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Several approaches of ataxonomic diversity have been classi-
cally used in ecology as an alternative to species diversity and pro-
vide additional information about the community structure
(Margalef 1991; Han 1998). Ataxonomic diversity can be calcu-
lated by classifying organisms by their biomass or size (Oindo et
al. 2001), their bio-optical properties (Li 1997), their trophic level
(Pianka 1974; Aoki and Mizushima 2001), or their ecological
strategies (Weithoff et al. 2001), what has been defined as func-
tional diversity (Hulot et al. 2000; Hooper et al. 2002; Petchey
and Gaston 2002). Shannon-Wiener index (Shannon and Weaver
1949; Pielou 1969) is the most widely used diversity parameter for

community studies. Body size is one of the most important attrib-
utes of an organism from an ecological and evolutionary point of
view (Werner and Gilliam 1984). Its importance has been widely
stressed (Strayer 1991; Rodríguez and Li 1994; Kerr and Dickie
2001; Marquet et al. 2005), and there are many works that
describe patterns in the size structure and its ecological relevance,
especially in pelagic marine ecosystems (e.g., Platt and Denman
1977; Platt et al. 1984; Rodríguez and Mullin 1986), but also in
marine benthic communities (e.g., Schwinghamer 1981; Duplisea
2000) and in continental waterbodies (e.g., Mittelbach 1981;
Gaedke 1992; Rasmussen 1993; Cohen et al. 2003; Basset et al.
2004). In most cases, these works analyze the shape of the bio-
mass size distribution in a log-log plot and its fit to a determinate
function, whether a negative slope straight line or other nonlin-
ear function. Adjustments of size distribution to nonlinear func-
tions in the log-log plot usually give better fit to size distribution
data (Gasol et al. 1991; Vidondo et al. 1997; Brucet et al. 2005),
but the ecological meaning of the parameters of such models of
distribution is normally difficult to interpret.
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Abstract
The most suitable method for estimation of size diversity is investigated. Size diversity is computed on the basis

of the Shannon diversity expression adapted for continuous variables, such as size. It takes the form of an integral
involving the probability density function (pdf) of the size of the individuals. Different approaches for the esti-
mation of pdf are compared: parametric methods, assuming that data come from a determinate family of pdfs, and
nonparametric methods, where pdf is estimated using some kind of local evaluation. Exponential, generalized
Pareto, normal, and log-normal distributions have been used to generate simulated samples using estimated
parameters from real samples. Nonparametric methods include discrete computation of data histograms based on
size intervals and continuous kernel estimation of pdf. Kernel approach gives accurate estimation of size diversity,
whilst parametric methods are only useful when the reference distribution have similar shape to the real one.
Special attention is given for data standardization. The division of data by the sample geometric mean is proposed
as the most suitable standardization method, which shows additional advantages: the same size diversity value is
obtained when using original size or log-transformed data, and size measurements with different dimensionality
(longitudes, areas, volumes or biomasses) may be immediately compared with the simple addition of ln k where k
is the dimensionality (1, 2, or 3, respectively). Thus, the kernel estimation, after data standardization by division
of sample geometric mean, arises as the most reliable and generalizable method of size diversity evaluation.
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Several investigators have used size diversity to describe the
shape of size distributions (Parsons 1969; Piontkovski and van
der Spoel 1998; Quiroga et al. 2005; Brucet et al. 2006; Ichi-
nokawa and Takahashi 2006). A size diversity measure gives a
unique value per size distribution and has the advantage of a
more intuitive interpretation of its ecological meaning, since
the concept of diversity is well established. However, as Ruiz
(1994) pointed out, a methodological problem emerges when
measuring size diversity by clustering the different body sizes
into size classes, because the division of a continuum variable
(size) into an arbitrarily selected number of size classes is
needed. As a result, different size diversity values for the same
community can be obtained depending on the number of
size intervals chosen. In order to overcome these problems,
Lurie and Wagensberg (1983, 1984) proposed a measure of size
diversity index suitable for continuous variables, parallel to
Shannon entropy used in information theory or species diver-
sity (e.g., Good 1953). This index is based on the probability
density function (pdf) of the size of individuals, and it takes
an integral form, better than the discrete summation used in
traditional diversity computations.

However, the difficulties of describing natural size distribu-
tions by means of a simple pdf are evident. Several authors
have modeled the relationship between size and abundance as
a consequence of allometry in physiological processes and in
competitive or predator-prey interactions (Platt and Denman
1977; Dickie et al. 1987; Thiebaux and Dickie 1993; Quiñones
1994; Han and Straskraba 1998), but discontinuities in this
parametric relationship are frequent and of great ecological
importance (Rodríguez 1994; Havlicek and Carpenter 2001).
Vidondo et al. (1997) also proposed the use of the Pareto dis-
tribution arguing that most distributions in the nature follow
this distribution, and this Pareto distribution has been used for
size diversity measurements (Brucet et al. 2006). However,
there is no reason to assume that the pdf of an actual size dis-
tribution always have to fit to a determinate parametric model.
As a consequence of these difficulties with the parametric
approach, some authors have proposed the use of a nonpara-
metric kernel estimation of the pdf, especially when they
investigate the existence of lumps or gaps in the size spectrum
(Havlicek and Carpenter 2001; Ruiz et al. 2002). Nonparamet-
ric approaches, such as the kernel estimation, have the advan-
tage that a whole functional expression of pdf is not required,
thus, being applicable for most size distributions.

