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Dins del grup mantindre molts amics i companys, amb els que he pas-
sat molts grans moments: pelegrinatges IQC, congressos, cremats o
les JODETE; i bon moments al despatx del parc i al 177. Són uns
7 anys des de el primer dia que vaig entrar al 166, amb un Saboo a
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Summary of the thesis

Photochemical processes are not unusual cases in chemistry. For ex-
ample, there are several photo-processes crucial for life, such as the
vision mechanism.18,19 However, they and ground state (GS) processes
have substantial differences in their studies and applications at the the-
oretical level. On the one hand, apart from the typical critical points
for analysing the Potential Energy Surface (PES) in GS, such as min-
ima or Transition state (TS), the excited state (ES) PES study has
Conical Intersections (CIs), structures of the system where the energy
difference between two or more states is zero and, so, the PES are
touching. The radiationless transition in these points has a partic-
ularly large interconversion rate between electronic states. However,
CIs are not isolated points in PES, they form intersection seams that
retained the the degeneration, a subspace inside the PES. Therefore,
one way to analyse and study the seam is to find the minimum energy
point, MECI. MECI is included in the set of critical points of ES PES
studies. However, MECIs are not intuitive molecular structures. For
this reason, optimization algorithms are necessary for finding them.
There are several algorithms,46–50 divided in three groups according
to their main ideas. The algorithms based on projected gradient have
a good efficiency and are easy to implement. For this reason, the
Composed Gradient (CG)48 algorithm is the most used algorithm for
finding MECI. However, CG has problems to retain the degeneracy
when it is reached. For this reason, Sicilia and co-workers49 proposed
a new projected gradient algorithms, composed steps (CS), for im-
proving the stability in the seam.
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In this thesis, a new projected gradient algorithm that improves the
approach to the seam has been proposed: Double Newton-Raphson
(DNR). Its step is the sum of two Newton-Raphson optimizations to
improve the approach to the seam and retain the degeneracy correctly.
DNR and the other projected gradient algorithms, CG and CG-CS,
have been implemented in the Gaussian program and tested with a
set of eleven molecules. DNR obtains, in average, less optimizations
steps and it reaches the seam earlier.
Clearly, finding the seam is fundamental in ES PES studies of photo-
processes. The ES PES is usually obtained with fully-quantum calcu-
lation. However, large systems, such as most of biological ones, are out
of reach for ab initio calculations. In this large system, the ONIOM
scheme57–62 can obtain accurate results with low computational time.
The ONIOM scheme combines two or more levels of calculation in the
same system. The system is separated into two or more layers, where
one is calculated with a high level calculation, known as the model
system, and the rest with the cheaper one. Bearpark and co-workers
adapted the CG algorithm in the ONIOM scheme.72

In this thesis, all projected gradient algorithms have been implemented
inside ME-ONIOM scheme. The implementation is done in the Gaus-
sian program. The algorithms are tested with a systematic set of 18
molecules. However, in this case, the three algorithms obtain the same
efficiency because DNR presents a problem in some ONIOM cases with
bulky substituents. To show the potential of the MECI ONIOM al-
gorithms, the MECI and minima of the ground and excited state of
diphenyl dibenzofulvene (DPDBF)73 inside its own crystal are calcu-
lated. DPDBF is an interesting molecule because it shows different
relaxation behaviour in solution and in crystal. Calculations were done
in two kind of environment: one where the crystal that surrounds the
model is completely frozen, and other where a layer of eleven molecules
that surround the model are free to move. The results show the ex-
pected relation between the MECI and the Frank-Condon point and,
also, small differences between the models related with the sterical
effects of the free layer.
Proposing new strategies is one of the main roles of the theoreti-
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cal chemistry. Using previous studies of the PES, chemists can pro-
pose new strategies for new challenges, such as how to control photo-
processes. In recent years, the control was achieved using non-resonant
electric fields because they shift the PES (Stark effect).74,75 The in-
tense fields of electromagnetic radiation can obtain relevant effects in
chemistry. Using these fields to control photoprocesses is known as
non-resonant dynamic Stark effect (NRDSE) control. Photoprocesses
of different diatomic molecules74,76–79 and polyatomic molecules80,81

have been controlled with NRDSE.
In this thesis, the control of fulvene ES lifetime with NRDSE has
been simulated with quantum molecular dynamics with a two states
and four-dimensional model. Fulvene is a cyclic hydrocarbon with an
exocyclic double bond that can rotate in ES. However, the planar CI is
the main deactivation pathway because the rotation modes need more
time to be activated. The electric field shifts the energy of the planar
CI, and it becomes non-energy-accessible with field intensities larger
than 0.032 a.u.. The simulations with a static field show that the ES
lifetime is increased to 40 fs with 0.04 a.u. of field intensity. The sim-
ulations with NRDSE control (where the field change with the time),
with two lasers, one resonant and other non-resonant, show that the
control is achieved when the field intensity is 0.08 a.u..
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Resum de la tesis

Els processos fotoqúımics no són casos inusuals en la qúımica. Per ex-
emple, hi ha diversos foto-processos crucials per la vida com el mecan-
isme de la visió.18,19 Tot i aix́ı, els foto-processos i els processos en
l’estat fonamental (Ground State - GS) tenen algunes diferencies en
els seus estudies i aplicacions a nivell teòric. Per una banda, l’estudi
de les corbes d’energia potencial (Potential Energy Surface - PES) del
estats excitats (Excited State - ES) no només es centra en els t́ıpics
punts critics de les PES del GS si no que també s’estudia les intersec-
cions còniques (Conical intersctions – CI), estructures on la diferencia
entre les energies de dos o més estats és zero i, per tant, les PES es
toquen. Les CI són casos particulars on les transicions sense radiació
tenen un ràtio d’interconversió entre estats electrònics molt elevada.
No obstant, les CI no són punts äıllats en les PES, grans interseccions
multidimensionals on les PES es toques són formades, al llarg de les
quals la degeneració de l’energia es manté. D’aquesta manera, una
manera d’estudiar aquest espai és buscant el punt de mı́nima ener-
gia, MECI. No obstant, els MECI no són estructures intüıtives. Per
aquesta raó, els algoritmes d’optimització són necessaris per trobar-
les. Hi ha diversos algoritmes,46–50 dividits en tres grups segons la idea
en el qual estan basats. Els algoritmes basats en el gradient projectat
tenen una bona eficiència i són fàcils d’implementar. Per aquest motiu,
l’algoritme del gradient compost (CG)48 és el més utilitzat per buscar
el MECI. Tot i aix́ı, CG té problemes per mantenir la degeneració
durant l’optimització. Per aquest motiu, Sicilia i col·laboradors van
proposar un nou algoritme, composed steps(CS),49 per tal de millorar

5
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l’estabilitat.
En aquesta tesis, un nou algoritme basat en el gradient projectat ha
sigut proposat per tal de millorar l’aproximació a l’intersecció: el Dou-
ble Newton-Raphson (DNR). El pas del DNR és la suma de dos passos
Newton-Raphson per tal de millorar l’aproximació a la degeneració i
per mantenir-la correctament. DNR ha estat implementat en el pro-
grama Gaussian i ha estat testat amb un conjunt de MECI coneguts,
juntament amb la resta de algoritmes basats en el gradient projectat,
CG i CG-CS. DNR obté, de mitjana, menys passos d’optimització i
arriba a la degeneració abans.
Clarament, trobar la intersecció es fonamental per l’estudi de la PES
del ES. Les energies del estat excitat bàsicament s’obtenen amb càlculs
purament quàntics. Tot i aix́ı, sistemes grans, com els biològics, es-
tan fora del abast dels càlculs ab initio. Per sistemes grans, el es-
quema ONIOM57–62 pot obtenir resultats prou acurats amb baixos
costos computacionals. L’ONIOM combina dos o més nivells de calcul
en un mateix sistema. El sistema es separat en dos o més parts, on
una és calculada amb un mètode de calcul d’alt nivell, coneguda com
a model, i la resta amb mètodes de calcul més barats. Bearpark i
colaboradors van adaptar el algoritme CG al esquema ONIOM.72

En aquesta tesis, tots els algoritmes basats en el gradient projectat
han sigut implementats en l’esquema ME-ONIOM, dins del programa
Gaussian. Els algoritmes han estat provants amb un test format per 18
molècules. En aquest cas, els tres algoritmes donen mitjanes molt sem-
blants perquè el DNR presenta un problema en alguns casos ONIOM
amb substituents voluminosos. Per mostrar el potencial d’aquesta im-
plementació dels algoritmes per buscar el MECI dins del ONIOM, els
punts cŕıtics del diphenyl dibenzoo-fulvene (DPDBF) són calculats
dins del seu propi cristall. El DPDBF és un cas interessant perquè la
molècula presenta un comportament diferent en forma de crystall que
en solució.73 Els càlculs s’han fet amb dos tipus diferents de entorn:
un on el cristall esta completament congelat i un altre on una capa al
voltant del model s’ha deixat lliure. Els resultats són els esperats amb
relació el MECI i hi ha petites diferencies entre els models d’entorn
relacionades amb els efectes estèrics.
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Proposar noves estratègies és un dels principals rols de la qúımica
teòrica. Utilitzant estudis previs de la PES, els qúımics poden pro-
posar noves estratègies con ara controlar foto-processos. En els últims
anys, s’ha aconseguit controlar sistemes utilitzant camps electrònics
no ressonants, que modifiquen la PES (efecte Stark).74,75 La intensi-
tat de la radiació electromagnètica pot obtenir efectes a nivell qúımic.
Utilitzar el camp elèctric de la radiació pel control és conegut com
control non-resonant dynamic Stark effect (NRDSE). Foto-processos
de diferents molècules diatòmiques74,76–79 i poliatòmiques80,81 han es-
tat controlats amb NRDSE.
En aquesta tesis, un control del temps de vida del ES del fulvè ha
sigut simulat amb dinàmiques a nivell quàntic, on un model de dos
estats i quatre dimensions ha estat usat. El fulvè és un hidrocarbur
ćıclic amb un enllaç doble exterior al cicle que pot rotar en el ES. Tot
i aix́ı, el camı́ de desactivació principal del ES és a traves de la CI
plana perquè la rotació necessita un temps per ser activada. El camp
elèctric pot desplaçar l’energia de CI plana i fer-la inaccessible pel sis-
tema, en intensitats superiors a 0,032 a.u. Les simulacions amb camps
estàtics mostren com el temps de vida del estat excitat augmenta dels
10 fs als 40 fs. El control amb NRDSE (camp dinàmic), prodüıt amb
dos làsers, on un és ressonant i l’altre és no ressonant, mostre que el
control pot ser aconseguit amb camps d’intensitat 0,08 a.u..
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Resumen de la tesis

Los procesos fotoqúımicos no son casos inusuales en la qúımica. Por
ejemplo, hay diversos foto-procesos cruciales por la vida como el mecan-
ismo de la visión. Aún aśı, los foto-procesos y los procesos en los
estado fundamental (Ground State - GS) tienen algunas diferencias
en los sus estudios y aplicaciones a nivel teórico. Por un lado, las
superficies de enerǵıa potencial (Potential Energy Surface - PES) del
estado excitado (Excited State - ES) no sólo tiene los t́ıpicos puntos
cŕıticos de las PES del GS si no que también tiene las intersecciones
cónicas (Conical Intersctions – CI), estructuras donde la diferencia en-
erǵıa entre dos o más estados electrónicos es cero y sus PES se tocan.
Las CI son casos particulares de transiciones sin radiación: tienen un
alta tasa de interconversión entre estados electrónicos. No obstante,
las CI no son puntos aislados en las PES, grandes intersecciones mul-
tidimensionales donde las PES se tocan son formadas, al largo de las
cuales la degeneración de la enerǵıa se mantiene. De este modo, una
manera de estudiar este espacio es buscando el punto de mı́nima en-
erǵıa, MECI. No obstante, los MECI no son estructuras intuitivas.
Por esta razón, algoritmos de optimización son necesarios para encon-
trarlas. Hay varios algoritmos, divididos en 3 grupos según la idea en
la cual están basados. Los algoritmos basados en el gradiente proyec-
tado tienen una buena eficiencia y son fáciles de implementar. Por este
motivo, el algoritmo del gradiente compuesto (CG) es el más utilizado
para buscar el MECI. Aún aśı, CG tiene problemas para mantener
la degeneración durante la optimización. Por este motivo, Fabrizio y
colaboradores propusieron un nuevo algoritmo, Composed Steps(CS),

9
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por tal de mejorar la estabilidad.
En esta tesis, un nuevo algoritmo basado en el gradiente proyectado ha
sido planteado para mejorar la aproximación a la intersección: el Dou-
ble Newton-Raphson (DNR). El paso del DNR es la suma de dos pa-
sos Newton-Raphson para mejorar la aproximación a la degeneración
y para mantenerla correctamente. DNR ha sido implementado en el
programa Gaussian y ha sido testado con un conjunto de MECI cono-
cidos, junto con el resto de algoritmos basados en el gradiente proyec-
tado, CG y CG-CS. DNR obtiene las mejores medias en el número de
ciclos de optimización y también llega a la degeneración antes y con
una mejor enerǵıa.
Claramente, encontrar la intersección es fundamental para el estudio
de la PES del ES. Las enerǵıas del estado excitado básicamente se ob-
tienen con cálculos puramente cuánticos. Aún aśı, sistemas grandes,
como los biológicos, están fuera del alcance de los cálculos ab initio.
Para sistemas grandes, el esquema ONIOM puede obtener resultados
bastante precisos con bajos costes computacionales. El ONIOM com-
bina dos o más niveles de calculo en un mismo sistema. El sistema es
separado en dos o más partes, donde una es calculada con un método
de calculo de alto nivel, conocida como modelo, y el resto con métodos
de calculo más baratos. Bearpark y colaboradores adaptaron el algo-
ritmo CG al esquema ONIOM.
En esta tesis, todos los algoritmos basados en el gradiente proyectado
han sido implementados en el esquema ME-ONIOM, dentro del pro-
grama Gaussian. Los algoritmos son probados con un test formado por
18 moléculas. En este caso, los tres algoritmos dan medias muy pare-
cidas porque el DNR presenta un problema en algunos casos ONIOM
con sustituyentes voluminosos. Para mostrar el potencial de esta im-
plementación de algoritmos para buscar el MECI dentro del esquema
ONIOM, los puntos cŕıticos del diphenyl dibenzoo-fulvene (DPDBF)
son calculados dentro de su propio cristal. El DPDBF es un caso in-
teresante porque la molécula presenta un comportamiento diferente
en solido que en solución. Los cálculos se han hecho con dos tipos
diferentes de sistema: uno donde el cristal esta completamente conge-
lado y otro donde una capa alrededor del modelo se ha dejado libre.
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Los resultados son los esperados con relación al MECI y hay pequeñas
diferencias entre los modelos relacionadas con los efectos estèricos.
Proponer nuevas estrategias es uno de los principales roles de la qúımica
teórica. Utilizando estudios de la PES, los qúımicos pueden proponer
nuevas estrategias como controlar foto-procesos. En los últimos años,
se ha conseguido controlar sistemas utilizando campos electrónicos no
resonantes, que modifican la PES (efecto Stark). La intensidad de
la radiación electromagnética puede obtener efectos a nivel qúımico.
Usar el campo eléctrico de la radiación para controlar es conocido como
control non-resonant dynamic Stark effect (NRDSE). Foto-procesos de
diferentes moléculas diatómicas y poliatómicas ha sido controlada con
NRDSE.
En esta tesis, un control de la foto-rotación del fulveno ha sido simu-
lado con dinámicas a nivel cuántico, donde un modelo de dos estados
y cuatro dimensiones ha sido usado. El fulveno es un hidrocarburo
ćıclico con un enlace doble externo al ciclo que puede rotar en el ES.
Aún aśı, el principal camino de la desactivación del ES es a trabes de
la CI plana porque la rotación necesita un tiempo para ser activada.
El campo eléctrico puede desplazar la CI plana y hacerla inaccesible
por el sistema, en intensidades de campo más grandes de 0,032 a.u..
Las simulaciones con campos estáticos muestran como el tiempo de
vida del estado excitado aumenta de los 10 fs a los 40 fs. El control
con NRDSE (campo dinámico), producido con dos láseres, donde uno
es resonante y otro no resonante, muestra que el control puede ser
conseguido con campos de intensidad 0,08 a.u..
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Chapter 1

Introduction

Movement is the basis of chemistry: electrons and nuclei induce reac-
tions. Even when molecules are in the stationary state, according to
quantum mechanics, atoms and molecules move: orbitals describe elec-
trons movements, nuclei vibrate according to their vibrational states
and molecules rotate in accordance with stationary states. But the
movement is emphasised outside the stationary states, and the ab-
sorption of electromagnetic radiation by resonant photons often causes
disruption of the stationary states. This phenomenon is very impor-
tant since it can explain, among others, the colours of the materials.
Quantum mechanics describes how energy is quantised and can only
constitute discrete values. In chemistry, this fact means that molecules
and atoms have different states each with a discrete and unique en-
ergy. Usually, the ground state (GS), the state with least energy, is
the most studied in theoretical calculations because most molecules
remain in the GS. However, there are infinite excited states (ES) with
more energy where the molecules have absorbed one photon. Such
states are very important in chemistry and physics when the radiation
is involved.
Notwithstanding, the excited state is not essential for describing all re-
actions. Thermal reactions and chemical equilibriums can be described
by quantum calculations in ground state and stationary states. Yet
many reactions and processes need a correct description of the excited

13
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state and its dynamics, such as the case that this thesis describes: the
photorotation of fulvene.

1.1 Electronic Excited State
At the end of the nineteenth century, physics had a serious problem:
explaining the spectra of absorption and emission of atoms. Nowadays,
however, we know that atom state energies are discrete and their spec-
trum are formed by the transitions between atomic electronic states.
For this reason, atomic spectra are isolated lines because the energy of
the photons has to be exactly equal to the energy difference between
the two states involved in the emission and absorption. The emission
spectra give the energy of the photons which the excited atoms emits.
The absorption spectra are produced by the photons that atoms do
not absorb. However, not all transitions between states are permit-
ted. The ratio of the electronic transitions is adjusted by the oscilla-

Figure 1.1: Scheme of absorption (a) and emission (b) in atoms. Each line is a
transition to a low state in emission or a high state in absorption.
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tor strength (fi,j) between the two states. Usually, this dimensionless
quantity is calculated with the dipole length formula:1,2

fi,j = 2
3∆ε|TDMi,j|2 (1.1)

TDMi,j =< Ψi|~µ|Ψj >=
N∑

k=1
< Ψi|~ki|Ψj > (1.2)

where ∆ε is the energy difference between the two states, TDMi,j is
the transition dipole moment between the two states and the second
equality of 1.2 is valid in atomic units (a.u.). Ψ is the wave function of
each system state (see chapter 2) and ~r is the operator giving the po-
sition of the electron. Oscillator strength is a dimensionless term that
ranges from zero to one, where zero is a forbidden transition and one
is a totally allowed one. In this approximation, states with different
spin have a forbidden transition because TDM is zero (the ~r operator
does not have any spin term and the integral of two wave functions
with different spin is zero). However, the dipole length formula for
the oscillator strength (Equation 1.1) is only an approximation, where
some terms are neglected.2 Thus, the transition between two states is
possible although TDM is zero. However, the transition ratio in these
cases is close to zero because the main term should be the TDM .
On the other hand, the molecular spectra have some differences with
respect to atomic ones. Molecules are formed by two or more atoms
with their correspondent nuclei. Other contributions to the energy,
apart from electronics, are due to the nuclei movement, such as vibra-
tional and rotational. However, unlike electrons, nuclei can normally
be distinguished and their movement is slower than that of the elec-
trons. Therefore, one can approximate that the nuclei and the elec-
trons move independently (Born-Oppenheimer approximation,3 sec-
tion 2.2) and so the energies of the molecular states are the sum of the
electronic and nuclear state energies. Thus, the molecular transitions
can be read as the sum of electronic and nuclear transitions. Since nu-
clear transitions are less energetic than electronic ones and they differ
by some order of magnitude, electronic transitions can be associated
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with different nuclear ones (vibrational and rotational). Thus, gener-
ally, electronic spectra contain an accumulation of different isolated
transitions, combination of the same electronic transition with a large
number of nuclear ones. In fact, if the spectrum does not have enough
resolution, transitions show broad instead of the typical isolated lines
of quantum mechanics.
The interpretation of molecular spectra is different from that of atomic
ones. Whereas atoms have complementary discrete spectra with elec-
tronic emission and absorption, as shown in figure 1.1, molecular sys-
tems have combinations of nuclear and electronic transitions. On the
one hand, unlike atomic spectra, the molecular spectra are not com-
plementary, and there is a shift between absorption and emission, the
Stokes’ shift (Figure 1.2). On the other hand, the spectral maxima
almost always does not correspond to the energy difference between
the minimum of the energy between the two states. In that context,
quantum chemistry can provide insight to explain the phenomenon
using the B-O approximation (see section 2.2). Inside the B-O ap-
proximation, the potential energy of the system is calculated in a
particular position of the nuclei. Since it can be calculated for any

Figure 1.2: Scheme of Stokes’ shift between molecular absorption (A) and emis-
sion (E) spectra.
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nuclear geometry, the potential energy can be described as a func-
tion of the nuclear position, known as the Potential Energy Surface
(PES) (see section 2.2.1). Each PES is associated to a different elec-
tronic state, and defines the nuclear motion in this state. Thus, the
PES is an excellent tool for understanding the molecular phenomena,
such as those previously described, along with certain rules and prin-
ciples. The Frank-Condon principle4,5 describes the absorption and
emission of the molecules as vertical transitions from the minimum
of the original state: the so-called vertical approximation. Electrons
move quicker than the nucleus so the nuclear coordinates are consid-
ered fixed during the electronic transition. Thus, the transition can
be considered vertical between PES of two electronic states. Follow-
ing equation 1.2, the simple overlap of nuclear wave function increases
the oscillator strength because the electronic transition dipole moment
operator only depends on the electronic wave function. Therefore, ver-
tical transitions generally start near the minimum of the lowest state
since the nuclear wave functions are normally centred there. Kasha’s
rule says the emissions occur in appreciable yield only from the lowest
potential energy point of the lowest excited state of a given multiplic-
ity. The emission process needs some picoseconds or more to start
with significant yield but the nuclear vibrations only take a few fem-
toseconds. With that scale difference, the nuclear motion can find
the minimum in the excited PES and the emission occurs near the
minimum. The Frank-Condon principle can explain why the maxima
in spectra do not correspond to the 0-0 energy (the energy difference
between the minimum of the two states) and Kasha’s rule explains
the shift between absorption and emission. A combination of the two
rules is shown in Figure 1.3.
There are different nomenclatures for excited states, but two are the
most commonly used. On the one hand, there is Kasha’s nomencla-
ture. The states can be represented as Slater determinants formed
with different orbitals, the excited states being named with the or-
bitals changed between the ground state and the excited state. Thus,
in this nomenclature, the excitation and the excited state are expressed
as π → n, where π is the original orbital in the GS Slater determinant
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Figure 1.3: Scheme of Frank-Condon principle and Kasha’s rule between two
PES of two electronic states with their associated vibronic states. The arrows
correspond to absorption (A) and emission (E) processes.

and n is the orbital of the ES determinant. Although the Slater deter-
minant is a simple approximation for the systems and a pair of orbitals
cannot fully describe the excited state, this nomenclature is useful for
simple or organic molecules. On the other hand, the most common and
general notation is the enumerative one, where the states are named
according to their energetic order and their multiplicity. The adiabatic
state with lowest energy is defined as zero. If the state is a singlet,
it is denoted by S0, and the excited states S1,S2,S3, ... The excited
triplet states have a similar formula: T1,T2,T3,... . Diabatic states are
usually numbered from one.

1.1.1 Radiationless relaxation
Atoms and molecules can radiate energy through photon emission.
Yet there is another relaxation process in molecules: non-radiative
relaxation. This is the phenomenon whereby a molecular system
changes the state without any emission or absorption. Inside the Born-
Oppenheimer approximation (see section 2.2), radiationless processes
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Figure 1.4: Two examples of radiationless relaxation of two singlets (a) and
singlet and excited triplet state (b).

cannot be contemplated. It is necessary to go beyond the approxima-
tion and include the interaction between electronic states and nuclear
motion. Using the time-dependent perturbation theory, the rate con-
stant for interconversion between two states can be calculated and
Fermi’s golden rule6,7 is obtained:

ki→j = 2π
~
〈
Ψi

∣∣∣Ĥ ′
∣∣∣Ψj

〉2
δ(εi − εj) (1.3)

where Ψ and ε are the wavefunction and the energy of i and j molecular
states and Ĥ ′ is the time-dependent perturbation operator. In states
with equal spin, for example Sn → Sm or Tn → Tm, the main contri-
bution of the perturbation operator is the kinetic energy of the nuclei.
In transition between states with different spin, such as Tn → Sm, the
main contribution is the spin-orbit coupling . In case of weak cou-
pling, the expectation value of the perturbation operator follows the
next relation: 〈

Ψi

∣∣∣Ĥ ′
∣∣∣Ψj

〉
∼ βIC 〈ψi|ψj〉 (1.4)
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where βIC is the electronic part and 〈ψi|ψj〉 is the overlap of the nu-
clear part of the wave function. On the other hand, δ(εi − εj) is
a Dirac delta function between the energy of the two states. This
term is strictly zero in all cases except when the energy difference is
zero. However, a smooth change is introduced by broadening effects
in higher order perturbations theory, so the rate constant for inter-
conversion is larger when the energies are the same and it decreases
quickly for larger differences. The total rate constant is the sum of
all possible transitions, so if the energy difference between the states
is constant, it increases if there are more energy-accessible vibrational
states.

kICi =
∑

j

ki→j (1.5)

For example, when the energy difference between the electronic states
increases, the density of vibrational states is increased in the low en-
ergy electronic state and the interconversion from higher energy elec-
tronic states to lower ones is more effective than in the other direction.

