
eXiT*CBR: A framework for case-based medical

diagnosis development and experimentation

Beatriz López∗,a,b, Carles Pousa,b, Pablo Gaya, Albert Plaa, Judith Sanzc,
Joan Brunetb,d

aControl Engineering and Intelligent Systems Research Group, Universitat de Girona,
Campus Montilivi, edifice P4, 17071 Girona, Spain

bGirona Biomedical Research Institute, Av. de França, s/n, 17007 Girona, Spain
cUnitat de Consell Genètic en Càncer Hereditari, Servei d’Oncologia Mèdica, Hospital de

la Santa Creu i Sant Pau, Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain
dMedical Oncology Department, Catalan Institute of Oncology, Av. França s/n, 17007

Girona, Spain

Abstract

Objective: Medical applications have special features that require the de-

velopment of particular tools. The eXiT*CBR framework is proposed to

support the development of and experimentation with new case-based rea-

soning (CBR) systems for medical diagnosis.

Method : Our framework offers a modular, heterogeneous environment

that combines different CBR techniques for different application require-

ments. The graphical user interface allows easy navigation through a set

of experiments that are pre-visualized as plots (receiver operator character-

istics (ROC) curves and other kinds of charts). This user-friendly navigation

allows physicians to analyze the experiments easily. Experiment replication

∗Corresponding author at: Universitat de Girona, Campus Montilivi, edifice P4, 17071
Girona, Spain. Tel.: +34 972 418 880; fax: +34 972 418 259.

Email addresses: beatriz.lopez@udg.edu (Beatriz López), carles.pous@udg.edu
(Carles Pous), pgay@eia.udg.edu (Pablo Gay), apla@eia.udg.edu (Albert Pla),
juditsanzbuxo@gmail.com (Judith Sanz), jbrunet@iconcologia.net (Joan Brunet)

Preprint submitted to Artificial Intelligence in Medicine April 15, 2010

is managed automatically by the system. Used as a plug-in on the same inter-

face, eXiT*CBR can work with any data mining technique such as learning

the relevance of features.

Results : The results show that eXiT*CBR is a user-friendly tool that

facilitates physicians to use the CBR method to determine a diagnoses in

the field of breast cancer, dealing with different patterns implicit in the data.

Conclusions : Although several tools have been developed to facilitate the

rapid construction of prototypes, none of them has taken into account the

particularities of medical applications. eXiT*CBR aims to fill this gap. It

uses CBR methods and common medical visualization tools, such as ROC

plots, that facilitate the interpretation of the results. The navigation ca-

pabilities of this tool facilitate the tuning of the different CBR parameters

using experimental results. In addition, the tool allows reproducibility, as

the experiments can be replicated as many times as required.

Key words:

Case-based reasoning, experimentation supporting tool, development

supporting tool, medical diagnosis, breast cancer diagnosis.

1. Introduction

Case-based reasoning (CBR) has evolved over the last years, and there

are currently a considerable number of techniques available for each phase

of CBR system development, although these are unevenly distributed. Each

particular domain requires that appropriate techniques can be selected for

each phase and the parameters involved can be appropriately tuned. Several

methodologies have been designed to guide CBR system development [1,

2

2], and some of these are accompanied by software tools that aim to build

prototypes quickly, which can then be progressively corrected [3–5]. Some

general purpose tools such as cf. [6], CBR* [3], CBR Shell [4] and jCOLIBRI

[7] are available and can be used to develop a cancer diagnosis system as well

as an electric fault diagnosis system.

Although there should always be a compromise between genericity and

specificity when designing software tools, medical applications have particu-

lar requirements that justify the development of a specific CBR platform. In

[8], for example, the authors highlight the need to study what is common to

all successful applications of CBR systems and propose a search for common

representations of CBR data and methods in this particular field. Other

studies have been carried out in relation to the special cases of CBR [9, 10]

and data mining [11] in the medical domain. In [10] we describe our experi-

ence of working together with several teams of physicians, and we agree with

the problems presented in [8] and [11]. From that analysis, we detected the

need to deploy a particular tool for CBR in medicine that can cope with the

challenges identified. Specifically, we have dealt with the following issues:

attaining a probabilistic interpretation of CBR, improving the interface to

interpret the physicians’ results, and the hybridization of CBR with other

techniques.

First, a way to provide a probabilistic interpretation of CBR is closely re-

lated to the kind of visualization tools physicians usually work with: mainly

receiver-operator characteristic (ROC) and cost curves. ROC curves depict

the tradeoff between hit rate and false alarm rate [12, 13]. In cost curves,

classifier performance is shown through the class distribution changes [14].

