional work artists do to create a model to
be used in an environment like a computer game, which usually requires a subdivision surface

114 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

(a) User sketches (b) Automatic segmentation (c) Polycube map (d) GPU subdivision displacement
Figure 4.9: The proposed method allows the users to easily edit and control the polycube map by
sketching the features/constraints on the 3D model and the polycube. The generated polycube map
is conformal and with low area distortion, facilitating some graphics applications such as GPU-based
displacement mapping.

to be used for modern tessellation hardware.

In general, if the new model is based on an existing model, for instance obtained from a laser
scanning process, the final model generation implies manually performing re-topology opera-
tions to create a base mesh of the subdivision surface, to then transfer the original details by
normal projection, which do not ensure bijectivity.

Usually, artists start from a coarse base model, quite often sculpted using a rough shape like a
polycube base mesh. Then, the model is imported into an application like ZBrush [Pix10] and
further subdivided with a couple of steps of Catmull-Clark subdivision. From this moment on,
the artist has to model/transfer the fine-grained details onto the final model. Obviously, this is a
time-consuming and quite redundant procedure.

Our proposal is to avoid this by quickly establishing a bijective correspondence between the
coarse polycube and the input model, and then creating the quad-based representation on the
polycube-based model by transferring the details of the high-resolution input model. The result-
ing model will have all the enumerated properties and would be ready for usage in a production
environment with a minimal user interaction.

Another practical and extremely useful application is kit-bashing [PLB07] which refers to the
widely used practice among artists of reusing previously made assets as accessories to quickly
form a new model. In general, seasoned artists tend to keep a digital library of previously
created model parts. With our scheme, the library of accessories and the newly constructed
shape could be presented in a parameterized and tessellated form (see Section 4.3.2).

We also introduce shape blending as another very practical application of the techniques pre-
sented here. By mapping different shapes to a common base parametric domain, and by the
introduction of specific blending operators, it is possible to seamlessly blend between shapes,
or even obtain a smooth morphing animation between them (see Section 4.3.3). Finally, we also
present dual painting, a tool that takes advantage of the dual parameterization of the polycube
maps to help the user to easily paint complex models with concave surfaces that might be hard
to reach (see Section 4.3.4).

The specific contributions of this chapter include:

• We present a method that, from a general mesh, creates a high-quality and user-controllable
polycube map in an efficient and intuitive manner. Our method allows the users to easily
modify the map and fine-tune the mapping. The user is also able to control the number
of patches in the base mesh of the quad-based representation by the construction of the

4.2. EDITABLE POLYCUBE MAP 115

base polycube. The provided polycube doesn’t need to accurately resemble the shape of
the object, as coarse polycubes are usually enough.

• We provide a subdivision surface representation specially built for quad patch-based tes-
sellation on the GPU for object and character rendering. Also, this scheme provides a
reduced number of topology combinations thanks to the low number of valence possibil-
ities (only 3, 5 or 6), which is very important in terms both of memory footprint and of
the texture fetching bandwidth, which strongly affects performance.

• This new scheme opens the door to new possibilities and applications. Interesting exam-
ples of these applications are GPU-friendly tessellated subdivision surfaces, kit-bashing,
shape blending and dual painting.

The remaining of the chapter is organized as follows: Section 4.1 reviews related works on poly-
cube map, surface quadrangulation, subdivision surfaces compatible with hardware tessellation,
and cross-parameterization. Then, Section 4.2 presents the details of our editable polycube map
framework, and Section 4.3 presents our applications. After that, Section 5.3 shows the exper-
imental results and discussions. Finally, Section 4.5 draws the conclusion and discusses lines
for future work.

4.2.1 Overview

As mentioned, the objective of the proposed technique is, starting from a high-resolution model
coming either from an artist or a 3D scanner (plus its cleaning stage), to build a quad-based
representation, feasible for subdivision surfaces that allows user control over a reduced number
of singularities, and have that model ready for seamless texturing, watertight displacement, etc.
This should be done in a user-controllable way, using only quads, and without wasted space in
texture space.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.10: Algorithmic pipeline. (a) On non-genus 0 surfaces, first, only two user control points are
required to guide an auto segmentation of the surfaces to genus 0 patches. This way the handles are cut
by the corresponding auto-tunnels in M and P . (b) Next, the user sketches a few strokes as constraints
on the 3D model M and the polycube P , where the yellow dots are sample points on the user sketched
strokes and the green dots the saddle points computed in the auto-tunnels. (c) These sample points are
used as sources to compute the distance field (warm colors are shorter distances and cold colors are
larger distances between the sample points). (d) By the set of shortest paths between sample points,
which do not cross the user strokes, and the auto-tunnels, a geodesic segmentation on M and P is
computed, cutting both into valid single boundary genus-0 patches. (e) Then, a constrained map is
defined between each pair of patches, which allows to transfer the surface Mi to Pi, between all pairs of
patches. (f) Next, all Pi patches are seamlessly glued with a global smoothing operator. (g) And finally,
the subdivision surface is reconstructed.

116 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

Our input is a high-resolution model plus a simple polycube representation, which is constructed
manually by the user to mimic the input shape1. By controlling the position and location of the
cubes, the user has control over the number and location of the singular vertices in the resulting
quads-only mesh, as shown in Figure 4.23. For the convenience of the following stages, if the
input model is non-genus-0, a preprocessing stage is performed to slit the model into genus-0
by the cutting tunnel loops (see Section 4.2.2.1).

Then we provide a guided feature-sketching interface enabling users to sketch controlling strokes
in a natural manner (see Section 4.2.2.2).

The user-specified features are sampled with points, from which we compute the shortest dis-
tance to each other using a multi-source Dijkstra’s shortest path algorithm. Although the com-
puted distance field induces a triangulation on the 3D model, the path between two points is not
straight and the resulting patch can have a complex non-triangular shape.

To ensure the quality of the triangulation, we compute the geodesic triangulation on the poly-
cube by using the correspondence of the user-specified features on the 3D model and the poly-
cube. This way, the resulting triangulation is smoother and more visually pleasing than the one
that could be obtained directly from the multi-source Dijkstra computation.

After that, both shapes are segmented into genus-0 patches, keeping an identification between
the segments in the polycube and in the high-resolution model. We compute the map between
each pair of patches using a series of harmonic maps. By setting the boundary conditions
carefully, the computed map is guaranteed to be continuous along the cutting boundaries.

Finally, a simple and effective global diffusion algorithm is applied to improve the map quality.
The resultant map is bijective and satisfies the user-specified constraints.

The result of this process is that the polycube map induced a quad-remeshed version of the
high-resolution model. An immediate benefit is that the patches of the resulting remeshed
model come from tessellated square faces, so a very low-resolution version of the model can
be built from the original polycube faces as shown in Figure 4.10. This low-resolution model
not only has quads as its only primitive, but also only has vertices with a small and restricted
valence number, only 3, 4, 5 and 6, as shown in Figure 4.15 (a). This low-resolution model is
the basis of our subdivision surface with displacement mapping, see Section 4.3.1.

Then, polycube texture mapping is performed working only with the polycube map of the
model, and consists of creating a 2D texture atlas which contains all the externally visible poly-
cube faces, which is an easy task as the previous step already kept only the visible faces that are
not shared by more than one cube. To build the atlas, we just placed each face in consecutive
squares in the final texture atlas, see Section 4.2.3.

Finally, in runtime, only the very low-resolution model needs to be sent to the GPU, along
with the texture maps built in the pre-processing stage, to generate a continuous subdivision
surface with all the benefits mentioned in Section 2.2.2. As the very low-resolution model can
be animated, its run-time tessellated version also can. It is important to mention that the user
has full control over the process through the sketched features and the segmentation in the entire
pipeline as illustrated in Figure 4.12, and in further applications described in Section 4.3.

1Many commercial softwares, such as Maya and 3DS Max, allow the user to easily do this.

4.2. EDITABLE POLYCUBE MAP 117

4.2.2 Constructing Polycube Map

Given the input model M and the corresponding user-built polycube P , we present a user-
controllable framework to construct the map between them. The algorithm pipeline is illustrated
in Figure 4.10.

4.2.2.1 Topological preprocessing

Sketching controlling strokes in simple models of genus 0 is an easy task. However, in the case
of models with complicated topology, say, with genus larger than 0, it would not be straightfor-
ward for novice users to sketch strokes keeping the correspondences between the input model
M and the polycube M . In fact, it could be a tedious task to specify sketches around each
handle explicitly on a high-genus model (see Figure 4.24 (a)).

In this section, we introduce a topology-aware preprocessing algorithm to slit the model M
and polycube P into genus-0 patches if the input model M has a genus larger than 0, and the
matching information is also computed in this stage.

The idea is motivated by the tunnel loop computation introduced by Dey et al. [DLS07]. Given
a closed surface of genus g, there are always g tunnel loops. Cutting along a tunnel loop
eliminates the handle. We can cut a high-genus model into a genus-0 surface by cutting all the
handles along the corresponding tunnel loops. On the other hand, the geometry aware tunnel
loop-computing methods [DLSCS08] suggests that the tunnel loops can be used to provide
correspondence information in a surface map. In the following, we call tunnel loops simply as
tunnels for short.

Given the input meshes and the tunnels in them, if the input object has a genus greater than
1, the matching between the tunnels of the object and the polycube it is a difficult challenge
(further discussion in Section 4.4.4). So, we assume there is alignment and similarity between
the object and the polycube. In case both the object and the polycube are reasonably well
aligned and not drastically twisted, we provide a semi-automatic detection and matching of
tunnels. In practice, considering that the polycube is constructed to mimic the input shape,
these assumptions become reasonable. We adopt a hybrid strategy to achieve this matching
between tunnels in the object and the polycube.

We compute the harmonic field in the object and polycube surfaces to depict their geometry
shape. For this, the user only need to specify two control points on the input object and the
polycube respectively, as illustrated in Figure 4.10 (a). It is worth noting that the pair of control
points also serves as a part of the mapping constraints, like the feature strokes shown in Figure
4.10 (b).

In practice, we specify the two control points on two sides of the object and polycube shapes,
in order to have all the tunnels between them. The computed harmonic fields are shape-aware,
specifically, with value 0 at one control point, and 1 at the other one, smoothly increasing
between the two points. Thus, the harmonic field values provide an ordering of the tunnel
loops.

Furthermore, two saddle points are computed for each tunnel loop corresponding to the loci
of the control points (shown in green in Figure 4.10 (b)). The saddle points in the tunnel
loops serve as additional accurate map constraints. Note that there could be tunnel loops at the
same level of the harmonic field, under the mild assumption of alignment and similarity. We

118 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

include the 3D space coordinates to enhance the ordering of the tunnels in order to eliminate
this ambiguity.

Our specific algorithm is as follows:

Step 1. Given the non-genus-0 model M and the corresponding polycube P , we compute the
tunnels of each handle in the 3D model and the polycube [DLSCS08].
Step 2. Given the user-specified control points p0, p1 ∈ M , and the corresponding p′

0, p
′
1 ∈ P ,

we compute the harmonic field f in M by setting f(p0) = 0, f(p1) = 1 as the boundary
condition, and similarly for f ′ in P by setting f ′

(p0)
′
= 0, f

′
(p1)

′
= 1.

Step 3. We compute the two saddle points of each tunnel by selecting the points with minimum
and maximum values of the computed harmonic fields in each tunnel. Under the assumption of
similarity, the computed harmonic fields in the object and the polycube are similarly distributed.
Step 4. We match the tunnels in the 3D model with the tunnels in polycube. First we order
the tunnels in M in ascending order by the average harmonic field value of all the points in
the tunnel. If there are tunnels in the same level of the harmonic field, a further ordering is
performed for those tunnels by their 3D space coordinates by selecting first the dimension with
the largest difference above a threshold value between tunnels, and next in the other two di-
mensions. This strategy allows to order the tunnels in ascending order. In our experiment, the
threshold is selected as 0.05 times the maximum of the harmonic value, or the length of the
maximum direction of the bounding box.
Step 5. We cut M and P along the tunnels. In this way, the models with genus g are cut into
genus-0 surfaces with 2g holes. Each tunnel is slitted into two circles and the 2 saddle points
in the tunnel are slitted into 4 points. We match the slitted circles and saddle points of the 3D
model and polycube by the consistent orientation between them.
After this preprocessing stage, the tunnel loops also serve as strokes to segment the object and
the polycube (see Figure 4.10 (d)), and the saddle points serve as sample points for the polycube
mapping algorithm described in Section 4.2.2.3.

4.2.2.2 Guided stroke drawing interface

Feature Guided Stroke Drawing: In our framework, the users are allowed to sketch the fea-
tures freely on the models using a WYSIWYG (What You See Is What You Get) sketching
interface. The WYSIWYG interface allows a natural sketching metaphor by projecting strokes
from screen space onto the 3D surface.

On the object surface, the detailed geometry features are visualized and could be captured in-
tuitively with strokes. Since the strokes serve as boundary conditions in the mapping stage,
strokes on the shape features lead to more accurate mapping results that preserve the features
well (see Figure 4.11).The user sketches a number of (few) features on the 3D model M , and
the same number of features must be specified on the polycube P .

Stroke Types: Our system supports three types of stroke shapes: curved line strokes, closed
loop strokes, and crossed strokes.

• Curved line strokes are the fundamental strokes for shape feature description, and users
use them in most cases for specifying features (e.g. see the strokes in Figure 4.14).

• Closed loop strokes can be powerful in depicting loop-shaped features such as a charac-
ter’s mouth and eyes. With a closed loop stroke, the loop shaped feature on the objects’

4.2. EDITABLE POLYCUBE MAP 119

surface can exactly be mapped onto a loop shape in the polycube domain (e.g. see the
mouth stroke in Figure 4.18).

• Crossed strokes are a combination of several crossed curved line strokes. In practice, the
strokes are split into connected curved line strokes by the crossing point (e.g. see the eyes
and nose strokes in Figure 4.18).

Consistency & Topology Guided Stroke Drawing: The feature stroke set in the object must
be consistent with the set in the polycube domain in the sense of having the same number
of strokes and a similar spatial distribution. We present a consistency checking scheme to
guide the consistency-aware stroke drawing. Specifically, after a pair of strokes are sketched in
the object mesh and the polycube, our system performs the segmentation process described in
Section 4.2.2.3 and validates the correspondence between the segmented patches. We perform
the segmentation in an incremental manner that only computes the newly added geodesic paths
in each iteration. If the segmentation results are not consistent between the object and the
polycube, the system alerts that the newly added strokes could be non topologically consistent.
Thanks to our editable framework, the user is always given the possibility to edit the strokes
dynamically with the consistency guidance.

Furthermore, the purpose of the segmentation stage (described in Section 4.2.2.3) is to divide
the mesh into genus-0 single-boundary patches. In the following, we refer to a patch of genus-0
with a single-boundary as a valid patch (e.g. Figure 4.10 (e) illustrates a pair of valid patches
Mi and Pi).

On the interactive segmentation result, the valid segmented patches are shown with same con-
sistent colors in the object and the polycube domain (see Figure 4.12 (2)). The remaining parts
are still colored in grey-blue, which suggests that additional strokes are required to segment
this region into valid patches. A complete example of the interactive stroke drawing process is
illustrated in Figure 4.12.

Figure 4.11: The users can take full control of the polycube map by simple sketches. The thumbnails
show the sketched constraints.

4.2.2.3 Segmentation

The divide-and-conquer approach proposed by He et al. [HWFQ09] can be used to construct
the polycube map, by breaking down the model into genus-0 patches and then computing the
piecewise map independently for each one. Although their method is able to divide the model
automatically, all cutting planes must be horizontal. Thus, the segmentation highly depends on
the orientation of the model and may result in too many small patches and the cutting boundary
may not represent any feature.

In our framework, the users are allowed to sketch the features freely on the models (see Section
4.2.2.2). Here we assume that the user-specified features are consistent with the help the of the
guided sketching interface.