The present goal is two fold. The first one is to propose a
suitable way to estimate size diversity adapted to a broad class
of pdfs. With the aim to obtain a general method for estima-
tion of size diversity, several parametric and nonparametric
approaches were tested using simulated samples. Their fit to
different size distributions found in the nature was also ana-
lyzed. The second objective is to define a normalization to
make the index of different samples and communities as com-
parable as possible. This is attained by a double standardiza-
tion: a first one to make the size-data adimensional, and a

second one to make size data in different dimensions (length,
weight, volume, etc.) comparable.

Materials and procedures
Shannon size diversity index—Let X be a random variable

representing the size of individuals, with pX(x) representing
its pdf. A sample from X is available and denoted by x1,
x2, …, xn. The goal is to estimate the Shannon diversity index
corresponding to pX(x) from the available sample. Shannon
entropy is to be used as a diversity index of sizes (Good 1953;
Lurie and Wagensberg 1983, 1984), and it is defined as

(1)

where the limits of the integral are due to the positive charac-
ter of the size X. From the mathematical point of view, work-
ing with logarithms in base 2 is uncomfortable, and natural
logarithms will be used instead in Eq. 1 to obtain the expres-
sion of diversity using natural logarithms μ(X) = ln 2 μ2(X).

There are several alternative methods to compute μ(X).
They can be classified into two groups: (A) Methods assuming
data coming from a parametric family of pdfs, pX(x|θ), where θ
denotes the parameters. These methods proceed to estimate θ
and, then, they obtain μ(X) corresponding to such a family
computing (Eq. 1), either numerically or analytically. Some
probability distributions have known diversity expressions
(e.g., Johnson 2004) and, in practice, some of these probabil-
ity distributions fit well size data (Vidondo et al. 1997). The
resulting expressions of μ(X) for each distribution are given
in Web Appendix A. (B) Methods in which no parametric
hypothesis on pX(x) is stated and the integral (Eq. 1) is esti-
mated using some kind of local evaluation of pX(x). They are
closely related to the density estimation methods, from the
simple but effective evaluation of a histogram, to more elabo-
rated kernel-based ones (e.g., Silverman 1986).

Methods in Group A seem appropriate whenever there is
some evidence of an adequate parametric family pX(x|θ), both
fitting the data and modeling the phenomenon. If these cir-
cumstances are not present, the statistical uncertainty in the
estimation of θ may be increased by the modeling uncertainty.
Methods in Group B are more flexible for large or small sam-
ples, but they are not able to take advantage of prior informa-
tion on the adequate model.

Although the allometric relationship between body size
and abundance is well-known, there is no strong reason to
assume a parametric family of distributions for sizes. Some
candidates, such as the Pareto distribution, have been used
and seem to fit data suitably (see examples in Vidondo et al.
1997). However, there is no theoretical reason to accept the
model. In fact, Pareto distribution has an unbounded support
in the positive real line, but the measured sizes are physically
bounded both by the measuring device and the nature of the
individuals. Because of the lack of evidence in favor of a para-
metric density model, the present study is centered on non-
parametric methods of Group B.

μ2 0
2( ) ( ) ( )X p x p x dxX X= −

+∞

∫ log
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Whenever sizes are assumed positive, the diversity integral
in Eq. 1 can be expressed in a logarithmic scale, and this is
often convenient both for numeric and analytic computa-
tions. Defining y = ln x, the diversity integral is

(2)

where, in both expressions pX(x) is the pdf of the size X. From
now on, both integrals in Eq. 2 are taken as a definition of μ(X).

A way to summarize Eq. 2 consists in defining the log-transformed
random variable Y = ln X whose pdf is .
Now, the diversity of X can be expressed as

(3)

where denotes the mean or expected value of the argu-
ment (see also Eq. 15). An important conclusion is that diver-
sity computed in the original scale and in the logarithmic
scale differ only in E[ln X]. This fact will be used to define a
proper normalization of data.

Nonparametric approaches: by octaves—The most popular
and immediate nonparametric method to estimate size
diversity is to compute a histogram of data based on octave
intervals, i.e., unitary intervals in the log2 scale for sizes
(Blanco et al. 1994). The estimated histogram is used as an
estimation of the pdf, and the diversity computation is then

(4)

where ν(ηk ) is the number of sample elements in the k-th
octave defined by the interval ηk = (2k–1,2k), and Δk is the
length of ηk; n denotes the number of data in the sample,
and the sum is extended to the octaves ηk such that ν(ηk ) is
non-null. Octaves are easily expressed in the logarithmic
scale because, taking log2, the octave is the interval

or, using natural logarithms .
This approach tries to solve a typical question when dealing
with nonparametric approaches based on the histogram: how
long and how many intervals have to be defined to approach
the diversity integral (Eq. 2). Equation 4 establishes a loga-
rithmic scale for sizes and, accordingly, the length of the
intervals increase exponentially with the size. Moreover, the
number of intervals appearing in Eq. 4 is limited to those
intervals with some data within them and is thus determined
by the sample.