3

So the incorporation of these visualization tools in a CBR environment (al-

though not being a CBR technique per se) should facilitate the use of CBR

in medical domains.

Second, the use of ROC curves can also improve the interface with physi-

cians. Moreover, result reproducibility, so that the results obtained by dif-

ferent work teams are the same given the same method and identical test

material, should be guaranteed to offer physicians confidence. And since re-

peating experiments is often a critical and necessary process to obtain the

parameters that provide the best results in a CBR system, special care should

be taken to adequately store all the data used when the system is tested so

they are available to the research community.

And third, the complementarity of other methods for feature learning,

techniques for dealing with data dependencies [8] and other methods should

be contemplated, so that CBR can be hybridized with other data mining and

reasoning tools.

To our knowledge, no current tool supports all these features, in partic-

ular the two former ones. The final CBR performance depends on the skills

of the engineer choosing the corresponding parameters guided by the physi-

cian’s interpretation of the results obtained so far. Unless we provide the

appropriate visualization tools for result interpretation and reproduction, it

will be difficult to adequately tune the CBR parameters.

In this work a specific CBR tool for medical applications is presented to

support CBR system development, experiment replication and result inter-

4

pretation. The framework, eXiT*CBR1 is a modular environment that com-

bines different CBR techniques for different application requirements. The

graphical user interface allows easy navigation through a set of experiments

that are pre-visualized as plots (ROC curves and other kinds of charts).

This allows a knowledge engineer and a physician working side by side to

test different CBR parameters and visualize the results in a user-friendly

way. Experiment replication is assured, since experiments are managed au-

tomatically by the system. The methodology is based on keeping datasets,

configuration files of the experiments, and other data.

Finally, any data mining method can be plugged into the system as a pre-

processing step to treat the medical data, according to the current trends in

knowledge transfer [15]. Thus, both the knowledge engineer and the physi-

cian have a single interface to deal with complex data. eXIT*CBR is based

on CBR as a decision-making methodology, although it can be complemented

by any other technique.

Therefore, the eXiT*CBR platform goes beyond the rapid prototyping of

medical CBR to offer an extensible architecture for overall experimentation,

and to support experiment replication and interpretation via common med-

ical graphics tools. eXiT*CBR does not build a new system from scratch,

but rather integrates existing CBR methods with new ones as required, and

facilitates the integration of other data mining mechanisms.

This article is organized as follows. First, we introduce the eXiT*CBR

framework. Next, we give brief descriptions of the eXiT*CBR functionalities.

1eXiT stands for the acronym of our research group.

5

Then, an example is used to describe the main steps required to develop a

CBR application with eXiT*CBR, obtain results, and have them evaluated

by the physicians. Finally, we compare our work with several previous studies

and end the paper with some conclusions.

2. The eXiT*CBR framework

The eXiT*CBR framework was designed to bring together CBR meth-

ods currently used in medical applications, other data mining mechanisms,

and visualization techniques that can be plugged into it. eXiT*CBR also

facilitates the incorporation of new techniques, if required. Our architecture

follows a modular approach based on the different phases in a CBR system.

For a reader unfamiliar with the CBR methodology, a basic CBR system

relies on a case base in which past experiences are stored. For example, in

a breast cancer diagnosis, a case base contains information about patients

that have been diagnosed in the past with the illness and about healthy

people. Using this case base, a CBR system is able to diagnose future cases

by following four main phases of action: retrieve, reuse, revise and retain

[16]. First, in the retrieve phase, the current case is compared with all the

past experiences in the case base, and the most similar are recovered. Next,

in the reuse phase, a solution (diagnosis) to the current case is determined

based on the solutions found in the retrieved cases. Third, the computed

solution is evaluated in the revise phase. Finally, the retain phase analyzes

whether to retain the case in the case base.

eXiT*CBR follows a modular approach: the different CBR phases are

implemented as generic classes. When a new method is required but is not

6

provided in the system, it can be assembled as a particular instance of the

generic class. It is important to distinguish between classic methods and

methods that involve either the integration of other data mining tools or the

hybridization with other artificial intelligence (AI) techniques. Thus, when

users wish to add new CBR methods, they only need to instantiate the generic

classes defined for this purpose. However, when other techniques should be

integrated or hybridized, the corresponding executable codes should also be

included. With this approach the system has the properties of modularity,

reusability and extensibility.