1.1.2 Conical intersections
The Conical Intersection (CI) is a particular geometrical structure of
molecules where there is electronic energy degeneracy: two or more
electronic states have the same energy. In these points, the non-
radiative transition has a specially large rate. Using Fermi’s golden
rule (equation 1.3) to calculate the rate, it is easy to see why the rate
is really high: at the CI, the delta is clearly one and the overlap of the
nuclear wave function (equation 1.4) has a higher value than in other
geometries because the vibrational states have the main density at the
sides of the potential. However, the first order perturbation theory is
not enough to correctly determine the transition rate at the CI be-
cause the other perturbation terms have significant value. Therefore,
the rate is very high between the two states (or more) at the CI so the
interconversion is very favourable in the CI geometry. At such high
rate, the interconversion only takes some femtoseconds, whereas the
radiative processes need picoseconds or more. So, based on Kasha’s
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rule, if the CI geometry is energy-accessible to the nuclear motion, af-
ter an absorption, the interconversion is the main way to desactivate
the ES and an emission does not appear. This phenomenon is called
ultrarapid decay and it is the principal experimental evidence of CI’s
important role in photochemistry and excited state processes. The
importance of CI in photochemistry has been known for a long time.8

Since the late 1990s, CI have gained importance in studies of excited
state. Nevertheless, for a long time it was believed that truely touching
PES are very rare because in diatomic molecules crossings only occur
when the two states have different symmetry. In the 1990’s, however,
with the increase of computational power, a lot of CI between states of
the same symmetry were found in many polyatomic molecules. Nowa-
days, lots of photoreactions are understood with CI concept and all
studies of excited state include CI analysis, where a very important
point is the minimum CI, the Minimum Energy CI (MECI). The MECI
is the principal point where the transition is brought about. For this
reason, algorithms for finding CI and MECI (section 2.2.4) have been
developed.

Figure 1.5: a) Typical form of a conical intersection plotted in the direction
of the BS. b) Example of seam plotted in one direction of the BS and the other
direction with large second order components.
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One can characterize a CI point on a PES by two conditions:

ε(q)I − ε(q)J = 0
〈
ϕ(r; q)I |Ĥ|ϕ(r; q)J

〉
= 0 (1.6)

where I and J are the two degenerate electronic states and εI and ϕI
are the electronic energy and electronic wavefunction of the state I,
respectively, in the CI nuclear geometry (q). Every geometrical struc-
ture of the molecular system which fulfils these two conditions is a CI.
Evidently, they are not isolated geometries in the PES of polyatomic
molecules, there is a hypersurface where the degeneracy between two
(or more) states is retained. This hypersurface, or seam, is called
the intersection space, where the degeneracy remains. In polyatomic
molecules and between two states, the seam is n−2 dimensional, where
n is the number of coordinates of the molecular system. This space is
defined as the orthogonal space to the branching space which is formed
by the modes, or vectors in the PES, which break the degeneracy. In
first order, there are two directions that break the degeneracy: gra-
dient difference (x1) and interstate coupling (x2), the gradient of the
two CI conditions.

x1 = ∇ (ε(q)I − ε(q)J) x2 = ∇
(〈
ϕ(r; q)I |Ĥ|ϕ(r; q)J

〉)
(1.7)

Normally, the first-order BS vectors are the most important ones in
terms of breaking the degeneracy so the representations of the energy
of the two states in these two directions form a cone which gives the
name to CI (Figure 1.5.a). For this reason, these vectors are funda-
mental to find the CI and the MECI. However, if the two states have
different spin and there are not any spin-orbit terms in the Hamilto-
nian, the x2 is zero in the same way as oscillator strength (Equation
1.2).
The second-order directions normally do not have the same impor-
tance as the first-order ones. They are defined by the second-order
matrix of the CI conditions:

∆H = ∇x1 = ∇2 (ε(q)I − ε(q)J) E = ∇x2 = ∇2
(〈
ϕ(r; q)I |Ĥ|ϕ(r; q)J

〉)

(1.8)
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The eigenvectors of this matrix mark the directions where the degen-
eracy is broken in second order and the eigenvalues mark the scale
of this change. The second order degeneracy-lifting effects can ap-
pear along all molecular modes, but in practice only some of these
eigenvalues have a non-zero value so just some vectors can break the
degeneracy in second order. In fact, the non-zero eigenvalues are nor-
mally small too, but, they give the second-order terms of seam and
its shape so they are essential for determining the form of the seam.9

More information about the second order terms of the CI is provided
in the Section 2.2.4.
The result of the non-radiative relaxation depends on the CI shape,
which has two forms: sloped and peaked (figure 1.6). In sloped CI
(a), the gradients of the two PES are similar (and have the same sign)
at the intersection. In contrast, the peaked CI (b) has two PES with
different signs at their gradients. The relaxation processes after the
interconversion process of the two kinds of CI are totally different. A
sloped CI usually has relaxations whereby the molecular system re-
turns to the minimum of the ground state, the initial condition before
absorption. In a peaked CI, however, the system can move in two dif-
ferent ways from ES: the initial minimum or another photo product.
Thus, the shape of the CI plays a very important role in the nuclear

Figure 1.6: The two kinds of CI, sloped (a) and peaked (b), with the typical
trajectories (shown with red arrows): in the sloped CI, the trajectories go to the
GS minimum and, in the peaked CI, a photoproduct is accessible.
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motion after excitation in the non-stationary process. Furthermore,
the shape is not the same in all seams: the second-order terms change
the gradients and the shape along the seam. Therefore, the point
where the seam is reached is important in the study of the process.

1.2 Photochemical reactions
Photochemical reactions have several differences from typical ground-
state reactions, which take place between different stationary points
on a single PES. In photoreactions, at least two PES have a role in the
process, but may be more. CI have a fundamental role in these reac-
tions because they can mark the way of the reaction with their large
rate of interconversion, as a funnels between the states. Furthermore,
the photo-processes take place in a non-stationary scenario and this
fact is important for the behaviour of the reaction.
There are a lot of photoreactions but there is one important and typ-
ical example in organic chemistry: cis/trans rotation.

1.2.1 Cis/trans photoisomerisation
In the ground state, the bond between two carbon (or nitrogen) atoms
in sp2 hybridization has a considerable energy barrier to rotation, so it
is usually assumed it does not have free rotation as typical sp3 bonds
do. This is not necessarily true in the ES, where the double bonds are
weaker than in the GS and rotation is permitted. This occurs because
the excitation involves transition from a bonding to an anti-bonding
π orbital. In fact, the electronic repulsion in first electronic excited
states can force rotation of the bond. Thus, the electronic excitation
of some organic molecules with double bonds can be used to isomerise
the double bonds.
The cis/trans isomerisation can be discussed using ethylene (figure
1.7.a) as an example because it is the simplest C-C double bound
molecule. Since ethylene is a very simple molecule, much has been
written about its photophysics.10–15 Ethylene has T1 and S1 excited
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Figure 1.7: a) Molecular structure of ethylene in the minimum potential energy
point of S0. b) Molecular structure of the MECI between the S1-S0 states of the
ethylene.

states close in energy that prompt the molecule to rotate. Both states
can be described as π → π∗ and the potential energy follows the same
pattern (figure 1.8) in the rotation with a minimum at 90◦ in contrast
to the ground state (S0) where the minimum is 0◦, facilitating the
rotation in these two excited states. The energy needed to excite the
molecule from S0 to T1 is lower than to go to S1 but the transition to
triplet from ground state is forbidden because there is a spin differ-
ence between the states. On the other hand, the S0 → S1 transition
is permitted but its energy transition is relatively high in ethylene or
monoolefins. After the radiation is absorbed, ethylene enters in a nu-
clear non-stationary state on S1, with excess vibrational energy. The
π∗ orbital induces a strong repulsion in the system between the two
carbons and, for this reason, the rotation is favourable, as figure 1.8
shows, where there is a local minimum in S1. Therefore, the rota-
tion is favourable. However, ethylene deactivation is a non-radiative
process and figure 1.8 does not show any CI for reaching the seam be-
tween S1-S0. Because the seams are a multidimensional space where
not only one dimension is important, it is necessary to activate more
modes to reach the seam. In ethylene’s case, the pyramidalisation
coordinate is important for describing the ES because a large change
in dipole moment results along this coordinate and has a big effect
on energy difference between S1 and S0. Thus, the pyramidalisation
coordinate is required to reach the seam. The MECI structure (figure



26 CHAPTER 1. INTRODUCTION

Figure 1.8: Potential energy plot of three states, S0, T1 and S1, of ethylene along
the rotation of the double bond with all other coordinates fixed. The energies
correspond to CAS(2,2) calculations.

1.7.b) therefore, has extensive pyramidalisation but is also relatively
near to the total orthogonal geometry (90◦ of rotation), so the rotation
is favourable in the radiationless deactivation process.

Rhodopsin

The cis/trans photo-reaction of protonated Shiff base of retinal chro-
mophore inside the rhodopsin protein is a typical example of that kind
of reaction. It has a big relevance in life: this photorotation is the ba-
sis of the vision mechanism of a lot of animals, including humans. As
shown in figure 1.9, the molecule has several double bounds and a cen-
tral one is in cis conformation. After the absorption, during the decay
route, the retinal rotates the cis double bond to obtain the all-trans
conformation. The environment of rhodopsin protein is changed by
the cis/trans photo-rotation and the protein is activated. This fact
was identified as the primary photo-chemical event in vision.17 The
photorotation has high efficiency: in less than 1 ps the rotation quan-
tum yield is bigger than 50%.
There are many different studies, theoretical18 and experimental,19

in which the photoisomerisation path is studied. As with ethylene,
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Figure 1.9: Energy scheme of retinal cis/trans isomerisation inside rhodopsin.
The structures were adapted from Wikipedia.org16 and the retinal moiety of the
PSB is displayed.

the photo-reaction is a non-radiative relaxation. The main relaxation
modes are the rotation and a C-C stretching vibration and the relax-
ation minimum-energy path is barrier-less, crossing the seam at the
70◦ structure. The seam lies along the rotation coordinate but from
70◦ to 90◦ CIs are energy-accessible. After crossing the seam, the mol-
ecule decays to the trans minimum following the same rotation mode.
The role of the CI is fundamental in this reaction because the GS is
reached in just a few vibrational periods, allowing for a high efficiency.

1.2.2 Fulvene
A major part of this thesis is dedicated to theory and methodology
but the last chapter of results is about the computational dynamic
simulations of fulvene. Fulvene is a cyclic molecule isomer of benzene.
Instead of the six-member ring of benzene, however, fulvene has a
five-member ring with two double bonds and one double bond out-
side of the ring (figure 1.10), the only double bond which can rotate.
Fulvene, like lots of non-fluorescent hydrocarbons, has a very rich pho-
tophysics. Its photophysics has been studied extensively, both exper-
imentally20–22 and theoretically.23–27 Experimentally, fulvene presents
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Figure 1.10: Molecular structure of fulvene in the minimum potential energy
point of S0.

two strong bands in the absorption spectrum associated with excita-
tion from the ground state (S0) to the S4 and S3 states. At lower
energies and intensities, two other dipole-allowed transition appear,
corresponding to S1 and S2. The S0 → S1 transition has a weak and
diffuse band, with a maximum at 3.44eV and low oscillator strength
(f =0.008). The absence of fluorescence suggests the presence of a
seam between the two states which enables the fast decay. Theoreti-
cally, Bearpark and co-workers25 confirmed the existence of the seam
with ab-initio theoretical calculations. In the same study, the photoro-
tation of fulvene was assessed with dynamic simulations starting from
the S1 minimum structure, showing it is possible in the excited state.
Recently, other dynamic simulations26 show the main decay route of
fulvene and confirm the photorotation decay route depending on the
conditions.
Theoretically, the PES study of the different states is the initial step
to understand the photo-processes. However, since fulvene is a poly-
atomic molecule, obtaining its complete PES is an extremely hard
challenge. Fortunately, the study of some modes is enough to un-
derstand its photophysics and its ES. Recently, the principal modes of
fulvene PES were described27 by means of computational calculations.
Up to four modes are necessary to describe correctly the non-radiative
relaxation: a totally symmetric bond alternating mode (Qx1), a non-
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totally symmetric bond stretch coordinate (Qx2), rotation (ϕ) and
pyramidalisation (θ). The modes can be seen in Figure 1.11. Unlike
ethylene, fulvene can reach the seam along the stretch of the double
bond. In fact, the main decay mode of fulvene is Qx1, which includes
the stretch of the double bond. In this mode, the planarity is con-
served: the decay goes from the Frank-Condon point to the minimum
of the S1 and, further than (S1)min, to the CIplan, as shown in figure
1.12.
Like in ethylene, rotation and pyramidalisation processes are impor-

tant. The exocyclic CH2 rotation follows a similar pattern as ethylene,
where in S0 the rotation has a maximum in the 90◦ whereas S1 has a
minimum (figure 1.13).
Following the seam along the CH2 rotation coordinate from CIplan,
there is a CI with a perpendicular structure (CIperp), with a lower
energy than CIplan. However, between CIplan and CIperp, at a torsion
angle 63◦, there is a minimum in the seam along the CH2 rotation
(figure 1.14). The global MECI is extremely close to CI63: the energy

Figure 1.11: Principal modes of fulvene: the totally symmetric bond alternating
mode (a), the non-totally symmetric bond stretch coordinate (b), pyramidalisation
(c) and rotation (d).
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Figure 1.12: Energy plot along the totally symmetric bond alternating mode in
0◦ rotation angle and molecular structures of the CI between S1-S0 and (S0)min

and the S0 of fulvene

Figure 1.13: 3D energy plot of the S1 and S0 states of fulvene along the totally
symmetric bond alternating mode and CH2 rotation coordinate with molecular
structure of the CI between S1-S0 at ϕ = 0◦ and ϕ = 90◦.

difference between the two points is less than 1 meV, so it is a very good
approximation to the MECI. This minimum is an important point of
the relaxation path of the non-radiative rotation process. However,
recent dynamics simulations27 showed that CIplan is the centre of the
major part of the decay because the rotation coordinate needs some
time to be activated. Thus, the cis/trans photoisomerisation has a
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Figure 1.14: Seam energy plot of fulvene along the CH2 rotation coordinate and
molecular structure of the MECI.

very low quantum yield.
Finally, Qx2 and θ show a large change in energy difference and are
essential to describe the PES. Qx2 with θ and ϕ are also needed to de-
scribe the coupling terms between the states, essential for quantifying
the interconversion rate (section 1.1.1).
The electronic structure of fulvene is very rich. In the planar structure,
the ground state and the first excited state have A1 and B2 symmetry
respectively in the C2v structure. Along the CH2 rotation, the sym-
metry is lowered to C2 and the states are A and B. At perpendicular
structure, the fulvene recovers C2v symmetry and the states obtain
A2 and B1 symmetry respectively. In this situation, the S2 has A
symmetry and correlates with S0 diabatically. Luckily, the states are
separated by 1.9eV at CASSCF level and can be treated separately.
In chapter 5, all these theoretical data are used to simulate a control
strategy in fulvene with quantum dynamics, where only some modes
can be used (see section 2.4.1) and a complete study of the seam is
needed.
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Chapter 2

Theory and Methods

Modern quantum chemistry has different tools, approximations and
methods for studying atoms and molecules. A great part of this thesis
is about developing new methods, but existing methods and theory
levels are also used. For this reason, a short theoretical explanation
is given in this chapter. The chapter is divided principally into two
parts: theory (sections 1 and 2) and methods (sections 3 and 4).

2.1 Schrödinger equation
Quantum mechanics has a main equation: the Schrödinger equation.

i~
∂

∂t
Ψ(R, t) = ĤΨ(R, t) (2.1)

where Ψ(R, t) is the wave function of the system that contains all
system information, R and t are the position and time and Ĥ is the
energy operator, the Hamiltonian, the operator whose eigenvalues give
the possible energies of the system. The resolution of this differential
equation gives maximum information about the studied system, the
wave function. The total energy operator is formulated with differ-
ent postulates of quantum mechanics, but, in the position picture, a
system with N electrons, M nuclei and with no perturbation has the

33
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following Hamiltonian in atomic units (a.u.):

Ĥ =
N∑
i=1

T̂ ei +
M∑
i=1

T̂ ni +
N∑
i=1

M∑
j=1

V̂ e,n
i,j +

N∑
i=1

N∑
j>i

V̂ e,e
i,j +

M∑
i=1

M∑
j>i

V̂ n,n
i,j =

−1
2

N∑
i=1
∇2
i − 1

2

M∑
i=1

1
Mi
∇2
i +

N∑
i=1

M∑
j=1

Zj

|ri,j | +
N∑
i=1

N∑
j>i

1
|ri,j | +

M∑
i=1

M∑
j>i

ZjZi

|ri,j |

(2.2)
where T and V are the kinetic and potential operators, respectively;
∇ is the Laplace operator, |ri,j| is the distance between two bodies and
Zi and Mi is the nuclear charge and mass of the i atom, respectively.
The energy operators are separated as affecting nuclei (labeled as n),
electrons (e), or both (e− n).
When the Hamiltonian is not time-dependent, the Schrödinger equa-
tion gives the stationary states of the system when there is no per-
turbation such as electromagnetic radiation. It can be solved easier
because the position and the energies do not depend on time and thus,
mathematically, wave functions are separable into two independent
parts.

Ψ(R, t) = Ψ(R)Ψt(t) (2.3)
Since the wave function is separable, the first step of the resolutions
is simple and it can be found in a lot of books on quantum mechanics
and quantum chemistry. The time-dependent part has the following
function:

Ψt(t) = e
−iεt
~ (2.4)

and the position wave function is obtained with the following equation:

ĤΨ(R) = εΨ(R) (2.5)

where ε is the energy of the state. It is very common practice to
call the last equation (2.5) Time-Independent Schrödinger Equation
(TISE) and first equation (2.1) Time-Dependent Schrödinger Equa-
tion (TDSE), although the TDSE is the basis of the TISE equation.
Unfortunately, the Schrödinger equation only has an analytical solu-
tion for the hydrogen atom. Larger systems need different approxima-
tion methods to obtain the energy and wave function.
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2.2 Born-Oppenheimer approximation
The Born-Oppenheimer approximation3 is probably the central ap-
proximation in current quantum chemistry. It is based on the mass
difference between the nuclei and electrons. There are different ways
to explain the approximation, but, in this thesis, the most theoretical
one is used because it can help to explain when the approximation
is broken. The mass of electrons is about 1/1836 that of the proton.
Therefore, the momentum and kinetic energy of the nuclei are lower
than that of the electrons. So, one can separate the wave function into
two parts, nuclear and electronic:

Ψ(R) = Ψ(q, r) = ψ(q)ϕ(q, r) = ψϕ (2.6)

where q and r are the coordinates of nuclei and electrons respectively.
Taking into account how the kinetic energy operator of the nuclei is
applied on this wave function:

T̂ nψϕ = ψT̂ nϕ+ ϕT̂ nψ −
M∑

i=1

∇iψ∇iϕ

Mi

(2.7)

the TISE(equation 2.5) reaches the following form (all terms are di-
vided by Ψ):

1
ϕ
T̂ eϕ+ 1

ψ
T̂ nψ

+ 1
ϕ
T̂ nϕ− 1

ψϕ

M∑
I=1

∇iψ∇iϕ
Mi

+ 1
ϕ
V̂ e,n 1

ϕ
+ 1

ϕ
V̂ e,e 1

ϕ
+ V̂ n,n = ε

(2.8)

This is the point when the B-O approximation is applied. If elec-
trons are faster than nuclei, the electrons can adapt instantaneously
to nuclear change and, in practice, they always follow the nuclei and
are at equilibrium. Therefore, the changes are extremely smooth and
one can approximate the ∇iϕ term to zero. With this approximation,
the third and fourth terms of equation 2.8 are null and the eigenvalue
equation is simplified:

1
ϕ

(
T̂ e + V̂ e,n + V̂ e,e

)
ϕ+ V̂ n,n = ε− 1

ψ
T̂ nψ = εe (2.9)
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In this form, the TISE can be separated into nuclear and electronic
eigenvalue equations, involving the first and the second term of the
equation, respectively. The first term is the electronic equation and,
normally, it is called electronic TISE or simply TISE.

(
T̂ e + V̂ e,n + V̂ e,e

)
ϕ = (εe − V̂ n,n)ϕ (2.10)

The electronic TISE can be solved for fixed nuclei, where the ϕ only
depends on q parametrically, shown as ϕ(r; q). The εe is defined as the
potential energy that affects the nuclei at particular coordinates. Since
this equation depends on q, this can be repeated at any set of nuclear
positions and the potential energy can be described as a function of the
nuclear geometry. This function is normally called Potential Energy
Surface (PES) or Potential Energy Hyper-surface (PEH). On the other
hand, more qualitative descriptions28 of the B-O approximation can
deduce this equation quickly with the simple approximation T̂ n = 0,
where the nuclei are practically immobile with respect to the electrons.
Finally, the second and third terms of equation 2.9 are the eigenvalue
equation of nuclei. (

T̂ n + εe
)
ψ = εψ (2.11)

where εe is the potential energy operation of the nuclei. εe is often
written as Ŵ(q) in matrix multistate equation or simply as ε(q) in
this case. It is needed as an operator, not a simple value. For this
reason, the complete PES is needed, used as an operator, if the nuclear
equation has to be solved.

2.2.1 Potential Energy Surface
The B-O approximation works really well in many cases, where the es-
tates of interest is well separated from the others ones. Therefore, the
molecular structure can be studied with the potential energy of differ-
ent nuclear positions. The PES, or PEH, of a molecular system can
be defined as the potential energy function of the system with respect
to the geometry of the nuclei. Usually, it is called PES but strictly it
should be called PEH for systems bigger than two atoms because the
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representation needs 3N-6+1 dimensions (N is the number of atoms
and the ’+1’ is the extra dimension for the energy). However, in this
thesis the term PES is used.
The usual way to obtain the PES of any molecular system is to solve
the electronic TISE for some geometries of the system. Since a correct
resolution of the TISE obtains different solutions that are the different
states of the electrons of the system, different PES can be obtained
for every electronic state of the system.

Figure 2.1: Potential Energy Surface of two states in two coordinates.

The PES is an excellent way to study the physics and reactions of
systems because a PES, such as figure 2.1, can be represented as
a landscape with valleys, peaks and saddle points. The valleys of
PES represent stationary structures like reactants, intermediates or
products of a reaction. The minimum position of these valleys is the
equilibrium structure, and the energy difference between equilibrium
structure of reactants and products is the energy of the reactions. On
the other hand, the highest point on the lowest energy path between
products and reactants is the TS of the reactions. In GS chemistry,
the study of the ground state PES is sufficient to obtain the parame-
ters of the reactions. However, in photochemistry, two or more states
need to be considered to study the excited state reactions. Further-
more, the PES of different states have different topology so minima
are different for each state and independent studies for all states in-
volved are required. Moreover, thanks to the different topology of the



38 CHAPTER 2. THEORY AND METHODS

PES, the CI and seams are possible and they play an important role
in photochemistry.
The study of the PES can give data about the equilibrium points,
such as minima, TS or MECI for photoreactions. Therefore, the usual
practice is to study the PES, finding minima, TS and MECI. Reaction
paths, which connect the critical points, can complete the mechanistic
picture to understand the reactions.

2.2.2 Diabatic and adiabatic picture
The PES, as a solution of the electronic TISE within the B-O ap-
proximation, is adiabatic by definition because the electrons adapt
instantaneously at changes of nucleus. This is normally known as the
adiabatic picture. The adiabatic picture, with B-O approximation and
adiabatic PES, works correctly in most molecular systems. However,
the radiationless processes, as we saw in chapter 1.1.1, defy the adi-
abatic representation. In the particular case of the CI, it is easy to
see the reason why the B-O approximation is broken. The B-O is
based on ∇iϕ being extremely small, at the CI this is not the case,
the electronic wave function changes with a very small change in the
nuclei position. Thus, ∇iϕ is not zero and the adiabatic PES is not
the correct solution.
The diabatic picture appears if the nuclear TISE is solved without the
B-O approximation. Another way to express the full TISE (equation
2.5) of a molecular system, with electrons and nuclei, is:
[
T̂ e + V̂ e(r) + T̂ n + V̂ e−n(q, r) + V̂ n(q)

]
Ψ(q, r) = εΨ(q, r) (2.12)

The total wave function can be expanded as a set of ψ(q)ϕ(r; q), so-
lutions of the B-O approximation.