Modified versions of this approach are found in literature,
and differences come from the scale and length of the inter-
vals and the method of interpolation of the histogram. For
instance, Eq. 4 corresponds to a constant interpolation of the
pdf within each octave but pdf can be interpolated linearly
(Ruiz 1994), intervals of equal length can be used, etc.

Nonparametric approaches: kernel estimation—Kernel esti-
mation techniques are used to estimate a pdf from a sample,
and they became standard two decades ago (e.g., Silverman

1986). A kernel function is essentially a pdf, usually sym-
metric, whose dispersion is controlled by a bandwidth
parameter. The estimator is a sum of kernel functions cen-
tered at the sample points. This gives a continuous estima-
tor of the pdf whose roughness is controlled by a bandwidth
parameter. Difficulties may arise when the sample space is
constrained to some interval, as in the case of positive sizes.
Certainly, the estimator of the pdf should vanish for nega-
tive values. A way to deal with positive sizes is to transform
the positive real line into the whole real line and then to
carry out the kernel estimation in the transformed space
(Bowman and Azzalini 1997). A back-transformation into
the positive real line provides an estimation in the original
support. Following these ideas, a first step is to transform
the available sample into the real line by a logarithmic
transformation y k = ln xk, k = 1, …, n.

There are many possible choices of the kernel function, but
a Gaussian pdf is a standard one. Since the density estimation
is carried out on the log-transformed data, there is no con-
straint on the support of the pdf and Gaussian kernel does not
produce any further problem. The standard Gaussian kernel
estimator is

(5)

where σ represents the bandwidth parameter. For positive val-
ues of x, the estimate of pX(x) is readily obtained

(6)

where the factor 1/x is due to the change of scale from X to Y.
The value of σ should be determined by some standard
method in kernel estimation. In this case, it can be taken as σ
= 1.06 SY/n

1/5 (Silverman, 1986, p. 45), where S2
Y is an estima-

tor of the variance of the transformed sample y k, k = 1, …, n.
This choice of sigma is optimum when estimating a normal
density, and it is assumed to be suitable for the present esti-
mation. Another standard choice of the bandwidth may be
σ = 0.9 AY/n

1/5 where AY is the minimum value of SY and the
Y-sample interquartile range over 1.34 (Silverman, 1986, p. 48).
This approach is sensible in case of heavily skewed or multi-
modal distributions. A natural estimator of diversity is
obtained substituting Eq. 5 in Eq. 3 or, alternatively, Eq. 6 in
Eq. 2. Although the mentioned choices of the bandwidth are
optimal with respect to some criteria when estimating the
probability density of Y, they may be sub-optimal for esti-
mating diversity. Further statistical studies should be per-
formed on this topic.

There are still several options to compute the so-obtained
integrals. Two of them are used here. A first one consists in a
numerical integration in the log-scale by the trapezoidal rule.
The first step is to define a long enough interval, (z0, zj), in the
y-axis such that pY( y) is almost null outside it; an equally
spaced sequence of points zj, j = 0,1,…,J, divide (z0, zj) into
subintervals and then the integral is approximated by
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(7)

where h is the length of the subintervals and should be small
enough to guarantee a reliable result. The right hand term in
Eq. 7, , is the average of the log-transformed sam-
ple and accounts for the term E[Y] in Eq. 3. Apparently, the
selection of the integration interval (z0, zj) and the number of
points J makes this approach quite unpractical. However, the
use of the log-scale allows selecting a very long interval and a
large number of points valid for most of the cases. Further crit-
icism can be stated on this kind of estimate because it relays
on the assumed accuracy of .

An interesting alternative is to approximate the diversity
integral Eq. 3 using the Monte Carlo approach (e.g., Robert
and Casella 2000). The basic principle of Monte Carlo meth-
ods is that an expected value of a random variable, for
instance E[Y ], can be estimated by an average of a simple sam-
ple from Y. This fact is frequently used in statistics to estimate
mean values. Moreover, the accuracy of the approach depends
on the sample size n, more precisely, the standard deviation of
the estimate decrease with n–1/2 as derived from the weak law
of the large numbers. In the case of diversity, the log-trans-
formed sample, y1,y2,…,yn, is available and is assumed to come
from the random variable Y. The diversity of Y is then
approached by

(8)

Accepting the kernel estimator in Eq. 5 as an adequate
estimator of pY(y), and substituting into Eq. 8, a new
estimator of μ(Y) is obtained. The expression of the estimator
of μ(Y ) is

(9)

where again estimates E[Y].
The most important difference between the integrated esti-

mator in Eq. 7 and the Monte Carlo approach 
in Eq. 9 is that the second one does not try to exploit the
shape of the estimated pdf (Eq. 5) using more integration
points than sample points so that the relevance of the pdf
interpolation is minimized.