120 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

Figure 4.12: Interactive editing of Kitten (genus 1): (1) Initially, the user draws two control points and
the auto-tunnels are computed. (2) Then, he draws three strokes above the object and the polycube.
As a result, a set of color parts get segmented as valid single boundary g0 patches. (3) The remain-
ing surface, shown in gray, means that additional strokes are further required. (4) Finally, with 5 user
strokes, all the surface of both, object and polycube, is consistently segmented and the polycube map
is computed.

Our segmentation algorithm is as follows:

Step 1. Given the user-specified sketches, γi ∈ M , γ′
i ∈ P , i = 1, · · · , n, we sample the

sketches with a set of points. Let S = {pj}mj=1 and S ′ = {p′
j}mj=1 denote the sample points on

M and P respectively.
Step 2. We use pj ∈ M , j = 1, · · · ,m, as source points and compute the shortest distance
for every point on M using a multi-source Dijkstra’s algorithm. This way, each vertex v is
associated with a distance d(v, pj) where pj is the closest sample point to v. Let c(v) ∈ S be
the closest sample point of vertex v.
Step 3. We consider each mesh edge eij = (vi, vj), where vi and vj are neighboring mesh
vertices. If c(vi) 6= c(vj), let s1 = c(vi) and s2 = c(vj) be the two sample points. We mark the
two sample points s1 and s2 as neighbors.
Step 4. For every pair of sample points si and sj which are marked as neighbors, we compute
the geodesic path between them. It can be shown that two geodesic paths can only meet at the
the two ending sample points. Then on the polycube P , we compute the geodesic path between
s
′
i and s′j . If the geodesic paths in object surface and polycube surface do not intersect with any

user input strokes we add them into the segmentation path sets.
Step 5. We segment M and P along the computed segmentation path sets.
In the above algorithm, we compute a distance field on the 3D modelM using the user sketched
constraints. As shown in Figure 4.10 (e), this distance field naturally induces a segmentation on
M . However, note that a few geodesic paths intersecting with user-strokes and auto-tunnels are
canceled. Therefore not all the result patches are triangle-shaped.

4.2.2.4 Constrained map

Let Pi ∈ P and Mi ∈ M be a pair of segmented patches, each of which is a genus-0 surface
with a single boundary. We want to find a bijective and smooth map φ : Mi → Pi as illustrated
in Figure 4.10 (e). Rather than computing the map directly, we first parameterize Mi to the unit
disc using a harmonic map, i.e., f : Mi → Dm such that 4f = 0 and f maps the boundary of
Mi to the boundary of Dm using the arc length parameterization, f(∂Mi) = ∂Dm. Similarly,

4.2. EDITABLE POLYCUBE MAP 121

(a) initial (b) 100 (c) 500 (d) 2000
map iterations iterations iterations
1.151 1.125 1.105 1.087

Figure 4.13: Smoothing the polycube map. The initial map has only C0 continuity along the segmen-
tation curves and user-specified features. Thus, one can clearly see the large distortion and lack of
smoothness in (a). Using the Laplacian smoothing algorithm, the distortion smoothly spreads out over
the entire model, see (b)-(d). The values are the angle distortions. The step length is δ = 0.05.

we also parameterize Pi to the unit disc using a harmonic map g : Pi → Dp. More details of
discrete harmonic map can be found at [EDD+95a].

We then seek a smooth map between the two unit discs h : Dm → Dp. This map h is also
computed using a harmonic map4h = 0 and the boundary condition is set as follows: Let s1,
s2 and s3 be the sample points on ∂Mi, and f(sj) ∈ ∂Dm, j = 0, 1, 2 be the images on the
boundary of unit disc. Similarly, let g(s

′
j) ∈ ∂Dp be the images of the sample points s′j ∈ Pi.

Then we require the function h to map f(sj) to g(s
′
j), i.e., h ◦ f(sj) = g(s

′
j), j = 0, 1, 2. The

images for the points between f(sj) and f(s(j+1)%3), j = 0, 1, 2, are computed using an arc
length parameterization.

The polycube parameterization is given by the composite map φ = f ◦ h ◦ g−1 as shown in the
following commutative diagram:

Mi Pi

Dm Dp

-
φ

?

f

?

g

-
h

Finally, we glue the piecewise maps φi : Pi →Mi together as illustrated in Figure 4.10 (f).

122 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

4.2.2.5 Globally smoothing map

With the above boundary conditions, the maps are consistent along the boundaries which can
be glued seamlessly. The resulting map ∪iφi guarantees to be C0 continuous along the segmen-
tation boundaries.

We use Laplacian smoothing [Fie88] to improve the continuity along the segmentation bound-
aries. Given the initial polycube map φ : P → M , let p′ = φ(p) ∈ M denote the image of
p ∈ P . Then we solve the following diffusion function:

∂p′(t)

∂t
= −(4p′(t))‖, (4.1)

where v‖ = v − (v,n)n is the tangent component of v, n is the normal vector, (,) is the dot
product, and t is the diffusion time.

Figure 4.14: Children model editing: Using two user points, and 13 user-strokes. Bottom: The polycube
map result.

Since the given polycube map φ is represented in a quadrilateral mesh induced by the tessella-
tion of the polycube in which each quad in P is a square, we use the following Laplace operator:

4p′ = p′ − 1

m

∑
pq is edge

q′, (4.2)

where m is the valence of p, and q is the one-ring neighbor vertex of p.
The above diffusion equation can be solved easily using the Euler method. We set the step
length to δ = 0.05 in our experiments.

4.3. APPLICATIONS 123

Following Degener et al. [DMK03b] and Tarini et al. [THCM04], we measure the map quality
in terms of angle and area distortions which integrate and normalize the values σ1σ2 + 1/σ1σ2
and σ1/σ2+σ2/σ1, where σ1 and σ2 are the singular values of the Jacobian matrix of φ. εangle =
εarea = 1 when the map φ is isometric. As shown in Figure 4.13, our method leads to visually
pleasing results in only a few hundred iterations. We must remember that Khodakovsky et
al. [KLS03] introduced a globally smooth parameterization method. Particularly, our globally
smooth algorithm is designed for polycube mapping, while their method is for mapping between
triangle shaped patches.

4.2.3 Subdivision surface from the polycube map
We can generate a parameterized subdivision representation with displacement mapping out of
the parameterized polycube map, which can be effectively used in many graphics application
like computer-generated movies, as well as real-time applications.

As the bijection has already been established between the original surface and the polycube, the
polycube mapped surface can be processed to define a quad-based subdivision surface S[0−n].

The base subdivision mesh S0 will have the number of quad faces of the coarse polycube do-
main. The displacements defined between S0 and the polycube mapped mesh Sn, are stored
as a vector field (direction + length) in texture maps for the GPU-subdivision displacement
applications described in Section 4.3. The folllowing steps are performed:

1. Reverse subdivision: First, we need to recover the coarse quads from the refined polycube-
mapped surface Sn to extract the subdivision base mesh S0 (see both in Figure 4.24 (bot-
tom)). In order to do that we reconstruct the Catmull-Clark Subdivision scheme with the
algorithm described in [LN06], which allows to obtain a valid Catmull-Clark subdivision
surface S[0−n].

2. Packing in texture space: All polycube map patches are packed as consecutive squares
in the texture atlas. For each patch S0, all the interior sub-patches of Sn contained in a
base patch of S0 are assigned their respective texture coordinates in the atlas patch, as
shown in Figure 4.15 (b).

3. Raster displacement data: We rasterize each high-resolution patch into its associated
base patch as a vector field displacement in texture space, also saving the other required
information as normals maps, occlusion maps, etc.

4.3 Applications

In this section we will present some applications that are possible thanks to the dual nature
of the polycube parameterization, and the generated subdivsion scheme S[0−n]: GPU-based
subdivision displacement, kit-bashing, shape blending/animation, and dual painting.

4.3.1 GPU-based subdivision displacement

For real-time applications, we use the subdivision algorithm presented by Loop and Schaefer
[LS08b], following the implementation described by Castaño [Cas08b]. The method presented

124 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

(a) (b) (c)

Figure 4.15: Bunny-duck kitbashed model shown with GPU-based subdivision displacement. (a) Our
base mesh (level 0 of the subdivision surface). Green patches contain only valence 4 vertices, and the
the orange to red levels shows the number of extraordinary vertices, red meaning patches having the
greater number). (b) Tessellation with aproximate Catmull-Clark subdivision surface, with the normal
and displacement vector field texture maps. (c) the subdivision surface with GPU-based subdivision
displacement (the iso-parametric curves can be seen at the top right).

here is particularly well suited for this implementation as we only generate vertices with va-
lences 3, 4, 5 or 6 as shown in Figure 4.15 (a). In this implementation, domain shaders (or
vertex shaders when using instanced tessellation) are responsible for providing the final posi-
tion of each new vertex from the tessellated mesh.

In order to have watertight sampling of the displacement map, it is necessary to solve the prob-
lem that the values of the texels along the chart boundaries must match exactly along both sides
of the seams. For that reason, we define for each patch, the one who “owns” every single edge
and corner [Cas08b, Cas08a], so all patches can agree what texture coordinate to use when sam-
pling the displacement at those locations. This way, all patches are coordinated with respect to
what texture coordinate to use when sampling the displacement map. In practice, this amounts
storing, for every edge and for every corner, the texture coordinates of the owner of those fea-
tures (4 texture coordinates per vertex). At runtime, only a single texture sample is needed; and
the corresponding texture coordinate can be selected with a simple calculation [Cas09].

Geometry image-based tessellation is also an interesting option that becomes a sub-case of our
strategy, but it is a technique mainly intended for static and not too large objects. With geometry
images, no texture coordinate-specific information is required, sufficing just the ownership data
to compute everything in the respective shaders.

4.3.2 Kit-bashing
Kit-bashing is a common practice among artists, who tend to accumulate models from previ-
ous projects and reuse parts of them to start building any new one. This technique is partic-
ularly used for human-like characters. Cut and paste methods are proposed in Funkhouser et
al. [FKS+04] and Yu et al. [YZX+04a]. Huang et al. [HFAT07] proposed a merging bound-
ary optimization for better matching. Sharf et al. presented SnapPaste [SBSCO06] enabling
an interactive framework in a drag-and-snap manner. Kreavoy et al. [KJS07] computed the
cut boundary automatically after the merging operation is specified for better boundary shape.
And blocks (generalized cuboid shapes) from Leblanc et al. [LHP11] are introduced into this
problem as a modeling primitive for composition operations to create complex objects.

4.3. APPLICATIONS 125

With our polycube mapping technique, the artist can have a library of parts already mapped and
textured. For instance, when creating a new monster character, the artist can decide to reuse the
legs or the arms from a previous model. Then, the two parts of the model (the torso and the
legs) can be assembled in the polycube domain supporting integer scaling and rotation factors,
and a free alignment in object space, together preserving the subdivision surface representation
in all the process as illustrated in Figure 4.16.

Figure 4.16: Centaur kit-bashing composition example. Left: a horse and a male head and torso are
polycube mapped. Right: The parts of interest are cutted and ensambled together to generate the
centaur subdivision model.

As the model parts to assemble have different atlases, creating the new unified atlas only means
merging the respective patches from each texture map into a new single one, recomputing the
seams boundaries, and adequately combining the new neighboring uv coordinates of each base
level patch.

In Figure 4.17 we can see an example where the user stitched a couple of wings, originally from
the Lucy model, to the back of the armadillo model. As the models were processed beforehand,
the user just selected a few faces from both polycubes to cut the parts of interest by the selected
cube faces. This leaves us with both polycube model parts perfectly matching in parametric
domain.

Thanks to the bijection established between both the polycube and the original 3D model, the
edges that stitched to each other on the polycube maps are bijectively identified with their
corresponding edges in the original 3D model.

Once this identification has been done, the next step is to align the two original 3D model parts,
at convenience by the user. In our implementation, we minimized a simple energy function
consisting of the l2 distance between the vertices. If the user is not satisfied with the final result,
he/she is able to reposition the pieces by performing further adjustments to the positioning of
the parts, before going to the next stage. If a larger positioning control is needed, the user is
always free to place feature-lines at any place in the object and the polycube as illustrated in
Figure 4.17 (b), and these features would be used in polycube map editing step.

Once aligned, we glue both parts by collapsing each pair of matching vertices, replacing them
by the midpoint vertex. As this may cause crisp edges, we immediately perform a local poisson-

126 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

(a)

(b)

(c)

Figure 4.17: Armadillo-wings kit-bashing composition: The user took the polycube mapped wings from
the Lucy model and stitched them onto the back of the armadillo model. (a) First, user select the parts
to be glued. (b) Next, one curved stroke is added to fine-tune the wings placement. (c) And last, a
poisson-based smoothing is used between the gluing parts to obtain the final result.

based smoothing step [YZX+04b] to the gluing parts as shown in Figure 4.17 (c).

4.3.3 Blendshapes
Another application of the editable polycube map approach is the creation of blendshape models
to provide an intuitive way to define new models by easy fusion of a set of previous polycube
mapped models. The proposed application is based on a same shared polycube base domain,
where the user first mapped different input source shapes by a set of strokes as described in
Section 4.2 and illustrated in Figure 4.18.

The polycube domain then acts then as the combination space of previously mapped input
models. The blendshape formulation represents the surface as a linear combination of the set of
shapes (i.e. like morph targets) as,

o = p+
n∑
i=0

Biwi (4.3)

displacing the original positions p of the base polycube, with respect to the set of blendshape
displacement textures Bi that contain the vertex displacements between the reference polycube
base domain and their respective blendshape instances. The weight textures wi are used to
obtain the blend result o as the combined vector displacements in a final texture map.

The blendshapes Bi and weight textures wi in the polycube domain, are unfolded in texture
space on a per-face basis. The blendshape textures are combined by weights wi defined by

4.3. APPLICATIONS 127

user brush strokes with alpha masks or smoothstep operators. The per-face blendshape texture
implementation is encoded in a texture array where we apply pinning to all corners of the mesh
with an irregular valence. However, corners with valence different than 4 cannot be exactly
matched with a bilinear interpolation. For that, we perform a simple process over the mesh
connectivity to determine which shared corners are irregular. Then, for each shared group of
faces for each irregular corner, we fix the blendshape texture. First, by determining the correct
value to be stored exactly at that corner in the shared per-face texture (e.g. by simple average).
Then the correction is propagated to every mipmap level of every face of that group, so that the
shared corner has always the same value.

Figure 4.18: Top: The input surfaces are polycube mapped with the same base polycube shared domain
to generate the blendshapes B1 and B2. Bottom: New surface models are obtained by the user with
brush stroke operations to define the set of weight values for the linear combination of the blendshapes
B1 and B2.

4.3.4 Dual Painting

Another interesting application of our dual bijective parameterization scheme is what we called
dual painting, where a user can paint the model directly over the 3D model surface, the poly-
cube, or any morph between the two. This can be considered a valuable addition to the tools
proposed by Hanrahan and Haeberli [HH90], as the user can use the polycube map to easily ac-
cess and paint concave regions that would be too difficult to paint otherwise (see Figure 4.19).

Another advantage is that cubes afford a semantic partition of the model so that users can expose
occluded parts of the model by selecting and unhiding cubes other than triangles. Also, the parts
that the user may assemble for kit-bashing can be textured beforehand, and our painting tools
help the user with the finishing touches, using the smoothing operation to also blend the colors
at the joints.

128 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

Figure 4.19: Dual painting on Happy Buddha: some parts, e.g, Buddha’s cloth, are very difficult to paint
due to the occlusion and concave geometry, but the polycubed equivalent is much more accessible and
easier to paint.

4.4 Results and Discussion

4.4.1 Results

We tested our method with a wide-range of models with various geometry and topology con-
figurations, as shown in Figure 4.25. Additionally, table 4.3 shows the statistics of our experi-
ments. A good global bijective parameterization is very important for modeling and texturing,
as typical projections used in Tarini et al. [THCM04] unavoidably have problems because two
vertices on the same projection line share the same image, something that produces artifacts
like the ones that are clearly visible in Figure 4.20.
We also quantitatively compared our methods with existing methods [THCM04], [WHL+07],
[WJH+08] and [HWFQ09] as shown in in Table 4.2 and Figures 4.20 and 4.21.