As our framework goes beyond pure CBR prototyping and aims to sup-

port experimentation, other elements are required in addition to the basic

CBR modules. Five main experiment-related components are distinguished:

the experiment interpreter core, the CBR engine, the pre-process and post-

process elements and the experiment navigator. In order for any method to

manipulate the data, a common representation of cases is required. As the

experiment is the key issue in eXiT*CBR, the architecture has been organized

into different components around the experiment interpreter core (see Figure

1). All the components and common data representation are explained in

the remainder of this section.

eXiT*CBR has been developed using the Java language and the jfreechart

library2. It is compatible with the Linux and Windows operating system plat-

forms. The software allows users to select a language to work in. Currently

these languages include English and Catalan. We are in the process of mak-

2http://www.jfree.org/jfreechart/ (Accessed: 8 April 2010).

7

ing it possible to download the platform for free from our web page. In the

meantime, however, any interested researcher can request a copy from the

authors.

2.1. Case representation

With any method used eXiT*CBR requires a plain csv file to handle the

data. Each row corresponds to a case, and each column to attributes of the

cases. One of the attributes should be marked as the one containing the

diagnosis information (class).

The first four rows describe the attributes as follows:

• The first row corresponds to the attribute descriptions (for example,

”Age when first child was born”)

• The second row corresponds to the attribute name (usually in a cryptic

form, as for example, ”age1stborn”).

• The third row corresponds to the attribute type (-1 ignore, 0 discrete,

1 numerical, 2 textual, 3 date)

• The fourth row corresponds to the attribute weight (relevance).

We believe that this simple, plain representation covers most of the data

used in medical applications3 and is easy to manage and general enough to

be used by any of the current CBR techniques (mainly distance functions).

3In fact, physicians usually collect data in Microsoft Excel or SPSS files, with a similar

format.

8

From the original data file in csv format, and using, for example, the

facility described in section 3, several datasets can be generated for different

experiment methodologies. All of the datasets keep the same case represen-

tation.

2.2. Experiment interpreter: the eXiT*CBR core

The core of the framework is the experiment interpreter. A configuration

file that contains all the information required to replicate an experiment is

defined. The eXiT*CBR core interprets the configuration file, and applies the

corresponding methods, or calls the corresponding eXiT*CBR components:

first, the preprocess, then the CBR engine, then, the post-process. Only the

experiment navigator acts interactively with the user.

The different parameters involved in an experiment depend on the method

employed. Currently, there are two main methods: batch and cross-validation.

In eXiT*CBR batch processing means performing a single run of a CBR

in a case base (see Figure 2, top). The input to this kind of experiment is a

single dataset with two files: the training and the test files. The experiment

interpreter core takes the training data to generate the case base, and uses the

test file to obtain the results of the CBR system defined in the configuration

file. These results are given in the form of CBR performance according to

the experiment measures selected by the user. Note that the solutions of the

test cases are known in advance, and they are used to verify that the CBR

system, configured as it is, works appropriately.

Stratified cross-validation processing implies multiple runs of a CBR con-

figuration with different datasets (see Figure 2, bottom). Input data in this

kind of experiment are k datasets, ”set1”, ... ”setk”, each composed of at

9

least one training file and one test file. Thus, the experiment interpreter core

takes the training data of a given set ”seti” as the case base, and uses the

test data to obtain the results of the CBR system. Then, the performance

of the CBR system with all of the datasets is averaged.

eXiT*CBR also allows a multi-agent system (MAS, [17]) method in which

several CBR systems cooperate to obtain a diagnosis. Thus, for example, an

experiment can be MAS-cross-validation or MAS-batch. For the sake of

simplicity, in this paper we focus on the single (non-MAS) methods.

In the configuration file the data to be used, the pre-processing techniques,

the CBR methods, and how the results are post-processed are defined. First,

batch processing involves the specification of a single dataset, while cross

validation requires the specification of a set of them. Other information

related to the data is the name of the attribute that contains the solution of

the case (i.e. class information since we are interested in case-based medical

diagnosis). Second, pre-processing methods, as discretization of numerical

attribute values, normalization of numerical attribute values, or filtering out

a subset of case attributes, can be defined. In this case, the methods are

the same for any kind of experimental methodology. Third, the particular

techniques to be used in each of the four main phases of CBR should be

specified. Both, classical CBR methods as well as other AI techniques can

be included. For example, in Figure 3 the retrieve selection method employed

is MajorityK with the parameter k = 5 4 but a fuzzy system that determines

case similarities can be also used (see for example [18]). Combining different

4The details of the file contents are described in section 4.