Size diversity measurements in simulated samples—To com-
pare the size diversity values obtained by the different
approaches described before and to analyze the accuracy in
each case, a set of simulations has been carried out. Some stan-
dard probability distributions with known diversity (exponen-
tial, normal, log-normal and generalized Pareto; see Web
Appendix A) have been simulated for fixed values of their
parameters. For each distribution and value of parameters,
1000 simulated samples, 500 cases each, have been obtained
using the inverse cumulated probability distribution method
(Robert and Casella 2000). For each sample, eight size diversity
values have been computed, and they can be grouped into
three categories:

1. Theoretical size diversity, μexact, obtained from expres-
sions given in Appendix A and the value of the parameters
used to generate the sample,

2. Parametric estimations corresponding to the four dis-
tribution types tested (exponential, ; generalized Pareto,

; normal, ; log-normal, ). They are obtained esti-
mating parameters and, then, substituting in the theoretical
size diversity (Web Appendix A),

3. Nonparametric approaches consisting of three size
diversity values obtained from the corresponding nonpara-
metric procedure: Gaussian-Kernel estimation and Monte
Carlo integration (9), Gaussian-Kernel estimation and
trapezoidal integration (7), and simple integration by
octaves (4).

The comparison (Fig. 1) between μexact and the mean of the
parametric size diversity estimations coming from the related
1000 samples shows that, as expected, the mean does not dif-
fer from μexact (standard deviations range from 2.5 × 10–2 in
Fig. 1C to 4.54 × 10–1 in Fig. 1F), when the estimated distribu-
tion and that used to generate the samples are of the same
type. Size diversity values are also similar to μexact when the
estimated distributions have similar shape to the theoretical
one, but may differ substantially in other cases. Concerning
nonparametric approaches, mean values of are very sim-
ilar to μexact in all cases, being the differences between the
mean of the estimations and μexact always less than 15%,
except for the log-normal simulations (Fig. 1E, 1F), whose dif-
ferences may reach 70%. Diversity always gives values
slightly higher than . This fact may be caused by several
reasons, such as the biasing of the kernel-based estimator of
diversity. Moreover, , theoretically, is integrating over the
whole real line and in practice the integral is based only in the
values present in the sample. Finally, the integration by
octaves gives irregular results, being very similar to μexact

in some cases (Fig. 1A–F) but very different in other cases
(Fig. 1E,G,H). Standard deviations of estimated size diversities
are similar to the corresponding standard deviation when
using the simulated distribution in the corresponding para-
metric method. This suggests that deviations are mainly inher-
ent to the process of simulation and that the source of vari-
ability is not due to method of estimation.

Standardization of size diversity—Changes in size diversity
values caused by transformation of the variable are described
in Appendix B including shifting, scaling, truncation, and log
or power tranformations.

In order to compare diversities of populations with differ-
ent scales, a standardization of data is necessary. A first
approach to standardize data is to multiply data times a factor.
Let X be the reference size in the original scale and x a vector
containing a sample of X. A standardized variable Y may be
obtained scaling by a constant c, i.e., Y = X/c. The question is
to decide which is an appropriate value for c. Some approaches
have been used to this end. Standard ones are c = min [x], the
sample minimum; c = x–, the sample mean; or c = σX, the

μ̂oct

μ̂kerMC

μ̂kerMC

μ̂kerI

μ̂kerMC

μ̂kerMC

μ̂oct

μ̂kerI

μ̂kerMC

μ̂LNμ̂Nμ̂GPD

μ̂E

ˆ ( )μkerMC Xˆ ( )μkerI X

y

ˆ ( )
( )

μ
π σ σkerMC ln expX y

n n

y yk j
= − −

−⎛

⎝⎜
⎞

⎠

1 1

2

1

2

2

2 ⎟⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥==

∑∑
j

n

k

n

11

ˆ ( )p yY

ˆ ( )p yY

μ( ) ( ) ( ) ( )Y p y p y dy p Y
nY Y Y= − = − ⎡⎣ ⎤⎦ ≅ −

−∞

+∞

∫ ln E ln
1

lln p yY i

i

n

( )
=
∑

1

p̂Y

y n yk= − ∑1

ˆ ( ) ˆ ( ) ˆ ( ) ˆ (μkerI lnX
h

p z p z pY j Y j Y=
−

⎡⎣ ⎤⎦ +− −
1

2
1 1 zz p z yj Y j

j

J

) ˆ ( )ln⎡⎣ ⎤⎦{ } +
=
∑

1

Quintana et al. Size-diversity measurement

78



standard deviation. Platt and Denman (1977) proposed the
first one, c = min[x] for data whose abundance decrease with
size. However, the estimation of this minimum has an impor-
tant problem: the large variability of the minimum of a sam-
ple, especially in normal-shaped distributions or other ones
where small sizes are scarce. This may lead to very different
results even for samples from the same population. Alterna-
tively, the minimum may be determined by the characteristics
of the measuring device, in this case, comparisons of diversi-
ties coming from different devices may be affected by artifacts.