Tarini et al. [THCM04] is efficient for large scale models, but it can not guarantee the bijectivity
due to the projection of the 3D model to the polycube, and may result in some undesired artifacts
in texture mapping and painting, see Figure 4.20.

Wang et al. [WHL+07] computed the polycube map in an intrinsic way by conformally parame-
terizing M and P to canonical domains and then seeking the map between them. For a genus-0
shape with complex geometry (like the Armadillo), the conformal spherical parameterization
has very large area distortion on the elongated parts (e.g. arms, legs and tail). Thus, the induced
map also has a large area distortion with uneven sampling.

Wang et al. [WJH+08] required to manually specify the images of the polycube corners and
edges on the 3D model and then computed the map for each polycube face individually. The
user-defined polycube structures on M can be considered as our constraints. However, it is
very tedious and error-prone to specify them manually if the polycube is complicated, which
precludes its usage for large-scale models. Furthermore, the user can not specify other features
or constraints in Wang et al. [WJH+08].

Automatic approaches [LJFW08, HWFQ09] use heuristics and may not work well for complex
models.

In He et al. [HWFQ09], both M and P are segmented by horizontal cutting planes, and the
cutting locus serve as constraints. Thus, the generated map is orientation dependent. Due to the
complex geometry of the Armadillo, e.g., the arms are not axis aligned, there are large distor-
tions on the upper arms and shoulder, (see Figure 4.21). Compared to the existing approaches,

4.4. RESULTS AND DISCUSSION 129

Table 4.2: Comparison of polycube map construction methods. Symbols: good, G# fair, # poor.

Features [THCM04] [WHL+07] [WJH+08] [LJFW08] [HWFQ09] Our
Map quality G# G#

Bijection #
User control # # G# # #

Editing # # # # #
PC construction # # # #

Automatic # #
Large models # # # G#

General topology # # # # G# G#

our method is more intuitive and flexible in terms of user control and editing, and can generate
better quality polycube-maps.

[THCM04] Ours

Figure 4.20: Comparison of the bijectivity between the editable polycube map and the original polycube
implementation, at the left, of the original proposal [THCM04]. Top row: insets of the Armadillo head.
Bottom row: insets of its feet. As we can see, non-bijectivity in [THCM04] results in a dependence of
multiple points on the mesh with a single point in texture space: painting this single point stains other
places than the one originally intended.

4.4.2 Tradeoff between accuracy and regularity
It is known that the distortions of polycube parameterizations highly depend on the shape of
the polycube. In general, the more accurate its representation, the lower distortion of the map.
However, the price to pay is the larger number of extraordinary points (polycube corners). Thus,
there is a tradeoff between quality and complexity. Through our experiments, we observed that,
for shapes with extruding regions, like the Armadillo’s fingers (see Figure 4.23), it is usually a
good idea to design an accurate polycube to model these features. In our framework, we leave
the choice to the user.

It is worth noting that compared to the results of other approaches, the polycube maps of our
method have higher quality using the same coarse polycube base (See Figure 4.21). Benefited
by our interactive control, a better tradeoff could be achieved using our system.

In Figure 4.22 we compare the parameterization quality with different methods not using a
polycube parametric domain. As it can be observed we can provide a higher quality quad-mesh
structure with lower angular and area distortion, comparable in terms of low distortion to less
constrained methods [ZSGS04], thanks to our configurable parameter domain.

130 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

[THCM04] [WHL+07] [WJH+08] [HWFQ09] Ours

angle / area
norm. distortion 1.32 / 1.22 1.35 / 88.62 1.29 / 1.24 1.25 / 1.23 1.16 / 1.18

Figure 4.21: Comparisons of our method with [THCM04], [WHL+07], [WJH+08] and [HWFQ09]. We
use the same polycube to make the comparison fair. Our method is more intuitive and flexible in terms
of user control and editing, and can generate polycube map of better quality. The values below each
figure are the angle and area distortions.

4.4.3 Stroke drawing

The user input strokes play two important roles in our framework. First, they induce the seg-
mentations: the shape of segmented patches is controlled by the shape of input strokes, which
are validated during the mapping stage to ensure they provide a consistent topology in the ob-
ject and the polycube. Second, the input strokes also serve as the boundary conditions in the
mapping stage. Thus, the loci of input strokes brings to users full control of the mapping result
(see Figure 4.11).

The requirements and importance of the input strokes might challenge novice users. In our
observation, fortunately, the correspondences match with user’s perception and can be easily
managed after a few trials. In general, users add strokes around relevant detailed features, like
near the ears, eyes and mouth of face models, which usually leads to satisfactory mapping
results which preserve well those features, as illustrated in Figure 4.18.

4.4.4 Automatic Tunnel Slitting

The proposed topological preprocessing stage (described in Section 4.2.2.2) converts the in-
put high-genus mesh into genus-0. The user could also map high-genus meshes without it by
carefully slitting all the handles. We evaluate the performance of automatic tunnel slitting by
comparing polycube mappings with and without it (see Figure 4.24).

A novice user specified 34 strokes on Buddha for polycube mapping without the auto-computed
tunnel loops. Given the guidance of computed tunnel loops, 15 strokes are required by the same
user. Further more, the quality of the computed tunnels is often better than with user input
strokes around the handles. Thus, automatic tunnel slitting often lead to better mapping quality
with less required effort.

Our algorithm would fail if the alignment and similarity assumption does not hold. If only
the alignment assumption fails, the polycube or the input object could be aligned with simple
rotation operations in our system. But the similarity assumption can fail if, for example, the
input object is twisted too much, and the polycube can not be constructed keeping similarity and
simplicity at the same time. In this case, tunnel loops are computed without the correspondence
information, and users are required to input the correspondences manually by specifying one
point at each tunnel loop in a corresponding order in the object and polycube.

4.4. RESULTS AND DISCUSSION 131

[ZSGS04] [GGH02a] [PH03] Ours

norm./max.
angle distortion 1.08 / 1.84 1.62 / 4.85 1.34 / 4.04 1.00 / 1.05

norm./max.
area distortion 2.05 / 7.00 1.68 / 5.09 1.54 / 4.22 1.13 / 5.84

Figure 4.22: Comparisons of our polycube mapping method with other methods not using a polycube
parametric domain: [ZSGS04], [GGH02a], [PH03]. Our user editable parameterization can provide a
higher quality with lower angular and area distortion thanks to the configurable parameter domain.

The specified points also serve as the boundary condition in tunnel loops map. Thus, 2g point
specifying operations are needed for model with genus g. It’s still much easier than drawing 2g
loops strokes to slit g tunnels manually.

Furthermore, in this extremal case, there is no currently known perfect solution. e.g. Reeb
Graph [PSBM07] might be a potential solution. But it would fail in cases of symmetric shapes.
More user interaction or information of 3D space alignments are also required. A complete
classification of correspondence methods is described in [KZHCO10]. For general case, we
believe that the assumption of alignment and similarity are mild. And our algorithm would
suffice to solve most cases of this problem.

132 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

Figure 4.23: Armadillo hand polycube editing: The control of the base polycube detail and the type and
location of irregular vertices are both important, because they are intrinsically linked to the geometric
features on the surface, and impact the final quality. Irregular vertices shown in blue and red, are valence
3 and 5 respectively. Left: A coarser polycube hand without fingers, has less irregular vertices but limit
the quality. Right: A more detailed polycube introduce more irregular vertices but capture with higher
fidelity the surface details.

Table 4.3: Statistics of experimental results. Notation used in the table: genus: genus of M ; #4 in M :
of triangles in M ; #� in S0: # of squares in S0; Sn levels: # of subdivision levels for the high-resolution
polycube; nc: # of corners in P ; nf : # of user-specified features; time: time measured in seconds; angle
distortion: angle distortion metric; area distortion: area distortion metric; hausdorff M - Sn: hausdorff
w.r.t bounding box diagonal between M and Sn.

model genus #4 in M #� in S0 Sn levels nc nf time angle distortion area distortion hausdorff
M - Sn

Armadillo 0 346K 1012 6 82 14 148 1.16 1.18 0.0054
Arthur hand 0 307K 239 5 56 7 78 1.06 1.14 0.0091
Arthur head 0 252K 57 7 12 5 76 1.02 1.13 0.0050

Buddha 6 114K 818 5 117 15 47 1.07 1.17 0.0078
Bunny 0 144K 452 5 22 6 35 1.01 1.13 0.0072

Children 8 269K 526 5 110 13 106 1.20 1.22 0.0089
Duck 0 101K 288 5 24 5 37 1.09 1.16 0.0041

El Oso head 0 100K 150 5 24 11 40 1.13 1.22 0.0076
Holes 3 3 64K 68 5 32 1 13 1.10 1.18 0.0045
Horse 0 67K 436 5 28 8 11 1.04 1.07 0.0069

Isidore horse 0 151K 74 8 14 6 48 1.01 1.07 0.0061
Kitten 1 274K 272 5 28 6 83 1.16 1.27 0.0055
Lucy 0 526K 980 5 38 15 210 1.12 1.23 0.0091
Ogre 0 478K 694 5 124 9 68 1.14 1.29 0.0089
Skull 0 52K 24 7 8 3 7 1.02 1.06 0.0035

Tylo head 0 500K 920 5 32 9 194 1.10 1.25 0.0083

4.4.5 Comparison to [HWFQ09]

We want to emphasize the differences between our method and He et al. [HWFQ09]. They first
segmented the 3D model and polycube by horizontal planes, computing a map between each
pair of segmented components, and finally smoothed the map by solving a harmonic map for the
entire shape. Although using the same divide-and-conquer strategy, our method is completely
different in all the following steps:

First, since the cutting loci are also the constraints of the map, He et al. [HWFQ09] can only
map the horizontal, planar features from the 3D model. Our segmentation allows the users to
cut the model by arbitrary closed curves, resulting in more flexible and meaningful constraints.
Furthermore, our method supports the user-control and editing operations not supported by

4.4. RESULTS AND DISCUSSION 133

without autosegmentation with autosegmentation

angle / area
norm. distortion 1.13 / 1.56 1.07 / 1.17

hausdorff
distance 0.0085 0.0078

Figure 4.24: Buddha model editing. Left: without the handles autosegmentation, a novice user specified
34 user strokes to obtain a good quality result. Right: Using two user control points for the auto-
segmentation, and with only with 15 strokes, same user obtained better quality results. Bottom: The
generated subdivision surface respectively with hausdorff w.r.t bounding box diagonal between M and
Sn, area and angle distortion in Sn.

Figure 4.25: More polycube mapping results: Ogre, arthur’s head, isidore horse, lucy, duck, arthur’s
hand and tylo’s head.

134 CHAPTER 4. EDITABLE MAPPING AND SUBDIVISION SURFACES

them.

Second, He et al.[HWFQ09] mapped the segmented components to multiple connected rings
by an uniformization metric, and then computed a harmonic map between the rings. It is known
that computing this metric is a nonlinear time-consuming process. Our method computes the
harmonic map between two topological disks, so it is much more efficient.

Finally, rather than solving a harmonic map for the entire shape, we smoothed the whole map
by an iterative method to diffuse the angle distortion. As shown in Figure 4.13, our method is
very effective and leads to a high quality map with only a few hundred iterations, as only very
simple vertex operations are involved in each iteration.

4.5 Conclusions

We have proposed a new method that aims to improve user-control by developing a very practi-
cal and efficient system. From a general mesh with optional featured sketches, we create a user-
controllable quads-only mesh with a globally smooth parameterization. The method guarantees
that the computed map is bijective and conformal except at a finite number of extraordinary
points (the polycube corners). As listed in Table 4.2, our method has most of the user-desired
features: The created mesh is uniform, regular and is generated from the base polycube mesh in
an automatic manner. During the editing stage, the user is able to control the number of patches
in the base mesh of the subdivision surface by the construction of the base polycube. Then, the
user still has the possibility of fully controlling the process by sketching correspondence lines
between the high-resolution model and the polycube.

On the more technical side, as a result of the reduced number of topology combinations, we are
able to have both a small memory footprint and a reduced texture fetching bandwidth, which
strongly improves run-time performance of the tessellated result with modern hardware using
instanced tessellation or the programmable units in Shader Model 5 hardware.

4.5.1 Limitations and Future Works
The proposed framework has limitations, though. First, sharp thin features, like the sharp
boundaries of man-made mechanical objects may not be preserved well in our framework.
There are various reasons. On one hand, the sketched input strokes may not directly capture the
sharp feature exactly. On another hand, the proposed global smoothing in Section 4.2.2.5 is not
feature-aware and the sharp features will be undesiredly smoothed. A simple extension to im-
prove the sketch interface would be to aid the user snapping strokes to the exact sharp features.
And, at the same time, use these sharp stroke features as constraints in the global smoothing
stage.

Second, the tunnel loops matching between the object and the polycube might fail if the input
mesh has complicated geometry or topology, e.g., twisted shape with handles. In this case, it is
hard to align the object and corresponding polycube. More precise polycube design is able to
alleviate this problem. But designing a precise polycube requires more efforts and introduces
more singularities. One direction of our future work is to investigate more robust tunnel loops
matching algorithm.

Chapter5
Coherent parallel hashing

Collecting sparse spatial data is particularly useful when having some elements of interest
sparsely located in the spatial domain. This chapter presents a parallel hashing method
to robustly create smaller tables with only the interesting shape and shading elements
of implicit or irregular surfaces of objects, while exploiting the coherence in the spatial
data and the access patterns for fastest random-access parallel queries in many computer
graphics applications.

Sparse spatial data is very common in Computer Graphics, in previous chapter we shown that
mesh parameterization is a useful strategy to unfold the surface information in a parametric

domain. However, very sparse, irregular-topology or implicit surfaces are not easily parameter-
izable as we describe below. Other strategies are required to find a good tradeoff between theirs
access performance and the efficient storage which is an ongoing challenge.

For example, raw acquired surfaces have a poor topological quality coupled with a high trian-
gle mesh density making them hard to unfold them uniformly in a planar domain by a mesh
parameterization, to achieve an efficient attributes encoding for parallel query evaluation.

In sparse image data, discontinuities like sharp vector silhouettes are generally present at only a
small fraction of pixels. As an example, texture sprites usually overlay high-resolution features
at sparse locations that should be efficiently stored, or image attributes like alpha masks are
mainly binary, requiring additional precision at only a small subset of pixels.

Spatial hashing is a strategy to losslessly pack sparse data into a dense table. These methods
have proven useful in situations enabling the data to be tightly packed while still allowing fast
random access. In computer graphics, spatial hashing has been already successfully applied for
texturing, rendering, collision detection and animation.

Using a spatial hash, data is stored in a single array—the hash table—addressed through a hash
function. The hash function computes the data location in the hash table from the query coordi-
nates, or keys. There have been several developments lately, improving query and construction
times, and in particular enabling fast parallel construction on GPUs.

135

136 CHAPTER 5. COHERENT PARALLEL HASHING

In Chapter 3 surface geometry was unfolded uniformly distributed in the parameter domain.
However, when this is not possible, leaving a too sparse distribution of the surface data in the
spatial grid directory D on the parameter domain, with too much wasted empty space, one
requires to use a different data structure, such as hashing, for the directory. Instead of storing
all grid cells, we store only those cells that actually contain records of surface and shading
information.

5.1 Context: parallel hashing

Recent spatial hashing schemes hash millions of keys in parallel, compacting sparse spatial
data in small hash tables while still allowing for fast access from the GPU. Unfortunately,
available schemes suffer from two drawbacks: Multiple runs of the construction process are
often required before success, and the random nature of the hash functions decreases access
performance.

The first spatial hashing schemes focused essentially on reaching good load factors while having
a constant time and simple access to the data from the GPU.

Lefebvre and Hoppe [LH06b] proposed a static hash construction enabling access to the data
with as little as two memory accesses and one addition. However, to achieve this result the
hash has to be perfect: All keys corresponding to defined data should map to different locations
in the hash table. In other words, there are no collisions. Building such a constrained hash
function requires an off–line construction process, limiting this approach to static cases (see
further details in Section 2.4.9).

Alcantara et al. [ASA+09, AVS+11] propose less constrained hashing schemes that achieve
fast, parallel construction on the GPU. These schemes may produce collisions. However, query-
ing a key never requires more than four independent memory accesses. The particular hash
mechanism they use is known as cuckoo hashing. We detail it in Section 5.1.