Ψ(q, r) =
∑

k

ψk(q)ϕk(r; q) (2.13)

Inserting this expansion in atomic units into TISE (equation 2.5),
joining some terms and solving the electronic problem, the equation
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reaches the following form:
[
T̂ n + Ŵ n

i (q)− ε
]
ψi = ~

2
∑

j

(∑

k

〈
ϕi
∣∣∣∇2

k

∣∣∣ϕj
〉

+ 2 〈ϕi |∇k|ϕj〉∇k

)
ψj

(2.14)
where i is the state of the problem and Ŵ n

i is the i term of the adiabatic
potential energy matrix. This formula is the i nuclear diabatic TISE
of the system of connected equations. The right-hand side contains
the non-adiabatic coupling terms. These terms are simplified in the
B-O approximation because ∇iϕ = 0. Thus, these terms indicates the
magnitude of how good B-O is.
It is usual to transform the non-adiabatic term into a new matrix
operator,

Λi,j = ~
2 (Gi,j + 2Fi,j∇) (2.15)

where the non-adiabatic coupling terms are joined in two operators.

Gi,j =
∑

k

〈
ϕi
∣∣∣∇2

k

∣∣∣ϕj
〉

Fi,j =
∑

k

〈ϕi |∇k|ϕj〉 (2.16)

The full nuclear TISE, with the non-adiabatic operator, can be written
as: (

T̂ ni + Ŵ n
)
ψi −

∑

j

Λi,jψj = εiψi (2.17)

However, the electronic functions can be chosen so that the the non-
adiabatic operator matrix (Λ) vanishes. In this case, a new non-
diagonal potential matrix is obtained, called diabatic, and it is the
principal representation of the diabatic picture. The nuclear TISE is
written

T̂ ni ψi −
∑

j

W d
i,jψj = εiψi (2.18)

where Wi,j describes the diabatic surfaces in the diagonal and the cou-
pling between the electronic states in the non-diagonal terms. In this
form, the eigenvalues of the diabatic potential matrix are adiabatic
surfaces. Some differences exist between the two surfaces. The main
difference is that ideally nature of the diabatic states does not depend



40 CHAPTER 2. THEORY AND METHODS

Figure 2.2: Schematic representation of the adiabatic and diabatic PES of two
states.

on nuclear coordinates. Note that strictly speaking diabatic states
cannot be defined29 and in practice one works with quasi-diabatic
states. Diabatic and adiabatic surfaces are related by a unitary trans-
formation. A schematic representation is shown figure 2.2, where some
couplings have been added to the diabatic surfaces to obtain the adi-
abatic ones.
The diabatic picture is more appropriate for quantum dynamics cal-
culations because the kinetic operator is diagonal and the diabatic
picture avoids the singularities associated with the CI. However, the
diabatic states are difficult to obtain because the electronic calculation
only gives adiabatic energies. For this reason, the diabatic represen-
tation is only used in some cases such as non-radiative process stud-
ies. In perturbation theory language, the adiabatic representation is a
good zero-order approximation for ground-state reactions whereas the
diabatic representation is the zero-order approximation for crossing
points and excited state dynamic simulations.
More information about diabatic and adiabatic pictures, the operators
and equations can be found in ref.30,31

2.2.3 Geometry optimization
The exploration of the PES is very important in computational chem-
istry.32,33 Since the PES is a function of the molecular system geom-
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etry, it can be optimised with the typical algorithms for optimising
functions. The analytic expression of the PES is usually unknown, for
this reason one can construct a local quadratic approximation with a
truncated Taylor series:

ε(q) = ε(q0) + gT0 ∆q + 1
2∆qTH0∆q (2.19)

where g0 is the gradient (∂ε
∂q

) in the position q0, H0 is the Hessian
in the position q0 and ∆q = q − q0. The negative of the gradient
is the force vector acting on the system in that position. The zero
gradient determines the stationary points in the PES. The Hessian at
stationary points determines if the points are minima, maxima, TS or
higher-order saddle points.

Newton-Raphson and Quasi-Newton-Raphson

Based on the local quadratic approximation of the PES, equation 2.19,
Newton-Raphson is the most efficient and commonly used algorithm
for optimising equilibrium geometries or TS. From the local approxi-
mation, the gradient is given by:

g(q) = g0 + H0∆q (2.20)

At stationary points, the gradient is zero, g(q) = 0, so, in this ap-
proximation, the displacement which must go to the stationary point
is:

∆q = −H−1
0 ∆g0 (2.21)

This is known as the Newton-Raphson step or, sometimes, the Newton
step. Because the PES are rarely quadratic, several steps are required
to obtain stationary points. For each step of N-R, the Hessian is cal-
culated and inverted. The use of the Hessian also helps to characterize
the stationary point at the end of the optimisation. The Hessian must
have all positive eigenvalues for a structure to be a minimum. One
negative, and only one, negative eigenvalue is required for a TS. Two
or more gives a higher-order saddle point.
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N-R needs the explicit calculation of the Hessian in every step, which
can be rather costly. Quasi N-R uses an approximated Hessian that is
updated at each step. Quasi N-R methods start with an inexpensive
approximation of the Hessian or an exact Hessian and later recalculate
the Hessian with an update:

Hnew = Hold + ∆H (2.22)

For a quadratic surface, the updated Hessian must fulfil the Newton
condition.

∆g = Hnew∆q (2.23)

where ∆g = gnew − gold and ∆q = qnew − qold. An infinite number
of update formulas can fulfil that condition, but only some of them
are efficient: e.g. Symmetric Rank 1 (SR1).34 However, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update35–38 is the most successful
and widely used one.

∆HBFGS = ∆g∆gT
∆gT∆q −

Hold∆q∆qTHold

∆qTHold∆q (2.24)

Quasi N-R requires an initial Hessian to update. A scaled identity ma-
trix may be sufficient in some cases, but an initial Hessian based on
the initial structure is better, with simple empirical stretching, bend-
ing and torsion parameters. However, harder cases need a full exact
Hessian to not fail the optimization process.
A standard quasi N-R approach needs to store and invert the Hes-
sian in each step. For large optimizations, the inversion step can be a
bottleneck, thus the updating process can be changed to update the
inverse Hessian instead of the Hessian.
For TS optimization, it is important to keep the single negative eigen-
value, thus there are some Hessian updates which do not force the neg-
ative eigenvalue to be positive, such as the Powell-symmetric-Broyden
update39 or the Bofill update.40
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Constrained Optimization

In some cases, it may be necessary to apply some constraints to the
geometry optimization. There are severals methods which do this:
penalty functions, projection methods and Lagrangian multipliers.
The most robust method is Lagrange multipliers, where a new function
is used: the Lagrangian L(q, λ).

L(q, λ) = ε(q) +
∑

i

λiCi(q) (2.25)

where λi are the Lagrange multipliers, without any meaning, and Ci(q)
are the constraint conditions. There are as many multipliers as con-
straints. Optimizing the new function with all the new variables estab-
lishes the constrained optimization in the PES. In the local quadratic
approximation of the PES, the equations are similar to N-R.

∂L(q)
∂q

= g0 + H0 +∑
i
λi

∂Ci(q)
∂q

= 0
∂L(q)
∂λi

= Ci(q) = 0
(2.26)

Generally, the convergence of Lagrange constrained optimization is
faster than the others.
On the other hand, an easy way of applying linear constraints is the
projection method. A projector P can be used to remove the displace-
ment in the constrained directions from the steps. The projector has
a matrix form:

P = I−
∑

i

cic
T
i

|ci|2
(2.27)

where ci is a set of orthogonal constraint vectors. This constraint
method is very easy to use in the quadratic approximation, because
the projector can be applied to the gradients and Hessians.

Pg0 + PH0P + α(I− P) = 0 (2.28)

Since the Hessian is inverted in N-R, an extra term is added to avoid
problems with the inversion, because the projector makes the eigen-
values along the constraint directions zero. In this case, α is a large
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number which is very small when inverted.
Finally, a very simple way of applying constraints is the penalty func-
tion. In this method, the conditions, Ci(q) = 0, are imposed by adding
an extra term, α(Ci(q))2, to the potential energy. Later, the optimiza-
tion is performed with the new potential energy. These extra terms
may make the convergence much slower than for the other methods.

Coordinates

The coordinates of molecular systems are always an interesting topic
in quantum chemistry. In the particular case of PES optimization, cer-
tain coordinate sets are commonly used. In principle, any complete
set of coordinates can be used to represent a molecular system. How-
ever, a good set of coordinates can improve the number of steps in the
optimization. The Hessian, an important part of the local quadratic
approximation, can show some favourable aspects with a good coordi-
nate system. For example, the combination of rigid coordinates with
very flexible ones gives a mixture of small and big eigenvalues in the
Hessian that does not help with the optimization. Strong coupling
between coordinates is another way to slow down optimization algo-
rithms because the non-diagonal matrix elements of the Hessian are
comparable with the diagonal ones. If the minima are characterized
by strong anharmonicity or the valleys are strongly curved, the local
second-order approximation fails because the Hessian changes rapidly
with geometry.
The simplest and most universal system coordinates are Cartesian.
Most potential energy and gradient calculations are carried out in
Cartesian coordinates. However, Cartesian coordinates do not reflect
the chemical structure and sometimes strong couplings between the
coordinates make the optimization difficult. Moreover, Cartesian co-
ordinates optimization need a simple constraint because the coordi-
nates have variables that describe the rotation and translation.
Internal coordinates are composed of bond lengths and angles of the
molecules forming a set of 3N-6 variables (3N-5 in linear molecules; N
is the number of atoms). They are more descriptive of the molecular
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structure and the couplings between stretches, bends and torsions are
usually small. An example of internal coordinates is the z-matrix.41

Finally, redundant internal coordinates42 are composed by the set of all
bonds, valence angles and torsions, representing the intrinsic connec-
tivity and flexibility of the molecule and introducing some redundancy.
Redundant coordinates were demonstrated43,44 to be the best choice
for minimizing the energy of polyatomic molecules. For this reason, all
geometry optimizations in this thesis were calculated with them. In
fact, they are commonly used in most computational quantum chem-
istry programs, e.g. Gaussian.45 However, the variables normally sur-
pass 3N-6 variables for the redundancy. This fact makes non-trivial
several operation such as transformation between redundant and other
coordinates or inversions of Hessians. The transformation between re-
dundant and Cartesian coordinates is essential because the gradient
and Hessian of most quantum methods are calculated in Cartesian.
Therefore, one can define a non-square matrix B that transforms the
Cartesian displacements to internal redundant ones with the infinites-
imal displacement:

δq = Bδx (2.29)
where δq is a redundant internal displacement, δx is a Cartesian dis-
placement and B is a matrix where the components are defined as ∂qi

∂xi
.

Then, the gradient transformation is given by:

Bgq = gx (2.30)

where gx and gq are the gradients in Cartesian and in internal re-
dundant coordinates respectively. Since B is rectangular, the inverse
transformation is not trivial:

gq = G−Bgx (2.31)

where G is BBT and G− is the generalized inverse, where only the
non-zero eigenvalues are inverted. The Cartesian Hessian can be trans-
formed with the help of B′ijk = ∂2qi

∂xj∂xk
to:

BTHqB + B′Tgq = Hx (2.32)
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where Hq and Hx are the Hessian in Cartesian and redundant coordi-
nates respectively. The inverse transformation is:

Hq = G−B(Hx − B′Tgq)BTG− (2.33)

However, the Hessian transformation is not usually performed because
the Hessian usually is updated, as shown in N-R section.
The redundancy in the coordinates gives zero eigenvalues in G because
the rank of the matrix is equal to the number of internal non-redundant
coordinates. This happens in the Hessian, too. Thus some constraints
are needed during the N-R optimization in redundant coordinates.
Commonly, a projector is used to constrain the optimization and avoid
the problem of the excess information of the redundant coordinates.

Hq = PH0P + α(I− P) (2.34)

where P is:
P = G−G = GG− (2.35)

On the other hand, if the N-R is done in redundant coordinates, con-
version of the step to Cartesian coordinates is needed. Since the trans-
formation is curvilinear, the conversion has to be done in an iterative
process, where the first estimation of new Cartessian coordinates is
given by:

x1 = x0 + BTG−∆q (2.36)
where ∆q is the step calculated with N-R. The obtained coordinates
(x1) are transformed to redundant (q1) and compared with the previ-
ous ones (q1−q0). The difference between the step and the comparison,
∆∆q = ∆q − (q1 − q0), is used in equation 2.36 instead of the N-R
step. This operation is done as an iterative process until ∆∆q become
zero.

2.2.4 Conical Intersection Optimization
CI have a very important role in the photochemical reactions (section
1.1.2). The exploration of the CI inside the PES is fundamental for
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understanding how photochemical reactions work. The seam can be
studied in a similar way to the PES because it can be described as
a hyperline or hypersurface of n-2 dimensions, where n is the num-
ber of coordinates of the molecular system. A very important point
in the seam is the minimum energy point or MECI. There are a lot
of algorithms for finding MECI and different strategies. They can
be divided, principally, into three groups: Lagrangian, projected gra-
dient and penalty term algorithms. Their similarity to constrained
optimization is not a coincidence: CI optimizations are constrained
optimizations in the PES where the constraint is that the energy dif-
ference between the states is zero. Local second-order approximation
is usually used for the PES and first-order approximation for the con-
straint conditions, because first order is the most important term to
break the degeneracy (section 1.1.2).
On the one hand, the Lagrange algorithms are the most efficient meth-
ods for constrained optimization. The most common Lagrange algo-
rithms for finding MECI, proposed by Manaa and Yarkony,46 is a
Lagrange-Newton method. It is based on local second order approx-
imation, where the conditions for the Lagrange multiplier (equation
2.25) are the conditions for the CI (equation 1.6). With this multiplier,
the Lagrange function is trivial:

L(q, λ) = εI + λ1∆εI,J + λ2
〈
ϕI |Ĥ|ϕJ

〉
(2.37)

where the initial function is the energy of one of the states, and the
conditions are those of the CI. The energy function is usually changed
by the energy average ( εI+εJ

2 ) to avoid abrupt variation near the CI.
Applying the Newton-Raphson method to the Lagrange function, the
Lagrange step is obtained:



∇∇L x1 x2

xT1 0 0
xT2 0 0







∆q
∆λ1
∆λ2


 =



∇L

∆εI,J
0


 (2.38)

where the gradient with the average energy function is:

∇L =
(
gI + gJ

2

)
+ λ1x1 + λ2x2 (2.39)
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where gI and gJ are the gradient of each state and x1 and x2 are the
first-order BS vectors.
Quasi Newton-Raphson equations for updating the Hessian can be
used too, so the complete form of the Lagrange Hessian is not neces-
sary.
On the other hand, the most inefficient method for constrained op-
timization is penalty function. Ciminelli and coworkers47 created a
simple algorithm for optimizing MECI where the only constraint was
the energy difference. For this reason, no knowledge of interstate cou-
pling is needed and the algorithm is useful when x2 is inaccessible for
the electronic method. The algorithm defines the following function
of the energy:

f(q) = ε1 + ε2

2 + c1c
2
2ln

[
1 +

(
ε1 − ε2

c2

)2
]

(2.40)

where c1 and c2 are constants which adjust the penalty function. The
functions are separated in two parts, the average energy, which is
the optimized function; and the penalty term, the term for reaching
the degeneracy. c1 determines the weight of the penalty term and c2
controls how quickly the conical seam is approached. A correct opti-
mization is done when c1 tends to ∞, but high values for c1 make the
optimization difficult. In the original paper, Ciminelli and coowork-
ers47 recommend some values for the constants.
Finally, there are the projected gradient algorithms, a compromise be-
tween efficiency and simplicity. They have a special relevance in this
thesis. The projected gradient constrained optimization, that is ex-
plained in the last section (2.2.3), describes a projector matrix based
on first-order conditions. In a MECI optimization, the conditions are
given by the equation 1.6 and their first-order conditions by 1.7, so
the projector matrix is formed from equation 2.27:

P = I− 1
|x1|2

x1xT1 −
1
|x2|2

x2xT2 (2.41)

where x1 and x2 need to be orthogonal. This projector can be used
in gradients and in Hessian and, when it is used, the optimization
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process avoids changing the energy difference in first order. However,
this method does not lead to a degeneracy: the constrained optimiza-
tion only keeps the energy difference constant. For this reason, some
extra terms are needed to complete the MECI algorithms. The most
used algorithm to find MECI is that of Bearpark and co-workers,48

the composed gradient algorithm. In this algorithm, the gradient is
composed of two parts: the projected gradient and a penalty term to
reach the degeneracy:

gCG = gP + f = Pg + f (2.42)

where f is the penalty term, that is the ”normalized” gradient of the
function (∆ε)2:

f = 2∆εx1
1
|x1|

(2.43)

where x1 is normalized because its length is not important. The com-
posed gradient is used with quasi Newton-Raphson optimization equa-
tions, where the Hessian is updated with the gradient and the step.
Because of that, the Hessian is not well defined in CG algorithm. This
algorithm was included in the Gaussian program45 more than 15 years
ago. When it was tested, it was good enough to find MECI in differ-
ent molecules.48 But it has many problems of convergence in some
molecules (Chapter 4). The basic problem is the extremely bad de-
scription of the Hessian, which loses the degeneracy easily. For this
reason, different algorithms have been suggested in recent years.
The Composed Step (CS) algorithm, proposed by Sicilia and co-workers49

and Anglada and co-workers,50 tries to avoid the problems of the com-
posed gradient with a better description of the Hessian inside the IS.
In fact, Anglada and co-workers use the Lagrange multipliers formu-
lation for obtaining a composed step algorithm based on a projection
gradient.
A local quadratic approximation can be written for the IS:

εIS(q) = ε(q0) + (g0
IS)T∆q + 1

2∆qTH0
IS∆q (2.44)
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where gIS is the projected gradient (described previously) and HIS

is the Hessian inside the intersection space, a Hessian that does not
change the energy difference (described in the following subsection).
Thus, a Newton-Raphson optimization can be carried out:

∆qIS = H−1
IS gIS (2.45)

This step is really stable and can find the minimum inside the IS
and maintain perfectly the energy difference but, in the same way as
the projected gradient algorithm, it does not lead to degeneracy. For
this reason, the composed step algorithm is composed of two differ-
ent steps: BS step and IS step, for reaching the degeneracy and for
optimizing the IS space respectively.

∆q = ∆qBS + ∆qIS (2.46)

The BS step uses a local first-order approximation of the energy dif-
ference:

∆ε(q) = ∆ε(q0) + xT1 ∆q (2.47)

If the step is forced to go in the x1 direction, the BS step is described
by the following equation:

∆qBS = ∆ε 1
|x1|2

x1 (2.48)

Unfortunately, this BS step reaches the degeneracy very slowly. For
this reason, the Composed Gradient is used to obtain a structure near
the degeneracy and later the composed step is used to search for the
minimum with the stability of the best Hessian description. Chapter
4 shows results of these algorithms compared with the other projected
gradient algorithms.
Finally, Double N-R (DNR) was described, implemented and tested in
the thesis. This algorithm has a very good performance, as described
in Chapter 4.
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Intersection Space Hessian

The IS Hessian is important for CS algorithms and also for the study
of the second-order properties of CI, MECI and IS. We first introduce
the potential energy diabatic matrix for two states (W).

W(q) = f(x)I +




1
2(αx1 + 1

2

n∑
i,j

∆Hi,jxixj) βx2 + 1
2

n∑
i,j
Ei,jxixj

βx2 + 1
2

n∑
i,j
Ei,jxixj −1

2 (αx1 + 1
2

n∑
i,j

∆Hi,jxixj)




(2.49)
where the molecular system is separated in n modes, used as a co-
ordinate system ( q = x1, x2, x3, ..., xn). The modes are divided into
the first order BS (x1 and x2) and the others modes(xi, where i > 2),
orthogonal to first-order BS. The matrices ∆H and E, introduced pre-
viously (equation 1.8), are the Hessian matrices of the CI conditions.
f(q) is a quadratic function which describes the average of the energies
of the two states and depends on all n modes with a typical quadratic
approximation:

f(q) =
n∑

i

λixi +
n∑

i,j

H̄i,jxixj (2.50)

where H̄ is the Hessian of the average energy of the two states. With
this potential matrix, the energy of each state is the following:

ε1,2(q) = f(q)± 1
2

√√√√(αx1 + 1
2

n∑

i,j

∆Hi,jxixj)2 + 4(βx2 + 1
2

n∑

i,j

Ei,jxixj)2

(2.51)
It is easy to see that the degeneracy is preserved if the root square term
is zero. Thus, the coordinates need to fulfill the following conditions.

αx1 + 1
2

n∑

i,j

∆Hi,jxixj = 0 (2.52)

βx2 + 1
2

n∑

i,j

Ei,jxixj = 0 (2.53)



52 CHAPTER 2. THEORY AND METHODS

Thus, it is possible to obtain a set of values of the first-order BS modes
which keeps the energy degenerate.

x1 =

n∑
i,j

∆Hi,jxixj

2α (2.54)

x2 =

n∑
i,j
Ei,jxixj

2β (2.55)

This expression can be substituted in the potential energy formula
to obtain the energy inside the IS, where the two states are always
degenerate.

εIS(q) = λ1

2α

n∑

i,j

∆Hi,jxixj + λ2

2β

n∑

i,j

Ei,jxixj +
n∑

i,j

H̄i,jxixj (2.56)

For simplicity, the first order terms outside the BS have been extracted
in the following formula. The simplification makes obtaining the Hes-
sian of the IS space trivial:

HISi,j =
(
∂εIS
∂xi∂xj

)
= 1

2

(
H̄i,j −

λ1

α
∆Hi,j −

λ2

β
Ei,j

)
(2.57)

This is the form of the Hessian of the IS energy and it can be used in
the local quadratic approximation. It is used in the MECI algorithms
CS and DNR (chapter 4), but it can also be used to analyse MECI
or the IS and obtain a good description of the IS of the molecular
system.9

2.3 Electronic methods
Obtaining the electronic energy of the molecular systems is fundamen-
tal to find the critical point in the PES or for obtaining the potential
energy operator in the nuclear Schrödinger Equation. Unfortunately,
the electronic TISE does not have analytical solutions for systems big-
ger than hydrogen atoms. Thus, different methods are required to find
that energy.
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2.3.1 Solving the Time Independent Schrödinger
Equation

The electronic TISE using the B-O approximation has the following
form:

Ĥ(r; q)ϕn(r; q) = εnϕn(r; q) (2.58)

where ϕn(r; q) is the electronic wavefunction in the state n at frozen
nuclei, εn is the energy of that state and Ĥ(r; q) is the electronic
Hamiltonian with the following form:

Ĥ(r; q) =
N∑

i=1
T̂ ei (r) +

N∑

i=1

N∑

j>i

V̂ e,e
i,j (r) +

N∑

i=1

M∑

j=1
V̂ e,n
i,j (r; q) +

M∑

i=1

M∑

j>i

V̂ n,n
i,j (q)

(2.59)
where T e is the kinetic energy operator and V̂ e,e,V̂ e,n and V̂ n,n is the
potential energy operator between the electrons and nuclei. The po-
tential operators V̂ e,n and V̂ n,n are dependent on the coordinates of
the frozen nuclei, q. The solution of this equation for any nuclear po-
sition gives the PES and the electronic wavefunction for the complete
wavefunction solution. The wavefunction solution of the electronic
problem can be written as a sum of different products of monoelec-
tronic wavefunctions.

ϕ(r; q) = ϕ(r1, ..., rn) =
K∑

j=1

N∏

i=1
χi,j(ri) (2.60)

where ri are the coordinates of i electron, χ are different monoelec-
tronic wave functions, N is the number of electrons of the system and
K is a sufficiently large number to obtain the exact wavefunction. The
coordinates of the electrons are commonly formed by four components,
the three spatial dimensions (x, y, z) and a spin component(σ). The
spin coordinate can only be α or β. A spin function is therefore added
to monoelectronic wavefunctions.

χ(ri) = φ(xi, yi, zi)ω(σi) (2.61)
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where the function of the spin has unknown form, but there are only
two function which obey the next equality.

〈α∗|α〉 = 〈β∗|β〉 = 1 (2.62)

〈α∗|β〉 = 〈β∗|α〉 = 0 (2.63)

The use of the spin function simplifies the electronic TISE. However,
since electrons are indistinguishable fermions, the electronic wavefunc-
tions need to follow an additional requirement to respect the electronic
nature. Pauli’s principle says that the electronic wavefunctions are an-
tisymmetric with respect to the change of two particules: they change
the sign when the two particles exchange the their coordinates.