The option c = σX seems to be inadequate because σX par-
ticipate directly in the computation of the diversity and part
of this information may be lost in the standardization. For
instance, after this kind of standardization all normal pdfs
would correspond to size diversities equal to (1 + ln[2π])/2
(see Appendix A). The option c = x–, or even the division by the
sample median, can be accepted as candidates.

A typical statistical standardization includes a translation as
in Y = (X – mx)/ σX, where mX denotes the mean of X. This
option may be inconvenient when dealing with positive sizes,

because the standardized sample is not positive and the intrin-
sic lower limit, 0 in positive data, is then lost. Furthermore, this
standardization includes σX which seems again inappropriate.

The proposal is to standardize the data taking c = g(x), the
sample geometric mean of the positive data. This approach is
based on three criteria: (a) the natural scale of most positive
data; (b) the easy treatment and comparison of diversities cal-
culated on equivalent samples with different dimensionality
given in length, area, or volume; and (c) a technical property
that makes the calculation of diversity in ordinary and loga-
rithmic scales equivalent.

The first criterion (a) is that positive measurements are fre-
quently given in a relative scale. For instance, lengths of 1 μm
and 2 μm may be considered as one being the half of the other
one, whereas lengths of 100 μm and 101 μm are considered as
very similar. This claims for treating the data in logarithmic
scale. In these conditions, a center of the distribution of X is
exp(E[ln X]) (Pawlowsky-Glahn and Egozcue 2001), i.e., trans-
form the variable as Y = ln X, compute the mean of Y, E[Y],
and then back-transform it taking exponential. When evalu-
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Fig. 1. Comparison of the size diversity measurements, obtained using different approaches, for simulated distributions. Approaches are nonparamet-
ric kernel, integrated by the trapezoidal rule (Kerint = ) (Eq. 7) and using Monte Carlo (KerMC = ) (Eq. 9); discrete octaves model (Octave = )
(Eq. 4); parametric: exponential (Expon = ), generalized Pareto (Pareto = ), log-normal (LogNor = ), normal (Normal = ). For each pdf,
and for the 1000 simulated samples (500 cases), the mean value of the estimated diversity and a ± 2 standard deviations interval are represented. In
each panel, simulated distribution and the parameters used are shown. Horizontal line indicates the theoretical value of diversity ( ). Size-diversity
values computed using Pareto are less than 2 in G and less than –1 in H and are not represented.
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ating the center exp(E[ln X]) from a n-sample, x, the sample
geometric mean

g(x) (10)

is an appropriated estimator (Aitchison 1986).
Criterion (b) tries to homogenize the results of diversity

when computed from equivalent samples with different
dimensionality. For instance, let X be a random length, e.g., a
radius of a sphere, and let V be a scaled power of X, defined by
V = aXk, e.g., the volumen of a sphere a = 4π/3, k = 3. The rela-
tionship of the corresponding diversities is given in Eq. 16,

.

Assume that both variables, V and X, are divided by the
respective centers,

as corresponds to the proposed standardization. Taking into
account the scaling property of Eq. 14, the power transforma-
tion of variables (Eq. 16) and that

the relationship between the size diversities of the standard-
ized variables is obtained:

(11)

Equation 11 reveals that dimension of the measurements
only appears as a known additive constant, ln 2, ln 3 in case
of areas and volumes respectively, whereas the constant a does
not play any role. As a consequence of the standardization, no
reference to the moments of the variable, e.g., E[ln X], E[X],
appear in Eq. 11, and thus it is independent of the particular
scale or units in which the sample is given.

Criterion (c) is mainly of technical character. The standard-
ization by the geometric mean implies that the logarithm of
Y = X/exp(E[ln X]) has null mean, E[ln Y ] = 0. Due to the prop-
erty Eq. 15, the diversity of Y and its log-diversity are equal:
μ(Y) = μ(ln Y ). Again, this suggests all computation should be
carried out in log-scale.

From a theoretical point of view, the proposed standardiza-
tion can be carried out just taking logs of the sample and com-
puting the size diversity of the log-transformed sample; if desired,
subtraction (addition) of ln k reduces to one-dimensional
(k-dimensional) measurements. In fact, subtraction of the log-
arithmic mean is not necessary because a shifting does not
alter the diversity result (Eq. 13). However, the pdf of the log-
transformed data changes accordingly, and characteristics of
the estimation of these new pdfs may change, especially in the
case of parametric methods. In practice, the standardization is
adequately carried out following the steps: (1) purge null data
and compute the geometric mean of the sample using Eq. 10;
(2) divide the whole sample by the geometric mean; (3) com-

pute the size diversity using a suitable approach, e.g., Eq. 9; (4)
if necessary, add or subtract ln k to account for dimensional-
ity of data in agreement with Eq. 11.