10

AI techniques in hybrid systems seems to be a way to tackle the complexity

and multi-faceted aspects of medical data. Therefore, in eXiT*CBR it is

possible to develop a decision support system based on a single technique such

as CBR, that is complemented by other AI techniques. And fourth, post-

processing depends on the environment where the CBR system is designed

to work. If the system is developed to cooperate with other systems to solve

a given problem (on-line mode), the output of the CBR system should go

through a communication port; on the other hand, if the purpose of the

CBR system is to obtain results in isolation (off-line mode), visualization

tools could be more useful. In both cases, several performance measures can

be specified to show the results to the user.

When an experiment runs, all the files associated with it are stored in a

folder with the name of the method used to conduct the experiment (cross-

validation or batch), and the day and the time it took place. For example,

in Figure 5 the experiment folder with the name ”CrossValidation-CBR-

20080516-124248” means that this folder contains the files belonging to an ex-

periment carried out at 12:42:48 PM, on 16 May 2008, using cross-validation

as the experimental method. This label ensures that repeating the same ex-

periment with the same data a couple of seconds later does not overwrite the

previous experiment results, even though the same experiment file name is

used. The information stored in the result folder is used by the post-processor

component to plot the results of the current experiment for the user, and by

the navigator tool to compare different experiments.

11

2.3. The pre-process element

The first component of the framework that the experiment interpreter

core calls to perform an experiment is the pre-process element which takes

the description of the discretization, normalization and feature selection slots

of the configuration file and applies them. Discretization methods convert

numerical data into categorical data [19]. Normalization methods assure that

all the numerical values are comparable in the [0,1] interval. Finally, feature

selection methods determine which of the available features (attributes) are

relevant for the application. Relevant and irrelevant features can be labeled

with high and low weights, respectively, assigned to them [20, 19].

After the pre-process is completed, the experiment core takes back control

and passes it to the CBR engine.

2.4. The CBR engine

All the information required to set up a CBR system according to user

requirements is stored in the configuration file. The CBR engine is respon-

sible for reading this file, extracting the selected methods and parameters

and, finally, calling and executing the related algorithms. At the end of this

process a set of files is obtained as output. These files are used by the post-

process element of the architecture to display the results in the format the

user selects.

The following paragraphs describe the modules that the CBR engine calls

when launched.

12

2.4.1. Retrieve module

The retrieve module compares the cases with a given test case, and selects

the most similar cases from the case base. Three key methods are involved

in this process:

• The distance method or similarity measure employed to compare cases

• The methods employed to handle missing information when the simi-

larity measures are applied

• The selection procedure to determine the most similar cases.

All these methods are defined in a generic way and can be instantiated as

required or as they become available as depicted in Figure 4.

There are local and global similarity measures (Figure 4). Local similar-

ity measures compare two attribute values. There can be as many kinds of

local similarity measures as there are operands available. For example, the

Euclidean distance is the measure proposed most often to handle numeric

data, while the Hamming distance is set for categorical (discrete) data [21].

Other local similarity measures regarding data trees (to handle inheritance

information, for example), series, and dates can also be used. Global simi-

larity measures combine different local similarity outcomes to determine the

similarity between two cases. An example is the weighted average, but many

others can be considered [22].

Local distance methods have to be able to deal with missing values. They

are cost sensitive and used widely in medical applications. According to [23],

they can be classified as missing completely at random (MCAR), missing at

random (MAR), and not missing at random (NMAR). MCAR is used when

13

the probability of missing a value is the same for all attributes, MAR is

used when the probability of missing a value is only dependent on another

attribute, and NMAR is used when the probability of missing a value is also

dependent on the value of the missing attribute. Any of these methods can

be implemented and added to eXiT*CBR.

Finally, the selection method to be used should also be chosen. Possibil-

ities include selecting the k-nearest neighbors or selecting the cases with a

similarity degree higher than a pre-fixed threshold.

As output of the retrieve phase, the CBR engine creates a file containing

the distance matrix that depicts the similitude between each test case and

the cases in the case base.

2.4.2. Reuse module

In the reuse module, a method for adapting the solutions of the retrieved

cases to a given test case needs to be specified. This phase constitutes one of

the main limitations of CBR in medical diagnosis [24]. The majority of medi-

cal CBR systems suggest past solutions without a further adaptation process.

The Bilska-Wolak method [25] proposes a probabilistic approach; however,

this method has only been applied with a low number of features, and much

more research is needed to deploy it in real environments. eXiT*CBR allows

users to create and test their own reuse algorithm easily.

2.4.3. Revise module

Most of the current medical CBR systems rely on human feedback in the

revise phase. There are currently no other alternatives. However, in other

environments, simulators are also possible [26].

14

In the experiments used with eXiT*CBR, namely, batch and cross-validation,

the case solution is known in advance. Thus, two main results are generated:

• The classification matrix, which contains information about the real

classification of the cases and the prediction given by the system (as

output of the reuse phase);

• The confusion matrix, which contains information about true positive,

true negative, false positive and false negative rates.