Both approaches achieve constant query time with a fixed number of instructions. Unfortu-
nately, these constraints imply that construction is difficult and the process may fail, requiring
several restarts especially at high load factors.

Alcantara et al. [ASA+09] introduced the first algorithm enabling fast, parallel hash table
construction on the GPU. Millions of keys are efficiently hashed in milliseconds, outperforming
previous schemes by several orders of magnitude. Since this approach is the closest to our work,
we describe it in more details.

A cuckoo hash [PR04] maintains two or more different tables of the same size, each accessed
through a different hash function—Alcantara et al. [ASA+09] use three tables. Keys are
inserted in the first table, evicting already inserted keys in case of collision. Evicted keys are in
turn inserted in the second table, then from the second to the third, and from the third back to
the first. The process loops around until all keys are inserted or until the number of iterations
reaches a maximum—which triggers a construction failure. Upon failure the process is restarted
with different hash functions. Unfortunately, given a number of tables the failure rate abruptly
increases above a limit load factor. Using more tables increases this limit. However, using too
many tables becomes wasteful at lower load factors. In contrast, our proposed hashing scheme
automatically adapts to these various situations (see Section 5.2).

5.2. COHERENT PARALLEL HASHING 137

The parallel construction algorithm builds a cuckoo hash in shared memory—a small but very
fast memory. It starts by randomly distributing the keys in equally sized buckets using a first
level hash [BZ07]. Any bucket overflow triggers a construction failure. This limits the max-
imum possible load factor to 0.7: higher load factors give a too large failure rate for this key
distribution phase. Next, all buckets are hashed independently in parallel with cuckoo hashing.

In recent work, Alcantara et al. [AVS+11] build a cuckoo hash in a single pass. The single
pass approach is made possible by latest hardware capabilities (efficient atomic operations on
NVidia Fermi devices). Their new hashing scheme also reaches higher load factors thanks to
the use of four hash functions. Both schemes further introduce handling of multi-value hashing
and duplicate keys in the input.

The cuckoo scheme behaves very well in practice, and the guarantee of a constant number of
memory accesses to query a key is well adapted to GPUs. Its main drawback stems from an
increasing failure rate at high load factors requiring to manually select more hash functions,
and the loss of coherence due to randomization. Another less obvious issue is that while a fixed
number of lookups are required, the average number of lookups is often higher than that of our
scheme as keys tend to be uniformly distributed in all the tables, even at lower load factors.

We compare our work to parallel cuckoo hashing in Section 5.3.

5.2 Coherent parallel hashing

In this section we introduce a new parallel hashing scheme which reaches a high load factor with
a very low failure rate. In addition our scheme has the unique advantage to exploit coherence in
the data and the access patterns for faster performance.

Compared to existing approaches, it exhibits much greater locality of memory accesses and
consistent execution paths within groups of threads. This is especially well suited to Computer
Graphics applications, where spatial coherence is common. In absence of coherence our scheme
performs similarly to previous methods, but does not suffer from construction failures.

Our scheme is based on the Robin Hood scheme [Cel86] modified to quickly abort queries of
keys that are not in the table, and to preserve coherence. We demonstrate our scheme on a
variety of data sets (see Section 5.3). We analyze construction and access performance, as well
as cache and threads behavior. We relax the constraint of accessing data with a fixed number
of instructions. Instead, we implement queries after trying the maximum number of accesses
required to find a defined key. We propose a mechanism to quickly reject empty keys, thereby
significantly reducing their negative impact.

In addition, we tailor our scheme to exploit the spatial coherence of rendering algorithms. In
existing schemes, neighboring keys are often mapped to distant locations in the hash table.
This is an issue since graphics hardware is designed to benefit from spatial coherence: Threads
are organized in a grid and best access performance is achieved when nearby threads access
nearby memory locations. Lefebvre and Hoppe [LH06b] were aware of this and proposed a
construction process preserving some degree of coherence, however with only limited positive
impact on access performance.

Linial and Sasson analyzed a non-expansive hashing scheme to bring similar keys close to
each other in the hash table [LS96]. That scheme, however, necessitates too much space to be

138 CHAPTER 5. COHERENT PARALLEL HASHING

practical in graphics applications.

As we shall see, the improved robustness of our scheme lets us design hash functions improving
memory coherence during queries, while still affording high load factors.

Our hash is designed to reach high load factors at low failure rate, and to provide fast queries
regardless of the load factor. The key insight is to exploit dynamic branching to release the
constraints on the construction process, and to exploit coherence in the access patterns when
available.

Our algorithm builds a unique, large hash table in one pass. Parallelism is obtained by launching
many thread groups simultaneously. Each thread is responsible for inserting exactly one key.

Our main contributions are:

• A parallel hashing approach reaching high load factor with a low failure rate. It relies
upon a coherent hash function exploiting coherence in memory accesses, when available.
This leads to increased locality in memory accesses and increased coherence in the exe-
cution paths within a thread group accessing the data.

• An improved query scheme using a few bits of additional information per key to effi-
ciently find defined keys, and perform early rejection of empty keys.

We introduce a complete parallel GPU implementation and analyze its behavior in details.

5.2.1 Notations and definitions

Keys are taken in a universe U of size |U |. We note K ⊂ U the set of defined keys, that is
the keys from U which should be stored in the hash table. Keys which do not belong to K are
called empty keys.

Throughout the paper we consider the load factor d. It corresponds to the ratio of the number of
defined keys to the number of keys that the hash table D can hold. A hash table with load factor
d = 1 is a minimal hash, that is a hash with no wasted space. It is worth considering another
type of “load factor”, which we call the key-density; it is defined as the ratio of the number of
bits used to store the keys to the number of bits in the hash table (not counting data bits).

Each defined key may be associated with some additional data. In our setting, all defined keys
are associated with data fields having a same, fixed size (e.g. an RGB color triple, or a boolean
value). The input is thus given as a set of key-data pairs.

An application is said to perform a constrained access to the hash if the only queried keys are
in the set K. The scheme of [LH06b] is especially efficient in this situation, as keys do not need
to be stored. In this paper however we are mostly concerned with the unconstrained access
scenario, where empty keys may be queried and must be detected as such.

By coherence we refer to the locality of the parallel memory accesses performed within a thread
group. In Section 5.3.2.2 we compare query performance for the 2D case using different access
patterns: Linear row major, Morton and the bit-reversal permutation. The first two offer a strong
locality—neighboring threads access neighboring data—while the third has poor locality.

5.2. COHERENT PARALLEL HASHING 139

test1: 2.2M/40962 fish: 20.5M/81922

Figure 5.1: Two of the datasets used to test our hashing algorithm. They give a good spread of behav-
iors between randomness and structure. The number of defined keys (black pixels) and the size of the
image is indicated below each.

5.2.2 Main algorithm and data structure

Our hash is at heart an open addressing scheme [Pet57]: Each input key k is associated with a
sequence of probing locations h1(k), h2(k), . . . in the hash table. Ideally, this probe sequence
should enumerate all locations in finite time. For now, we assume that the sequence is given.
We introduce our coherent probe sequence later.

In order to add a key, the insertion algorithm iterates along the probe sequence until an empty
location is found. The key is then inserted. We call the number of steps required for successful
insertion the age of a key. If the hash table can fit all the defined keys, then the process is
guaranteed to succeed as long as the sequence hi(k) enumerates all locations. Therefore the
algorithm is quite robust to changes in the hash function. Querying a key proceeds similarly to
construction, by walking along the probe sequence until the key is found in the hash table.

However, open addressing suffers from a severe drawback for our purpose: The age of the keys
is very low on average but typically has a large maximum. This maximum age, noted M , is
crucial: When querying an empty key, its absence from the hash table can only be verified
by walking along the sequence of keys at least M steps. Since the data set is sparse, a large
number of queries to empty keys is expected in many applications. The overall performance
can dramatically suffer. Note that hitting an empty location during a query before reaching M
steps is unlikely, especially under high load factors.

We next discuss how to efficiently reduce the maximum age and reject empty keys.

5.2.2.1 Reducing the maximum age

The maximum age issue has already been identified and studied in previous work. A very effec-
tive solution to it is known as Robin Hood hashing [Cel86], which is based on open addressing.

The idea is to store the age of the keys in the hash table during its construction. This additional
data is discarded afterwards. Consider the case of inserting a key knew at a location hi(knew)
already occupied by a key kprev. The age a of kprev is compared to i. If the key being inserted is
older (i > a), then kprev is evicted. The current key is inserted at hi(knew) and kprev is recycled
into the set of keys to be inserted. Intuitively, the keys which are difficult to insert push away
the keys which have been easier to insert.

This has a drastic effect on the histogram of key ages, and in particular on the maximum age as
illustrated Figure 5.2.

140 CHAPTER 5. COHERENT PARALLEL HASHING

Figure 5.2: Hashing 220 defined keys randomly distributed in a universe of 224 keys into a hash table of
1.3 million keys (the load factor is 0.8). Histogram of insertion ages for open addressing (top) and Robin
Hood (bottom). Gray bars correspond to very few items but are non–zero. The maximum age goes down
from 46 to only 5.

There are two particularly important theoretical facts about Robin Hood hashing making it
especially well suited to our purpose [Cel86]: The expected maximum age in a full table of size
n is Θ(log n) and Devroye et al. [DMV04] improve the bound to Θ(log2 log n) on non full
tables. Furthermore, the expected query time complexity can be made constant if starting the
accesses at the average age. Note that these facts are derived assuming uniform random sparse
data, but our experiments show that they hold in practice on our datasets.

In our current implementation we do not start the accesses at the average age: For simplicity
we always start from age one, searching for the key until the maximum age for the sequence is
reached.

5.2.2.2 Empty key rejection

While Robin Hood hashing strongly reduces the maximum age M , it remains quite large com-
pared to the few memory accesses of cuckoo hashing. This is especially important in appli-
cations querying many empty keys, as they always require M steps along the sequence. We
therefore introduce a new mechanism to accelerate the rejection of empty keys.

We note that most keys have a very small age, with only a few outliers ever reaching M . There-
fore, in most cases a much smaller value than M would suffice to detect empty keys. To benefit
from this we store in each entry of the hash table the maximum age of all the keys mapping first
to this location. More precisely, let D[p] be the key stored at location p in the hash table D, let
MAT[p] be the maximum age starting from p, then we have:

MAT[p] = max
{k∈K|h1(k)=p}

(
i st. D[hi(k)] = k

)
(5.1)

When querying a key k we iterate at most MAT[h1(k)] times along the probe sequence. This
guarantees that defined keys are found, and affords for fast detection of empty keys.

5.2.2.3 Encoding the maximum age

Storing the maximum age table MAT requires additional memory. Fortunately, the maximum
age values are small and only require a few bits. In all our tests, the maximum age was below
16. Thus, we reserve 4 bits in each hash table cell to store the maximum age. The latter can
optionally be quantized to either accommodate larger values or reduce even further the number
of bits used to 3 or less.

5.2. COHERENT PARALLEL HASHING 141

Figure 5.3: Maximum age table for test1 hashed at 0.8 load factor. Color code: 0, black; 1, blue; 2,
green; 3, yellow; greater, red. Left: Random probe sequence. Right: Coherent probe sequence. Key
age histograms are comparable, but note how coherence is maintained in the map on the right. We can
expect more efficient dynamic branching when branching with respect to this map.

Let us assume each key is stored on k bits and their age is stored on a bits. When the user targets
a data structure p times larger than the defined keys, we allocate pk|K| bits of memory. In fact,
due to the additional storage of the maximum age, this corresponds to a hash table storing pk|K|

(k+a)

keys. Thus, the keys will be hashed at load factor (k+a)
pk

. For example, in a typical situation, we
have k = 28 bits, a = 4 bits. Then, targeting a storage of 1.2× k × |K| bits—that is 1.2 times
the size of the defined keys, or a 0.83 key-density—requires hashing at 0.95 load factor, while
targeting a 0.7 key-density requires a 0.82 load factor. With 64 bit cells and 60 bit keys, these
load factors become 0.89 and 0.76 respectively.

The hashing scheme of Alcantara et al. [AVS+11] requires no additional information apart
from the key, in which case the load factor and the key-density are equal.

5.2.2.4 Exploiting coherence

In many computer graphics applications, data is queried in a coherent manner: Either spatial
coherence within a frame, or temporal coherence due to limited motion between frames. We
design a new probe sequence tailored to exploit coherence in the queries.

Note that we seek coherence of memory accesses between neighboring threads. This is quite
different from the typical CPU notion of cache coherence where one seeks to access nearby
memory locations in sequence. On the GPU, groups of threads access memory simultaneously,
and it is important to group the accesses in nearby locations. This is also known as coalesced
accesses. Similarly, the hardware performs faster when groups of threads take similar branching
decisions.

Our objective is to design a different probe sequence for the keys, which favors coherence. Our
new probe sequence hcoh preserves coherence by making neighboring keys test neighboring
locations—while still ensuring that the successive locations of a same key are uncorrelated and
perform a random walk. It corresponds to random translations of the entire hash table at each
step i. That is, for a key k at step i in a hash table of size |D|:

hicoh(k) = k + oi mod |D|

where oi is a sequence of offsets, independant of k. We typically set o0 = 0 and use large
random numbers as offsets.

142 CHAPTER 5. COHERENT PARALLEL HASHING

(a) (b) (c) (d) (e)

Figure 5.4: (a) The flower image is 3820 × 3820 image (14.5 million pixels) and contains 3.7 million
non–white pixels. The coordinates of these pixels are shown as colors in (b). We store the image in a
hash table under a 0.99 load factor: the hash table contains only 3.73 million entries. These are used as
keys for hashing. (c) The table obtained with a typical randomizing hash function: Keys are randomly
spread and all coherence is lost. (d) Our spatially coherent hash table, built in parallel on the GPU. The
table is built in 15 ms on a GeForce GTX 480, and the image is reconstructed from the hash in 3.5 ms.
The visible structures are due to preserved coherence. This translates to faster access as neighboring
threads perform similar operations and access nearby memory. (e) Neighboring keys are kept together
during probing, thereby improving the coherence of memory accesses of neighboring threads.

An important property of this probe sequence is that neighboring keys remain neighbors at each
step, as illustrated Figure 5.4 (e). Therefore, if two neighboring threads attempt to find neigh-
boring keys, they will both always access neighboring memory locations until one terminates.
Note that these keys do not have to be present in the hash table for coherence to happen at the
thread level during queries. In fact, access coherence during queries is orthogonal to the dis-
tribution of the defined keys. Sparse random data encoded with our hash will still benefit from
being queried in a coherent manner.

The map MAT encoding the maximum ages also benefits from a coherent hash function: It
exhibits a much stronger spatial coherence. This implies that neighboring threads will perform
similar data–dependent loops, reducing divergence. In Figure 5.3, for illustration purposes we
hash the image test1 shown in Figure 5.1 in a 2D hash table – we extend the hash to 2D by
applying the same computations independently to each dimension. We display the maximum
age table MAT for a random and a coherent probe sequence. The second image (coherent)
exhibits structure and coherence, and thus affords for more efficient dynamic branching than
the first.

Our coherent probe sequence outperforms the random one when coherence is present. It strongly
reduces cache misses, thread branch divergence and results in significantly faster queries. We
measure these effects on various data sets in Section 5.3.

5.2.3 Construction

Our CUDA implementation runs on a graphics processor, where multiple threads are organized
in groups and execute the program in parallel. We always build 1D hash tables. 2D and 3D data
is linearized, as discussed in Section 5.3.2.
Building the hash table in a single pass requires global atomic operations to safely manipulate
memory. Our eviction strategy requires comparing the age of the key to be inserted to the age
of the key already in the hash table. These operations—compare ages and store key if greater—
have to be performed atomically, or the table will quickly get corrupted by concurrent accesses.
We encode the age, the key and its data in a single word (either 32 or 64 bits) with the age on 4

5.2. COHERENT PARALLEL HASHING 143

bits. We never observed an age above 15 in all our tests, but reaching this value would trigger a
construction failure.