Assessment
The assessment of size diversity measurements has been

carried out by measuring it in available size distributions of
natural samples. The size distributions of these natural sam-
ples have been analyzed in order to decide whether or not
they adjust to some parametric distribution models. Moreover,
the values of size diversity obtained for these natural samples
using the different parametric and nonparametric estimations
have been compared. For this comparison, the size distribu-
tions of five different communities of aquatic organisms have
been analyzed. Among them, there are remarkable differences
in size, sampling procedure, counting, and size measurement.
Samples of bacterioplankton, phytoplankton, zooplankton,
hypobenthic, and epibenthic aquatic invertebrates have been
selected, and the resulting values of size diversity have been
compared. Sample sites, all located in Girona (NE Spain),
include planktonic and hypobenthic organisms of two coastal
Mediterranean salt marshes (Empordà salt marshes and Baix
Ter salt marshes) and epibenthic organisms of one temporary
and groundwater flooded karstic pond (Espolla Pond).

Sampling procedure in natural samples—Bacterioplankton
and phytoplankton samples were taken monthly in a group of
brackish coastal lagoons in the Baix Ter salt marshes. Bacterio-
and phytoplankton samples were counted using a Facscalibur
flow cytometer. Samples were filtered through 50 µm mesh,
fixed with 1% parafomaldehyde and 0.05% glutaraldehyde
(final concentration), deep frozen in liquid nitrogen, and
stored frozen at –20°C. The transformation of the forward
scatter (FSC) signals of the flow cytometer to cell volume was
carried out through a calibration curve as described in López-
Flores et al. (2006). Bacterial biomass estimations were per-
formed following Gasol et al. (2000). Zooplankton samples
were randomly selected from a weekly frequency study in sev-
eral brackish water basins (permanent and temporary) of the
Empordà salt marshes. Each zooplankton sample was taken
from 4 L filtered 53 μm water, at a depth of 15–20 cm, and was
preserved in situ in 4% formalin. Hypobenthic samples were
also taken in the same basins using 5.2 cm diameter cores
(5 cm depth) and sieved through 300 and 100 μm mesh-size
sieves. Epibenthic organisms were sampled weekly during 1
hydroperiod, which occurred between December 1996 and
March 1997 in a temporary fishless karstic pond (Espolla
Pond). Seven 20 m transects for each sample were performed
using a modified Elster beam trawl (opening of 50 × 30 cm2

and a mesh size of 250 μm) that was dragged the length of the
transect. Samples were preserved in situ with 4% formalin.
Zooplankton, hypobenthic, and epibenthic invertebrate bio-
mass (dry mass) were estimated from length or biovolume
using existing equations for microinvertebrates and macroin-
vertebrates. More details on sampling procedure, references
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used for biomass estimations, and ecological characteristics of
waterbodies sampled are found in López-Flores et al. (2006) for
bacterio- and phytoplankton, Brucet et al. (2005) for zoo-
plankton, Gascón et al. (2005) for hypobenthic invertebrates,
and Boix et al. (2004) for epibenthic invertebrates.

Size distributions in natural samples—Size distributions found
in natural samples analyzed were very variable as is shown in
examples of Fig. 2. Most found histograms were unimodal and
had more or less symmetric shape (see examples of these normal-
shaped distributions in Figs. 2B, 2C, and 2G). Some histograms
had the mode displaced to the small sizes, resembling exponen-
tial-shaped distributions (Figs. 2A and 2C), whilst others had the
mode displaced to great sizes, and closer to a generalized Pareto
distribution (Fig. 2D). Bimodal histograms were also present. In
some cases, such as in the epibenthic distributions, the modes
found coincided with the presence of organsims of two different
functional groups (Fig. 2J), but also bimodal distributions were
found in intraguild size distributions, as is the case of zooplank-
ton distributions of Fig. 2E. Irregular histograms were also fre-
quent (Figs. 2F, 2H, and 2I). Ecological relevance of these irregu-
larities has been described elsewhere (Boix et al. 2004; Brucet et
al. 2006; López-Flores et al. 2006).

Goodness-of-fit of the parametric distributions considered
(normal, N; exponential, E; log-normal, LN; and generalized
Pareto, GPD) to the samples have been tested using the
Kolmogorov-Smirnov (K-S) procedure (e.g., Rohatgi 1976). All
epibenthic and hypobenthic size samples were rejected (p < 0.01)
to be distributed as any hypothetical distribution. Adjustment

to a log-normal distribution could not be discarded in 7.1% of
zooplankton samples ( p > 0.05). The K-S results depended on
the extension of size-sample considered. For example, the per-
centage of phytoplankton samples that could not be discarded
to fit a log-normal distribution increases from 25%, when
1000 individuals were sized, to 66.7%, when individuals sized
were only 100 (Table 1). Consequently, there is no reason, nei-
ther theoretical nor empirical, to affirm that size distributions
follow a determinate parametric pdf.

Size diversity measurements of natural samples—Standardized
size diversity values obtained for the different size distribu-
tion types are compared in Table 2. Bacterioplankton size dis-
tributions showed significantly lower values of when
compared with those of the other size distribution types ana-
lyzed, since size ranges of bacterioplankton distributions
were very small. On the other hand, values of
hypobenthic invertebrate distributions, whose size range was
the largest, were significantly higher. No significant differ-
ences were found in size diversity values of phytoplankton,
zooplankton, and epibenthos distributions, although their
size ranges differed strongly (Table 2). Thus, differences in
size diversity were not only attributable to differences in size
range, but also to the relative abundance of sizes, as it is
inherent to the Shannon-Wiener expression. Further discus-
sions of the ecological meaning of the variation of size diver-
sity in the zooplankton community (computed using a para-
metric approach) are found in Brucet et al. (2006) and
Badosa et al. (2007).