2.4.4. Retain module

Once the solution proposed for the new case is revised, a decision has to be

made about whether to retain the new case or not. This decision will depend

on whether the cases already in the case base produce a correct solution or

not. Since the CBR system’s core is a case base that can be very large, it has

a lot in common with the data mining methods for data processing. When

the case base grows, a good maintenance policy is necessary. This means

that we have to delete, add or modify cases to keep the system performing

well. Instance-based learning algorithms such as IB3 [27] or DROP4 [28] can

be applied in this stage to decide whether to keep the new case, forget it, or

keep it and delete other cases.

Adding cases automatically to a medical domain without any human

control can be somewhat dangerous, since the system can increase the in-

formation about a particular case or situation, leading to a large bias in the

system. An alternative is to temporarily store new cases until a physician

checks them. CBRworks [29] has implemented this approach. In eXiT*CBR

we follow this conservative view of the development of CBR systems, and we

15

leave the study of the integration of algorithms such as IB3 and DROP4 for

the future.

2.5. The post-process element

The task of the post-process element starts when the CBR engine finishes.

The post-process component of eXiT*CBR is related to the type of measures

the user is interested in (confusion matrix, success rate, specificity, etc.) and

how to visualize them. In addition, it processes the information according to

the working mode selected by the user: on-line or off-line. More details are

given in the following subsections.

2.5.1. Visualization results

In the configuration file, the user decides in advance on the method and

measures to apply to the current experiment, as well as how to view the

results. Then, the post-process component produces the corresponding plot

from the information provided by the CBR engine (confusion matrices). A

Figure.png, generated as output, depicts the corresponding plot derived from

the experiment.

In the current implementation the experiment navigator tool uses the con-

fusion matrix and the plots to help the user choose and compare experiments

(see next section).

eXiT*CBR visualizes the results with ROC curves by default (like the

one in Figure 10). However, there are certain situations in which visually

comparing ROC curves is not the best way to select the best diagnosis sys-

tem; in these cases using an area under curve (AUC) value can help make

the decision. The larger the AUC value, the better the performance of the

16

diagnosis system. Therefore, the ROC figures are complemented with AUC

information. Of course, the ROC curves and the AUC values have to be

checked by physicians to certify that these results agree with their medical

criteria.

2.5.2. Working mode

We distinguish between the off-line and the on-line modes. In an off-

line mode, several batch processes and validation procedures are applied

according to the experimental parameters. The system’s answers in this

context are visualization plots. In the on-line mode the system cooperates

with other systems to solve a given problem. It uses several approaches

based on ensemble learning techniques, including distributed and agent-based

approaches [30].

2.6. The experiment navigator

Repeating experiments and interpreting their results are the two key

points for medical diagnosis. Reproducibility should guarantee that when

the same method and the same test material are used, identical results are

obtained. Therefore, all the data used when the system is tested has to be

adequately stored in a file structure (see Figure 5).

As shown in Figure 5, all the experimental outcomes are stored in the

folder results. Inside this folder, users can organize the results into several

destination folders (”Destination folder 1” and ”Destination folder 2” in the

case in Figure 5) according to selected criteria. For example, users could

be interested in putting all the experiments carried out with a particular

database or a set of experiments carried out using only a subset of the data

17

in the same destination folder.

The experiment navigator works interactively, so that when the mouse is

positioned on an element of the file structure, the results of the experiments

are automatically visualized. This is possible with the pre-computed images

and the information kept after running an experiment.

3. eXiT*CBR functionalities

The following functionalities have been developed for user interaction:

create/edit configuration file, data conversion, modification csv, dataset gen-

eration, CBR application, and navigation. They are made available as but-

tons in the left area of the main window frame of the platform. In addition,

all of the other data mining applications integrated into the platform are

available through the ”plug-in” option. Finally, it is possible to change the

installation of the tool with the program configuration facility.

3.1. Create/Edit configuration file

Writing a configuration file by hand can be so unpleasant it would make

anyone give up using the tool. Therefore, we have developed an alternative

editor interface so that users can define a configuration file in a user-friendly

way, in which all the available techniques are displayed in a pop-up menu.

The directory which contains the datasets, the methods used for each

CBR cycle, and the type of experiment can be defined using this graphic

window.

18

3.2. Modify csv

Machine learning methods in general and CBR in particular assume that

examples are independent. However, medical data cannot always satisfy this

constraint. For example, in breast cancer data, two members of the same

family can also be in the same dataset. Note that this situation is different

from deduplication or record linkage [31], since the individuals are different

but related.