ϕ(r1, ..., ri, ..., rj, ..., rn) = −ϕ(r1, ..., rj, ..., ri, ..., rn) (2.64)

Thus the electronic wavefunction not only has to satisfy the TISE, but
should also be antisymmetric. Therefore, any combination of mono-
electronic functions, as in equation 2.60, is not a correct solution. The
simplest way to follow Pauli’s principle is by using a Slater determi-
nant as electronic wavefunction, a particular case of equation 2.60. A
general Slater determinant for the N-electron formula is:

ϕ(r1, ..., rn) = N̂

∣∣∣∣∣∣∣∣∣∣

χ1(r1) χ2(r1) . . . χN(r1)
χ1(r2) χ2(r2) . . . χN(r2)

... ... . . . ...
χ1(rN) χ2(rN) . . . χN(rN)

∣∣∣∣∣∣∣∣∣∣

(2.65)

where χ are the monoelectronic wavefunctions and N̂ is the normal-
ization term. The normalization term is 1√

N ! if all monoelectronic
functions are normalized. The rows of the Slater determinant corre-
spond to coordinates of the same electron (Equation 2.61) and the
columns correspond to the same monoelectronic spin function, often
called orbital or spinorbital. The Slater determinant has N electrons
occupying N orbitals without specifying which electron is in which
orbital, so electrons remain indistinguishable. Moreover, the Slater
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determinant is antisymmetric because when two rows are exchanged,
the sign of the total determinant also changes.
The common notation for the determinants is the brac-ket notation.

ϕ(r1, ..., rn) = |χa(r1)χb(r2) . . . χk(rN)〉 = |χaχb . . . χk〉 (2.66)

where in the second notation the electron coordinates are in order.
The Slater determinant follows Pauli’s principle. For this reason, the
so-called Fermi’s hole is well described: two electrons with the same
spin cannot be found in the same place. In this case, two columns
would be the same and the total determinant would be zero.

Hartree-Fock

Finding the approximate solution of the TISE is not an easy task.
One way to obtain it is to apply the variation principle. The variation
principle says that if a wavefunction is a correct solution of the TISE,
the expected value of the energy is always higher than the correct one.

εExact
0 < ε0 =

〈
ϕapprI

∣∣∣Ĥ
∣∣∣ϕapprI

〉
(2.67)

Therefore, the variation principle can be used to optimize the solution
using some parameters or variation flexibility in the wavefunction and
minimizing the energy with respect to the flexibility.
In the previous section, the Slater determinant has been described as
the simplest antisymmetric wavefunction (equation 2.65). It can be
used to describe the electronic states of the N-electron system as a cor-
rect solution. Thus, the variation principle can be used to obtain the
best Slater determinant, the one with the minimum expected energy.
The Hartree-Fock(HF)28 approximation is the method which obtains
the optimal spinorbitals to form a Slater determinant with the mini-
mum total energy.
The principal HF equation is the following one-electron equation.

f̂(i)χi = εiχi (2.68)
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where ε is the energy of the electron inside the i spinorbital (χ). f(i)
is the effective one-electron operator, called Fock operator:

f̂(i) = −1
2∇

2
i −

M∑

A=1

ZA
riA

+ νHF (i) (2.69)

where the first two terms are kinetic energy and electron-nuclei in-
teraction and νHF (i) is the average electronic potential that the ith
electron experiences due to the presence of the other electrons. νHF (i)
is equivalent to the ”field” seen by the electrons and it depends on the
spin orbitals of the other electrons. Therefore, a set of spinorbitals is
needed to solve the equation and for obtaining a new one. Thus, the
equation is non-linear and must be solved iteratively. For this reason,
the procedure for solving HF is known as a self-consistent-field.
The solution of the HF equation gives a set of spinorbitals which are
the optimal ones for forming a Slater determinant with minimum en-
ergy. The N first spinorbitals are called occupied and form the lowest-
energy determinant. This determinant is the ground state. If some
occupied spin orbitals are exchanged for another solution, called vir-
tual, the formed determinant is an excited state.
The SCF is usually solved with a finite spatial basis set where the
spinorbitals are expanded with a linear combination.

χi(ri) = φi(xi)ωi(σi) =



K∑

µ=1
ai,µφµ(xi)


ωi(σi) (2.70)

where φµ are the basis set functions, K is the number of functions
and ai,µ is the coefficient of the linear combination. The larger basis
set gives more flexibility in the expansion and better results can be
obtained, lowering the expected value of the energy.
If the α and β electrons share the same spatial part, a matrix equation
is set up with the basis set, normally known as the Roothaan equa-
tions.51

Unfortunately, HF has some limitations. For example, some systems
cannot be described by a unique Slater determinant. The most com-
mon cases are some spin states that are linear combinations of deter-
minants. On the other hand, HF describes Fermi’s hole quite well,
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because mathematically the Slater Determinant excludes the possibil-
ity of two electrons with the same spin in the same position, but it
does not exclude the possibility of two electrons with different spin in
the same position, the Coulomb hole. More determinants are needed
to describe it correctly. Finally, the excited state is not well described
with HF. In the SCF process, occupied orbitals are used to obtain
the new ones, thus they are optimized in the process whereas virtual
orbitals are not. Therefore, using virtual orbitals to form excited state
determinants is not the best option for describing the ES.

Complete Active Space Self Consistent Field

As we saw in the last subsection, HF is not the ideal approximated
method for solving the TISE in some systems. In the special case of
the ES, the main topic of the thesis, HF does not provide an accu-
rate solution. For this reason, some multideterminant (also known as
multiconfigurational) methods have been developed, such as config-
uration interaction methods or Multi-Configurational Self-Consistent
Field (MCSCF) methods.52 Among the MCSCF methods, there is the
Complete Active Space Self Consistent Field, CAS or CASSCF.53

In CASSCF, the electronic wavefunction is written as a linear combi-
nation of different determinants,

ϕ(r; q) =
I∑

i=1
ci |ϕi〉 (2.71)

where each determinant is formed by N spinorbitals,

|ϕi〉 = |χa, χb, . . . , χk, χri
, χsi

, . . . , χui
〉 (2.72)

and each spinorbital is another linear combination of the spatial basis
set.

χi =



K∑

µ=1
ai,µφµ


ωi (2.73)

The determinants are formed by different combinations of spinorbitals.
These spinorbitals are divided into two spaces, active and inactive.



58 CHAPTER 2. THEORY AND METHODS

The inactive ones are also divided into two, occupied and virtual.
These two are similar to HF: the occupied are the spinorbitals which
are always occupied in the determinants, usually core orbitals, and
the virtuals are the never occupied ones. The active space is used
to perform the different combinations of spinorbitals used in the de-
terminants. The active space usually includes the chemically rele-
vant orbitals, such as the π system in excited state studies of organic
molecules. In the HF picture, the inactive occupied orbitals are usually
the most stable spinorbitals, such as core orbitals, the virtual orbitals
are the most unstable spinorbitals and the active space is normally in
between, using the last occupied and the first virtual orbitals to do
the combinations. Figure 2.3 shows a scheme for the space division of
the spinorbitals.

Figure 2.3: Scheme with the orbitals in HF picture of the orbital division in a
CASSCF calculation.

As equation 2.72 shows, the different determinants are formed by occu-
pied spinorbitals (χi, χj, . . . , χk) and a different combination of active
space spinorbitals (χµi

, χνi
, . . . , χλi

). The combinations depend on the
number of spinorbitals in the active space and the number of occupied
spinorbitals or electrons inside the active space. For example, in a sys-
tem with eight electrons, it is possible to use three inactive occupied
spatial orbitals and four active spinorbitals, for six and two electrons
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respectively. In this case, the calculation is know as a two electrons
and two orbitals CASSCF or simply CAS(2,2). The electronic wave
function of this example is written as:

ϕ(r; q) = c1 |ϕ1〉+ c2 |ϕ2〉+ c3 |ϕ3〉+ c4 |ϕ4〉+ c5 |ϕ5〉+ c6 |ϕ6〉
|ϕ1〉 = |χ1,α, χ1,β, χ2,α, χ2,β, χ3,α, χ3,β, χ4,α, χ4,β〉
|ϕ2〉 = |χ1,α, χ1,β, χ2,α, χ2,β, χ3,α, χ3,β, χ4,α, χ5,α〉
|ϕ3〉 = |χ1,α, χ1,β, χ2,α, χ2,β, χ3,α, χ3,β, χ4,α, χ5,β〉
|ϕ4〉 = |χ1,α, χ1,β, χ2,α, χ2,β, χ3,α, χ3,β, χ5,α, χ5,β〉
|ϕ5〉 = |χ1,α, χ1,β, χ2,α, χ2,β, χ3,α, χ3,β, χ4,β, χ5,α〉
|ϕ6〉 = |χ1,α, χ1,β, χ2,α, χ2,β, χ3,α, χ3,β, χ5,β, χ5,β〉

(2.74)
This is a very simple case of CAS. However, the number of combina-
tions readily increases, following the next formula:

I =
(
A

Nα

)(
A

Nβ

)
(2.75)

where A is the number of active spatial spinorbitals, Nα and Nβ are
the number of electrons with alpha and beta spin respectively and I
the number of determinants. For example in CAS(14,14) the number
of Slater determinants stretches to 11,778,624. For this reason, the
principal limitation of this method is the size of the active space, be-
cause the computational cost of CAS(16,16) is enormous.
In the CASSCF procedure, the set of coefficients ai and ci, from the
linear combination of the spinorbitals (equation 2.73) and the wave-
function (equation 2.71) respectively, are optimized at the same time,
providing more flexibility in the same basis set. Unfortunately, this
process is totally non-linear and CASSCF is an iterative procedure,
where the two sets are converged in alternative cycles. Thus, the CAS
active space is not the only limitation: systems with a lot of electrons
can be out of reach computationally.
CAS is a highly complex method. The result of the method clearly
depends on the active space: when the active space is more related
with the system, more specific for the chemical problem, the best re-
sults are obtained. And the energies are better with a large active
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space. Given the size limitation, the choice of active space is a hard
task. There is not any formula for finding either the best orbitals or
the ideal size. Each system requires a previous study to obtain the
best results with CAS. However, there are some strategies for finding
it, such as using all π system to study the excited state in molecules
with double bonds.
On the other hand, the CAS solution is not the best solution as it
is not the exact one. CAS is the full solution inside the active space
with the basis set that is used. But outside the active space, the
quality of the solution is similar to HF. For this reason, it is often said
that CAS has static electronic correlation but not dynamic correlation.
However, this fact is not completely true, because if the active space
is big enough, dynamic correlation is included too, but principally,
CASSCF includes static correlations. Other methods can include dy-
namic correlation such as Configuration-interaction Single and Dou-
bles or second-order perturbation theory applied to CAS, known as
CASPT2.54,55

2.3.2 Molecular Mechanics

Evidently, the most precise way to obtain the potential energy is solv-
ing the TISE. However, computing the complete total quantum PES
is a serious undertaking. In fact, obtaining the fully quantum po-
tential energy of one geometry of a large bulky system is technically
impossible: the approximate methods for solving the TISE previously
presented require extensive computational effort and large systems are
impossible. In this case, the potential energy can be obtained in an-
other way: molecular mechanics (MM), where electrons are ignored
completely, in contrast to the quantum mechanics (QM) electronic
method of the previous section (2.3).
It is possible to consider the PES as an abstract function of the nu-
clear coordinates (U(q)), without any connection with the electronic
TISE. This function is analytical, and it should be continuously differ-
entiable. In the case of the bond distance of two atoms of the system,
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A and B, the potential energy can be written as a Taylor series:

ε(rA-B) = ε(rA-B
0 )+

(
dε

dr

)

0

(
rA-B − rA-B

0

)
+1

2

(
d2ε

dr2

)

0

(
rA-B − rA-B

0

)2
+. . .

(2.76)
where rA-B is the bond distance. If a local quadratic approximation
is done in the equilibrium point, where

(
dU
dr

)
0

is zero, it is possible to
write a function for the potential energy between these two atoms:

ε(rA-B) = 1
2kA-B

(
rA-B − rA-B

eq

)2
(2.77)

where the second derivative of the energy is the force constant (kA-B).
Usually, the equilibrium distance between two atoms remains constant
although the system is changed. Furthermore, the spectroscopic data
show that the bonds between the same pair of atoms are extraordi-
narily similar, and usually they can be distinguished from the others
in IR spectra. Thus, empirically, it is evident that the force con-
stant is practically the same in different molecules. This phenomenon
is called ”transferability”. Therefore, a list of different equilibrium
constants and equilibrium distances can be produced for each pair of
atoms. Assuming these concepts, the total bond potential energy can
be obtained as the sum of the potential energy of all bonds. Following
the same procedure, it is possible to obtain the total potential energy
of the molecular system as a sum of different contributions.

ε(q) = εbonds + εangle + εdihedral + εelectrostatic + εvanderWaals (2.78)

where the potential energy is divided into five terms, depending on
the nature of the potential energy. Each term has its own parameters
and depends on two, three or four atoms.
There are different list of parameters and formulations known as Force
Fields. Most of them are based on the same formula (equation 2.78).
The principal difference lies in the parameters and how the atoms are
considered. For example, different Force Fields are optimized to ob-
tain the best results in proteins or in DNA, fitting the parameters
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to experimental and theoretical data and considering the atoms that
make up the system. All atoms can have different types in the param-
eters list, depending on the hybridization and the bonds which they
form.
In the present work only the Universal force field (UFF)56 is used.
UFF is an all-atom potential containing parameters for every atom.
The force field parameters are estimated by means of general rules
based only on the element and its hybridization, in the attempt to
include all atoms and all cases.

2.3.3 ONIOM
Different methods require different computational effort and different
precision in the results of the potential energy. The Own N-layer In-
tegrated molecular Orbital molecular Mechanics (ONIOM)57–62 is a
scheme to separate the molecular system into different layers and cal-
culate them with different methods. Thus, it is possible to calculate
some parts of the molecule accurately and the rest with a cheaper
method. Often, ONIOM is confused with the QM/MM method, but
it isn’t. QM/MM is a scheme or method to combine QM methods
and MM methods in the same calculations. But,technically, ONIOM
can do QM:QM63 or MM:MM. Also, ONIOM is a multilayer scheme,
where the system can be divided into more than two59 layers and a
QM:QM:MM scheme is possible. ONIOM uses a very easy extrapola-
tive scheme that avoids common errors of under- or over-counting in-
teractions in typical QM/MM approaches, which use additive schemes.
For this reason, commonly, ONIOM is used in QM:MM scheme.
With two layers, ONIOM gives the following formula for the potential
energy:

εONIOM = εHigh Level
Model + εLow Level

Real − εLow Level
Model (2.79)

where the complete molecular system is named Real and the part
where the high level method is applied is called Model; thus the sys-
tem is divided into two layers, model and the rest. Following the
equation, the real system is calculated with the low level method, the
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cheapest one. The model is calculated with the high level method. The
model is calculated with the low level too, to extrapolate the ONIOM
energy. Therefore, the rest outside the model is only calculated with
the low level method. For this reason, choosing the correct model is a
prerequisite in an ONIOM calculation to obtain relevant results.
Sometimes, the division between the model and the low-level moiety
implies cutting a boundary through covalent bonds. In this case, an
additional treatment is required. ONIOM employs the common Link
Atom (LA) approach, whereby the atoms of the rest are replaced by
the LA, normally hydrogen. Thus, the Link Atom Connection (LAC)
exchanges the covalent bond with the Link Atom Host (LAH) for LA.
This division in ethane is shown in figure 2.4. In ONIOM, the position
of the LA depends on the coordinates of the LAH in the real system,
as follows,

qLA = qLAC + g(qLAH − qLAC) (2.80)
where qLA,qLAC and qLAH are the position of the LA, LAC and LAH
atoms respectively and g is the scale factor, which depends on the
three atoms. The LA approach eliminates degrees of freedom with
respect to other approaches because scale factor is constrained to a fix

Figure 2.4: The real and the model molecular system in an ONIOM calculation
in ethane. The LA, LAH and LAC are indicated.
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value. Furthermore, the bond length has non-strange values in model
and real system, and the stretching along the model is transferred to
the real system and vice versa.
Similarly to the potential energy function, the gradient in ONIOM is
simply evaluated with the gradient of three calculations. However, in
this case, if a bond is cut in the division in different layers, a trans-
formation is needed because the position of the LA in the model is
not the same as in the complete molecular system. Using a Jacobian
matrix transformation in the gradient of the model system, the total
ONIOM gradient is a trivial sum of gradients.

gONIOM = gHigh Level
Model J + gLow Level

Real − gLow Level
Model J (2.81)

Optimizations with microiterations

In QM:MM ONIOM optimizations, since the computational cost of
the MM methods is much lower than QM, it is more efficient to do
a complete optimization of the MM part for each model step without
optimizing the total ONIOM potential energy at the same time. The
complete ONIOM gradient vector can be separated in two layers like
the molecular system.

gONIOM =
(
gmodel

0

)
+
(

0
grest

)
(2.82)

The complete optimization in the MM part is done with gRest for cal-
culating the steps, called microiterations.60 gRest includes only MM
parts, so it avoids any movement in the model layer in the microitera-
tions. Moreover, the calculation of gRest is done with MM, making the
microiterations very cheap. Later, gModel is used to calculate the step
in the model, normally called macroiteration. This gradient freezes the
movement in the MM part. This gradient includes QM and MM com-
ponents. The complete set of microiterations and the macroiteration
perform the complete ONIOM step in QM:MM ONIOM calculations.

∆q =
(

∆qmodel

0

)
+
(

0
∑∆qrest

)
(2.83)
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Mechanical Embedding and Electronic Embedding

There are two ways to deal with the electrostatic interaction between
layers in QM:MM calculations: classical or mechanical embedding and
electronic embedding. In the first one, ME, the different layers do not
interact. The absence of the environment is especially important in
the model high level calculation, where the model only receives sterical
information from the ONIOM extrapolation formula. The electronic
structure does not interact with the environment, which is a less ac-
curate approximation to the real problem. On the other hand, the
EE scheme incorporates cross-region electrostatic interactions in the
model. In this scheme, the model system includes charges from the
real system. These charges are included in all model calculations. In
the case of QM calculations, the charges enter inside the Hamiltonian
operator. Evidently, the wavefunction of the model system in the EE
scheme is more accurate in the electrostatic description. However, the
MM charges are usually used and they are relatively large at close
distance. Thus, the EE scheme has an unavoidable problem: overpo-
larisation of the model wavefunction. The problem can be reduced,

Figure 2.5: The real and the model molecular system in two ONIOM calcula-
tion in propane, using the EE and ME schemes. The dots in the EE calculation
represent the point charges included in the high-level Hamiltonian.



66 CHAPTER 2. THEORY AND METHODS

however, by certain techniques.
Optimization with microiterations is another problem with EE. In
this case, the separation of the gradient is possible, but the gradient
of the rest depends on the QM calculation too, because the changes in
the MM part change the wavefunction. For this reason, Friesner and
co-workers64 proposed a scheme where electrostatic potential (ESP)
charges of the QM region are used for describing the perturbation to
the exact gradient during the microiterations. After these microiter-
ations, the ESP charges are re-calculated and the process is repeated
as an iterative process, until the wavefunction converges.

ONIOM in the Excited State

Obtaining the potential energy of the excited state is much more com-
putationally expensive than for the ground state and requires high-
consuming methods like CASSCF. If a large system is calculated with
ONIOM, the size of the model must be decreased radically to make
it possible to calculate. However, the cheapest methods such as HF
do not describe the ES correctly and, in fact, most MM force field
do not have an ES potential energy function. For this reason, an ap-
proximation is required. Bearpark and coworkers proposed65 using the
ground state for the low level calculation, independently of whether
the ONIOM calculation was for the ground or excited state. In this
case, the excited state is calculated in the model system and the rest
has no influence. Therefore, all excited state properties, like energy
difference or first order BS are related to the model system.

∆εONIOM = ∆εHigh Level
Model (2.84)

With that approximation, a QM:MM ONIOM calculation can be done
in ES potential energy calculations. However, in such cases, the se-
lection of the model is particularly important, because if some part
which is important for the ES does not enter in the model, the error
is enormous. For example, charge-transfer between the model and the
rest of the system does not appear in that calculation.
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2.4 Photoexcited molecular dynamics

The absorption process is a time-dependent perturbation that brings
the system to a non-stationary state. In the cases of our study, this
fact is important.
The major part of the Introduction is centred on understanding the
electronic excited state as a stationary one, where the geometric struc-
tures on the potential surface of the molecular system have remarkable
importance, such as CI or FC. Knowledge of these ES system struc-
tures helps to obtain a mechanistic picture and to predict the pho-
toreactions. However, these points are reached because the systems
are in non-stationary states after the radiation. This fact is equally
as important as specific geometries, because it defines when and how
these structures are reached. The main importance of the CI is that
the system can reach them before the emission process starts. Thus,
molecular dynamics are an essential tool for simulating non-stationary
processes.
Interest in molecular dynamics has risen in the last three decades,
where many femto-chemistry experiments needed to be explained. The
recent advances in laser science have increased the interest in it. The
molecular dynamics can be simulated theoretically with different forms
to reveal the experimental facts. Theoretical simulations can show the
movement on the atomic scale of the proteins or the change in the elec-
tronic density when they are excited by femto-lasers.
There are different kinds of theoretical dynamic simulations, depend-
ing on the description of the system. Principally, the system can be
understood as quantum or classical, or a mix of them. For example, it
is possible to use the quantum PES as the potential energy of the nu-
clei to run dynamic simulations using the classic Newton formulation
or use a Force Field of MM to do classical molecular dynamics. The
last case is common in the study of proteins or DNA. However, using
the classical formulation loses the quantum effects such as tunnelling
or radiationless relaxation. The only way to describe these effects in
simulations correctly is to solve the TDSE.
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2.4.1 Solving the Time-Dependent Schrödinger Equa-
tion

The most exact way to simulate the changes in molecular systems with
time is to solve the TDSE. Solving the TDE can also be necessary for
time-independent systems where the Hamiltonian is too complicated
to compute all states. However, here we are more interested in the
first case. As we saw in the first section of this chapter (2.1), when
the Hamiltonian is time-dependent, TDSE has the form of the equa-
tion 2.1. The wavefunction cannot be separated into two parts, time
and position, so the equation needs to be solved completely. Nonethe-
less, it is possible to separate the coordinates of electrons and nuclei
as in TISE solutions. As we showed in the B-O approximation sec-
tion (section 2.2), the principal difference between the two pictures is
the form of the potential energy operator in the nuclear Schrödinger
equation. Thus, TDSE can be solved in both pictures provided the
correct PES is obtained previously.
The solutions of the TDSE are more complex than the TISE ones:
there is one more variable, time. However, it is possible to obtain
the density of the system at each time, as a snapshot, known as a
wavepacket. The propagation of the wavepackets can describe the
change of total density with time, the molecular ”movement”.
Like TISE, TDSE cannot be solved exactly for systems bigger than a
hydrogen atom. Therefore, some approximated methods are used to
solve it.

MCTDH

Multi-Configuration Time-Dependent Hartree (MCTDH)66–69 is the
approximated method for solving any TDSE and was developed and
implemented by Prof. H.-D. Meyer and coworkers.
The solution of the nuclear TDSE can be written as a Hartree product
of M monodimensional functions (φ), known as single-particle func-
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tions (SPFs).

ψ(q, t) = a(t)
M∏

i=1
φi(qi, t) (2.85)

where M is the number of dimensions of the problem and a(t) is the
phase of the system. A finite primitive spatial basis set (χ) can be
used to obtain the SPFs.

φ(q, t) =
K∑

j=1
cj(t)χj(qi) (2.86)

The Hartree products can be used to solve the TDSE, in Time-Dependent
Hartree methods, but they have some limitations.66 As its name sug-
gests, MCTDH gives flexibility: a linear combination of different Hartree
products which is known as the ansatz wavefunction.

ψ(q, t) =
n1∑

j1

. . .
nM∑

jM

Aj1,...,jM (t)
M∏

i=1
φi(qi) (2.87)

For simplicity, the expansion can be expressed by combinations of
different Hartree products of all single-particle functions,

ψ(q, t) =
J∑

j=1
Aj(t)Φj(q) (2.88)

where J are the total number of combinations and Φj(q) =
M∏
i=1

φi,j(qi).
There is a variational principle that can be applied to the TDSE, the
Dirac-Frenkel variational principle.

〈
δψ
∣∣∣Ĥ − i∂t

∣∣∣ψ
〉

= 0 (2.89)

With this variation principle, the TDSE can be solved using the form
of equation 2.88 as a matrix equation.
MCTDH is a method for propagating the wavepacket on the PES.
For this reason, the complete PES must be known globally. This is
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the principal problem with MCTDH. The huge effort needed to gen-
erate the correct PES requires an extremely large grid of electronic
calculations. Furthermore, the computational effort of the quantum
dynamics grows quickly with the dimensions of the problem. Six or
seven dimensions can be a great challenge, with enormous computa-
tional cost. For this reason, multi-layer70 MCTDH was proposed a few
years ago to save computational cost of large dimensional problems,
making it possible to solve problems of twelve dimensions or more.
In spite of the computational cost and the effort required to obtain
the PES, quantum dynamics are the only method which correctly de-
scribes the electromagnetic perturbations, such as the excitation pro-
cess, because they are totally quantum phenomena. Moreover, quan-
tum dynamics can describe the non-radiative transitions that occur at
a CI correctly, which is essential to study of the ES. To summarize,
the MCTDH method has been the method of choice in the dynamics
calculations presented in Chapter 5 because it gives the best balance
between computational efficiency and an accurate treatment of quan-
tum effects.