μ̂kerMC

μ̂kerMC
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Fig. 2. Examples of size distributions in natural samples. Histograms are given in absolute frequency (vertical axes).



Figure 3 shows the comparison, in all these natural sam-
ples, of the size diversity values obtained by the kernel
Monte Carlo approach ( ) with those size diversity val-
ues obtained with other approaches tested: the log-normal,
the exponential, and the octave approaches ( , , and ).
The discrete approach of octaves gave very similar size diver-
sity values to the kernel-MC approach (Fig. 3A), except when
size diversities were close to 0. In these cases, where sizes
strongly accumulate close to a determinate size, a discrete
approach will always overestimate the size diversity. In most
of cases, the obtained values of were also similar, but
slightly higher, than (Fig. 3B). These lower values of

may be a consequence of the integration limited to the

values in sample. Although K-S values suggest that most of
the size distributions of natural samples do not fit to any of
the probability density functions tested (see Table 1), differ-
ences in and were appreciable only when size dis-
tributions strongly differed from a log-normal distribution
(Fig. 3B). The exponential approach gave more unsatisfac-
tory results. values generally were higher than , and
there are a lot of cases where strongly differed from 
(Fig. 3C). These differences can be attributed to the fact that
the number of size distributions that strongly differ from an
exponential function were especially high (see Fig. 1 and
Table 1). It might be concluded that the different approaches
give different results of size diversity only when the shape of

μ̂kerMCμ̂E

μ̂kerMCμ̂E

μ̂kerMCμ̂LN

μ̂kerMC

μ̂kerMC

μ̂LN

μ̂octμ̂Eμ̂LN

μ̂kerMC
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Table 1. Kolmogorov-Smirnov goodness-of-fit test results for natural samples

Samples n K-S E N LN GPD None

2000 ** 100 100 100 100

Epibenthos 15 to * 0 0 0 0 100

105 + 0 0 0 0

112 ** 100 100 100 100

Hypobenthos 14 to * 0 0 0 0 100

13776 + 0 0 0 0

63 ** 100 95.2 85.7 100

Zooplankton 42 to * 0 2.4 7.1 0 81.0

531 + 0 2.4 7.1 0

** 100 100 66.7 100

Phytoplankton 24 1000 * 0 0 8.3 0 66.7

+ 0 0 25.0 0

** 83.3 75.0 25.0 79.2

Phytoplankton 24 100 * 8.3 12.5 8.3 16.7 16.7

+ 8.3 12.5 66.7 4.2

** 100 100 83.3 100

Bacterioplankton 24 1000 * 0 0 16.7 0 83.3

+ 0 0 0 0

** 100 50.0 20.8 100

Bacterioplankton 24 100 * 0 33.3 8.3 0 20.8

+ 0 16.7 70.8 0

Parametric distributions tested: exponential, E; normal, N; log-normal, LN; and generalized Pareto, GPD. P values are classified into three groups: **p < 0.01;
*0.01< p < 0.05; +p > 0.05. Number of samples is given in % over the total number specified in Samples. Under None, the number (%) of samples for
which all tested distribution were rejected at p > 0.05 significance.

Table 2. Ranges (original and standardized after division by the geometric mean) and standardized diversity index (mean and
standard deviation over a number of samples)

Size range Std. size range μkerMC

Samples (min, max) Units (min, max) (mean, SD*)

Bacterioplankton 24 8.1 × 10–3, 6.5 × 10–1 μm3, biovolume 0.3, 32 0.61 (a), 0.47

Phytoplankton 24 1.6 × 10–1, 4.9 × 103 μm3, biovolume 2.1 × 10–2, 6.1 × 102 1.58 (b), 0.35

Zooplankton 42 3.1 × 10–4, 2.1 × 102 μg, dry weight 7.1 × 10–3, 4.0 × 103 1.49 (b), 0.52

Hypobenthos 14 2.6 × 10–4, 1.3 × 105 μg, dry weight 2.5 × 10–4, 1.2·105 2.53 (c), 0.38

Epibenthos 15 1.0 × 10–3, 9.0 × 102 mg, dry weight 4.3 × 10–2, 9.8 × 104 1.35 (b), 0.63

Results of µkerMC followed by the same letter are not significantly different (p < 0.05), but differ if they are followed by different letter.
*SD, standard deviation



the natural size distribution is strongly different than that of
the parametric pdf used.