This clear dependency can be removed if family relationships are identifi-

able in the dataset. Of course, other kinds of hidden dependencies are more

difficult to avoid.

Thus, this facility has links to the current available, domain-dependent

methods to deal with cases independency.

3.3. Data conversion

The data provided by physicians generally have different file formats and

contain dissimilar information. Hence, the first step is to transform original

datasets into csv files, which is the format that our framework is able to read.

A breast cancer relational database has been converted into a csv file as an

example. In general, every medical database has its own structure, format

and type of data. Therefore, it is very difficult for the method to read all

the available medical databases. It is often necessary to check new databases

manually so that they are correctly transformed into a csv file.

3.4. Dataset generation

This function defines datasets for experiments. The input is the original

database (in csv form) in which the medical information is contained (cases).

19

The output is a set of different datasets for training and testing the system

according to the experimentation procedure (for example, cross-validation).

There are two kinds of procedures to determine the length of the test

files: fixed (often used by physicians when, for example, ten tests cases are

required), and percentage-based (usually in cross-validation).

Once the technique for generating the dataset is selected, the system

generates as many datasets as necessary. For each dataset, four files are

produced:

• Patient5 test file: includes cases of patients to be tested.

• Control test file: includes cases of persons that do not have the illness

to be tested.

• Training file: includes the cases which form the case base. There are

as many patients as healthy people.

• Remaining file: includes the cases that exceed the proportion in the

training file. That is, if there are many more patients than healthy

people, the generated files are stratified, and some remaining patient

cases would not be considered in this set.

Figure 6 illustrates the process when a stratified cross validation method-

ology is used with a fixed length of test files (n cases per file) and a fixed

number of datasets (m). Note that these datasets are generated apart from

5These are cases in medical terms, but in order to avoid confusion with the CBR

terminology we prefer to use the term ”patient”.

20

the CBR application. Therefore, it is possible to define several CBR config-

urations and test them with the same datasets.

3.5. CBR application

The CBR application facility runs the CBR experiment according to a

given configuration file. As a result, several internal files that contain the out-

puts of the application and other result-visualization supporting information

are generated, as explained in the previous section.

3.6. Navigation

The navigation facility is perhaps the most innovative aspect of our frame-

work. It allows the user to navigate in a user-friendly way through the differ-

ent experiments run so far. In the left panel, the experiments executed are

listed according to the file structure presented previously (see Section 2.6).

When the user moves the cursor across the experiment tree, the correspond-

ing results are shown in the top right panel The system also displays the

dataset and methods used in the selected experiment.

To facilitate choosing from among all the experiments, the navigator al-

lows users to hold a particular experiment figure while navigating across the

experiment tree. With this utility, users can explore and graphically search

for experiments they are interested in. These figures (as many as required)

can also be expanded and overlapped in a single graphic, as shown in Figure

7. Each curve is labeled with the name of the experiment. Several types of

lines and colors are available.

When a figure is expanded, the confusion matrix is also shown. If the fig-

ure is related to a cross-validation experiment, the confusion matrix obtained

21

for each fold (dataset) is shown in a tab structure.

It is clear that the experiment navigator greatly facilitates the comparison

of experiment results, which speeds up the tuning of the diagnosis system

parameters.

3.7. Plug-ins

To add other data mining or computing techniques (as for example, a fea-

ture learning mechanism), a step before CBR pre-processing might be nec-

essary. Therefore, eXiT*CBR allows to plug-in any technique in the same

interface. For example, Figure 8 shows the effects on the dataset after ap-

plying a plug-in called family risk calculator, which calculates for each case

a new attribute related to family information.

4. Application to breast cancer diagnosis

The first application eXiT*CBR has been used with is a breast can-

cer case-based system. The public database, the Breast Cancer Wisconsin

(Diagnostic) Dataset [32, 33], was used to conduct preliminary tests of the

framework functionalities.

Then, the CBR system was developed for our own breast cancer dataset,

which consists of 871 cases, 628 corresponding to healthy women and 243 to

women with breast cancer. There are 1199 attributes for each case. They

correspond to people’s habits (smoker or not, diet, sport habits, etc.), disease

characteristics (type of tumor, etc.), and gynecological history, among others.

Therefore, a complex database helps to illustrate the capabilities of the

platform when real, complex data is dealt with. In addition, the physicians

22

involved in gathering the data are also involved in developing the CBR sys-

tem and the experiments with eXiT*CBR, so they can also provide useful

feedback on the platform.

4.1. Main steps for developing a CBR application

Figure 9 illustrates the process followed. The unfilled boxes show optional

steps, while filled ones should be considered mandatory.