The insertion algorithm is detailed next. For clarity we ignore the data fields. Please note that
this is a pseudo code. The actual implementation differs slightly. In particular, the atomicMax
operation is not available on 64 bits words on current hardware (however, it is natively supported
on 32 bit words). We thus emulate it using atomicCAS, as suggested by the CUDA program-
ming guide. This incurs a performance penalty in the construction process: Full hardware
support of 64 bits atomicMax will further improve performance.

The input defined keys are in the array K. The outputs are the hash table D and the max age
table MAT. The type uint represents unsigned integers. The algorithm performs the following
operations:

Listing 5.1: Coherent hash construction.
1 kernel(const uint *K, uint *D, uint *MAT) {
2 uint key = K[global_thread_id];
3 uint age = 1;
4 while(age < MAX_AGE) {
5 uint h_k_i = hash(key , age);
6 uint age_key = PACK(age , key);
7 uint prev = atomicMax(& D[h_k_i] , age_key);
8 if (age_key > prev) {
9 uint h_k_1 = hash(key , 1);

10 atomicMax(& MAT[h_k_1] , age);
11 if (AGE(prev) > 0) {
12 key = GET_KEY(prev);
13 age = GET_AGE(prev);
14 } else {
15 return;
16 }
17 } else {
18 age++;
19 }
20 }
21 }

init The hash table D and the max age table MAT are allocated and initialized to zero.

2-3 The thread reads the key from the input located at index global thread id, which is
unique for each thread. The current key is read in key, and age is the current insertion
age.

4 The thread executes until the key has been inserted in an empty cell of the hash table or the
maximum number of iterations for the current key has been reached.

5 The hash function is applied to key at age.

6-7 The key and its age are packed into a word age key (32 or 64 bits). An atomicMax is
used for the eviction mechanism. This instruction compares the current value in memory
to age key and replaces it if greater. The previous value is always returned.

8 Tests whether an eviction occurred, by comparing the value returned by atomicMax to
age key.

9-10 An eviction occurred and the current key has been inserted. These two lines update the max
age table MAT. The first hash position of the current key is computed, and an atomicMax
updates the max age table.

144 CHAPTER 5. COHERENT PARALLEL HASHING

11-13 The age at the insertion location determines whether it was an empty slot or a previously
inserted key. An age above zero implies that a key was evicted. The evicted key is
recycled and becomes the current key, inserted next.

15 If the insertion location was empty, the thread has finished inserting its key and exits.

18 The key was not inserted. The age is incremented and the next insertion location will be
tested.

After construction the maximum ages stored in MAT are optionally quantized and packed to-
gether with the keys in D. This is done in a second CUDA kernel. The table MAT is discarded
after this. Note that duplicate keys in the input could be trivially handled by comparing whether
prev equals age key.

5.2.3.1 Running the kernel

The number of threads and groups is chosen so as to maximize the GPU workload. A thread
that has finished its job sits idle until all threads in its group have finished as well. While our
coherent probe sequence and max-age table help reducing thread divergence, some remain and
idle threads do occur. To minimize their number, the number of threads per group should not be
too large. It should however not be too small either for a good GPU utilization as we are limited
by the maximum number of groups working simultaneously (120 in our NVidia Fermi GPU).
We experimentally found that the best tradeoff is to use 192 threads per group.

Thus, we set the number of groups to d|D|/192e (a few threads after the end of the input array
run without performing any operations).

5.3 Results

The performance of our scheme is impacted by several factors: The number of keys to be
hashed, the target load factor, and whether coherence exists in the data and the access. All our
tests are performed with a NVidia Fermi GTX 480 GPU.

In the following comparisons we introduce a variant of our scheme using a random probe se-
quence hrand defined as follows:

hirand(k) = c0 + (k ∗ c1) + (i ∗ c2) mod |D|

where c0, c1 and c2 are large random numbers. The purpose of hrand is to reveal when coherence
is successfully exploited by our coherent probe sequence. Indeed, in absence of coherence we
expect hcoh and hrand to result in similar performance. When coherence is available we expect
better performance from hcoh.

We compare our results to the methods of Alcantara et al. [ASA+09, AVS+11]. We use
the implementations made available by the authors in the NVidia CUDPP library, using the
multiplicative hash functions described in these papers. We ran all tests on a NVidia GeForce
GTX 480.

In Section 5.3.1 we analyze the behavior of our hash when no particular coherence exists, and
compare it to previous work. In Section 5.3.2, we discuss the behavior of our hash in a Computer
Graphics setting, where spatial coherence exists.

5.3. RESULTS 145

10.0 100.0 1.0K 10.0K 100.0K 1.0M 10.0M 100.0M
Number of keys (log scale)

0

40

80

120

160

200

240

280

320

In
se

rt
io

n
 r

a
te

 M
K

e
y
/s

e
c

Build rate for random dataset (shuffled inserts)

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

10.0 100.0 1.0K 10.0K 100.0K 1.0M 10.0M 100.0M
Number of keys (log scale)

0

100

200

300

400

500

600

700

800

900

R
e
tr

ie
v
a
l
ra

te
 M

K
e
y
/s

e
c

Retrieval rate for random dataset (constrained, shuffled queries)

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Figure 5.5: Insertion rates (top) and retrieval rates (bottom) for hrand and hcoh and earlier schemes, for
increasingly larger input, under 0.8 load factor. Timings are averaged over several runs. Please refer to
the text for details on these data sets.

5.3.1 Hashing generic data

In this section we focus on hashing random keys taken in a 1D universe, assuming that no
particular coherence exists neither between keys nor in the access patterns.

We consider key–data pairs of 64 bits, having a key on 32 bits, a data record on 28 bits, and
using 4 bits to encode the maximum age. We randomly select an increasingly larger number of
keys in the universe of 232 possible keys.

We analyze insertion and retrieval of defined keys. For insertion the input is a vector of key–
data records. For retrieval, the input is a vector of keys for which data must be retrieved. To
avoid all bias in the measure, we shuffle the input vectors for both construction and query.

Of course, this setting exhibits no coherence and corresponds, in fact, to the worst case sce-
nario for our hash. We will see in Section 5.3.2 that performance significantly increases in the
presence of coherence.

5.3.1.1 Insertion

Figure 5.5 (top) compares construction performance of increasingly larger random sets of keys,
under a 0.8 load factor. We observe that both probe sequences hrand and hcoh behave similarly.
This is explained by the fact that the random input data does not exhibit any coherence that

146 CHAPTER 5. COHERENT PARALLEL HASHING

could be exploited during construction.

5.3.1.2 Retrieval

Figure 5.5 (bottom) compares query performance of increasingly larger sets of keys, under
a 0.8 load factor. Again, on these random data sets we observe that both probe sequences
hrand and hcoh behave similarly. In these tests we only query defined keys. Since the input is
extremely sparse, there is no coherence in the access. We will observe the benefit of coherence
in Section 5.3.2.

5.3.1.3 Comparison to cuckoo hashing

Under a 0.8 load factor and for 16M (million) keys, our scheme achieves an insertion rate of
249 Mkeys/sec. In comparison, [AVS+11] achieves 318 Mkeys/sec and [ASA+09] achieves
268 Mkeys/sec. Therefore, in absence of coherence our insertion scheme is slower than both
versions of the cuckoo scheme. This is essentially due to the update of the max-age table MAT,
and the emulation of the 64 bits atomicMax. We will see in the next section, however, that in
presence of coherence our scheme performance increases significantly.

Remarkably, our scheme consistently reaches load factor as high as 0.99. For 32 millions ran-
dom keys under 0.99 load factor, our insertion rate is 112 MKeys/s and the retrieval rate is 241
MKeys/s.

5.3.1.4 Failure rates

In all our tests our scheme never failed to build a hash table both with hrand and hcoh, and up to
0.99 load factor. Load factors higher than 0.99 typically generate a max age above 15 which
no longer fits our simple 4 bits encoding. This robustness is an important advantage compared
to the cuckoo scheme where restarts can lead to inconsistent performance behavior under high
load factors.

cuckoo hashing [ASA+09] rarely fails at 0.7 load factor, however this behavior quickly degrades
at higher load factors.

5.3.2 Hashing in a Computer Graphics setting

Our scheme is best suited when data is coherent—defined keys tend to be neighboring—and
when the data is accessed in a coherent manner. Coherence in the data helps the construc-
tion process; However a random set of keys still benefits from a coherent access due to thread
locality.

In a typical Computer Graphics application the hash table stores a sparse, structured, set of
elements (texels, vector primitives, voxels, particles, triangles) which are accessed with some
degree of spatial coherence. In most scenarios, a large number of empty keys are also queried.

5.3.2.1 2D data

We first consider 2D data sets. Our test consists in hashing a sparse subset of the pixels of a 2D
image (e.g. all the non white pixels), and then query all pixels of this image to reconstruct it.

5.3. RESULTS 147

0.5 0.6 0.7 0.8 0.9 1.0
Load factor

0

50

100

150

200

250

300

350

400

450

In
se

rt
io

n
 r

a
te

 M
K

e
y
/s

e
c

Build rate for random dataset (ordered inserts)

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

0.5 0.6 0.7 0.8 0.9 1.0
Load factor

0

80

160

240

320

400

480

560

In
se

rt
io

n
 r

a
te

 M
K

e
y
/s

e
c

Build rate for coherent dataset (ordered inserts)

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Figure 5.6: Construction times for hrand and hcoh and earlier schemes. Times are averaged over several
runs. Top: 1M random keys are inserted, taken from a universe of size 8K × 8K. Bottom: Timings for
the fish image: 20.5M are defined in a universe of size 8K × 8K.

In the tests below, keys are computed from the 2D pixel coordinates with a row-major ordering.
We later discuss the impact of different pixel orderings.

Figure 5.6 reports construction times for both a random data set and the fish data set. The
important observation is that coherence in the fish data set—the existence of many neighboring
keys—directly results in improved construction performance. The fish data set contains 20.5M
keys. Under a 0.85 load factor, the random sequence reaches 142 Mkeys/s while our coherent
hashing scheme achieves 368 Mkeys/s – an improvement of 159%. Thanks to coherence our
scheme is now on par with parallel cuckoo hashing for construction times. In contrast, on
random data the coherent sequence has similar performance as the random sequence.

Figure 5.7 reports the time taken to retrieve all the keys, both defined and empty. The distinction
between querying empty or defined keys is important since empty keys are typically the most
expensive to retrieve. In our scheme their cost is greatly reduced by using the the max-age
table. The results are shown in Figure 5.7 for both a random set of keys and the fish dataset.
Clearly, both the fish and random data sets benefit from coherence in the access. These results
are consistent across all the datasets we tested. Under a 0.85 load factor our coherent hash
retrieves 5324 Mkeys/s, while all other schemes achieve less than 1000 Mkeys/s: Coherence
brings a very significant improvement in query performance.

The benefit of our coherent probe sequence is also clearly revealed by the percentage of global

148 CHAPTER 5. COHERENT PARALLEL HASHING

0.5 0.6 0.7 0.8 0.9 1.0
Load factor

0

600

1200

1800

2400

3000

3600

4200

4800

R
e
tr

ie
v
a
l
ra

te
 M

K
e
y
/s

e
c

Retrieval rate for random dataset (unconstrained, ordered queries)

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

0.5 0.6 0.7 0.8 0.9 1.0
Load factor

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

R
e
tr

ie
v
a
l
ra

te
 M

K
e
y
/s

e
c

Retrieval rate for coherent dataset (unconstrained, ordered queries)

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Coherent sequence

Alcantara 2009

Alcantara 2011

Random sequence

Figure 5.7: Access times for hrand and hcoh and earlier schemes. Times are averaged over several
runs. Missing data for Alcantara09 is due to construction failure at high load factors. Top: 8K × 8K keys
are queried, 1M of which, chosen at random, are defined. Bottom: Timings for the fish image: 8K × 8K
keys are queried, of which 20.5M are defined.

cache hit during queries, as shown Figure 5.8. No other scheme in our tests made any significant
use of the cache. Figure 5.8 shows only L1 cache data. We ran additional tests to reveal further
improvements in the number of L2 cache read requests and DRAM read requests, as reported in
Figure 5.1 together with the measured branch divergence rate. In Figures 5.8 and 5.1, the data
is taken from the above experiment with the fish data set.

5.3.2.2 Key layout

We now analyze the effect of different orderings of the 2D data in the 1D key universe. This
is important as in many graphics applications of hashing, the keys are queried in a systematic
and coherent way. For example, threads in a same group rasterize neighboring pixels that have
neighboring texture coordinates, so we should strive to keep this coherence when translating the
position or the texture coordinates into 1D keys. We test three orderings:

• The linear row-major order maps (x, y) to x+Wy when W is the width of the (rectangu-
lar) domain: we should benefit from the coherent hash when we query neighboring keys
on a same line of the domain.

• The Morton order maps (x, y) to M(x, y), the integer obtained by interleaving the bits
of the binary representation of x and y. This improves locality along both X and Y axes

5.3. RESULTS 149

0.5 0.6 0.7 0.8 0.9 0.95 0.99
Load factor

0.0 %

10.0 %

20.0 %

30.0 %

40.0 %

R
a
te

 %
 o

f
L1

 g
lo

b
a
l
lo

a
d
 c

a
ch

e
 h

it
s

40.36% 40.18% 39.55% 38.96% 39.31% 39.80% 40.39%

1.00% 0.95% 1.11% 0.96% 0.86% 0.93% 0.72%

Access L1 global load cache hits rate

Coherent sequence

Random sequence

Figure 5.8: Percentage of L1 global cache hit during queries for the fish data set. The higher the better.
Note that only our coherent probe sequence exhibits a significant cache reuse.

Time L2 requests DRAM requests Branch divergence

hrand 97.1 ms 458.6 M 458.6 M 21.8 %

hcoh 12.6 ms 44.2 M 42.9 M 10.4 %

Table 5.1: L2 and DRAM read requests for the fish data set under 0.85 load factor.

(see further details in Section 2.4.1).

• The bit-reversal permutation σ = (σi, i ∈ [0, 2w)) is obtained by reversing the bits of
the binary representation bi1b

i
2...b

i
w of integer i: σi = biwb

i
w−1...b

i
1. For the experiment, we

map (x, y) toM(σx, σy). This mapping exhibits no coherence at all.

The test consists in drawing a full-screen rotating image using a custom GLSL pixel shader to
query the hash map. The latter is stored as a 2D texture and encodes the image color data using
the three orderings above. Since GLSL offers fewer opportunities for optimization, the test
reports overall lower performance than the CUDA implementation. The results are shown in
Figure 5.9. The random probe sequence behaves roughly the same for each ordering and even
gives slightly faster queries with the highly incoherent bit-reversal ordering. On the contrary,
the coherent probe sequence gives significantly faster queries on the two other orderings since
it leverages coherence in the access pattern. One can clearly see how increasingly coherent
orderings translate into higher performance.

5.3.2.3 3D data

We have experimented with 3D data as well, consisting in voxelizations of the armadillo and
hairy models (see Figure 5.11) in a grid of size 5123. We hash 64 bits key-data pairs. Our
experiments consisted in drawing slices of the volume at random orientations. The armadillo
voxel data results in 9.2M keys. Insertion rate is 280 Mkeys/s under load factor d = 0.8 and 254
Mkeys/s at d = 0.99. Retrieval rate is 1905 Mkeys/s at d = 0.8 and 1182 Mkeys/s at d = 0.99.
The hairy voxel data results in 24M keys. Insertion rate is 455 Mkeys/s at d = 0.8 and 182
Mkeys/s at d = 0.99. Retrieval rate is 1736 Mkeys/s at d = 0.8 and 1208 Mkeys/s at d = 0.99.

Regarding the key layout, we obtain similar results as the 2D results shown in Figure 5.9, with

150 CHAPTER 5. COHERENT PARALLEL HASHING

0.5 0.6 0.7 0.8 0.9 0.95 0.99
Load factor

0

400

800

1200

1600

2000

2400

2800

3200

3600

R
e
tr

ie
v
a
l
ra

te
 (

M
K

e
y
s/

se
c)

Retrieval rate for coherent dataset with different access patterns
Coherent sequence, Bit reversal order
Coherent sequence, Linear order
Coherent sequence, Morton order
Random sequence, Bit reversal order
Random sequence, Linear order
Random sequence, Morton order

Figure 5.9: Query timings for hcoh using different ordering of the pixels, for the fish data set.

an even stronger advantage to the Morton ordering.