Chapter 3

Objectives

In this thesis the theoretical modelling of excited states is approached
from a double perspective, based on the main potential of theoretical
and computational chemistry: the ability to rationalize mechanisms
for existing reactions, and the application of this knowledge to design
new reactions and new experimental approaches. In this context, the
two main goals of this thesis are: (1) To develop new tools for the
study of the ES PES and the rationalization of ES reactivity, namely
CI optimization algorithms, and (2) to derive new strategies for one
of the most important current experimental challenges, the control of
reactivity with light.
The first objective is studying the topology of the PES of the excited
state. As we saw in the Introduction, the behaviour of the excited
state is based on the energy of the seam. If any CI of the seam
is accessible in energy, a radiationless process has a high rate and
deactivation can occur before radiation. Thus, obtaining the MECI
is fundamental to study the topology of the ES. There are several
algorithms for optimizing MECI with different performance. Starting
from the existing projected gradient algorithms, CG and CG-CS, the
goals of this part are:
• Device a new CI algorithm optimization to improve the approach

to the seam and thus reducing the total steps in MECI optimiza-
tions.

71
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• Compare the performance in fully quantum calculations, in num-
ber of steps, of the new algorithm in front of CG and CG-CS on
the optimization of a test set of 11 compounds.

• Implement the three projected gradient algorithms inside the
ME-ONIOM scheme with microiterations.

• Study the performance of the algorithms inside ONIOM scheme
in a systematic test with bulky molecules.

• Study the viability of the new implementation for finding MECI
inside crystal structures with the example of diphenyl dibenzo-
fulvene (DPDBF), studying the complete topology of the mole-
cule.

The second objective is proposing new strategies for the control of
photo-processes. The target system is the well-known fulvene mole-
cule, which has a barrierless rotation in ES but where the main de-
activation route is a planar structure CI. The main idea is to use
the existing knowledge of the decay mechanism to develop the control
scheme. Since the excited system is in a non-stationary state, quan-
tum dynamics are mandatory for a realistic simulation of the control,
and the available 4-dimensional model is used as a starting point. The
proposed approach is based on the non-resonant Stark effect, where
the potential energy surfaces are shifted with a non-resonant field, and
the idea is to shift the energy and position of the seam with the field.
Starting from these ideas, the main goals of the second part are:

• Study of the effects of the non-resonant electric field on the topol-
ogy of the fulvene PES.

• Include the non-resonant electric field in the available four-dimensional
model.

• Re-parametrize the model with the new field parameters based
on ab initio calculations.
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• Study the viability of the photorotation of the exocyclic double
bound of fulvene (section 1.2.2) control strategy with the non-
resonant Stark effect at the quantum dynamics level, using the
new model and a pair of external fields to simulate the pump
and control laser pulses.
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rithm Using Composed Steps
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ABSTRACT: An algorithm for conical intersection optimiza-
tion based on a double Newton−Raphson step (DNR) has
been implemented and tested in 11 cases using CASSCF as the
electronic structure method. The optimization is carried out
in redundant coordinates, and the steps are the sum of two
independent Newton−Raphson steps. The first step is carried
out to reach the energy degeneracy and uses the gradient of
the energy difference between the crossing states and the so-
called branching space Hessian. The second step minimizes the
energy in the intersection space and uses the projected excited
state gradient and the intersection space Hessian. The branching and intersection space Hessians are obtained with a Broyden−
Fletcher−Goldfarb−Shanno update from the gradient difference and projected excited state gradients, respectively. In some
cases, mixing of the quasi-degenerate states near the seam causes changes in the direction of the gradient difference vector and
induces a loss of the degeneracy. This behavior is avoided switching to a composed step (CS) algorithm [Sicilia et al. J. Chem.
Theory Comput. 2008, 4, 27], i.e., a hybrid DNR-CS implementation. Compared to the composed gradient (CG) [Bearpark et al.
Chem. Phys. Lett. 1994, 223, 269] and hybrid CG-CS algorithms, the DNR-CS algorithm reaches the MECI in 30% and 15% less
steps, respectively. The improvement occurs mostly because the approach to the seam is more efficient, and a degeneracy
threshold of 0.001 hartree is reached at lower energies than in the CG and CG-CS cases.

■ INTRODUCTION

Conical intersections (CIs) are very important in molecular
photochemistry and photophysics.1 They provide efficient fun-
nels for the decay from the excited state to the ground state, or
for transitions between different excited states, and therefore
they play a key role in ultrafast excited state processes. They
account for excited state processes of molecules in the gas
phase and in solution and also of chromophores embedded in
biological systems such as DNA, rhodopsin, the photoactive yellow
protein, or others (see refs 2 and 3, and references therein).
In computational photochemistry, the first approach to study

a photochemical process is usually the computation of critical
points on the surface.4 In this approach, the calculation of mini-
mum energy conical intersection (MECI) structures is particularly
relevant. However, locating these points can be difficult because
they often have counterintuitive structures that are difficult to
predict a priori. Therefore, efficient algorithms to optimize these
points are important. Such algorithms are also necessary for
their further use in different contexts, such as the implementation
in QM/MM formalisms. Although the first CI optimization
algorithms were developed about two decades ago,5 efforts to
develop new algorithms are ongoing and are directed along
several directions. The first one is the search for more efficient
optimization algorithms, which is the main aim of this paper.6

Another line is the development of approaches that do not
require the interstate coupling vector (one of the two directions

that breaks the degeneracy at the intersection, see details below),
which is difficult to calculate with many electronic structure
methods.7 Finally, several methods have been developed that
include environmental effects, mostly based on hybrid schemes.8

CIs are crossings of potential energy surfaces of the same
multiplicity that form an (N − 2)-dimensional subspace, usually
called intersection space or seam of intersection. Here, N is the
number of degrees of freedom of the surface, which is equal to
3n − 6, where n is the number of atoms. The degeneracy is
lifted in first order along the remaining two directions of the
surface, which form the so-called branching space. Computa-
tionally, the problem of locating the MECI is an energy mini-
mization subject to the constraint of energy degeneracy between
the states. This is equivalent to an optimization in the (N − 2)
dimensional subspace. This problem can be tackled with three
general methods:9 penalty function methods, projected gradient
methods, and Lagrange−Newton ones. These methods have
been compared previously.10 In this paper, we focus on projected
gradient methods, and we present an improved optimization
scheme of this type.
The CI minimization conditions can be described as

Δ =E 0 (1)
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=g 0IS (2)

where ΔE is the energy difference between the two states and
gIS is the so-called intersection space gradient, i.e., the projec-
tion of the gradient in the intersection space. The main idea of
the projected gradient methods is to carry out a Newton−
Raphson optimization driven by gIS. This gradient is obtained
by projecting out the branching space vectors, which are given
by eqs 3 and 4:

= ∂ −
∂

E E
x

q
( )

1
2 1

(3)

= ∂⟨ | ̂ | ⟩
∂
H

x
C C

q2
1 2

(4)

x1 is the gradient difference vector, and x2 is the interstate
coupling vector. Both vectors can be obtained routinely at the
complete active space self-consistent field (CASSCF) level of
theory.11 Ei is the adiabatic energy of state i, H is the electronic
part of the Hamiltonian, and C1 and C2 are the CI eigenvectors
of the MC-SCF problem. The resulting projector is

= − ̂ ̂ − ̂ ̂P I x x x x1 1
T

2 2
T

(5)

We follow the usual notation, where x ̂ stands for the nor-
malized vector x. x1 and x2 are orthogonalized for the
projection. The intersection space gradient gIS is obtained
applying the projector to the gradient of either of the
degenerate states (both projections give the same result):

= ∂
∂ = ∂

∂
E E

g P
q

P
qIS

2 1

(6)

The main idea behind projection methods is that once the energy
degeneracy condition is fulfilled, optimization steps along x1
and x2 should be avoided because they may cause a loss of
the energy degeneracy. This is taken care of (to first order) by
construction, since the intersection space gradient of eq 6 is
orthogonal to x1 and x2.
Projected gradient methods are more efficient than penalty

function ones because the projected gradient helps to maintain
the energy degeneracy during the optimization. Their practical
advantage with respect to Lagrange−Newton methods is that
they can be easily implemented into available optimization routines.
Here, we focus on the combination of projected gradient algorithms
with a Newton−Raphson optimization in redundant coordinates12
and Broyden−Fletcher−Goldfarb−Shanno (BFGS) update of the
Hessian.13 One important issue is how the energy degeneracy
condition is implemented, and this is the main point of our
paper. The first possibility is to work with a composed gradient
(CG) gc of the form5b

= +g g fc IS (7)

where

= Δ ̂Ef x2 1 (8)

In eq 7, gIS and f are orthogonal, and gc only becomes zero
when both components are zero, i.e., when the two mini-
mization conditions of eqs 1 and 2 are fulfilled. When the
degeneracy is reached, the f component is zero, and steps along
the branching space, which might lift the degeneracy, should be
avoided. However, the CG algorithm has the drawback that
the gradient is not well suited for the Hessian update, since it is
made of components in the branching space and the inter-

section space. The branching space components act on the
updated Hessian. In the Newton−Raphson step, this can lead
to displacements in the branching space even when f is zero,
lifting the degeneracy.
To circumvent this problem, we have recently introduced a

method which uses a composed step (CS) instead of a CG.6c

To understand the performance of the different algorithms, it is
useful to think of the optimization as a process made of two
main phases: in the first phase the energy gap is large, and the
approach to the energy degeneracy dominates the optimization.
The optimization in the intersection space is carried out in the
second phase, once the degeneracy is reached. As we explain
more in detail below, in the CS algorithm the Newton−Raphson
step is only carried out in the intersection space, and the energy
degeneracy condition is approached with a linear step along the
gradient difference vector x1. This improves the optimization in the
intersection space, but the approach to the intersection space is
more efficient in the CG case. For that reason, we proposed a
hybrid CG-CS algorithm which starts with the CG method and
switches to the CS one when the energy degeneracy is reached.6c

In the present paper, we introduce a new projection based
algorithm with a CS where the approach to the seam is improved.
The so-called double Newton−Raphson (DNR) algorithm does
two Newton−Raphson steps in every optimization cycle. Thus,
compared to the CS algorithm the linear step along x1 is replaced
with a quadratic step. The three methods (CG, hybrid CG-CS,
and DNR) are compared for several cases, and the results show
that the optimization is improved with a hybrid DNR-CS algorithm.

Theoretical Basis. The CS Algorithm and Its Implemen-
tation. The main idea of the CS algorithm is to carry out
displacements composed of two independent steps, each one
following the conditions of eqs 1 and 2. We follow the deriva-
tion of ref 6c, which is related to the derivations presented in
refs 5c and 6b. To reach the energy degeneracy from a starting
point q0, the energy difference is expanded in a Taylor series to
first order:

Δ + Δ = Δ + ΔE Eq q q x( )0
BS

BS
T

1
0

(9)

where ΔE0 is the energy gap at q0. The displacement that leads
to energy degeneracy is parallel to x1 and is called the branching
space displacement:

δκ
Δ = − Δ ̂E

q xBS 1

0

0 (10)

δκ0 is the length of x1 at q0. The energy minimization in the
intersection space is achieved with a Newton−Raphson pro-
cedure using the intersection space gradient:

Δ = − ̃ −q H g( )IS IS IS
1

(11)

In eq 11, H̃IS is derived from the so-called intersection space
Hessian, HIS. The intersection space Hessian is the second
derivative matrix of the seam energy.14 Here, it is obtained from
gIS with the BFGS update (see details in the Implementation
section). The optimization step is the sum of the intersection
and branching space steps:

Δ = Δ + Δq q qBS IS (12)

Once the degeneracy is reached, the convergence with the CS
algorithm is improved with respect to the CG one. However
the CS has a poor performance when the seam is approached
because the steps are forced to go along the x1 direction. As a
result, the initial part of the optimization, which is dominated
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by the approach to the seam, reaches the degeneracy in more
steps and leads to regions of the seam with higher energy. To
solve this problem, in our previous work we implemented a
hybrid algorithm that combines the best of the two algorithms:
The optimization starts with the CG algorithm until the energy
degeneracy is reached, i.e., when the energy gap between the
two states falls below a threshold of 0.005 hartree. After the
threshold, the optimization switches to the CS procedure to
optimize the energy in the intersection space. We refer to this
implementation as the hybrid CG-CS one.
The DNR Algorithm. The main motivation of the DNR

algorithm is to improve the approach to the seam. The idea
to do this is borrowed from the CG algorithm, where the
energy degeneracy condition (eq 1) is reached via the gradient
component f (eq 8). In its turn, f is derived from the condition
of minimizing (ΔE)2. Thus, we can express the DNR algorithm
as the minimization of two functions, EIS and (ΔE)2. Each
function is optimized with a Newton−Raphson step, and the
optimization step is the sum of the two. Therefore, the working
equations for the intersection space step and the total optimi-
zation step are the same ones as in the CS case (eqs 11 and 12).
The branching space step is given by

Δ = −q H g( )BS BS BS
1

(13)

and gBS is equal to f in eq 8:

δκ
= ∂ Δ

∂ = Δ ̂E
Eg

q
x

1 ( )
2BS 10

2

(14)

Similar to the intersection space Hessian, the branching space
Hessian HBS is obtained from gBS with the BGFS update. Strictly
speaking, the gradient for minimization of (ΔE)2 is 2ΔEx1.
However, in eq 14 we follow the original derivation of the CG
algorithm, and we divide the gradient by the length of x1, which
greatly improves the convergence.
Implementation. The DNR algorithm has been implemented

in the Gaussian Development Version program.15 Several prac-
tical issues deserve comment. The first one is related with the
use of redundant coordinates for optimization, which requires a
transformation of the gradient from Cartesian to redundant
coordinates. If the transformation to redundant coordinates is
done on gIS, after the projection step (eq 6), the orthogonality
between the gradient vectors gIS and x1 is lost during the
transformation. Thus, the transformation of a gradient from
Cartesian to redundant coordinates (xcart to xred) is given by
eq 15:12,16

= −x G Bxred cart (15)

where B is the Wilson matrix17 and G− is the generalized
inverse of G = BBT. Before the transformation, gIS

cart and x1
cart

(both in Cartesians) are orthogonal. After the transformation to
redundant coordinates, the scalar product is

= − −g x g B G G Bx( ) ( ) ( )IS
red T

1
red

IS
cart T T T

1
cart

(16)

For the orthogonality to be retained in redundant coordinates,
the product BT(G−)TG−B should be the unity matrix, which is
not the case. The loss of orthogonality of gIS with respect to the
branching space vectors is similar to what happens when geo-
metry constraints are applied to the optimization gradient in
the CG case.18 Similar to this case, it is better to transform gIS,
x1, and x2 to redundant coordinates before the projection and
do the projection in redundant coordinates. This procedure,
which is different from the current implementation of the CG

algorithm in Gaussian,19 has been adopted here for the three
investigated algorithms. The back transformation from redundant
to Cartesian coordinates does not suffer from this problem
because there one wants to maintain orthogonality between the
ΔqIS displacement and the x1 and x2 gradient vectors. In this case,
the back transformation for the gradient vectors is

=x B xcart T red (17)

In its turn, the back transformation for the intersection space
displacement can be approximated as12,16

Δ = Δ−q B G qcart T red
(18)

Thus, the scalar products between ΔqIS and x1 and x2, res-
pectively, are not affected by the transformation, and the ortho-
gonality is retained.
The second issue is related with the construction of H̃IS

(eq 11) from HIS. Thus, HIS can be defined as the derivative of
the intersection space gradient:

= ∂
∂H

q
gIS IS (19)

HIS is obtained from gIS following the BFGS update.
6c To avoid

ΔqIS components along x1 and x2, the intersection space Hessian
should have zero eigenvalues along these directions. However, this
is not necessarily the case because the directions of these
vectors change during the optimization, and HIS is obtained
from an update. This can be corrected multiplying HIS from the
left and right by P. The resulting matrix has two zero eigenvalues
corresponding to the directions of x1 and x2. To avoid problems
with the inversion in the Newton−Raphson step (eq 11), these
eigenvalues are increased artificially to a high value, following the
idea of ref 12. Thus, the final matrix used for the Newton−
Raphson step is

̃ = + − −H PH P I P A I P( ) ( )IS IS (20)

A is a diagonal matrix whose elements are set to a large
constant (5000 hartree·bohr−2 in the present case). Note that
before the step in redundant coordinates is calculated (eq 11),
H̃IS from eq 20 is further modified by the optimization routine
implemented in Gaussian; i.e., displacements in the redundant
part of the coordinate space are avoided as indicated in ref 12.
The construction of the intersection space step (eq 11) is
similar to what is proposed in eq 13 of ref 5c, although the
Hessian is different. In ref 5c, the Newton−Raphson procedure
is carried out with the so-called reduced Hessian matrix, which
has dimension N − 2; here, we use redundant coordinates, and
instead of reducing the dimension of the matrix, we find it more
convenient to use H̃IS and treat the zero eigenvalues along x1
and x2 analogously to those along the redundant part of the
coordinate space.
The branching space Hessian has also some characteristics

that have to be treated with care. First, in any molecule there
are many coordinates that do not affect the energy difference.
This results in a large number of near zero eigenvalues in HBS,
which in turn can cause problematic ΔqBS steps, namely dis-
placements along coordinates that do not affect the energy gap.
To avoid this problem, we have followed the idea of eq 20 and
increased artificially all eigenvalues of HBS smaller than a
threshold of 2 × 10−4 hartree·bohr−2. Another problem is
caused by the tendency of the electronic states to mix near the
degeneracy. The mixture of the states interchanges the GD and
IC vectors x1 and x2, causing arbitrary changes in the direction
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of x1. These changes affect gBS (see eq 14), and more importantly,
they affect HBS through the update formula. In turn, this results in
poor ΔqBS steps and a loss of the degeneracy near the seam.
Moreover, this effect extends to further optimization steps
because it affects HBS. A way to mitigate this problem is to
switch from the DNR to the CS procedure, which is equivalent
to changing from a quadratic to a linear branching space
optimization step. We have followed a practical approach, based
on energy criteria, to detect this problem and carry out the
switch. Thus, the change comes into effect when there is a sudden
rise in the energy gap near the seam during the optimization, i.e.,
when the energy gap lies below a threshold of 0.005 hartree, and it
increases by 0.010 hartree or more from one step to the next one.
We refer to this as the hybrid DNR-CS implementation.
The algorithms have been combined with the usual optimi-

zation features in Gaussian.19 The initial Hessian for HBS and HIS
is the parametrized, diagonal Hessian in redundant coordinates
used for default optimizations, which gives satisfactory results. The
convergence is checked against the forces in gIS and the total
displacement Δq.

■ COMPUTATIONAL DETAILS
The three algorithms have been tested on a test set of 11 cases.
The structures are shown in Figure 1, and the Cartesian coordinates

are given in the Supporting Information. Four molecules (azulene,
benzene, butadiene, and the penta-2,4-dien-1-iminium cation)
were previously used in a test set for the comparison of penalty
function, projection-based, and Lagrange−Newton MECI optimi-
zation algorithms;10 our test set also includes acrolein and hexatriene,
a nucleobase (thymine), and the guanine analogue 2-amino-6-
pyrimidone. We also have included three more challenging
cases, a floppy butadiene derivative with two additional methyl
groups (4-methyl-1,3-pentadiene) and two local MECI minima
of N-methylthioacetamide which could not be fully optimized
in a preceding study with the CG algorithm.20 Most optimiza-
tions are started near the excited state minimum, releasing any
symmetry constraints. In the cases where several local MECI
minima are known on the seam, the molecule has been dis-
torted to drive the optimization toward the global minimum.
The coordinates of the starting points are also included in the
Supporting Information.
The calculations have been carried out at the state-averaged

CASSCF/6-31G** level of theory, and the active spaces are
detailed in the Supporting Information. In all optimizations,
except for azulene, the gradients include the coupled-perturbed

multiconfiguration self-consistent correction,11b which is only
available for active spaces up to eight orbitals. The active space
for azulene has 10 active orbitals, and in this case we have used
the approximate gradients without the correction.

■ RESULTS AND DISCUSSION

The results of the MECI searches with the three algorithms are
presented in Table 1. We start discussing two representative

cases, for which the energy profiles during the optimizations are
shown in Figures 2 and 3. In these plots, the energies of S1

Table 1. Results of MECI Searches with the CG, CG-CS, and
DNR Algorithms, Including the Distance from the Starting
Point to the MECI, the Number of Optimization Cycles, and
the Energy Gap at the Optimized Point

test molecule
distance
[Å]a method cycles ΔE [au]b

acrolein CG 100c

1.70 CG-CS 49 0.0000154
DNR-CS 31 0.0000002

2-amino-6-pyrimidone CG 15 0.0000963
1.50 CG-CS 15 0.0000102

DNR-CS 18 0.0000029
azulene CG 15 0.0001397

1.41 CG-CS 16 0.0000465
DNR-CS 21 (48)d 0.0000532

benzene CG 21 0.0000331
1.51 CG-CS 21 0.0000002

DNR-CS 14 0.0000106
1,3-butadiene CG 35 0.0001370

2.27 (2.56)d CG-CS 35 0.0000002
DNR-CS 33 (35)e 0.0000001

1,3,5-hexatriene CG 33 0.0001113
2.64 (4.21)f CG-CS 29 0.0000003

DNR-CS 29 (46)e 0.0000026
4-methyl-1,3-pentadiene CG 40 0.0000705

2.49 CG-CS 37 0.0000002
DNR-CS 26 0.0000014

N-methylthioacetamide-1g CG 100c

2.23 CG-CS 20 0.0000794
DNR-CS 20 0.0000175

N-methylthioacetamide-2h CG 24 0.0001237
2.36 CG-CS 15 0.0000004

DNR-CS 17 0.0000078
2,4-pentadiene-1-iminium CG 49 0.0000218

2.97 CG-CS 66 0.0000025
DNR-CS 28 0.0000027

thymine CG 15 0.0000886
2.03 CG-CS 15 0.0000006

DNR-CS 15 0.0000097
average CG 41 0.0000913

2.10 CG-CS 29 0.0000142
DNR-CS 23 0.0000099

aDistance in Å from the starting point to the converged MECI
geometry, calculated in Cartesian coordinates. bEnergy difference
between the ground and excited states at the end of the optimization.
cNo convergence reached after the maximum number of 100 optimization
steps. dIn parentheses, distance to the local MECI obtained in the CG
and CG-CS optimizations, see text. eIn parentheses, number of steps
with the pure DNR algorithm. fIn parentheses, distance to the local
MECI obtained in the CG optimizations, see text. gCI-A1 in ref 20.
hCI-A2 in ref 20.

Figure 1. MECI test set used in this work.
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and S0 are presented with full lines, and the energy gap during
the optimization with hashed lines (scales on the right and left
y axes, respectively). Note that the first phase of the optimization is
always identical for the CG and CG-CS algorithms by construction.
The first example (Figure 2) is the optimization of the

conical intersection of acroleine. This case exemplifies the loss
of degeneracy with the CG algorithm because of the incorrect
Hessian update (green curves). In Figure 2, we plot the first 50
steps of the optimization. In the CG case, the degeneracy is
reached but lost again in steps 32 and 43 of the run (see the
hashed green line, representing the S1−S0 energy difference).
The rest of the optimization follows a similar course (not
shown in Figure 2), and convergence is not reached after the
maximum number of 100 optimization steps. In contrast, the
CG-CS and DNR algorithms (red and blue curves, respec-
tively) converge after 49 and 31 steps, respectively (see also
Table 1). The second example is benzene (Figure 3), where the
CG and CG-CS algorithms have a very similar course and

converge in 21 steps (green and red curves, respectively; the
two curves are superimposed during most of the run, and the
green curve is barely visible). In its turn, the DNR-CS algorithm
converges in only 16 steps. In this case, the approach to the seam
is more efficient. Thus, the three algorithms approach the seam in
a similar number of steps, and the optimizations reach an energy
gap of less than 0.01 hartree after 6 steps. However, the DNR-CS
algorithm reaches the seam with a smaller absolute energy, and the
MECI is reached in a smaller number of total steps.
In Figure 4a and b, we illustrate the effect of state mixing near

the seam on optimizations with the DNR algorithm (azulene
MECI optimization). In Figure 4a, we compare the optimizations
with the pure DNR algorithm and the hybrid DNR-CS imple-
mentation (blue and red curves, respectively). In the DNR case,
the seam is reached after nine steps, but the degeneracy is lost and
recovered repeatedly, as shown by the oscillations of the energy
difference (blue hashed line). The oscillations toward and away
from the seam are due to repeated changes in the direction of x1,

Figure 2. Course of MECI searches with the CG, CG-CS, and DNR-CS algorithms for acrolein (green, red, and blue lines, respectively). Full lines,
S1 and S0 energies (left y axis); hashed lines, S1−S0 energy difference (right y axis). Energies in hartree.