First, the destination directory of all the experiments to be carried out

with this database is defined with the program configuration facility.

Second, our original access file is converted into a csv file with the data

conversion procedure. Third, different datasets are built to perform a cross-

validation experiment. Up to ten folders have been generated with test cases

composed of ten patients plus ten healthy people, and the remaining cases

as training cases.

Now everything is ready to start experimentation. The first CBR system

was set up with the edit configuration facility. The resulting configuration

file, seen in Figure 3, shows that the results will be stored in the ”results”

directory, the name of this first experiment is ”original”, and the datasets

are taken from the directory ”Datasets10”. Although the name of the class

attribute written in the textual file of Figure 3 is cryptic (A1_1_1#8), note

that it has been selected via pop-up menus set up according to the attribute

description provided in the csv file. Other options, such as the different

methods involved in each phase, are also provided via pop-up menus. In the

retrieve phase of the CBR system, the experiment has been set up with a Eu-

clidean distance function for numerical values, a Hamming distance function

for categorical ones, the average (mean) as the global similarity measure, and

23

the selection being the ”majority” rule in which the five most similar cases

would be selected (five is the parameter of the method). In the reuse phase,

the probabilistic-Pous method is selected, and the threshold required to use

it is set to 0.7 (see [34] for further details on this method). In order to gener-

ate results and plots in the experiments, information about the variation of

the parameter (i.e. the threshold) must also be provided. Assuming that the

parameter varies in the interval [0, 1], variations would be studied from 0.0,

and with a step of 0.1. Finally, there is no revise phase, since the experiment

deals with a cross-validation experience, and the test cases are not retained

in the system.

The default values for the experiment have been set, namely, the true

positive and false positive rates of measures, and ROC curves have been

used as the visualization plots.

The off-line working mode is selected as post-processing, which means

that the output will be sent to the user, instead of being reported on-line to

another system.

Once the configuration file is defined, it is possible to call the eXiT*CBR

core to obtain an instantiation of the CBR system defined in it, and thus

obtain the corresponding results. The CBR application facility is used for

this and, after running it, the user obtains the results graphically as shown

in Figure 10.

4.2. Using the experiment navigator tool

Next, as the original dataset has dependent data, a particular process for

making cases independent, which is linked to the modify csv facility is run

to remove the dependent cases and obtain a new dataset. Since the csv file

24

changes, it is necessary to execute the dataset generation facility again to

obtain the files for cross validation (see functional dependency interactions

in Figure 9).

In the configuration file, it is only necessary to change the information

about where the new data are, and the name of the experiment: ”origi-

nalIndp”. The same edit configuration facility allows the existing configura-

tion file to be loaded and modified.

Note, however, that the information from the previous experiments is

not ”changed”, even though it seems like the user ”updates” the files. As

previously explained, this is because the eXiT*CBR core always maintains a

backup of the different files involved in an experiment.

After the modifications have been performed, the experiment is run again

with the new data, and new results are obtained.

The experiment navigator facilitates the interpretation of the results.

Both experiments can be enlarged with the corresponding button of the ex-

periment navigator, and compared as seen in Figure 11. The user can see

whether the new experiment runs better, and continue to improve the results

from this configuration.

4.3. Improving the case base with another data mining tool

If the physician now realizes that there is additional information in an-

other file regarding family risk that could improve the results if incorporated

in the data, then a procedure for learning the family risk is first defined and

added to the existing data as a new attribute for each case. This procedure is

implemented, and as a ”jar” file can be used directly in eXiT*CBR through

the plug-in facility, which means other researchers can also use it.

25

After adding this information, the experiment is repeated as in 4.2 and

the results are improved again.

4.4. Changing the experimental parameters

Now, the physician tries to improve the results by increasing the ”k”

parameter of the retrieval method: from 5 to 7. This experimental parameter

can be modified in the configuration file thanks to the edit configuration

facility. The experiment is repeated and the new results are then compared

with the previous ones thanks to the navigation tool.

Note then, that all the parameters of the configuration file can be changed.

They include pre-processing (discretization, normalization and feature selec-

tion), retrieval, reuse, revise and retain methods, as well as visualization and

post-processing methods. However, the use of some of the eXiT*CBR facili-

ties, beyond the scope of the configuration file, could involve the generation

of a new dataset, in addition to repetition of the experiment, as shown in

sections 4.2 and 4.3. All of them, when based on a cross-validation method,

are comparable, and the navigation tool can help to determine the best set

of parameters for a given application.

4.5. Feedback from physicians

To evaluate this framework qualitatively, physicians filled out a question-

naire. The following conclusions can be drawn from their answers.