5.4 Applications

We demonstrate a sparse painting application relying on our hashing scheme, illustrated Fig-
ure 5.10. A 2D atlas is updated interactively while the user paints along the surface. Only the
pixels touched by the brush are stored in the hash table. This lets us paint locally at very high
resolution, while maintaining a low memory usage.

When the user paints on the model we retrieve the (u, v) coordinates of the pixels touched by
the brush. If pixels are already in the hash table, we simply update their colors. If new pixels
are touched we rebuild the hash table entirely: We first gather the new pixel key–color pairs and
concatenate them with the current hash table from which we remove empty entries. This array
is used as the input for building a new hash table. The entire process is fast enough to happen
seamlessly while the user paints.

Some applications may choose to spend more memory in exchange for faster queries. This can
happen seamlessly by simply rebuilding the hash table with a lower or higher load factor.

For the dataset and viewing conditions of Figure 5.10, at 0.8 load factor, our scheme with hrand
builds in 7 ms and reaches 299 FPS, and our scheme with hcoh builds in 3 ms and reaches 375
FPS.

5.5 Discussion, limitations and future work

Our scheme has two main drawbacks. First, in absence of coherence in the access patterns our
scheme brings little to no benefit compared to a random probe sequence. Second, the max age
table slows down construction and requires additional memory. Quantizing the max age could
reduce this issue but not solve it entirely. Note that this is only problematic if empty keys are
queried: In case of constrained access the max age table is not used and does not have to be
built.

5.5. DISCUSSION, LIMITATIONS AND FUTURE WORK 151

d = 0.5 d = 0.99

Atlas:

Figure 5.10: Our sparse painting application lets the user decorate an object with high resolution details.
Only the painted pixels are stored, regardless of the resolution of the virtual texture. In this example the
virtual texture has size 40962, among which 1M pixels are painted. For this 10242 viewpoint, 389586
queries are made. At 0.5 load factor the hash table is built in 3 ms and the display runs at 446 FPS, while
at 0.99 load factor it is built in 10 ms and display runs at 237 FPS.

Figure 5.11: The armadillo and hairy color voxel data.

Future directions of research include handling deletion of keys as well as incremental insertions
and deletions while maintaining a compact hash table.

152 CHAPTER 5. COHERENT PARALLEL HASHING

5.6 Conclusion

Hashing is often synonymous of random access patterns. A remarkable result of our work is
to demonstrate that coherence can be preserved, going against this common belief. As shown
by our analysis coherence immediately translates to large improvements in cache behavior, and
thus to large improvements in query time.

The CUDPP 2.0 implementation of [AVS+11], released concurrently to the publication of our
work, also improves significantly the cache behavior. The authors now rely on more coherent
hash functions, which resemble the translations of our coherent sequence. This is another strong
indication that hashing can preserve memory access efficiency on parallel processors.

Of course, these results only hold when some degree of coherence is available, in the data for
construction and in the access patterns for retrieval. This is why we strongly believe our hash
is of particular interest for graphics applications, where spatial coherence is common – it was
designed from the start with this goal in mind.

In addition, our hash reaches high load factors without failure and performs consistently well at
all load factor settings. This is in contrast to cuckoo hashing which requires to manually select
a fixed number of hash functions. Its code is very simple, there is no extra complexity to deal
with restarts or to generate new hash functions. We thus believe it offers a strong alternative for
storing sparse data in a computer graphics context.

Chapter6
Conclusions and future work

6.1 Summary of contributions

In this thesis we have proposed a set of data structures with efficient parallel query evaluation for
mapping shape and shading information on geometries of objects. We addressed this problem
from three different perspectives, each of them can be preferred to the other two depending on
the specific requirements the application scenario.

To begin with, we decoupled high-resolution irregular triangle meshes from the shape and shad-
ing attributes during the simplification process. Our proposed solution avoids the limiting issues
of geometric and attribute preservation during the simplification process, thanks to the definition
of a decoupling parameterization and an inverse map to create the correspondence between the
simplified geometry and the original mesh structure attributes. In this way, for any simplified
mesh, we can directly map the original attributes without resampling them, in cases where this
procedure would not be recommended.

However, neither the arbitrarily choosen simplification process nor our proposed decoupling
parameterization, were designed to completely ensure a bijection (with a 1-to-1 map) from any
simplified model to the original high-resolution one. Furthermore, the latest GPUs introduce
tessellation units that allow more flexible and efficient level-of-detail techniques based on tes-
sellation strategies, such as subdivision surfaces, rather than traditional interactive DLOD and
CLOD techniques [LWC+02].

For this reason, we proposed a data structure based on a polycube mapping to allow a user-
friendly sketch-based parameterization of irregular triangle meshes. The proposed method cre-
ates a quad-based representation, defined in such a way that bijectively preserves the shape
details of the given triangle mesh. This solution proves useful when resampling the original
data into a new semi-regular geometric structure is preferred to ease user modeling operations
and to improve the rendering performance with hardware tessellation units. We demonstrate
its feasibility through hardware-friendly subdivision surfaces with displacement mapping, and
by integrating their representation in further modeling applications exploiting our sketch-based
interface.

Nonetheless, we still found that, in some cases, many applications produce geometries which
can be topologically inconsistent (e.g. when directly extracted from a 3D scanning), as they
are sparse by nature or even defined directly by implicit surfaces. In any case, these situations
can not be easily handled by parameterization methods with neither of our previously proposed

153

154 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

solutions.

Therefore, we have explored a third alternative data structure to pack the spatial data informa-
tion of such complex geometries, in a compact way, and provide an efficient construction and
query evaluation; all without requiring a parameterization. Our proposed data structure is based
on spatial hashing and exploit the coherence in the spatial data and in the access pattern to pack
and map the shape and shading details. Our experiments have shown that it allows faster con-
struction than previous spatial hashing methods and most parameterizations, and with almost
full memory utilization and a similar query access performance as that the obtained with the pa-
rameterized mappings. However, the proposed spatial hashing is not flexible enough to capture
multi-scale phenomena when compared to tree-based and adaptive grid-based data structures.

In general each specific problem may require to choose one of the different proposed solutions.
Nevertheless, all of them still have room for improvement. Fortunately, there are also many new
challenges to be pursued in the quest for more flexible and efficient parallel data structures. In
next section we will briefly describe our future work perspectives.

6.2 Perspectives and future work

In this thesis, we tackled the problem of level-of-detail techniques coupled with detail preser-
vation and efficient parallel query evaluation in modeling and rendering applications. We see
several interesting future research directions based on our work, as described below.

6.2.1 Real-time simplification and parallel localization
with random access

We have developed a level-of-detail technique which decouples and evaluates the shape and
shading attributes of high resolution geometries over any generated level-of-detail. While the
query evaluation is efficiently processed in the programmable stages of the GPU, the preprocess-
ing step to map the surface into a suitable parametric domain, and the creation of the localizing
spatial data directory, is an expensive preprocessing step on the CPU. Therefore, our approach
is limited the be used on static high-resolution geometries that do not drastically change their
mesh structure or topology during the interactive visualization. Also, we require the levels-of-
detail to closely resemble the original shape.

Therefore, dynamic spatial data captured by real-time capturing sensor devices cannot be pre-
pared for LOD with IGT, because the simplification and the decoupling parameterization would
need to be interactively computed for each captured frame.

One of the focuses of our future work will be to investigate alternative real-time simplifica-
tion methods [Wil11], interactive parameterization [TSS+11] methods and other spatial data
structures suitable to accelerating geometric queries on dynamically changing data.

6.2.2 Efficient and robust semi-automatic parallel
parameterization with interactive control

We exploited the embedding of simple polycubes as parameter domains to generate quad-based
representations with several good properties: semi-regularity, few irregular vertices, uniform

6.2. PERSPECTIVES AND FUTURE WORK 155

tessellation densities and well-shaped quads. However, the task of automatically (or semi-
automatically) producing this kind of parameterization in a robust way is still an open problem.

In this context, it could be of great interest to be able to automatically create a polycube that
fits the most relevant singular vertices of a given triangle mesh to correspond with subset of the
irregular vertices of the polycube domain, while at the same time being locally bijective, and in
general, having an overall shape not too different from the one in the represented object.

In terms of efficiency and interactive control, in many cases the mapping may require user
adjustments, best achieved through direct manipulation from a high-level generated abstraction,
not necessarily a polycube [TPP+11]. This requires even more efficient parallel algorithms to
modify the resulting quad mesh and computate the global parameterization.

Finally, in terms of robustness, many capturing sensor devices produce geometric spatial data
with topological noise or artifacts that typically require many preprocessing operations before
being able to extract high-level parametric abstractions. New methods that can efficiently take
the raw spatial data to directly and robustly create such abstractions [PTSZ11] are of great
interest.

6.2.3 Succinct hashing schemes, dynamic hash tables and
variable-length data elements

The performance of hashing schemes is measured mainly by its construction, lookup, and space
consumption properties.

In terms of the construction process, one interesting property is that we provide almost full
memory utilization from the hash table size, achieving high load factors. Nonetheless, an in-
teresting new feature would be to adapt it to be a dynamic dictionary with efficient parallel key
deletion and updates. We believe the deletion algorithm proposed by Celis [Cel86] could be im-
plemented. However, this is not straightforward since it requires a more complex management
of the access and the max age table. A simpler approach would be to directly erase the keys
since the query operation ignores empty slots. This would require updating the max age table.
Fortunately, detecting the key with maximum age to be deleted is easy, though the behavior of
the hash after many deletions and insertions should be further analyzed.

In terms of lookup evaluation, the random-access queries are still memory-bound by long la-
tencies. Therefore, beyond exploiting the coherency of the spatial data and improving the co-
herency of the memory access pattern and the execution paths, we found that the global memory
bandwidth is still limited, so prefetching methods [KH10] can probably help in some specific
cases. New experiments are required to understand its application.

Also, when all the threads are waiting for their memory access results, and there is a very small
number of independent instructions between the memory access instructions and the consump-
tion of the data accessed, large memory latencies appear. A useful, complementary solution to
this problem is to prefetch the next data elements while consuming the current data elements,
which increases the number of independent instructions between the memory accesses and the
computation instructions of the accessed data.

In terms of space consumption, in our current approach we store in the records of the hash table
D[u] the key along the data< k, age, data >. While in some specific applications the key k can
be useful if stored, in other ones which only require the data to be queried, the space overhead

156 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of storing the key is not justified. Therefore, adaptation to a succinct hashing scheme, requiring
a lower space bound, would be interesting.

For this, we have a coherent hash function defined with translations at every age step, from an
offset table o[], and many applications have a spatial domain with a bounded size S, and only
N defined keys to be stored in a hash table D (e.g. as it happens for instance in raytracing
applications). An interesting observation is that we are using the same translations for all keys
(i.e. the permutation offsets are in range hash table size |D|, [0..|D|−1] stored in o[]). Therefore,
only keys whose k are such that u = (k + o[age])mod|D|, they can collide. In general, we can
at most have S/H of those keys colliding (i.e. only those |D| keys appart). Hence, we could
store the age and the multiplicative factor r (as r = k/|D|) instead of k, as < r, age, data >.
The key point is that, the smaller the size |D| of the hash table to store the N defined keys,
the better the ratio we will obtain when storing r = k/|D|, which is much less expensive than
storing the coordinates k.

Finally, we also believe that some applications do require variably-sized data to be stored in
dictionaries such as hash tables. The envision of parallel hashing schemes for variable-length
data is also of great interest, because traditional hashing schemes have generally focused on ex-
ternal storage of data records (out of the hash table), indexed by sparse integers. Consequently,
these schemes are generally not well adapted for their use with spatially coherent multidimen-
sional data, which happens in many computer graphics applications (e.g. vector textures, or
variable-length 3D layers of surface data), where the coherent access cannot be exploited with
typical hash functions. A proposed solution [Hop07] requires costly CPU preprocessing to
define the perfect hash of such variable-rate data, and more parallel-friendly construction ap-
proaches would be of great interest.

Bibliography

[And99] Carlos Andújar. Octree-based simplifications of polyhedral solids, 1999.

[App68] Arthur Appel. Some techniques for shading machine renderings of solids. In
Proceedings of the April 30–May 2, 1968, spring joint computer conference,
AFIPS ’68 (Spring), pages 37–45, New York, NY, USA, 1968. ACM.

[Arv88] J. Arvo. Linear-time voxel walking for octrees, 1988. Ray Tracing News 12(1).

[ASA+09] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shubhabrata Sengupta,
Michael Mitzenmacher, John D. Owens, and Nina Amenta. Real-time parallel
hashing on the gpu. ACM Trans. Graph., 28:154:1–154:9, December 2009.

[AVS+11] Dan Alcantara, Vasily Volkov, Shubhabrata Sengputa, Michael Mitzenmacher,
John Owens, and Nina Amenta. Building an Efficient Hash Table on the GPU.
Morgan Kaufmann, 2011.

[BD02] David Benson and Joel Davis. Octree textures. ACM Trans. Graph., 21:785–790,
July 2002.

[BF79] Jon Louis Bentley and Jerome H. Friedman. Data structures for range searching.
ACM Comput. Surv., 11:397–409, December 1979.

[BHGS06] Tamy Boubekeur, Wolfgang Heidrich, Xavier Granier, and Christophe Schlick.
Volume-surface trees. Computer Graphics Forum (Proceedings of EURO-
GRAPHICS 2006), 25(3):399–406, 2006.

[Ble90] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-
90-190, School of Computer Science, Carnegie Mellon University, November
1990.

[Bli96] Jim Blinn. Jim Blinn’s corner: a trip down the graphics pipeline. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

157

158 BIBLIOGRAPHY

[BS88] A. A. Ball and D. J. T. Storry. Conditions for tangent plane continuity over
recursively generated b-spline surfaces. ACM Trans. Graph., 7:83–102, April
1988.

[Bun05] Michael Bunnell. GPU Gems 2, chapter Adaptive Tessellation of Subdivision
Surfaces with Displacement Mapping. Addison Wesley, 2005.

[Bur81] P J Burt. Fast filter transforms for image processing. Computer Graphics and
Image Processing, 16(1):20–51, 1981.

[BZ07] Fabiano C. Botelho and Nivio Ziviani. External perfect hashing for very large
key sets. In Proceedings of the sixteenth ACM Conference on Conference on
Information and Knowledge Management, CIKM ’07, pages 653–662. ACM,
2007.

[BZK09] David Bommes, Henrik Zimmer, and Leif Kobbelt. Mixed-integer quadrangula-
tion. ACM Trans. Graph., 28(3):1–10, 2009.

[C06] Chih-Chun Chen 0002 and Jung-Hong Chuang. Texture adaptation for progres-
sive meshes. Comput. Graph. Forum, 25(3):343–350, 2006.

[Cas08a] Ignacio Castaño. Next-generation rendering of subdivision surfaces. SIG-
GRAPH 2008, 2008.

[Cas08b] Ignacio Castaño. Tessellation of subdivision surfaces in direct3d 11. Gamefest
2008, 2008.

[Cas09] Ignacio Castaño. Ownership-based zippering.
http://castano.ludicon.com/blog/2009/01/10/ownership-based-zippering/, 2009.

[Cat74] Edwin Earl Catmull. A subdivision algorithm for computer display of curved
surfaces. PhD thesis, 1974. AAI7504786.

[CC98] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary
topological meshes, pages 183–188. ACM, New York, NY, USA, 1998.

[Cel86] Pedro Celis. Robin Hood Hashing. PhD thesis, University of Waterloo, Ontario,
Canada, 1986.

[CH02a] Nathan A. Carr and John C. Hart. Meshed atlases for real-time procedural solid
texturing. ACM Trans. Graph., 21:106–131, April 2002.

[CH02b] Nathan A. Carr and John C. Hart. Meshed atlases for real-time procedural solid
texturing. ACM Trans. Graph., 21(2):106–131, 2002.