Figure 3. Course of MECI searches with the CG, CG-CS, and DNR-CS algorithms for benzene (green, red, and blue lines, respectively). Full lines,
S1 and S0 energies (left y axis); hashed lines, S1−S0 energy difference (right y axis). Energies in hartree.
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due to the mixing of the states near the seam (see the discussion of
the previous section). This is shown in Figure 4b, where we
show the evolution of the angle χ, formed by x1 in two con-
secutive steps. Large values of this angle correspond to large
changes in the direction of x1. This occurs, for example, in step 7
of the DNR optimization and leads to a sudden increase of the
energy difference in the following step 8. The oscillations are
avoided in the DNR-CS implementation, switching to the CS
algorithm when the first increase in the energy gap near the
seam is detected (step 9 in this case). This reduces the number
of optimization steps from 48 to 21. Note that the changes in
the direction of x1 become irrelevant when the energy gap is
very small, because the branching space steps are multiplied by
the energy difference (eqs 13 and 14). The case of hexatriene is
similar to that of azulene, since the pure DNR algorithm requires
46 steps to reach the MECI and the hybrid DNR-CS imple-
mentation needs only 29 steps. The switch to the CS algorithm
has also entered into function in the butadiene case, but here
the improvement in the number of steps (33 instead of 35 with
the pure DNR algorithm; the change from the DNR to the CS
step takes place after step 12) is less significant.

Next, we turn our attention to two cases where the three
algorithms lead to different local minima on the seam. This is
the case for the floppy molecules butadiene (Figure 5) and
hexatriene (Figure 6). In both cases, the DNR-CS algorithm
finds the global MECI minimum. First, we consider butadiene.
Butadiene has several local MECI minima.14,21 The global
minimum of the intersection space has a s-transoid geometry
where the C1−C2−C3−C4 dihedral angle φ1 is 118.5°, and one
of the methyl groups is rotated by 106° (value of the H5−C1−
C2−C3 angle φ2; Figure 5). The MECI searches start at a
transoid structure (φ1 = 180°) where the two double bonds are
twisted from planarity by 90° (φ2 = 90°). The hybrid DNR-CS
algorithm finds the global minimum in 33 steps, whereas the
CG-CS and CG algorithms find a different local minimum,
which also has a transoid conformation (φ1 = 113.9°) but a
methylene twist angle φ2 = 53°. The local minimum is 0.27 eV
higher in energy and has not been described previously. In
Figure 5, we plot the changes in φ2 and the S1−S0 energy
difference during the optimizations to illustrate how the DNR-
CS and CG-CS algorithms approach the seam. In the DNR-CS
case (blue curves), the algorithm finds the seam after seven

Figure 4. Course of MECI searches with the DNR algorithms for azulene. Blue lines, pure DNR algorithm; red lines, hybrid DNR-CS
implementation. (a) Energies and energy difference. Full lines, S1 and S0 energies (left y axis); hashed lines, S1−S0 energy difference (right y axis). (b)
Angle χ between x1 in two consecutive steps (left y axis) and S1−S0 energy difference (right y axis). Energies in hartree.
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Figure 5. Course of MECI searches with the CG-CS and DNR-CS algorithms for butadiene, leading to different local MECI minima (blue and red
lines, respectively). Full lines: H5−C1−C2−C3 dihedral angle φ2. Dashed lines: S1−S0 energy difference.

Figure 6. Course of MECI searches with the CG and DNR-CS algorithms for hexadiene, leading to different local MECI minima (green and blue
lines, respectively). Full lines: C1−C2−C3 bending angle θ2. Dashed lines: S1−S0 energy difference.
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steps, at an angle φ2 of approximately 130°, and the value of φ2
decreases in a few more steps until it finds its approximate final
value. In contrast to this, the CG and CG-CS (red curves) need
more steps to reach the seam and do it at a structure where φ2
is approximately 60° (step 18).
For hexatriene (Figure 6), the global MECI is characterized

by a “kink” at C2 (C1−C2−C3 bending angle θ1 = 96.7), and
there is a local MECI with a “kink” at C3 (C2−C3−C4 bending
angle θ2 = 98.6°) that lies 0.03 eV higher.22 The MECI search
starts at a structure with a twisted C1−C2−C3 moiety (see
Figure 6), and the structure found by the DNR-CS and CG-CS
algorithms is the global MECI. In contrast to this, the CG
algorithm leads to the local minimum on the seam. In this case,
the CG and CG-CS algorithms find the seam at a structure with
long C−C bonds (see the structures at step 5 in Figure 6).
However, the energy optimization with the CG algorithm leads
to the local MECI with the kink localized on C3 (green curves),
while that with the CG-CS one finds the global minimum. In
comparison, the structure where the DNR-CS algorithm hits
the seam has shorter bonds and lower energy, and the energy
optimization leads to the global minimum (blue curves).
Overall, the hybrid DNR-CS is the most efficient of the

tested algorithms. It reaches the MECI in approximately 15%
less steps than the hybrid CG-CS one and 30% less steps that
the CG algorithm. The CG-CS and DNR-CS algorithms also
give a better convergence with respect to the energy degeneracy.
In the CG case, the gradient gc near the MECI is dominated by gIS
(eq 7), and the convergence with respect to the energy
degeneracy is not strict. However in the CG-CS and DNR-CS
algorithms, the energy degeneracy convergence is controlled
through the convergence of the displacement size, and this results
in smaller energy gaps. More insight into the performance of the
different algorithms can be obtained by examining the number of
steps required to reach the degeneracy and the energy at the point
where the seam is reached. Thus, Table 2 presents the number of
steps required to reach a degeneracy threshold of 0.005 and 0.001
hartree, together with the energy of S1 relative to the MECI at
those points. This gives an idea of how close the optimization is to
the MECI when it reaches the seam. On average, the DNR-CS
algorithm needs a few less steps than the CG and CG-CS algo-
rithms to reach an energy difference smaller than 0.005 hartree
(seven steps against 10, respectively). The smaller energy gap
of 0.001 hartree is reached in the same number of steps with
the DNR-CS and CG-CS algorithms (10 in both cases), but the
DNR-CS algorithm reaches the degeneracy closer to the MECI:
on average the point of 0.001 hartree degeneracy is reached
0.019 hartree above the MECI with the DNR algorithm, while
the CG-CS algorithm reaches such a degeneracy 0.030 hartree
above the MECI. Overall, these data illustrate the better
efficiency of the hybrid DNR-CS implementation. At the same
time, the optimization details show that the course of the opti-
mization can differ widely from case to case: thus, in several
cases the 0.001 degeneracy threshold is reached very close to
the MECI (for example, for benzene, azulene, or 2-amino-6-
pyrimidone), whereas in other cases the seam is reached well
above the MECI, such as in the acrolein, hexatriene, and butadiene
cases. Moreover, the course of the optimizations also depends
on the starting point. Here, most optimizations have been
started near the excited state minimum, which usually lies far
away from the intersection, to reproduce applications of the
algorithms where the MECI structure is not known. In this
case, the projected intersection space gradient gIS at the S1
minimum is zero, and the first optimization step is defined

solely by the gradient difference component (eqs 8 and 14).
However the optimization leaves the S1 minimum region quickly,
and gIS increases. Therefore, overall our starting point choice
should not bias the optimization course in favor of any of the
three algorithms.

■ CONCLUSIONS
Our comparison of the CG, CG-CS, and DNR-CS algorithms
shows that the newly implemented DNR-CS algorithm reduces
the number of steps in MECI optimizations substantially. In
this algorithm, the optimization step is the sum of an inter-
section space step that minimizes the energy, and a branching
space the leads to the degeneracy. A separate Hessian is updated
for every step, with negligible additional computational cost
compared to the energy and gradient calculations. Similar to

Table 2. Number of Steps Required to Reach Degeneracy
Thresholds of 0.005 au and 0.001 au and Energy of S1 at
Those Points, Relative to the MECI, for the 11 Test Cases
with the CG, CG-CS, and DNR-CS Algorithms

threshold 0.005
au

threshold 0.001
au

test molecule method stepsa Erel
b [au] stepsa Erel

b [au]

acrolein CG 5 0.0911 5 0.0911
CG-CS 5 0.0911 5 0.0911
DNR-CS 5 0.0631 6 0.0773

2-amino-6-pyrimidone CG 5 −0.0064 6 −0.0038
CG-CS 5 −0.0064 7 −0.0026
DNR-CS 9 −0.0071 11 −0.0005

azulene CG 7 0.0012 11 −0.0008
CG-CS 7 0.0011 8 0.0005
DNR-CS 4 0.0019 14 0.0004

benzene CG 17 −0.0012 19 −0.0001
CG-CS 17 0.0012 18 0.0006
DNR-CS 7 0.0069 9 0.0029

1,3-butadiene CG 16 −0.0047 18 −0.0007
CG-CS 16 −0.0048 18 −0.0008
DNR-CS 7 −0.1165 9 −0.0584

1,3,5-hexatriene CG 5 −0.0994 14 −0.0131
CG-CS 5 −0.1044 6 −0.0751
DNR-CS 5 −0.0684 7 −0.0501

4-methyl-1,3-pentadiene CG 12 −0.0203 24 −0.0005
CG-CS 12 −0.0204 14 −0.0075
DNR-CS 8 −0.0518 14 −0.0136

N-methylthioacetamide-1c CG 4 −0.0067 31 −0.0011
CG-CS 4 −0.0067 6 −0.003
DNR-CS 5 −0.0243 13 −0.0001

N-methylthioacetamide-2d CG 5 −0.0143 5 −0.0143
CG-CS 5 −0.0144 5 −0.0144
DNR-CS 5 −0.0162 5 −0.0005

2,4-pentadiene-1-iminium CG 15 −0.1698 45 −0.0003
CG-CS 15 −0.1699 19 −0.1354
DNR-CS 13 −0.0631 17 −0.0094

thymine CG 7 −0.0056 12 −0.0002
CG-CS 7 −0.0056 8 −0.0014
DNR-CS 7 −0.0006 8 −0.0002

average CG 9 0.0383 17 0.0115
CG-CS 9 0.0387 10 0.0302
DNR-CS 7 0.0381 10 0.0194

aOptimization steps required to reach energy degeneracy within the
given threshold. bS1 energy at those points, relative to the MECI.
cCI-A1 in ref 20. dCI-A2 in ref 20.
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the CG-CS case, the use of the intersection space Hessian in
the DNR algorithm avoids losing the degeneracy during the
optimization, which is the main drawback of the CG algorithm.
On the other hand, the branching space Hessian improves the
approach to the seam compared to the CG and CG-CS cases,
by taking second order degeneracy lifting effects into account.
Such effects change the direction of the gradient difference
vector x1 along the surface, since a second order degeneracy lifting
component at one point of the surface can contribute at a different
point to lift the degeneracy at first order.23 The branching space
Hessian captures these effects.
Finally, the DNR-CS algorithm can be adapted to the tran-

sition state and minimum energy path optimizations in the
seam described in ref 14. It can be also adapted to a hybrid
QM/MM formalism to optimize MECI structures in extended
or biological systems and in the condensed phase. This will be
the subject of future work.
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Innovacioń (MICINN) and Ministerio de Economiá y Com-
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Conical Intersections (CIs) are fundamental structures for photochemistry and photophysics, where 
the energy difference between two or more electronic states is zero. These structures can provide 
rapid ways to decay from excited states to lower states when they are accessible in energy. 
Therefore, CIs are the principal reason for the ultrafast deactivation of excited states. For this 
reason, CIs play an important role in photo-processes, and are fundamental to understand them. 
Several molecules have CIs accessible in energy. Among them, there are many biological systems 
such as, for example, the DNA nucleobases. 
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We introduce a mechanistic strategy to control the excited state lifetime of fulvene based

on shaping the topography of an extended seam of intersection with the non-resonant

dynamic Stark effect. Fulvene has a very short excited state lifetime due to an

energetically accessible seam of intersection which lies along the methylene torsion

coordinate, and the initial decay occurs at the seam segment around the planar conical

intersection structure. We have followed a three-step approach to simulate the control.

First, we have calculated the effect of a non-resonant electric field on the potential

energy surface at the ab initio level, including the field in a self-consistent way. The

relative energy of the planar segment of the seam is increased by the non-resonant

field. In the second step we simulate the control carrying out MCTDH quantum

dynamics propagations under a static non-resonant field to derive the main control

mechanisms. At moderately intense fields (3 # 0.03 a.u.) the decay is faster as

compared to the field free case because the vibrational overlap between the excited

and ground state vibrational functions is increased. However, at more intense fields

(3 ¼ 0.04 a.u.) the planar conical intersection is energetically inaccessible and the decay

occurs at a slower time scale, at the segment of the seam with more twisted

geometries. In the third step, the control over the dynamics is exerted with a non-

resonant dynamic field. The acceleration of the decay due to the improved vibrational

overlap does not occur, but the decay can be made slower with a dynamic field of 0.08

a.u. The results show the viability of our approach to control the photophysics shaping

the topology of the conical intersection seam, and they prove that the extended nature

of the seam is crucial for simulating and understanding the control.

1 Introduction

The control of chemical processes with light is a long pursued goal of chem-
ists.1–3 Thanks to the development of laser technology, in recent years it has
become a realistic goal, which can be applied at many different levels. Control
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has been achieved, for example, over the translational and rotational degrees of
freedom of molecules, orienting them with the help of external electric elds.4 It
has also become possible to control chemical processes with properly shaped
resonant pulses that guide the wave packet on the potential energy surface.5–7

Usually these pulses have complicated shapes or consist of so-called ‘trains of
pulses’ which are developed using optimal and local control theories.8–11 While
these approaches have been successful in a number of cases, one of their
drawbacks is that they remain notoriously difficult to interpret.

In recent years, an alternative approach has been developed where the control
is achieved by means of a non-resonant eld. The eld shis the potential energy
surfaces through the Stark effect.12,13 Intense elds are required to achieve a
chemically relevant effect, and in turn this requires the use of dynamic elds. In
this case one speaks of the non-resonant dynamic Stark effect (NRDSE). Control
by means of the NRDSE is a very appealing approach because the picture of
shiing potential energy surfaces is more accessible to interpretation and even
prediction than the optimal and local control schemes.

Experimentally, the most successful example of control with the NRDSE is
the photodissociation of IBr, where the reaction channel probabilities have
been modied by tuning the potential energy barriers with infrared laser pul-
ses.12 From the point of view of theory, several studies have addressed the
control of the photochemistry of this and other diatomic molecules with the
NRDSE.14–17 In most of these cases, nonadiabatic crossings play a key role in the
control, and the control of the dynamics can be understood by changes in the
position of the crossings and the couplings between the surfaces. More recently,
the NRDSE has been used to simulate optical control in polyatomic mole-
cules.18–20 Here the crossings have the form of conical intersections, which
appear as the ideal target to exert control. In fact, during the last decades
theoreticians have developed a very detailed picture of conical intersections and
their role in photochemistry and photophysics.21–25 In this context, the chal-
lenge is to achieve control by combining this mechanistic knowledge with the
ability to tune the potential energy surfaces, and develop what one can call
mechanistic control schemes.

One important feature of conical intersections that has not been consid-
ered in previous NRDSE studies is the fact that they are not isolated points on
the potential energy surface, but form part of multidimensional seams of
intersection.26–29 The multidimensional nature is important in photophysics
and photochemistry and has to be included in the control simulations of
polyatomic molecules. Thus, the multi-dimensionality facilitates the traversal
of the intersection and has a strong inuence on the excited state lifetimes.
For photochemical problems, we have also introduced the notion of the
extended seam of intersection, where the seam space is composed of different
segments associated to different reaction paths on the surface, leading to
different products.30–34 The traversal of the wave packet through the different
seam segments determines the chemical outcome of the excitation. Based on
this idea, the possibility of control at the seam has been explored guiding
semiclassical dynamics trajectories to the different seam segments by adding
momentum in different directions.31,35–37 Here we propose to follow a similar
idea in the context of the NRDSE. Thus, the extended seam should be the
ideal playground for the NRDSE, since by shiing the potential energy surface
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one may favour one or the other associated path. Therefore, our central aim is
to use the NRDSE to develop mechanistic control strategies centred on the
traversal of the wave packet through the extended seam.

As a rst attempt to develop such a strategy, we consider the photophysics of
fulvene, a non-uorescent hydrocarbon.38–40 We aim to simulate the control of
its excited state lifetime by combining resonant and non-resonant laser pulses,
as shown in the inset of Fig. 1. The photophysics of fulvene have been studied
extensively, and the non-emitting nature is due to an energetically accessible
conical intersection seam between the ground and excited state, where the
excited state decays aer the excitation.41 The relevant segment of the seam of
intersection lies along two nuclear coordinates, one corresponding to a bond-
alternation mode, and the other to the torsion of the methylene group (Fig. 1).34

Every point on the seam is a conical intersection when plotted along the proper
coordinates (the branching space vectors, see below). We have recently simu-
lated the excited state dynamics of fulvene with quantum dynamics calculations
using the multicongurational time-dependent Hartree approach (MCTDH)42–45

and a four-dimensional model surface that includes the extended seam and its
connection with the Franck–Condon structure.46 In the calculations, the wave
packet decays initially along the bond-alternation coordinate and reaches the
seam at a segment with a planar geometry, centred around structure CIplan. This
corresponds to path (1) in Fig. 1. Most of the excited state population follows
this mechanism and returns to the ground state in less than 10 fs aer the
excitation pulse. For the fraction of the wave packet that remains in the excited
state, the torsional mode is activated aer 40–100 fs, depending on the

Fig. 1 Two-dimensional potential energy surface for the decay of singlet excited fulvene along the
torsional and symmetric bond alternation coordinates, displaying the path for decay at (1) planar and (2)
twisted conical intersection geometries. The equivalent ground state minima, related by double bond
torsion, are labelled FC and FC0 . Structures CIplan and CIperp correspond to the conical intersection
stationary points on the seam where the methylene group lies in the plane of the ring and is perpen-
dicular to the plane, respectively. The inset shows the combination of resonant pump pulse and non-
resonant control pulse used in the propagations.
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intramolecular vibrational energy redistribution (IVR) rate from the initially
activated bond stretching mode. As a result, the wave packet samples the other
regions of the seam and decays following path (2) in Fig. 1.

In this contribution we have used the NRDSE to control the excited state
lifetime by modulating the topography of the seam. Thus, potential energy
surface calculations show that the planar segment of the seam associated to
the early decay can be made inaccessible at sufficiently intense elds. This
suggests that the excited state lifetime can be prolonged under these condi-
tions. To prove this hypothesis, we have added the non-resonant eld to our
four-dimensional model potential, and we have carried out MCTDH propaga-
tions with static and dynamic non-resonant strong elds. With a static eld of
0.04 au (2.1 � 1010 V m�1 or 1.1 � 1014 W cm�2), the lifetime is extended to
about 40 fs, and a similar effect can be obtained with a dynamic eld of 0.08
a.u (4.1 � 1010 V m�1 or 4.5 � 1014 W cm�2). We also discuss the main
practical limitation of the approach for the present fulvene case. Thus, our
model only considers two electronic states, but at high eld strengths the S2
excited state interferes with S0 and S1. This indicates that more states should
be included in the dynamics to make the treatment more accurate.

2 Four-dimensional model for fulvene

To describe the photophysics of fulvene with quantum dynamics it is necessary to
construct a model potential of reduced dimension that reproduces the relevant
regions of the potential energy surface. These are the low energy regions of the seam
and the minimum energy path from the Franck–Condon structure, which is where
the excited state dynamics starts, to the seam. Such a model surface, in four
dimensions, has been described in detail in ref. 46. Here we summarize its main
features.

The model is based on electronic structure calculations at the complete active
space self-consistent eld (CASSCF) level of theory, and a detailed characterization of
the seam of intersection. The four coordinates are shown in Fig. 2. The initial decay

Fig. 2 Coordinates of the four dimensional model: (a) totally symmetric bond stretch, (b) non-totally
symmetric bond stretch, (c) methylene torsion, and (d) methylene pyramidalization; (e) energy profile
along the Qx1 coordinate at planar geometries (model energies in eV). e4 and eq in (c) and (d) are the
rotation axes of the rigid CH2 fragment for 4 and q, respectively (see text).
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takes place along the bond alternation coordinate Qx1 (Fig. 2a), and the corre-
sponding energy prole is shown in Fig. 2e. The decay alongQx1 leads to a minimum
on the excited state surface, (S1)min, and further to a conical intersection with the
ground state, CIplan. CIplan belongs to an extended seam with two low energy
segments along the CH2 torsion and pyramidalization. These segments are described
in our model by coordinates 4 and q, respectively. The global minimum energy CI is
found along the torsion coordinate, at 4 ¼ 63�, approximately. The model also
contains the coupling coordinate Qx2. Qx2 is a non-totally symmetric bond stretch
coordinate approximately equal to the interstate coupling vector ic along the seam.
This vector is one of the branching space vectors that li the degeneracy linearly at
the intersection, together with the gradient difference gd (see eqn (1)):

gd ¼ PQ(E2 � E1) (1a)

ic ¼ hF1|PQĤele|F2i (1b)

Fi is the adiabatic electronic wave function for state i. The four coordinate model
captures the essential details of the early excited state dynamics, since it connects
the Franck–Condon structure with the seam and reproduces the main features of
the seam. Thus, by including coordinates 4 and q we include the low energy seam
segments. Our model also reproduces the branching space along these segments,
since the gd vector corresponds to combinations of Qx1 with 4 or q, while Qx2 is a
good approximation to the ic vector along the whole seam.

Using this model, the dynamics are carried out solving the time-dependent
Schrödinger equation (eqn (6)):

ih-
v

vt

� jJd
1ðtÞi

jJd
2ðtÞi

�
¼ ðTþWþHintÞ

� jJd
1ðtÞi

jJd
2ðtÞi

�
(2)

The calculations are carried out using the regularized diabatic states approach,
where the couplings are expressed through off-diagonal potential terms of the
potential matrixW and the kinetic energy operator (KEO) T̂ is diagonal.47 Qx1 and
Qx2 are treated as mass-weighted Cartesian displacements, whereas 4 and q are
curvilinear coordinates. The elements of the KEO are given by eqn (3).

T̂ ¼
X
i¼1;2

T̂Qxi
þ T̂4 þ T̂q (3a)

T̂Qxi
¼ � 1

2mi

v2

vQ2
xi

ði ¼ 1; 2Þ (3b)

T̂ x ¼ � 1

2 Ix

v2

v x2
ðx ¼ 4; qÞ (3c)

where mi is the reduced mass of Qxi, 4 and q correspond to rotations of the rigid
CH2 fragment around the e4 and eq axes shown in Fig. 2c and 2d, respectively, and
Ix is the moment of inertia corresponding to coordinate x. The details of the KEO
and the approximations involved are discussed further in ref. 46.

Hint describes the interaction between the wave packet and the external electric
eld. For the parametrization of the surface, it is convenient to separate Hint in a
resonant and a non-resonant term (eqn (4)):

This journal is ª The Royal Society of Chemistry 2013 Faraday Discuss., 2013, 163, 497–512 | 501

Paper Faraday Discussions
104 CHAPTER 5. PHOTOPHYSICS UNDER STARK EFFECT



Hint ¼ Hres
int + Hnon-res

int (4a)

Hres
int ¼

�
0 m123

resðtÞ
m123

resðtÞ 0

�
(4b)

Hnon-res
int ¼

0
BB@
m1ðQÞ3non-resðtÞ þ a1ðQÞ

2

�
3non-resðtÞ�2 0

0 m2ðQÞ3non-resðtÞ þ a2ðQÞ
2

�
3non-resðtÞ�2

1
CCA

(4c)

3res and 3non�res are the resonant and non-resonant eld components, respectively.
In eqn (4b),m12 is the transitiondipolemoment between states 1 and2,whilemi and
ai in eqn (4c) are the dipole moments and polarizabilities of state i, respectively.
Hint has a simple physical interpretation: Thus, the resonant eld interaction that
pumps the population from the ground to the excited state works through the
transition dipole moment between the states, while the non-resonant interaction
that shis the potentials takes place through the dipole moment and the polariz-
ability of the states. In ourmodelweassume that themolecules are aligned in space
during the propagation, and in this case the two components of Hint correspond
also to different spatial orientations of the pulse. Thus, in fulvene, m12 is oriented
along the x axis (see Fig. 1), whereas the dipole moments are oriented along the z
axis. Therefore, in our model the resonant and non-resonant pulses are perpen-
dicular to each other, as shown in Fig. 1. The model only includes the zz compo-
nents of the polarizability tensor and neglects the Stark shi due to the resonant
pulse, since this pulse is only applied during a short pumping period of 5 fs.