Discussion
A nonparametric approach appears to be more suitable

than parametric approaches for size diversity estimations in
most types of natural samples. This is due to the fact that most
size distributions observed in nature do not fit available para-
metric families. Although some processes or some generalities

in size distributions can be well modeled (Platt and Denman
1977; Dickie et al. 1987; Thiebaux and Dickie 1993; Quiñones
1994; Han and Straskraba 1998), there is no evidence that any
parametric family appropriately models all phenomena affect-
ing size distributions, such as the combined effects of size
based allometric growth with predatory and competitive inter-
actions. Irregularities in density, such as gaps or dumps, are
also relevant in the study of size distributions (Rodríguez 1994)
but neglected when a parametric approach is used. The kernel
approach provides a universal method for the estimation of
the size diversity of size distributions found in natural sam-
ples, since it gives accurate estimations of size diversity for all
the probability distributions tested. Furthermore, it is applica-
ble to all distribution types, even if they do not fit to any
parametric distribution, such as multimodal distributions
(Havlicek and Carpenter 2001; Ruiz et al. 2002).

The standardization by means of the division by the geo-
metric mean have several advantages when compared with
other standardization methods: the estimation of the geomet-
ric mean is always more robust than the estimation of the
minimum, the same size diversity values were obtained when
using original size data or data log transformed and, finally
and importantly, samples where size were measured with dif-
ferent dimensionality (longitudes, areas, volumes, or bio-
masses) may be immediately compared, by the simple addi-
tion of ln k, where k is the dimension used. This makes the
results independent from the measuring method used, with
the consequent advantages for data comparison and for fur-
ther analysis of regularities in different ecosystems.

The most frequently used methodology in studies related to
size distributions is the normalized biomass size spectrum
(NBSS), where organism abundances or biomass are plotted in
front of their size (Blanco et al. 1994). The resulting plot, in
double logarithmic scale, is a straight line with a negative
slope b with a value close to –1. Many works analyzed the vari-
ation of this slope and its ecological relevance (Rodríguez and
Mullin 1986; Rodríguez et al. 1987; Gaedke 1992; Quintana et
al. 2002). Since a straight line in a log-log plot may be mod-
eled as an exponential-shaped pdf, the negative slope b of the
NBSS may be easily related to the size diversity. Thus, the size
diversity gives a more general theoretical context, within
which the discussion related to the slope of the NBSS and its
variations is a particular case. Furthermore, some authors
pointed out that some nonlinear parametric models give bet-
ter fits to size distributions in natural samples than the NBSS
straight line (Gasol et al. 1991; Vidondo et al. 1997; Brucet et
al. 2005). However, these nonlinear models have the disad-
vantage that the ecological meaning of the parameters that
define the model is difficult to interpret. The size diversity
gives a unique value per size distribution, which integrates the
amplitude of the size range and the evenness, that is, the rel-
ative distribution of sizes along the size range, in the same way
that Shannon diversity integrates species composition and
species relative abundances.
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Fig. 3. Comparison of the size diversity values in natural samples. The
kernel-Monte Carlo approach (KernelMC = ) is compared with the
discrete octave (Octave = ), parametric log-normal (LogNor = ),
and exponential (Expon = ) approaches. The straight line represents
equal values of the compared estimations. Filled points with capital letters
indicate size samples shown in Fig. 2.
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The Shannon species diversity is a universal tool in studies
in community structure based on the analysis of species com-
position and its variations. However, this traditional species-
based approach may fail when the correct determination of all
species found is not easy, such as in the case of studies dealing
with phytoplankton, especially if they include nanoplankters
and picoplankters. Modern techniques in phytoplankton
counting, such as flow cytometry, provide accurate informa-
tion of cells counting and its size, but not on species compo-
sition. It is also difficult to obtain an accurate species diversity
measure in the case of some invertebrate communities domi-
nated by hard to determine larval stages, such as naupliar
stages of copepods, which in most cases have been opera-
tionally ignored (see Hopcroft et al. 1998, and references
therein), although they dominate most aquatic communities
(Hopcroft et al. 2001). These problems might be solved by
using a functional approach which classifies organisms either
by trophic levels (McQueen et al. 1986) or by trophic guilds
(e.g., Cohen et al. 1993; Yodzis 1993). This functional
approach provides important information about the food web
structure (Gaedke 1995) and is especially useful for macroe-
cology studies (Brown 1995) or studies dealing with the whole
aquatic organisms (e.g., from bacteria to fishes).

Size diversity provides a useful tool for the study of size-
structured communities (Werner and Gilliam 1984), that is,
those communities where size plays an important role in their
ecological interactions and where the traditional taxonomic
or functional approaches may be not suitable. Two cases, very
commonly found in aquatic ecology fit with this: 1) when sev-
eral species with a similar trophic role may coexist and their
competitive interactions are size dependent. This is the case of
many phytoplankton communities, where competition for
nutrient uptake is strongly related to size (Malone 1980; Har-
rison and Wood 1988; Armstrong 2003; Irwin et al. 2006), and
2) when one species undergo ontogenetic shifts in food or
habitat use (Werner and Gilliam 1984; Armsby and Tisch
2006). Gradual changes on trophic niche along ontogeny
have been described for many copepod species (Mullin and
Brooks 1967; Paffenhöfer 1971; Gophen 1977; Poulet 1977;
Hansen et al. 1994). Furthermore, studies of zooplankton
communities show that size diversity and species diversity fol-
low different patterns along succession (Brucet et al. 2006).
Further analysis on the ecological relevance of these differ-
ences appears to be an interesting goal in theoretical ecology.
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