[Cho45] G. Choquet. Sur un type de transformation analytique généralisant la
représentation conforme et défini au moyen de fonctions harmoniques. Bulletin
des Sciences Mathématiques, 69:156–165, 1945.

[Cla76] J. H. Clark. Hierarchical geometric models for visible surface algorithms, 1976.
Communications of the ACM, Vol. 19, No. 10, pp. 547-554.

BIBLIOGRAPHY 159

[CLE06] Evaluation of suprathreshold perceptual metrics for 3d models, New York, NY,
USA, 2006. ACM. 106063.

[CMR+99] P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and M. Tarini. Preserving
attribute values on simplified meshes by resampling detail textures. The Visual
Computer, 15(10):519–539, 1999.

[CNLE09] Cyril Crassin, Fabrice Neyret, Sylvain Lefebvre, and Elmar Eisemann. Gigavox-
els : Ray-guided streaming for efficient and detailed voxel rendering, feb 2009.
to appear.

[COM98] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-preserving
simplification. Computer Graphics (Proc. SIGGRAPH), 32:115–122, 1998.

[CRS98] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified
surfaces. Computer Graphics Forum, 17(2):167–174, 1998.

[CWQ+07] Kin-Shing Cheng, Wenping Wang, Hong Qin, Kwan-Yee Wong, Huaiping Yang,
and Yang Liu. Design and analysis of optimization methods for subdivision
surface fitting. IEEE Transactions on Visualization and Computer Graphics,
13:878–890, 2007.

[DBG+06] Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C.
Hart. Spectral surface quadrangulation. ACM Trans. Graph., 25(3):1057–1066,
2006.

[DGPR02] David (grue) DeBry, Jonathan Gibbs, Devorah DeLeon Petty, and Nate Robins.
Painting and rendering textures on unparameterized models. ACM Trans. Graph.,
21:763–768, July 2002.

[DLS07] Tamal K. Dey, Kuiyu Li, and Jian Sun. On computing handle and tunnel loops.
In In IEEE Proc. NASAGEM 07, pages 357–366, 2007.

[DLSCS08] Tamal K. Dey, Kuiyu Li, Jian Sun, and David Cohen-Steiner. Computing
geometry-aware handle and tunnel loops in 3d models. ACM Trans. Graph.,
27:45:1–45:9, August 2008.

[DMK03a] P. Degener, J. Meseth, and R. Klein. An adaptable surface parameterization
method. In In Proceedings of the 12th International Meshing Roundtable, pages
201–213, 2003.

[DMK03b] Patrick Degener, Jan Meseth, and Reinhard Klein. An adaptable surface param-
eterization method. In IMR ’03, pages 201–213, 2003.

[DMV04] Luc Devroye, Pat Morin, and Alfredo Viola. On worst-case robin hood hashing.
SIAM Journal on Computing, 33:923–936, 2004.

[DS98] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordi-
nary points, pages 177–181. ACM, New York, NY, USA, 1998.

[DT07] Christopher DeCoro and Natalya Tatarchuk. Real-time mesh simplification using
the gpu. In SI3D ’07: Proceedings of the 2007 Symposium on Interactive 3D
graphics and games, page TBD, New York, NY, USA, 2007. ACM Press.

160 BIBLIOGRAPHY

[EDD+95a] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle.
Multiresolution analysis of arbitrary meshes. In SIGGRAPH ’95, pages 173–
182, 1995.

[EDD+95b] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Louns-
bery, and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In Pro-
ceedings of the 22nd annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’95, pages 173–182, New York, NY, USA, 1995. ACM.

[FC09] Fengtao Fan and Fuhua Cheng. Gpu supported patch-based tessellation for dual
subdivision. In Computer Graphics, Imaging and Visualization, 2009. CGIV ’09.
Sixth International Conference on, pages 5 –10, aug. 2009.

[FH05] Michael S. Floater and Kai Hormann. Surface parameterization: a tutorial and
survey. In N. A. Dodgson, M. S. Floater, and M. A. Sabin, editors, Advances in
multiresolution for geometric modelling, pages 157–186. Springer Verlag, 2005.

[FHCD92] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud.
Practical minimal perfect hash functions for large databases. Commun. ACM,
35(1):105–121, January 1992.

[Fie88] David A Field. Laplacian smoothing and delaunay triangulations. Communica-
tions in Applied Numerical Methods, 4:709–712, 1988.

[FKS+04] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William
Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modeling by
example. ACM Trans. Graph., 23(3):652–663, 2004.

[Flo97a] Michael S. Floater. Parametrization and smooth approximation of surface trian-
gulations. Comput. Aided Geom. Des., 14:231–250, April 1997.

[Flo97b] Michael S. Floater. Parametrization and smooth approximation of surface trian-
gulations. Computer Aided Geometric Design, 14:231–250, 1997.

[GGH02a] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. ACM
Trans. Graph., 21:355–361, July 2002.

[GGH02b] Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. Geometry images. ACM
Trans. Graph., 21(3):355–361, 2002.

[GH86] Ned Greene and Paul S. Heckbert. Creating raster omnimax images from multi-
ple perspective views using the elliptical weighted average filter. IEEE Comput.
Graph. Appl., 6(6):21–27, June 1986.

[GH97] Michael Garland and Paul S. Heckbert. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’97, pages 209–216, New York, NY, USA,
1997. ACM Press/Addison-Wesley Publishing Co.

[GH98] Michael Garland and Paul S. Heckbert. Simplifying surfaces with color and
texture using quadric error metrics. In Proceedings of the conference on Visu-
alization ’98, VIS ’98, pages 263–269, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

BIBLIOGRAPHY 161

[Gla84] Andrew S. Glassner. Space subdivision for fast ray tracing. IEEE Computer
Graphics & Applications, 4(10):15–22, October 1984.

[GLHL11] Ismael Garcia, Sylvain Lefebvre, Samuel Hornus, and Anass Lasram. Coherent
parallel hashing. ACM Trans. Graph., 30(6):161:1–161:8, December 2011.

[GP08] Ismael Garcia and Gustavo Patow. Igt: inverse geometric textures. ACM Trans.
Graph., 27(5):137:1–137:9, December 2008.

[GP09] Francisco González and Gustavo Patow. Continuity mapping for multi-chart tex-
tures. ACM Trans. Graph., 28(5):109:1–109:8, December 2009.

[GPSSK07] Ismael Garcia, Gustavo Patow, Mateu Sbert, and Laszlo Szirmay-Kalos. Multi-
layered indirect texturing for tree rendering. In S. Mérillou D. Ebert, editor,
Eurographics Workshop on Natural Phenomena, 2007.

[GSZ11] James Gregson, Alla Sheffer, and Eugene Zhang. All-hex mesh gener-
ation via volumetric polycube deformation. Computer Graphics Forum,
30(5):1407¨C1416, 2011.

[GVSS00] Igor Guskov, Kiril Vidimče, Wim Sweldens, and Peter Schröder. Normal meshes.
In Proceedings of the 27th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’00, pages 95–102, New York, NY, USA, 2000.
ACM Press/Addison-Wesley Publishing Co.

[GW07] Markus Giegl and Michael Wimmer. Unpopping: Solving the image-space
blend problem for smooth discrete lod transitions. Computer Graphics Forum,
26(1):46–49, March 2007.

[GWH01] Michael Garland, Andrew Willmott, and Paul S. Heckbert. Hierarchical face
clustering on polygonal surfaces. In Proceedings of the 2001 symposium on
Interactive 3D graphics, I3D ’01, pages 49–58, New York, NY, USA, 2001.
ACM.

[GXH12] Editable polycube map for gpu-based subdivision surfaces, 2012. (submitted).

[HB10] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010.
Version 1.3.0.

[HDD+93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. In Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’93, pages 19–26,
New York, NY, USA, 1993. ACM.

[HDD+94] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John
McDonald, Jean Schweitzer, and Werner Stuetzle. Piecewise smooth surface re-
construction. In Proceedings of the 21st annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’94, pages 295–302, New York, NY,
USA, 1994. ACM.

[Hec89] Paul S. Heckbert. Fundamentals of texture mapping and image warping. Tech-
nical report, Berkeley, CA, USA, 1989.

162 BIBLIOGRAPHY

[HFAT07] Xiaohuang Huang, Hongbo Fu, Oscar Kin-Chung Au, and Chiew-Lan Tai. Op-
timal boundaries for poisson mesh merging. In SPM ’07, 2007.

[HG00] K. Hormann and G. Greiner. MIPS: An efficient global parametrization method.
In P.-J. Laurent, P. Sablonnière, and L. L. Schumaker, editors, Curve and Surface
Design: Saint-Malo 1999, Innovations in Applied Mathematics, pages 153–162.
Vanderbilt University Press, Nashville, TN, 2000.

[HG11] Mark Harris and Michael Garland. Optimizing Parallel Prefix Operations for the
Fermi Architecture, pages 253–269. Morgan Kaufmann, Waltham, MA, 2011.

[HH90] Pat Hanrahan and Paul Haeberli. Direct wysiwyg painting and texturing on 3d
shapes:. SIGGRAPH ’90, 24(4):215–223, 1990.

[Hop96] Hugues Hoppe. Progressive meshes. In Proceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’96, pages
99–108, New York, NY, USA, 1996. ACM.

[Hop99] Hugues H. Hoppe. New quadric metric for simplifying meshes with appearance
attributes. In David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE
Visualization ’99, pages 59–66, San Francisco, 1999.

[Hop07] Hugues Hoppe. Perfect hashing of variably-sized data, 10 2007.

[Hor05] Daniel Horn. Stream reduction operations for gpgpu applications. In Matt Pharr,
editor, GPU Gems 2, pages 573–589. Addison-Wesley, 2005.

[HSH10] Liang Hu, Pedro V. Sander, and Hugues Hoppe. Parallel view-dependent level-
of-detail control. IEEE Trans. Vis. Comput. Graph., 16(5):718–728, 2010.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum
(scan) with CUDA. In Hubert Nguyen, editor, GPU Gems 3, chapter 39, pages
851–876. Addison Wesley, August 2007.

[HSV05] Toon Huysmans, Jan Sijbers, and Brigitte Verdonk. Parameterization of tubular
surfaces on the cylinder. The journal of WSCG, pages 97–104, 2005.

[HWFQ09] Ying He, Hongyu Wang, Chi-Wing Fu, and Hong Qin. A divide-and-conquer
approach for automatic polycube map construction. Computer & Graphics,
33(3):369–380, 2009.

[HZM+08] Jin Huang, Muyang Zhang, Jin Ma, Xinguo Liu, Leif Kobbelt, and Hujun Bao.
Spectral quadrangulation with orientation and alignment control. ACM Trans.
Graph., 27(5):147, 2008.

[IWR+06] Thiago Ize, Ingo Wald, Chelsea Robertson, Steven G. Parker, Thiago Ize, Ingo
Wald, Chelsea Robertson, and Steven G. Parker. An evaluation of parallel grid
construction for ray tracing dynamic scenes. In In Proceedings of the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 47–55, 2006.

[Joh05] Streaming architectures and technology trends, 2005. In GPU Gems 2, pages
457-470.

BIBLIOGRAPHY 163

[Ket99] Lutz Kettner. Using generic programming for designing a data structure for poly-
hedral surfaces. Comput. Geom. Theory Appl, 13:65–90, 1999.

[KH10] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Proces-
sors: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2010.

[Khr08] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8
December 2008.

[KJS07] Vladislav Kreavoy, Dan Julius, and Alla Sheffer. Model composition from in-
terchangeable components. In Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications, pages 129–138, 2007.

[KK89] J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional textures. Com-
puter Graphics (Proc. SIGGRAPH), 23:271–280, 1989.

[Kle98] Reinhard Klein. Multiresolution representations for surfaces meshes based on
the vertex decimation method. Computers and Graphics, 22(1):13–26, 1998.

[KLS96] Reinhard Klein, Gunther Liebich, and Wolfgang Strasser. Mesh reduction with
error control. In Proceedings of the 7th conference on Visualization ’96, VIS ’96,
pages 311–318, Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.

[KLS03] A. Khodakovsky, N. Litke, and P. Schröder. Globally smooth parameterizations
with low distortion. ACM Trans. Graph., 22:350–357, 2003.

[Kne26] H. Kneser. Lösung der aufgabe 41. Jahresbericht der Deutschen Mathematiker-
Vereinigung, 35:123–124, 1926.

[KNP07] Felix Kälberer, Matthias Nieser, and Konrad Polthier. Quadcover - surface pa-
rameterization using branched coverings. Comput. Graph. Forum, 26(3):375–
384, 2007.

[KS04] V. Kreavoy and A. Sheffer. Cross-parameterization and compatible remeshing of
3d models. ACM Trans. Graph., 23:861–869, 2004.

[KZHCO10] Oliver Kaick, van, Hao Zhang, Ghassan Hamarneh, and Daniel Cohen-Or. A sur-
vey on shape correspondence. In Proc. of Eurographics State-of-the-art Report,
pages 1–24, 2010.

[LAM05] Marta Lofsted and Tomas Akenine-Moller. An evaluation framework for ray-
triangle intersection algorithms. Journal of Graphics Tools, 10(2):13–26, 2005.

[LD07] Sylvain Lefebvre and Carsten Dachsbacher. Tiletrees. In Proceedings of the 2007
symposium on Interactive 3D graphics and games, I3D ’07, pages 25–31, New
York, NY, USA, 2007. ACM.

[LD08] Ares Lagae and Philip Dutré. Compact, fast and robust grids for ray tracing.
Computer Graphics Forum (Proceedings of the 19th Eurographics Symposium
on Rendering), 27(4):1235–1244, June 2008.

164 BIBLIOGRAPHY

[LDSS99] A. W. F. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multiresolution mesh
morphing. In SIGGRAPH ’99, pages 343–350, 1999.

[LE97] David Luebke and Carl Erikson. View-dependent simplification of arbitrary
polygonal environments. In Proceedings of the 24th annual conference on Com-
puter graphics and interactive techniques, SIGGRAPH ’97, pages 199–208, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[Lef06] Aaron E. Lefohn. Glift: generic data structures for graphics hardware. PhD
thesis, Davis, CA, USA, 2006. AAI3236026.

[LGS+] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
construction on GPUs. Computer Graphics Forum, 28(2):375–384.

[LGW+07] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin. Harmonic volumetric map-
ping for solid modeling applications. In Proc. ACM symp. on Solid and physical
modeling, pages 109–120, 2007.

[LH06a] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. ACM Trans.
Graph., 25:579–588, July 2006.

[LH06b] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. In ACM SIG-
GRAPH 2006 Papers, SIGGRAPH ’06, pages 579–588, New York, NY, USA,
2006. ACM.

[LHN05] Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. Gpu gems 2 - program-
ming techniques for high-performance graphics and general-purpose computa-
tion, 2005.

[LHP11] Luc Leblanc, Jocelyn Houle, and Pierre Poulin. Modeling with blocks. The
Visual Computer (Proc. Computer Graphics International 2011), 27(6-8):555–
563, June 2011.

[LJFW08] Juncong Lin, Xiaogang Jin, Zhengwen Fan, and Charlie C. L. Wang. Automatic
polycube-maps. In GMP’08, pages 3–16, 2008.

[LK10] Samuli Laine and Tero Karras. Efficient sparse voxel octrees. In Proceedings
of ACM SIGGRAPH 2010 Symposium on Interactive 3D Graphics and Games,
pages 55–63. ACM Press, 2010.

[LKR+96] Peter Lindstrom, David Koller, William Ribarsky, Larry F. Hodges, Nick Faust,
and Gregory A. Turner. Real-ti continuous level of detail rendering of height
fields. In Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’96, pages 109–118, New York, NY, USA,
1996. ACM.

[LLS01] Nathan Litke, Adi Levin, and Peter Schröder. Fitting subdivision surfaces. In
VIS ’01, pages 319–324, 2001.

[LN06] Sandrine Lanquetin and Marc Neveu. Reverse catmull-clark subdivision. In
WSCG ’06, 2006.