3 Parametrization of the field-dependent potential

To carry out the dynamics it is necessary to obtain the parameters of the potential
matrix W and the dipole moments and polarizabilities from the non-resonant
eld matrix Hnon�res

int . The parametrization is carried out against ab initio calcu-
lations. The dipole moments and polarizabilities in eqn (4c) are coordinate
dependent and are not calculated explicitly. Instead, the combined set of
parameters of both matrices are obtained from a single t. To this end, we start by
dening a coordinate- and eld-dependent potential V of the form:

V ðQ; 3Þ ¼ W ðQÞ þHnon-res
int ðQ; 3Þ ¼ V 0 ðQ; 3Þ Iþ

�
V11 ðQ; 3Þ V12 ðQÞ
V12 ðQÞ V22 ðQ; 3Þ

�
(5)

The terms of V have a similar form to the eld free potential W from our
previous study. They form a Taylor expansion along Qx1, Qx2, sin(4) and q, centred
at the planar conical intersection CIplan:

V 0 ðQ; 3Þ ¼ V 0 ð3Þ þ �
lx1ð3Þ þ lx1 ;4 ð3Þsin2ð4Þ�Qx1

þ 1

2

�
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þ 1

2
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þ 1

2
24sin
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2
x2

(6a)
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V11ðQ; 3Þ ¼ � 1
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V22(Q,3) ¼ �V11(Q,3) (6c)

V12 ðQÞ ¼
�
kAB4;q sin

2ð4Þ þ kABf;q2 sin
4ð4Þ

�
qþ kABx2 Qx2 (6d)

The eld dependence is introducedmaking some of the parameters in eqn (6a)
and (6b) depend on 3non�res (the superscript is le out for simplicity). These
parameters are second-order expansions of 3, and the parameters of this expan-
sion correspond to the dipole and polarizability terms from eqn (4c). For example,
the rst term of the right hand side of eqn (6a) is:

V 0ð3Þ ¼ V 0
0 þ m03þ a0

2
32 (7)

where V0
0 is zero because the energy at the centre of the expansion is zero. The same

applies for the dV(3) term of eqn (6b). Similarly, the second term has the form:

lx1ð3Þ ¼ lx1;0 þ ml;x13þ
al;x1

2
32 (8)

The remaining terms have a similar form. This model has several simpli-
cations with respect to the way the eld is included. First, the eld dependent
terms along Qx2 and q are neglected for simplicity. In practice, this implies that
the non-resonant eld produces a constant Stark shi along these coordinates.
In addition, the Stark effect on the parameters of the coupling element V12 and
the transition dipole moment m12 is also neglected. Finally, we only consider the
zz component of the polarizability and we neglect the Stark shi caused by the
resonant pulse along the x axes, which would correspond to the xx and xz
polarizability components.

The eld-dependent parameters are tted to ab initio calculations in the
subspace formed by Qx1 and 4. The energy is calculated for several values of 3,
where the external eld along the z axis is included in a self-consistent way. In
practice, this means tting the terms of V to a three-dimensional grid of points
along Qx1, 4 and 3. The calculations are carried out at the CASSCF/cc-pvdz level of
theory, using an active space of six electrons in six orbitals, with the Gaussian
program package.48 This level of theory does not include dynamic electronic
correlation. However, the comparison of the CASSCF data with complete active
space second order perturbation CASPT2 calculations shows that the effect of
dynamic correlation is small and can be neglected for the present purposes.46

In the space formed by Qx1 and 4, the electronic states S0 and S1 have A and B
symmetry. Because of the different symmetry, the ab initio potential energy
surface is equal to the diabatic potential, and the ab initio data can be used
directly for the t. The elements of V0 are tted to the average of the S1 and S0
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ab initio energies, while the elements of V11 are tted to the difference between
the energies of the two states. In the ab initio calculations, the electric eld is
included over a range of �0.04 a.u. However, at eld strengths of �0.02 a.u. and
lower, S2 (of A symmetry) interferes with the S0 and S1 states at regions with
values of 4 close to 90�. At these geometries, S2 has a large dipole moment
because of a charge transfer from the methylene group to the ring, and the Stark
shi is more pronounced than for the lowest pair of states. The interference of
S2 leads to discontinuities in the potential, and to facilitate the t the corre-
sponding points are discarded. This is the case for 805 ab initio points out of a
total of 14190. The set of 34 parameters that depend on Qx1, 4 and 3 are then
tted to the remaining 13 385 points using the nonlinear least-squares Mar-
quartdt–Levenberg algorithm implemented in Gnuplot.49 The root mean square
of residuals is 0.0024 Hartree for V0 and 0.0032 for V11. The good agreement
between the model and the ab initio is shown below (Fig. 3) for energy cuts along
Qx1 at different eld strengths. The remaining 19 parameters of the model are
taken over from ref. 46.

4 Stark effect on the potential energy surface

We start our approach to the control with an analysis of the Stark effect on the
potential energy surface, focusing on the changes along the decay path. This
analysis gives a preliminary idea of the eld strengths that will be required to
achieve a signicant extension of the excited state lifetime in the propagations,
and it also shows the physical origin of the shis that will allow for the control. In
Fig. 3 we plot the energy prole along Qx1 at different eld strengths, 0.00 a.u.,
�0.02 a.u., �0.03 a.u. and�0.04 a.u. As the eld is applied, CIplan is shied along

Fig. 3 Energy profile along Qx1 at different non-resonant field intensities (cuts for (Qx2,4,q) ¼ (0,0,0)),
including the energy difference between the vertical excitation and CIplan. Blue and red diamonds: ab
initio energies of the A1 and B2 states, respectively. Blue and red dashed lines: V1 and V2 model energies,
respectively. Qx1 displacements in mass-weighted atomic units, energies in eV.
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Qx1 and its energy relative to the S1 vertical excitation energy (marked with dotted
lines) increases. Thus, CIplan lies well below the vertical excitation with no eld
and with a�0.02 a.u. eld (1.11 and 0.80 eV, respectively). At�0.03 a.u., CIplan lies
only 0.23 eV lower than the vertical excitation, and at �0.04 a.u. it lies 1.56 eV
higher in energy. The effect of the eld on the topography of the extended seam is
shown in Fig. 4, where we display the projection of the seam in the (Qx1,4) space.
Thus, Fig. 4a shows the locus of the seam in this two-dimensional space, and
Fig. 4b shows its energy. Both plots show that the eld mainly changes the seam
at planar structures, shiing the position and energy of CIplan as discussed for
Fig. 3. In contrast to this, the changes in the seam around CIperp are small.

Overall, our results show that the potential does not respond linearly to the
external eld. Instead, the main changes are due to the second order terms with
respect to the eld, i.e. the polarizability. This is due to the fact that the two states
are only weakly polar. This is important for our purposes because in practice the
control has to be exerted with a dynamic, oscillating pulse, and in this case the
dominant effect will be due to the polarizability. The energy proles in Fig. 3 also
show that the changes in the energy and position of the CI are due to the relative
shis of the two states, combined with changes in the shape of the surface. These
changes are especially important for the ground state, which becomes atter as
the eld is increased. This reects the changes in the dipole moment and the
polarizability along Qx1 and justies the inclusion of the coordinate dependence
in the dipole and polarizability parameters of our model (eqn (4)). On the basis of
these results we can also expect that a eld strength of �0.04 a.u. will be required
to extend the lifetime of the excited state, since at this intensity the energy of the
CI lies notably higher than the vertical excitation.

5 Excited state dynamics under a non-resonant field

The quantum dynamics propagations controlled by the non-resonant eld have
been carried out with the MCTDH approach. We have run two sets of calculations
with static and dynamic non-resonant electric elds. In this section we describe
the details of the propagations and the results for the two sets.

5.1 MCTDH propagation details

The MCTDH dynamics were carried with the Heidelberg MCTDH package.45 For
Qx1 and Qx2 we use a primitive basis of 48 and 25 harmonic oscillator functions,

Fig. 4 (a) Locus of the V2/V1 seam in the (Qx1,4) plane (projections for (Qx2,q) ¼ (0,0)) and (b) seam
energy along 4, at different field strengths. CIplan corresponds to 4 ¼ 0 rad, and CIperp to 4 ¼ p rad.
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respectively, for 4 a fast Fourier transform collocation of 128 functions, and for q a
primitive basis of 25 sine functions. For the single particle basis, we have used a
combined mode for Qx1 and 4 (50 single particle functions (SPF) per diabatic
state), as explained in section 4.5 of ref. 42, and 25 and 20 SPF per state forQx2 and
q, respectively. The propagations, which were run over 150 fs, are well converged
with respect to the number of SPF, since in all runs the maxima over time of the
lowest natural weight for all modes did not exceed 0.001. The propagations were
initiated relaxing the wave packet in the electronic and vibrational ground state,
and exciting it to the electronic excited state with a single laser pulse of the form:

3resðtÞ ¼ 3res0 cos ðurestÞ sin2
�p

s
t
�

(9)

In eqn (7), 3res0 is the maximum intensity of the resonant pulse, which was set to
0.075 a.u. (3.9� 1010 Vm�1 or 3.9� 1014W cm�2) for all runs except for the run with
a non-resonant dynamic pulse with maximum intensity 0.08 a.u., where 3res0 was set
to 0.10 a.u. to achieve an initial V2 population of 0.4. Further, ħures is the excitation
energy (3.6 eV), and s the pulse duration (5 fs). The pulse was set to zero outside the
[0,s] interval. For the propagations with a dynamic non-resonant eld, the eld has a
simple sinusoidal shape with a carrier frequency ħunon�res of 1 eV (eqn (8)), which
corresponds to a wave length of 1239 nm:

3non�res(t) ¼ �3non�res
0 sin(unon�rest) (10)

5.2 Propagations under static non-resonant elds

To understand the effect of the off-resonant pulse on the dynamics, we start with a
set of propagations with a constant (static) eld of various strengths. In Fig. 5a we
show the evolution of the excited state populations (V2 diabatic state) during the rst
50 fs of three propagations with elds of 0.00, �0.02 and �0.03 a.u. In all cases, the
resonant pulse takes place during the rst 5 fs of the propagation (eqn (7)). During
this time, the V2 population rises from an initial value of 0.0 to a maximum value of
approximately 0.4. Due to the very favourable energy prole (Fig. 3), the wave packet
decays quickly to the ground state and there is a sharp drop of the population in the
rst 20 fs. However there are some differences between the propagations with the
different elds. In the eld free case, the population decreases to approximately 0.15
aer a total of 20 fs (blue line). When the eld is applied, the initial decay becomes

Fig. 5 V2 population for propagations with static non-resonant fields of different intensities. (a) Non-
resonant field intensity 0.00 a.u. (blue profile), �0.02 a.u. (green profile), and �0.03 a.u. (red profile). (b)
Non-resonant field intensity 0.00 a.u. (blue profile), �0.04 a.u. (red profile) and �0.04 a.u. on a two-
dimensional reduced model (green hashed profile, see text). Note the different time axes for (a) and (b).
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more efficient, and the populations aer 20 fs are approximately 0.10 and 0.08 with
elds of�0.02 and�0.03 a.u., respectively. This result is somewhat counterintuitive,
since the eld shis the planar conical intersection up in energy (Fig. 3), in which
case a less efficient decay might be expected. However the result can be understood
in terms of overlap between vibrational levels. According to the Franck–Condon
principle, the V2 vibrational level that absorbs most of the excited state population
during the pump pulse will be that corresponding to the vertical excitation. Then,
the V2 / V1 population transfer rate depends in rst instance on the overlap
between the vibrational function of this level and that of the degenerate V1 vibra-
tional level. The overlap increases as the vertical excitation and conical intersection
energies get closer, and it becomes maximal when both energies are equal, which
occurs in our model for a eld of approximately�0.032 a.u. This explanation agrees
with the result that the most efficient decay is observed at a eld of �0.03 a.u.

With a stronger eld of �0.04 a.u., the situation is reversed and the decay is
slower (Fig. 5b). Thus, the population that remains in V2 aer 20 fs is approx-
imately 0.30, and it takes approximately 45 fs to reach a value of 0.20 (red line of
Fig. 5b). This is due to the fact that the planar conical intersection lies
substantially higher in energy than the vertical excitation. To illustrate this
point, we compare the evolution of the wave packet on V2 with elds of 0.00 a.u.
and �0.04 a.u. for several snapshots (Fig. 6). The wave packet isodensity and the
seam are plotted in red and black, respectively. The time and V2 population of
the snapshot are also displayed. Note that the wave packet is split in two halves
because 4 is a periodic coordinate, and the wave packet is centred initially
around 4 ¼ 0�. In the eld free case, aer 20 fs, the wave packet has traversed
the seam at the planar region (4 z 0�), and there is a substantial population
decay from a maximum of 0.40 to 0.16. In contrast to this, at a eld of �0.04 a.u.
the wave packet does not reach the planar seam region in early times. The
population decay is slower, and the population aer 20 fs is 0.32. In this
propagation, the wave packet has to spread along 4 to reach the lower energy
regions of the seam and decay to V1 efficiently. This happens aer approximately
36 fs, and at 44 fs the V2 population is reduced to 0.21. Once the wave
packet spreads along 4 and accesses the seam, the control effect is lost, and the
populations in the two propagations are similar. The time that the wave
packet requires to spread corresponds to IVR from the initially activated Qx1

mode to the torsion coordinate 4, and the present value of approximately 36 fs
is in good agreement with our previous study on fulvene excited state
dynamics. In that case IVR took place aer about 40 fs with an excitation energy
of 3.5 eV.

To assess this point further, we have repeated the propagation with constant
�0.04 a.u. eld strength on a reduced two-dimensional potential surface, where
the rotation and pyramidalization coordinates 4 and q are not included. This
excludes the possibility of decay along the extended seam, since the CI is reduced
to a point. The decay of the V2 population is slower than in the four dimensional
case (green line of Fig. 5b), and the population decrease at around 40 fs due to
access to the twisted regions of the seam is not observed. This conrms that the
main fraction of the wave packet decays at the twisted segment of the seam in the
propagation under the �0.04 a.u. static eld. In more general terms, it illustrates
the need to include the extended seam to carry out reliable simulations of the
decay.
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5.3 Propagations with dynamic non-resonant eld

A realistic simulation requires the use of a dynamic non-resonant eld to achieve
the necessary eld strengths. Thus, we have assessed the viability of our control
strategy carrying out propagations with a dynamic eld and a carrier wave length

Fig. 6 Snapshots of the wave packet propagations on the V2 model surface along Qx1 and 4 (inte-
grated density along Qx2 and q; coordinates in mass-weighted atomic displacements and radians,
respectively), displaying the time of the snapshot and the V2 population. Propagations carried out (a)
without non-resonant field and (b) with a static non-resonant field of �0.04 a.u. Energy scale shown in
the top of the figure. Wave packet density plotted in red and seam position in black. The wave packet is
split in two halves because it is centred initially around 4 ¼ 0� in the periodic coordinate 4.
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of 1239 nm, which is close to the value of 1700 nm used in experiments.12 This
corresponds to a non-resonant pulse period of approximately 4 fs. We assume
that the non-resonant pulse is switched on before the resonant one and is not
modied during the whole propagation. As a rule of thumb, one can estimate that
the average effect on the potential of a dynamic eld with maximum strength
3non�res
0 is that of a static eld with half the strength, because both have the same
intensities integrated over time. Thus, we have carried out propagations using
dynamic pulses with 3non�res

0 equal to 0.04 a.u., 0.06 a.u. and 0.08 a.u. and
compared them with the propagations using static elds of �0.02 a.u., �0.03 a.u.
and �0.04 a.u. The results are shown in Fig. 7. With dynamic non-resonant elds
of 0.04 a.u. and 0.06 a.u. maximum intensity, the V2 populations have a similar
evolution to the propagation without resonant eld. Moreover, the acceleration of
the decay seen with static elds of �0.02 a.u. and �0.03 a.u. is not seen with
dynamic elds. This happens because the improved vibrational overlap that
causes the faster decay in the static case is not a linear function of the eld, and
the average effect of the dynamic eld on the rate is not the same as the effect
caused by a static eld with the same intensity integrated over time. In contrast to
this, the delay of the decay observed for a dynamic eld of 0.08 a.u. is similar to
that observed with a static �0.04 a.u. eld, although it is less pronounced. These
examples show that the ‘rule of thumb’ given above to estimate the effect of a
dynamic eld on the basis of the static eld results can indeed provide the correct
general picture, since it has allowed us to predict that a signicant delay of the
decay would be observed with a dynamic eld of maximal �0.08 a.u. intensity.
However, this approximation also fails to detect subtle effects such as the accel-
eration due to improved vibrational overlap observed for static elds of�0.02 a.u.
and �0.03 a.u.

6 Conclusions

Our work shows that it is possible to simulate the control of the photophysics of
an organic molecule by shaping the topography of an extended conical inter-
section seam with the NRDSE. We have followed a three step approach, where we
have rst characterized the Stark effect on the topography of the seam. Ab initio
calculations suggest that a eld strength of 0.04 a.u. is required to increase the
excited state lifetime signicantly. Second, we have simulated the control with

Fig. 7 V2 population for propagations with dynamic non-resonant fields of different intensities.
Maximum field intensity 3non�res

0 : 0.00 a.u. (blue profile), 0.04 a.u. (green profile), 0.06 a.u. (yellow
profile), and 0.08 a.u. (red profile).
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static non-resonant pulses and nd that the lifetime can be reduced with elds up
to 0.03 a.u. because the overlap between the degenerate electronic excited and
ground state vibrational functions is increased. In contrast to this, a eld of 0.04
a.u. increases the excited state lifetime from less than 10 fs in the eld free case to
approximately 40 fs. Finally, in the third step we have shown that a similar
reduction of the decay rate can be achieved with a dynamic, sinusoidal non-
resonant pulse of 0.08 a.u. maximal strength.

In fulvene, the decay along the non-planar segment of the seam is associated
with rotation of the methylene group and isomerization of the exocyclic double
bond. The present results raise the question if the isomerization process can also
be controlled with the NRDSE. Preliminary analyses indicate that the NRDSE on
the isomerization is not so substantial, i.e. the fraction of fulvene that undergoes
double bond isomerization before the decay is not modied much by the non-
resonant eld. This happens presumably because the changes on the topography
of the seam at twisted methylene angles are not so pronounced than at planar
geometries. Moreover, it seems that the IVR rate which induces the methylene
torsion is not affected by the topological changes induced by the Stark effect. This
issue will be considered in more detail in future work, where we will also consider
the NRDSE on propagations with different vertical excitation energies, where the
IVR rate can be modulated.

Our approach also has some limitations. The rst one is the dimensionality of
the reduced model surface. Our surface captures the main features of the decay
because we are considering a very fast process where the excitation energy is
concentrated in only a few modes. In addition, the choice of the coordinates is
based on a careful analysis of the extended seam of intersection responsible for
the photophysics. However, as discussed in ref. 46, the inclusion of more modes
should improve the agreement of the model with the full-dimensional ab initio
surface. It would also improve the description of the NRDSE. Thus, our model
assumes implicitly that the energy shi due to the non-resonant pulse will be
constant along all coordinates except Qx1 and 4. However, the Stark shi does
change signicantly along Qx1 and 4. This may also occur along other coordi-
nates, which should be taken into account in a more rened model. Another
limitation is due to the interference of the second excited state, S2, at elds of 0.02
intensity andmore. At geometries where the methylene group is twisted, this state
is more polar than the ground and the excited state, and becomes lower in energy.
More states should be included in the simulation to take this effect into account
and make the simulations more realistic. In addition, eld strengths of up to 0.08
a.u., which corresponds to a power density of 4.5�1014 W cm�2, were needed to
achieve the effects presented here. In practice, such power densities are likely to
cause ionization, which makes the experimental implementation of an NRDSE
based control scheme in fulvene challenging. To carry out the control experi-
mentally, it is necessary to nd molecules where the ground and excited state
dipole moments and polarizabilities differ more substantially than in fulvene.

In more general terms, our work has provided us with a new insight into the
relationship between the intersection topography and the dynamics. Thus, by
modifying the topography with the external eld we have shown that the most
efficient decay occurs when the conical intersection is energetically degenerate with
the Franck–Condon point. The work is also important because it shows the effect of
the non-resonant eld on the extended seam. The Stark shi of the potential energy
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surface is not homogeneous, and as a result the topography of the seam undergoes
different changes at different segments. In the present case, the largest effects are
seen at planar structures. This makes it possible to control the excited state lifetime
during the rst 40 fs of the simulation, approximately, but the control is lost at
longer times because the seam segment at twisted geometries is still accessible
energetically. This demonstrates that the extended nature of the seam has to be
taken into account in optical control simulations of polyatomic molecules, not only
with the NRDSE but probably also with other strategies.
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23 W. Domcke, D. R. Yarkony and H. Köppel, ed., Conical Intersections: Theory, Computation

and Experiment, World Scientic, Singapore, 2011.
24 M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, VCH

Publishers, Inc., New York, 1995.
25 D. R. Yarkony, Rev. Mod. Phys., 1996, 68, 985–1013.
26 G. J. Atchity, S. S. Xantheas and K. Ruedenberg, J. Chem. Phys., 1991, 95, 1862–1876.
27 A. Migani, M. A. Robb and M. Olivucci, J. Am. Chem. Soc., 2003, 125, 2804–2808.
28 D. R. Yarkony, J. Chem. Phys., 2005, 123, 204101.
29 L. Blancafort, B. Lasorne, M. J. Bearpark, G. A. Worth and M. A. Robb, in The Jahn–Teller

Effect: Fundamentals and Implications for Physics and Chemistry, ed. H. Köppel, D. R.
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Chapter 6

Results and discussion

Hereinafter the principal results of the chapters 4 and 5 are summa-
rized. The principal aim of this thesis is the theoretical modelling of
ES, proposing new tools for searching MECI and new strategies to
control fulvene photorotation. As stated in the objectives chapter, the
thesis is clearly separated in two parts. For this reason, in this chapter,
the results will be analysed separately in two different sections.

6.1 New Conical Intersection Optimiza-
tion algorithm: Double Newton-Raphson

The first objective of the thesis is to obtain a new tool for studying
ES: a new MECI algorithm. CIs are essential to understand the pho-
tochemical processes in ES. Finding the MECI is the first step in the
study of the intersection seam and ES. For this goal, there are several
algorithms. Nowadays, the most used one is the CG. But it is not the
most efficient one. For this reason, the first objective is to improve
the currently available algorithms, proposing a new MECI algorithm
with a better approach to the seam.
Borrowing the ideas for reaching the degeneracy of CG (equation 2.43)
and the composed step of CS (equation 2.45), DNR is conceived. DNR
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is a double minimization of two functions,

f1 = εIS f2 =
(
∆ε2

)
(6.1)

one for each MECI condition. Each function is optimized with the
Newton-Raphson algorithm. Therefore, the total DNR step is the
sum of the two optimization steps, as in the CS case, ∆qIS and ∆qBS.
The steps are the following ones:

∆qIS = −(HIS)−1gIS ∆qBS = −(HBS)−1gBS (6.2)

where ∆qIS has the same form and components as CS (equation 2.45)
and the gBS is borrowed from f penalty function of CG (equation
2.43),

gBS = 1
|x1|
∇
(
∆ε2

)
= 2∆ε2x̂1 (6.3)

where x̂1 is the normalized x1. Strictly, the gBS does not have the nor-
malization term, but in CG algorithm it improves the convergence.
The Hessians, in both cases, are obtained with the BFGS update
method with their respective gradients.
DNR has been implemented in a Gaussian Development Version pro-
gram.71 Several points will be commented of this implementation. The
first one is related with the coordinates of the system. A set of internal
redundant coordinates is usually used in optimization, because it im-
proves the number of optimization cycles. However, the gradients are
usually calculated in Cartesian coordinates and they need to be pro-
jected (section 2.2.3). In projected gradient algorithms, the gradient
is also projected. Unfortunately, the projection and transformation do
not obey the commutative property. Therefore, the projected gradient
and x1 are not orthogonal in redundant coordinates if the tranforma-
tion is done after the projection, as shown by Equation 6.4.

(gcart
IS )Txcart

1 = gredBTG−TG−B xred
1 (6.4)

The BTG−TG−B should be the unitary matrix to retain the orthogo-
nality of gredxred

1 but it is not the case. The orthogonality between the
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first order BS and the gIS is basic in the projected gradient algorithms,
for this reason the best option is to transform the BS modes and the
gradient into redundant coordinates and do the projection in redun-
dant coordinates. This incompatibility affects all projected gradient
algorithms. For this reason all algorithms that are tested have been
adopted with a correct implementation.
The second issue affects the IS Hessian. The IS Hessian (section 2.2.4)
is obtained by BFGS update along the optimization with the projected
gradient. In each step, it is projected to avoid that the N-R steps go
along the BS modes. The resulting matrix has two zero eigenvalues
corresponding to the directions of the BS. To avoid problems in the
inversion of N-R, these eigenvalues are increased artificially, following
the idea of ref.42 (equation 2.34).

H̃IS = PHISP + α(I− P) (6.5)

Furthermore, the BS Hessian is characterized to have near zero eigen-
values. For this reason in our implementation of DNR, the eigenvalues
smaller than 2.10−4 are artificially increased with high values. The ini-
tial Hessians used in DNR are the initial parametrized diagonal Hes-
sian of the Gaussian program.
Finally, there is a tendency for the first order BS vectors to mix near
the degeneracy. The mixture of states when they are near in energy in-
terchanges x1 and x2, causing arbitrary changes in the direction of gBS.
These changes affect principally the updated BS Hessian and extend
the effects along the optimization. A way to mitigate this problem is
to switch from DNR to CS, using the CS as first order approximation
of DNR. An energy criterion is used to switch the algorithms. We call
the algorithms with the switch DNR-CS. This improvement of DNR
produces important benefits in some examples, such as the MECI of
azulene, shown in figure 6.1. In the figure, the evolution of the angles
χ, the angle between the previous x1 and the new one, is shown. In
step 7, the angle changes its direction by approximately 75◦, and the
energy difference increases in the following step. In that point, the CS
is activated in DNR-CS. This reduces the step number from 48 to 21,
because the BS Hessian is updated with bad gradients from step 7.
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Figure 6.1: Course of MECI searches with DNR algorithms for azulene. Blue
lines are pure DNR algorithm and red lines are the hybrid DNR-CS. In the top
plot, the full lines are the energy of the GS and ES in fulvene in the optimization
steps; hashed lines are the energy difference between the two states. In the second
graph the χ angles between x1 of the two consecutive steps are plotted.