BIBLIOGRAPHY 165

[Loo87] C. Loop. Smooth subdivision surfaces based on triangles. Department of math-
ematics, University of Utah, Utah, USA, August 1987.

[LPRM02] Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. Least squares
conformal maps for automatic texture atlas generation. ACM Trans. Graph.,
21(3):362–371, 2002.

[LRZM11] Guiqing Li, Canjiang Ren, Jiahua Zhang, and Weiyin Ma. Approximation of loop
subdivision surfaces for fast rendering. Visualization and Computer Graphics,
IEEE Transactions on, 17(4):500 –514, april 2011.

[LS96] Nathan Linial and Ori Sasson. Non-expansive hashing. In Proceedings of the
twenty-eighth annual ACM Symposium on Theory of Computing, STOC ’96,
pages 509–518. ACM, 1996.

[LS08a] Charles Loop and Scott Schaefer. Approximating catmull-clark subdivision sur-
faces with bicubic patches. ACM Trans. Graph., 27(1):8:1–8:11, March 2008.

[LS08b] Charles Loop and Scott Schaefer. Approximating catmull-clark subdivision sur-
faces with bicubic patches. ACM Trans. Graph., 27(1):1–11, 2008.

[LSK+06] Aaron E. Lefohn, Shubhabrata Sengupta, Joe Kniss, Robert Strzodka, and
John D. Owens. Glift: Generic, efficient, random-access gpu data structures.
ACM Trans. Graph., 25:60–99, January 2006.

[LSNCn09] Charles Loop, Scott Schaefer, Tianyun Ni, and Ignacio Castaño. Approximating
subdivision surfaces with gregory patches for hardware tessellation. ACM Trans.
Graph., 28(5):1–9, 2009.

[LT97] Kok-Lim Low and Tiow-Seng Tan. Model simplification using vertex-clustering.
In Proceedings of the 1997 symposium on Interactive 3D graphics, I3D ’97,
pages 75–ff., New York, NY, USA, 1997. ACM.

[LWC+02] David Luebke, Benjamin Watson, Jonathan D. Cohen, Martin Reddy, and
Amitabh Varshney. Level of Detail for 3D Graphics. Elsevier Science Inc.,
New York, NY, USA, 2002.

[LWW06] Zhouchen Lin, Lifeng Wang, and Liang Wan. First order approximation for
texture filtering, 206.

[MCK08] Tobias Martin, Elaine Cohen, and Mike Kirby. Volumetric parameterization and
trivariate b-spline fitting using harmonic functions. In Proceedings of the 2008
ACM symposium on Solid and physical modeling, SPM ’08, pages 269–280, New
York, NY, USA, 2008. ACM.

[MG11] Duane Merrill and Andrew Grimshaw. High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU computing.
Parallel Processing Letters, 21(02):245–272, 2011.

[MKFC01] T. Michikawa, T. Kanai, M. Fujita, and H. Chiyokura. Multiresolution interpola-
tion meshes. In PG ’01, pages 60–69, 2001.

166 BIBLIOGRAPHY

[Moo02] Mootools. Polygon cruncher, 2002. http://www.mootools.com/.

[Mor01] Henry Moreton. Watertight tessellation using forward differencing. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-
ware, HWWS ’01, pages 25–32, New York, NY, USA, 2001. ACM.

[MPFJ99] Joel McCormack, Ronald Perry, Keith I. Farkas, and Norman P. Jouppi. Fe-
line: fast elliptical lines for anisotropic texture mapping. In Proceedings of the
26th annual conference on Computer graphics and interactive techniques, SIG-
GRAPH ’99, pages 243–250, New York, NY, USA, 1999. ACM Press/Addison-
Wesley Publishing Co.

[MYV93] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In Proc. of
SIGGRAPH-93: Computer Graphics, pages 27–34, Anaheim, CA, 1993.

[NH08] Diego Nehab and Hugues Hoppe. Random-access rendering of general vector
graphics. In ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia ’08, pages
135:1–135:10, New York, NY, USA, 2008. ACM.

[Nvi08] Nvidia. Geforce 8800 whitepaper, 2008.

[Nvi11] Nvidia. Fermi compute architecture whitepaper, 2011.

[Oli06] Gary Oliverio. Maya 8: Character Modeling. Jones & Bartlett Publishers, 2006.

[PBFJ05] Serban D. Porumbescu, Brian Budge, Louis Feng, and Kenneth I. Joy. Shell
maps. ACM Trans. Graph., 24(3):626–633, 2005.

[Pet57] W. W. Peterson. Addressing for random-access storage. IBM Journal of Research
and Development, 1(2):130–146, 1957.

[PG01] Mark Pauly and Markus Gross. Spectral processing of point-sampled geometry.
In Proceedings of the 28th annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’01, pages 379–386, New York, NY, USA, 2001.
ACM.

[PH03] Emil Praun and Hugues Hoppe. Spherical parametrization and remeshing. In
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 340–349, New York,
NY, USA, 2003. ACM.

[Pix10] Pixologic. Zbrush. http://www.pixologic.com/, 2010.

[PLB07] Zack Petroc, Kevin Lanning, and Timur Baysal. Character Modeling 2. Ballistic
Publishing, 2007.

[PPT+11] Daniele Panozzo, Enrico Puppo, Marco Tarini, Nico Pietroni, and Paolo
Cignoni. Automatic construction of adaptive quad-based subdivision surfaces
using fitmaps. IEEE Trans. Vis. and Comp. Graph., 17(10):1510–1520, october
2011.

[PR98] Jörg Peters and Ulrich Reif. Analysis of algorithms generalizing b-spline subdi-
vision. SIAM J. Numer. Anal., 35:728–748, April 1998.

BIBLIOGRAPHY 167

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Algo-
rithms, 51(2):122–144, 2004.

[PSBM07] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith Mascarenhas.
Robust on-line computation of reeb graphs: simplicity and speed. ACM Trans.
Graph., 26, July 2007.

[PSS01] E. Praun, W. Sweldens, and P. Schröder. Consistent mesh parameterizations. In
SIGGRAPH ’01, pages 179–184, 2001.

[PTSZ11] Nico Pietroni, Marco Tarini, Olga Sorkine, and Denis Zorin. Global parametriza-
tion of range image sets. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH ASIA), 30(6):149:1–149:10, 2011.

[Rad26] T. Radó. Aufgabe 41. Jahresbericht der Deutschen Mathematiker-Vereinigung,
35:49+, 1926.

[RB93] Jarek Rossignacand and Paul Borrel. Multi-resolution 3d approximations for
rendering complex scenes. In Modeling in Computer Graphics: Methods and
Applications, pages 455–465, 1993.

[RBW04] Ganesh Ramanarayanan, Kavita Bala, and Bruce Walter. Feature-based textures.
In Rendering Techniques, pages 265–274, 2004.

[RLD+12] Tim Reiner, Sylvain Lefebvre, Lorenz Deiner, Ismael Garcia, Bruno Jobard,
and Carsten Dachsbacher. A runtime cache for interactive procedural model-
ing. Computers and Graphics (Special Issue of Shape Modeling International),
36(3), 2012.

[RLL+06a] Nicolas Ray, Wan-Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. Periodic
global parameterization. ACM Trans. Graph., 25(4):1460–1485, 2006.

[RLL+06b] Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. Periodic
global parameterization. ACM Trans. Graph., 25:1460–1485, October 2006.

[RT98] Y. Rubner and C. Tomasi. Texture metrics. In Systems, Man, and Cybernet-
ics, 1998. 1998 IEEE International Conference on, volume 5, pages 4601 –4607
vol.5, oct 1998.

[Sag94] Hans Sagan. Space-Filling Curves. Springer, 1 edition, September 1994.

[Sam90] Hanan Samet. The design and analysis of spatial data structures. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1990.

[SBSCO06] Andrei Sharf, Marina Blumenkrants, Ariel Shamir, and Daniel Cohen-Or. Snap-
paste: an interactive technique for easy mesh composition. Vis. Comput., 22:835–
844, September 2006.

[Sch96] Jean E. Schweitzer. Analysis and application of subdivision surfaces, 1996.

[Sch97] R.R. Schaller. Moore’s law: past, present and future. Spectrum, IEEE, 34(6):52
–59, jun 1997.

168 BIBLIOGRAPHY

[SDZ+11] Christopher P. Stone, Earl P. N. Duque, Yao Zhang, David Car, John D. Owens,
and Roger L. Davis. Gpgpu parallel algorithms for structured-grid cfd codes.
In Proceedings of the 20th AIAA Computational Fluid Dynamics Conference,
number 2011-3221, June 2011.

[Sei91] Raimund Seidel. A simple and fast incremental randomized algorithm for com-
puting trapezoidal decompositions and for triangulating polygons. Comput.
Geom. Theory Appl, 1:51–64, 1991.

[SHG09] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting
algorithms for manycore gpus. Parallel and Distributed Processing Symposium,
International, 0:1–10, 2009.

[SLMB05] Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov.
Abf++: fast and robust angle based flattening. ACM Trans. Graph., 24(2):311–
330, 2005.

[SSGH01] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture
mapping progressive meshes. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’01, pages 409–416,
New York, NY, USA, 2001. ACM.

[SW08] Daniel Scherzer and Michael Wimmer. Frame sequential interpolation for dis-
crete level-of-detail rendering, June 2008.

[SWG+03] P. V. Sander, Z. J. Wood, S. J. Gortler, J. Snyder, and H. Hoppe. Multi-chart
geometry images. In SGP ’03: Proceedings of the 2003 Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pages 146–155. Eurographics
Association, 2003.

[SY97] R.M. Schoen and S.T. Yau. Lectures on harmonic maps. Conference proceedings
and lecture notes in geometry and topology. International Press, 1997.

[SZL92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation
of triangle meshes. SIGGRAPH Comput. Graph., 26(2):65–70, July 1992.

[SZS+08] Xin Sun, Kun Zhou, Eric Stollnitz, Jiaoying Shi, and Baining Guo. Interactive
relighting of dynamic refractive objects. ACM Trans. Graph., 27:35:1–35:9, Au-
gust 2008.

[Tat08] Natalya Tatarchuk. Advanced topics in GPU tessellation. Gamefest’08, 2008.

[TCS03] Marco Tarini, Paolo Cignoni, and Roberto Scopigno. Visibility based methods
and assessment for detail-recovery. In Proceedings of the 14th IEEE Visualiza-
tion 2003 (VIS’03), VIS ’03, pages 60–, Washington, DC, USA, 2003. IEEE
Computer Society.

[THCM04] Marco Tarini, Kai Hormann, Paolo Cignoni, and Claudio Montani. Polycube-
maps. In ACM SIGGRAPH 2004 Papers, SIGGRAPH ’04, pages 853–860, New
York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 169

[TPP+11] Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni.
Simple quad domains for field aligned mesh parametrization. ACM Transactions
on Graphics, Proceedings of SIGGRAPH Asia 2011, 30(6), 2011.

[TSS+11] Kenshi Takayama, Ryan Schmidt, Karan Singh, Takeo Igarashi, Tamy
Boubekeur, and Olga Sorkine. Geobrush: Interactive mesh geometry cloning.
Computer Graphics Forum (proceedings of EUROGRAPHICS), 30(2):613–622,
2011.

[Wei85] Kevin Weiler. Edge-based data structures for solid modeling in curved-surface
environments. IEEE Comput. Graph. Appl., 5:21–40, January 1985.

[WGTtY] Yalin Wang, Xianfeng Gu, Paul M. Thompson, and Shing tung Yau. 3d har-
monic mapping and tetrahedral meshing of brain imaging data. In Proc. Medical
Imaging Computing and Computer Assisted Intervention (MICCAI), St. Malo,
France, Sept. 26-30.

[WHL+07] Hongyu Wang, Ying He, Xin Li, Xianfeng Gu, and Hong Qin. Polycube splines.
In Proceedings of ACM symposium on Solid and Physical Modeling, pages 241–
251, 2007.

[Wik04] Wikipedia. Scratchpad memory, 2004.

[Wil83] Lance Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph., 17(3):1–
11, July 1983.

[Wil11] Andrew Willmott. Rapid simplification of multi-attribute meshes. In Proceedings
of the ACM SIGGRAPH Symposium on High Performance Graphics, HPG ’11,
pages 151–158, New York, NY, USA, 2011. ACM.

[WJH+08] Hongyu Wang, Miao Jin, Ying He, Xianfeng Gu, and Hong Qin. User-
controllable polycube map for manifold spline construction. In Proceedings of
ACM symposium on Solid and Physical Modeling, pages 397–404, 2008.

[WLL+11] Kexiang Wang, Xin Li, Bo Li, Huanhuan Xu, and Hong Qin. Restricted trivariate
polycube splines for volumetric data modeling. TVCG, page In Print, 2011.

[WPSAM10] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and An-
dreas Moshovos. Demystifying GPU microarchitecture through microbench-
marking. pages 235–246, March 2010.

[WYZ+11] Shenghua Wan, Zhao Yin, Kang Zhang, Hongchao Zhang, and Xin Li. A
topology-preserving optimization algorithm for polycube mapping. Computer
& Graphics, 35(3):639–649, 2011.

[XGH+11] Jiazhi Xia, Ismael Garcia, Ying He, Shi-Qing Xin, and Gustavo Patow. Editable
polycube map for gpu-based subdivision surfaces. In Symposium on Interactive
3D Graphics and Games, I3D ”11, pages 151–158, 2011.

[YLSL10] I-C. Yeh, C.-H. Lin, O. Sorkine, and T.-Y. Lee. Template-based 3d model fitting
using dual-domain relaxation. IEEE Trans. Vis. and Comp. Graph., accepted,
2010.

170 BIBLIOGRAPHY

[YZX+04a] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and
Heung-Yeung Shum. Mesh editing with poisson-based gradient field manipula-
tion. In SIGGRAPH ’04, pages 644–651, 2004.

[YZX+04b] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and
Heung-Yeung Shum. Mesh editing with poisson-based gradient field manipula-
tion. ACM Trans. Graph., 23:644–651, August 2004.

[ZGHG08] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Highly parallel surface
reconstruction, 2008.

[ZGHG11] Kun Zhou, Minmin Gong, Xin Huang, and Baining Guo. Data-parallel octrees
for surface reconstruction. IEEE Transactions on Visualization and Computer
Graphics, 17:669–681, May 2011.

[ZH99] Dongmei Zhang and Martial Hebert. Harmonic maps and their applications in
surface matching. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR ’99), volume 2, 1999.

[ZHWG08] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree con-
struction on graphics hardware. ACM Trans. Graph., 27:126:1–126:11, Decem-
ber 2008.

[ZS00] Denis Zorin and Peter Schröeder. Subdivision for modeling and animation. New
York, 98, 2000.

[ZSGS04] Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. Iso-charts:
stretch-driven mesh parameterization using spectral analysis. In Proceedings of
the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing,
SGP ’04, pages 45–54, New York, NY, USA, 2004. ACM.

	Abstract
	Resum
	Resumen
	Acknowledgments
	Publications
	Contents
	Chapter 1. Introduction
	1.1. Rendering strategies
	1.2. Spatial data organization and representation
	1.3. Parallel computing
	1.4. Problem statement
	1.5. Contributions
	1.6. Document organization

	Chapter 2. Background
	2.1. Digital surface representation
	2.2. Level-of-detail
	2.3. Real-time rendering
	2.4. Detail mapping data structures

	Chapter 3. Detail mapping and simplification
	3.1. Context: mesh parameterization and simplification
	3.2. Inverse Geometric Textures
	3.3. Applications
	3.4. Results
	3.5. Discussion and limitations
	3.6. Conclusions

	Chapter 4. Editable mapping and subdivision surfaces
	4.1. Context: mesh parameterization and subdivision surfaces
	4.2. Editable Polycube Map
	4.3. Applications
	4.4. Results and Discussion
	4.5. Conclusions

	Chapter 5. Coherent parallel hashing
	5.1. Context: parallel hashing
	5.2. Coherent parallel hashing
	5.3. Results
	5.4. Applications
	5.5. Discussion, limitations and future work
	5.6. Conclusion

	Chapter 6. Conclusions and future work
	6.1. Summary of contributions
	6.2. Perspectives and future work

	Bibliography