A test-set of eleven well-know MECI, chosen from different works of
the literature, is used in DNR-CS. The results were compared with the
other two projected gradient algorithms, CG and CG-CS implemented
in a Gaussian development version program by us. Our implementa-
tions of CG and CG-CS avoid the problem with redundant coordi-
nates. The average results can be read in Table 6.1, where the average
number of cycles and the average final energy difference is showed.
Overall, the hybrid DNR-CS is the most efficient of the tested algo-
rithms. It reaches the MECI in, approximately, 15% fewer steps than
CG-CS and 30% than CG. CG-CS and DNR also obtain better con-
vergence with respect the energy of the final point.

The averages give a clear message about the efficiency of each al-



6.1. NEW CI OPTIMIZATION ALGORITHM: DNR 121

Table 6.1: Averages of MECI searches with CG, CG-CS and DNR algorithms,
including the distance from starting point, number of cycles and energy difference.

Dist. [Å]a Method Cycles ∆ε[a.u.]b

Average 2.10
CG 41 -0.0000813
CG-CS 29 -0.0000142
DNR 23 -0.0000099

a Distance in Å from the starting point to the converged MECI geometry,
calculated in Cartesian. b Energy difference between GS and ES (ε1 − ε2).

Table 6.2: Average of number of steps required to reach degeneracy threshold of
0.005 and 0.001 a.u. and the relative energy of S1 with respect to the MECI for
the eleven test cases, with DNR-CS, CG-CS and CG algorithms.

Thres. 5.10−4 a.u. Thres. 10−4 a.u.
Method Stepsa εrel[a.u.]b Stepsa εrel[a.u.]b

Average
CG 9 0.0383 5 0.0115
CG-CS 9 0.0387 5 0.0302
DNR 7 0.0381 6 0.0194

a Optimization steps required to reach the energy degeneracy within given
threshold. b Energy of ES at this point, relative to the MECI.

gorithm: DNR-CS algorithm obtains better degeneracy with fewer
steps. Almost all cases follow the average result. For example, we
plot the optimizations of acrolein and benzene, in figure 6.2. The
MECI acrolein optimization (figure 6.2.a) is a clear example of the
convergence problem of the CG algorithm, the default algorithm in
Gaussian. The incorrect Hessian results in the loss of degeneracy in
steps 32 and 43, and the energy difference is increased for several steps.
On the other hand, CG-CS has some problems too in the final part
of the optimization. CS is a first order approximation of the energy
difference and, sometimes, this fact extends the number of steps for
reaching the degeneracy. The benzene example (figure 6.2.b) shows
that the approach to the seam of DNR is more efficient than the CG
and, thus, it converges in only 16 steps with smaller absolute energy.
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In this case, CG and CG-CS have a similar convergence because they
share the major part of the optimization.
The better approach to the seam is illustrated in table 6.2. In the
table, the average of cycles required to reach the different levels of
degeneracy, 0.005 a.u. and 0.001 a.u., are presented with the energy
of ES relative to the MECI. The first one is the energy gap where the
CG-CS algorithm switches from CG to CS, so the value is the same.
On average, DNR-CS can reach the energy gap 0.005 earlier than CG
(and CG-CS), with 2 steps of difference. The smaller energy gap is
reached in the same number of steps by DNR-CS and CG-CS, but the
relative energy of DNR-CS is lower: it is closer to the MECI. Overall,
this data shows the better efficiency of the DNR-CS algorithm.

Figure 6.2: Energies of ES and GS (full lines, left axis) and energy difference
(dashed lines, right axys) in steps of the MECI optimization of acrolein (a) and
benzene (b) with CG, CG-CS and DNR-CS algorithms. Energies are in hartrees
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6.1.1 MECI optimization algorithm inside ONIOM
Scheme

Finding MECI in a fully quantum calculations was solved in the pre-
vious section. However, large systems, such as crystals, proteins or
DNA, are usually out of reach for the ab initio calculations. For these
cases, hybrid methods, such as ONIOM, are an alternative for obtain-
ing the potential energy of the systems when the excitation is localized
in a small fragment. For this reason, the adaptation of MECI algo-
rithms inside hybrid methods is important. In this direction, Bearpark
and co-workers72 implemented the CG algorithm inside the ONIOM
scheme.
Following the steps of this CG implementation, one of the objectives
of the thesis is to adapt the three projected gradient algorithms in
ME-ONIOM scheme and combine it with microiterations (see section
2.3.3 for more information).
Using the ONIOM excited state approximation, the first order BS
vectors can be obtained from the high level calculation:

xONIOM1 = (x1)HighmodelJ (6.6)

xONIOM2 = (x2)HighmodelJ (6.7)

where J is the Jacobian transformation, needed if there are LA in the
model. Thus, the gradient of the IS from two states can be obtained
using the projector built with the ONIOM BS vectors.

gONIOMIS = PONIOMgONIOMj = PONIOMgONIOMi (6.8)

Therefore, the formulation of the three algorithms does not change
practically. The steps of the three methods are the following ones:

ONIOM CG:

∆qONIOMCG = H−1
(
gONIOMIS + 2(∆ε)highmodelxONIOM1

1
|xONIOM1 |

)

(6.9)
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ONIOM CS:

∆qONIOMIS,CS = H−1
IS g

ONIOM
IS

∆qONIOMBS,CS = ∆εhighmodel
1

|xONIOM
1 |2 xONIOM1 (6.10)

ONIOM DNR:

∆qONIOMIS,CS = H−1
IS g

ONIOM
IS

∆qONIOMBS,CS = 2H−1
BS

(
(∆ε)highmodelxONIOM1

1
|xONIOM

1 |

)
(6.11)

The three projected gradient algorithms inside ME-ONIOM have been
implemented in the Gaussian development Version program, following
the previous equation steps. All implementation issues commented in
the previous sections have been applied. Microiterations have been
implemented too for the three algorithms. Within ME-ONIOM and
following the ONIOM excited state approximation, the low level steps
do not affect the CI conditions and the microiteration scheme can be
applied in the following straightforward formula, where the microiter-
ation steps are a simple minimization.

∆qONIOMMECI =
(

∆qMECI
model
0

)
+
(

0
∑∆qminrest

)
(6.12)

First of all, a test set of eighteen molecules was used in the three algo-
rithms with microiterations. Three model systems are used and some

Table 6.3: Averages of number of cycles of MECI searches with CG, CG-CS and
DNR algorithms inside ME-ONIOM with 18 systems.

Method Average
CG 28
CG-CS 26
DNR-CS 28
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Figure 6.3: Course of MECI searches with CG, CG-CS and DNR-CS algorithms
for tritret-butylfulvene. Full lines are the energy of the two states and hashed lines
is the energy difference. Energies in hartree.

substituents in the low level layer are added for forming seventeen
different molecules. The last test molecule is Pro-Vitamin D, used in
the previous ONIOM MECI algorithm implementation.72 The average
results can be read in the table 6.3. In contrast with fully quantum
calculations, there is not an optimal algorithm. There are several cases
where DNR-CS presents some problems and other cases when it is the
most efficient algorithm. These two kinds of cases are discussed with
the figures 6.3 and 6.4, where the extrapolated energy profiles during
the optimization of tritert-butylfulvene and hexaphenylbutadiene with
the different algorithms are plotted. In figure 6.3, DNR-CS reaches the
degeneracy faster than the other algorithms and obtains the MECI in
less cycles, whereas CG loses the degeneracy several times. The DNR-
CS problem is presented in figure 6.4. During the approach to the
seam, the extrapolated energy of the DNR-CS optimization increases
by 0.8 hartree. This increase is consequence of a series of consecutive
large BS steps. The BS step does not consider the low-level atoms
(equation 6.11) and can cause close contacts between them, increasing
the energy. This energy problem affects specially the LAH because
they are only optimized by macroiteration steps but they have an im-
portant energy contribution of the low level calculation. To illustrate
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Figure 6.4: Course of MECI searches with CG-CS and DNR-CS algorithms for
hexaphenylbutadiene. The structures are from DNR-CS and the red vectors are
the forces each point. Full lines are the extrapolated and QM model energy in
each step, and dashed is the energy difference. Energies in hartree.

this point, the structures and the ONIOM forces of the excited state
(−gONIOMES ) of steps 3,6, and 15 are shown in figure 6.4. In the maxi-
mum of the extrapolated energy, step 6, two LAH are in close contact
and they have very large forces. This problem is especially important
in cases with big substituents in the link atoms (phenyl derivatives) or
cyclic systems (Pro-vitamin D). In the CG algorithm, this problem is
not so important because the steps take also the gradient of the real
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Table 6.4: Relative energy of the critical points of DPDBF inside the totally
frozen crystal cage, with respect to the minimum. Values in eV.

Model Energy Extrapol. Energy
Structure S0 S1 S0 S1

Minimum S0 0.0000 4.4196 0.0000 4.4196
Minimum S1 1.2748 3.8279 1.2901 3.8435
MECI 5.6150 5.6151 5.7052 5.7053

Table 6.5: Relative energy of the critical points of the DPDBF inside crystal
cage with one free solvation layer, with respect to the minimum. Values in eV

Model Energy Extrapol. Energy
Structure S0 S1 S0 S1

Minimum S0 0.0000 4.3913 0.0000 4.3913
Minimum S1 1.4144 3.8648 1.2901 3.9417
MECI 5.6307 5.6311 5.7052 5.7805

system into account.
The second part of the test is to show the potential of this implemen-

tation. The critical points for the radiationless deactivation, ground
and excited state minima and the MECI, of the diphenyl dibenzoful-
vene (DPDBF) inside its own crystal are calculated. DPDBF presents
an interesting property: the molecule is fluorescent in crystal form

Figure 6.5: Energy profile of GS and first ES of DPDBF inside its own crystal,
with totally frozen crystal (a) and free first layer (b). Energies in hartree.
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but not in solution, where there is an energetically accessible CI.73

The partial charges of this system are small so the ME scheme can be
applied safely. Two kinds of environments are used to calculate the
critical points: first, a totally frozen cage, where the crystal environ-
ment cannot move; and, second, with a free solvation layer where the
first layer of molecules that surround the model are allowed to relax.
The energy profiles are shown in figure 6.5 and the relative energy of
the critical points are in tables 6.4 and 6.5. In both cases, the MECI is
found with the DNR-CS algorithm. The main difference between the
two environments is the relaxation energy of the free solvation layer,
about 0.68 a.u. of stabilization energy. This difference is produced by
small changes from the crystal structure to the UFF stable structure,
distributed in all bonds. There is also a small difference in the relative
energy of the minimum of S1, but in this case, it is somewhat coun-
terintuitive because one may expect that the unfrozen environment
stabilizes the distorted structure of S1. This probably indicates that
the crystal cannot adapt to the changes of the model in the excited
state with the UFF method.

6.2 Photophysics under Stark effect
The second big aim of the thesis is the application of the PES studies
for obtaining new control strategies in photochemistry, the direct ap-
plication of the last section, where new tools for studying PES were
obtained.
In this section, a new non-resonant Stark effect control strategy for
fulvene photorotation is proposed. In recent years, the control was
achieved using a non-resonant field. An electric field shifts PES through
the Stark effect.74,75 However, intense fields are necessary for obtain-
ing the relevant effect and only electromagnetic radiation can reach
these intensities. For this reason, this kind of control is known as
non-resonant dynamic Stark effect (NRDSE) control. Experimentally,
the most successful example of control using NRDSE is the photodis-
sociation of IBr, where an infrared laser can change the probabilities
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of different reaction channels.74 From the point of view of the theory,
several studies have achieved control in diatomic molecules76–79 or,
most recently, in polyatomic ones.80,81

A new control strategy using NRDSE is developed in this section. We
aim to simulate the control of the lifetime of fulvene using NRDSE,
preceded by resonant excitation. Thus, two laser pulses are used for
controlling fulvene. Fulvene and their photophysics have been stud-
ied extensively. In the introduction chapter (section 1.2.2), the most
important features of fulvene photophysics are discussed, such as the
principal modes in fulvene photo-deactivation, the decay ways or the
electronic states involved. The radiation absorption process leads to
a non-stationary state. TDSE needs to be solved for simulating the
photophysics of fulvene and its control correctly. MCTDH is the most
efficient way to solve the TDSE (section 2.4.1). However, MCTDH
cannot consider all modes of fulvene. For this reason, the simulations
were carried out in a two state 4D model previously used,27 where the
four dimensions are the principal modes described in the Introduction
(section 1.2.2) and the two states are S0 and S1. Thus, the TDSE of
this model system is the following.

i~
∂

∂t

(
ψ1(q, t)
ψ2(q, t)

)
= Ĥ

(
ψ1(q, t)
ψ2(q, t)

)
(6.13)

where ψ1(q, t) and ψ2(q, t) are the time-dependent nuclear wave func-
tion of S0 and S1 electronic state of fulvene. They depend on the time
(t) and the four spatial dimensions (q = {Qx1, Qx2, ϕ, θ}). The energy
operator (Ĥ) is divided in three terms.

Ĥ = T̂ + Ŵ + Ĥint (6.14)

where T̂ is the kinetic energy operator for the four dimensions, Ŵ
is the diabatic potential energy of the nucleus and Ĥint describes the
interaction between the system and external fields. In this system,
there are two kinds of interactions: resonant (Ĥres

int ) and non-resonant
(Ĥn-res

int ). The resonant interaction operator uses the first order ap-
proximation and, thus, it is based on the dipole transition moment. It
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has the following form:

Ĥ
res

int =
(

0 µ12ε
res(t)

µ12ε
res(t) 0

)
(6.15)

where εres(t) is the resonant field function. Our model assumes that
the system is aligned with respect to the fields during the propagation.
The non-resonant interaction operator is basically the Stark effect and
modifies the potential energy, so the form of the matrix operator is:

Ĥ
n-res

int =
(
Ĥ

n-res

11 (q, ε) 0
0 Ĥ

n-res

22 (q, ε)

)
(6.16)

where the components depend on the ε, the non-resonant field. Each
state has its own Stark effect. We assume that the couplings are inde-
pendent from the resonant field, so the non-diagonal terms of Ĥn-res

int

are zero. On the other hand, we define a new field-dependent potential
operator:

V̂ (q, ε) = Ŵ (q) + Ĥ
n-res

int (q, ε) (6.17)

This new operator substitutes the potential energy and non-resonant
interaction operators and simplifies the parametrization problem.

6.2.1 Parametrization
To carry out quantum dynamics it is necessary to obtain the potential
matrix function (Ŵ ), in our model, V̂ . As the real form is unknown,
this matrix needs to be parametrized and fitted with ab initio calcula-
tions in different positions and fields. The following form is proposed
for the matrix operator V̂ :

V̂ (q, ε) = V 0I +
(
V11(q, ε) V12(q)
V12(q) −V11(q, ε)

)
(6.18)

where the terms of the matrix are similar to the field free potential(Ŵ ),
previously used.27 These terms form a Taylor expansion along the four
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coordinates centred at the CIplan. But, in this case, the Qx1 and ϕ
parameters of the expansion are re-expanded in function of the field.

par(ε) = par0 + µparε+ αpar
2 ε (6.19)

Therefore, the dipole moments and polarizabilities are included inside
the parameters (total dipole moment and polarizabilities of the system
are not calculated explicitly), obtaining a set of 34 parameters. The
field dependent terms along Qx2 and θ are neglected for simplicity. In
practice, we assume that the Stark effect produces a constant shift
along this coordinates. Finally, we only consider the zz components
of the polarizability.
The parameters are fitted to ab initio calculations, carried out at the
CASSCF(6,6)/cc-pvdz level. This level is sufficient for describing cor-
rectly the ES. Furthermore, the states S0 and S1 have A and B sym-
metry, respectively, and they can be used as diabatic potential energy
directly from the ab initio calculations. The fitting includes points
with non-resonant field in the range of ±0.04 a.u. However, at strong
fields, S2 is close in energy and interferes with the other states. In
these cases, these points are discarded. Thus, the set of parameters are
fitted with 13385 points using the nonlinear least-squares Marquartdt-
Levenberg algorithm implemented in gnuplot82 to obtain the matrix
potential energy. The root mean square of residuals is 0.0024 a.u. for
V0 and 0.0032 a.u. for V11. The good agreement between ab initio and
the model energy is showed in figure 6.6, where ab initio and fitted
model energies profiles along Qx1 are plotted.
The same figure shows that the Stark effect modifies differently the
energies of the FC and the CIplan. The difference between them is
increased with the non-resonant external field until -0.04a.u., where
the CIplan lies 1.56 eV higher in energy than FC vertical excitation.
Therefore, the main decay of ES of fulvene is shifted with the field.
We can predict that the main decay path can be deactivated with the
field and it makes possible the activation of the other decay path, such
as rotation. Thus, fulvene photorotation can be controlled.
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Figure 6.6: Energy profile along Qx1 at different non-resonant field intensities,
including energy difference between the vertical excitation and the CIplan. Dots
are the ab initio energies of the A and B states. Dashed lines are the energies of
the model. Qx1 displacements in mass-weighted atomic units, energies in eV.

6.2.2 Quantum dynamic simulations

We used the MCTDH package69 to propagate the system over 150 fs.
The propagation starts in an initial relaxed system, in the electronic
and vibrational ground state. At the beginning of the propagation,
for 5fs, the pulse with the following form excites the system:

ε
res(t) = ε

res

0 cos(ωres

t)sin2
(
π

τ
t
)

(6.20)

where εres

0 was set to 0.10 a.u., ~ωres is the excitation energy (3.6eV)
and τ is the pulse duration (5fs).
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Propagations under static non-resonant fields

To understand the effects of the external field on the dynamics, we
started the study with a set of propagations with a constant(static)
field of various strengths.

ε(t) = ε0 (6.21)
In figure 6.7 are plotted the propagations of 0.00, -0.02, -0.03 and

-0.04 a.u.. During the resonant pulse (5fs) the population of S1 rises
from 0 to a maximum value (approximately 0.4). In the first three
propagations population decay quickly to ground state in the first 20
fs. However, there are some differences between them: when the field
is applied, the initial decay becomes more efficient. This result is
somewhat counterintuitive since the CIplan, the main decay way, is
increasing in energy with the field. However, the result can be under-
stood in terms of Fermi’s Golden Rule (section 1.1.1). The overlap
increases when the vertical excitation get close at CIplan, thus the
transition rate increases. It becomes maximum when these two values
are the same, at -0.03 a.u., approximately.
With -0.04a.u. field, the situation is reversed and the decay is slower.
The population remains in S1 after 20 fs and it takes 45 fs to decay to
half this value. In this case, the CIplan is high in energy from FC point
and fulvene cannot reach that region. the time to decay to S0 in this

Figure 6.7: S1 population for the propagations with static electric field of differ-
ent intensity.
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Figure 6.8: Snapshots of the wave packet propagations on the V2 surface along the
Qx1 and ϕ coordinates, displaying the time and the population of V2. Propagations
carried out (a) without non-resonant field and (b) with a static non-resonant field
of -0.04a.u. Wave packet density is plotted in red and the seam position in black.
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case is in agreement with the time necessary for IVR from reference,27

the calculated time to activate the ϕ rotation mode.
To illustrate this point, figure 6.8 shows the evolution of the wavepacket
in the diabatic excited state, V2, in the field-free case and under -0.04
a.u. field for several snapshots. The wave packet isodensity and the
seam are plotted. The population of V2 is displayed in every snap-
shots. In the field free case, the wave packet has traversed the planar
region of the seam twice in 20 fs. For this reason, the population of
V2 decays from 0.38 to 0.16. In contrast, in -0.04 field case, the main
part of the wave packet does not reach the planar seam in the first
20 fs. In consequence, its population practically does not decay. The
populations start to decay in 36 fs, when the wave packet can reach
the non-planar region of the seam.

Propagations under dynamic non-resonant fields

A realistic simulation requires the use of a dynamic non-resonant
field because lasers are the unique way to achieve the necessary field
strengths. Thus, we performed simulations where the non-resonant
field changes with the time.

ε(t) = −ε0sin(ωt) (6.22)

The dynamic Stark control is done by a laser of wave length of 1239
nm. This pulse starts before the simulation and never stops. The
results of these control simulations with NRDSE are shown in figure
6.9. We carry out propagations with ε0 values of 0.04a.u., 0.06a.u. and
0.08a.u. because we estimated that the field needs the double strength
to obtain the same results of static fields. This is partially true. The
0.08 a.u. case obtains similar results to the -0.04 static external field,
but the estimation fails in the other two. In these cases, a rapid decay
is not seen and an increase of the lifetime of V2 is shown.
Therefore, our model simulations shows that it is possible to control
the fulvene photorotation with NRDSE, changing the lifetime of ES.
A further possibility of control would be given modulating the phase
between the two lasers, which we have not explored yet. However,
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Figure 6.9: V2 population for the propagations with dynamic non-resonant elec-
tric field of different intensity.

our approach has some limitations. The first one is the dimensionality
of the model. Our model captures the principal behaviour of the
fulvene decay, because this process is very fast and the excitation
energy is concentrated in only a few modes. However, the inclusion
of more modes must improve the connection between the model and
reality.83 The inclusion of the Stark effect in only two dimensions can
be improved, however the Stark shifts affect principally the Qx1 and ϕ
coordinates. Another limitation of the model is that only two states
are included. More states should be included because S2 interferes at
fields larger than to 0.02 a.u.. Finally, really strong fields ( 4.5 · 1014

W cm−2) were needed to achieve the control. In practice, such power
densities cause ionization. For this reason, it makes the experimental
implementation of this control scheme in fulvene challenging. To carry
out the control experimentally, it is necessary to find systems where
the polarizabilities of the two states differ more substantially than in
fulvene.



Chapter 7

Conclusions

The main conclusions of this thesis are collected in this chapter and
briefly summarized.

In the first part of the thesis, starting from the existing MECI
projected gradient algorithms, CG and CG-CS, a new CI algorithm
optimization was devised to improve the approach to the seam, called
DNR-CS. The DNR step is composed of two N-R steps, one for each
space, IS and BS. The IS step minimizes the energy in the IS and BS
step leads to the degeneracy. Each step has a separate Hessian that is
updated for each cycle. The use of the IS Hessian avoids losing the de-
generacy. On the other hand, the BS Hessian improves the approach
to the seam with respect to CG, because the Hessian takes the second
order degeneracy lifting effects into account. However, the mixture of
the states in the degeneracy interchanges the x1 and x2 vectors and
the BS Hessian can be affected by this fact. For this reason, CS is
used when the BS Hessian becomes ill-defined, in the hybrid DNR-CS
algorithm.
The projected gradient algorithms, DNR-CS, CG-CS and CG, were
compared with a test set of eleven compounds with well-know MECI.
Our comparison shows that the new DNR-CS is the most efficient al-
gorithm because it reduces the number of optimization cycles. In all
cases, DNR-CS obtains the global MECI. Moreover, the degeneracy is
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reached with less steps than the two other algorithms and the energy
is closer to the MECI.

In the second part of this thesis, the three projected gradient CI
optimization algorithms were implemented inside the ONIOM scheme.
The implementation is done using the ONIOM excited state approxi-
mation, where the MECI optimization steps do not have any important
change in ONIOM. Within ME-ONIOM and following this approxima-
tion, the microiterations were also implemented in a straightforward
way.
A test set is used to compare the behaviour of the three algorithms
in the ONIOM scheme. On average, the algorithms have the same
efficiency. The DNR-CS algorithm presents problems with bulky sub-
stituents in the LA, being the CG-CS algorithm the preferable option
in these cases. In the remaining cases, the DNR-CS algorithm has a
good performance.
The potential of our implementation to locate MECI in crystals of or-
ganic molecules, where the excitation is centred on a single molecule,
is shown for the case of DPDBF.

Finally, in the last part of this thesis, a new strategy for the control
of the photorotation of fulvene has been proposed. Using the exist-
ing knowledge of the decay mechanism, we proposed a new strategy
based on the NRDSE, where two lasers were used, one for exciting
the molecule and the other one for inducing the Stark effect with a
non-resosant electric field that shifts the PES.
Starting with a previously used 4D model, a new model system that
includes the external field was proposed. The new model system was
used to simulate the new control strategy with quantum dynamic sim-
ulations.
The simulations of the new control strategy were done, where two
lasers are used to control the fulvene photorotation. Simulations with
different fields showed that it is possible to increase the lifetime of
the first ES from 10 to 40 fs, with a dynamic electric field. However,
strong fields (0.08 a.u.) were needed to achieve a satisfactory control.
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56 Rappé, A. K.; Casewit, C. J.; Colwell, K.; Goddard Iii, W.;
Skiff, W. Journal of the American Chemical Society 1992, 114,
10024–10035.

57 Svensson, M.; Humbel, S.; Froese, R. D.; Matsubara, T.; Sieber, S.;
Morokuma, K. The Journal of Physical Chemistry 1996, 100,
19357–19363.
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