Several tools currently support breast cancer diagnosis. A recent survey

can be found in [35]. However, none of these models satisfies the current

needs of physicians. The Gail model, for example, includes some epidemio-

logical data and a single piece of data regarding family information. Other

26

models, such as Claus’s model, uses more in-depth family information, while

others focus on genetic information, like the BRCAPro program does. In

general, the available tools deals with a single model. Conversely, the ap-

proach proposed with a CBR methodology, allows physicians to tackle all the

data at once, in an integrated way, dealing with different patterns implicitly

in the data to determine a diagnoses.

Visualization tools allow them to play with different parameters (case

attributes or variables) of an illness. For example, information regarding

family risk can be included and the results compared by means of the ROC

curves. Future applications are bein contemplated in the area of preventive

medicine, such as adding a new attribute of a surgical operation and testing

the benefits obtained with it.

5. Related work

General CBR tools have been developed in several previous studies. For

example, cf. [6] is a lisp environment designed for rapid prototyping. CBR*

[3] and CBR Shell [4] were both designed following an object-oriented method-

ology and implemented in Java, like this system. Thus, the CBR frameworks

have inherited the modularity, reusability and extensibility properties of the

object-oriented paradigm. The main difference between this work and previ-

ous approaches is the aim. Our framework is designed to provide engineers

and physicians with navigation functionalities across different experiments,

to help them choose the appropriate CBR methods and parameters and as-

sure experimental reproducibility. In addition, we focus on a particular case

of CBR: medical diagnosis. CBR is used for classification and the visualiza-

27

tion techniques are mainly based on ROC graphs, the most commonly used

technique in this domain.

Other interesting CBR frameworks are jCOLIBRI [7] and MyCBR [36].

The jCOLIBRI framework follows a modular approach similar to the one

used here. It characterizes the different CBR phases according to an ontol-

ogy. This approach is interesting as it provides researchers with a common

ontology to define CBR systems. This ontological approach will be taken

into account in future versions of eXiT*CBR. The scope of jCOLIBRI and

eXiT*CBR, however, are different: like some previous approaches, jCOL-

IBRI supports the development of CBR systems, while eXiT*CBR supports

experimentation.

MyCBR focuses on defining similarity measures for the CBR retrieval

phase. MyCBR is designed as a plug-in in the PROTEGE6 ontology editor.

The case representation needed in MyCBR is based on a csv file like in the

eXiT*CBR platform. However, we include information on the attribute types

and weights, while MyCBR assumes that this information will be edited

and provided by an ontology to be built in PROTEGE. The ontological

approach to describe attributes could be complementary and may be used to

extend eXiT*CBR in the future. However, we tried to load the breast cancer

database into MyCBR and had some problems with the amount of attributes

involved in the data. Therefore, MyCBR could be more useful to test some

properties of similarity measures than as an experimental platform for real

CBR systems.

6http://protege.stanford.edu/ (Accessed: 8 April 2010).

28

Regarding other general platforms for data mining, Weka [37] also offers

an experimentation framework. It allows users to deal with different kinds of

algorithms at the same time, and to compare the different results. However,

it is a general purpose environment, unlike the tool presented in this article

which uses a specific methodology (CBR) in a specific domain (medicine)

and can visualize the results in a useful way for the domain it is designed.

Moreover, Weka does not support a full CBR cycle, only the nearest neighbor

approaches (only retrieval).

6. Conclusions

The development of a CBR system for medical diagnostic purposes is al-

ways a time-consuming activity. Although several tools have been developed

to facilitate the rapid construction of prototypes, none of them have incor-

porated navigation through experiments with different CBR configurations.

Experimentation is a cornerstone of the empirical approach used by engineers

and physicians to obtain more in-depth knowledge about the data they are

working with.

The tool developed here, eXiT*CBR, tries to fill this gap. The experi-

mental framework facilitates interaction with physicians, which are not lost

in the different experiments generated. The tool also allows reproducibility,

since facilitate experiment replication as many times as necessary. This is

important when the research results concern medical applications, and could

be very useful for the medical community.

In this article we have shown how eXiT*CBR has been applied to develop

a breast cancer CBR diagnostic system. Our next step is to collect the most

29

successful methods in the field of medicine to test the system further, and at

the same time enrich the platform. We also need to study how eXiT*CBR

can be applied to tasks other than diagnosis. For example, it can be appllied

to therapy problems, depending on their complexity, by providing the ap-

propriate reuse method. If the therapy consists of drug adjustments, value

variations can be computed according to the methods studied in [38, 39].

Other complex adaptation processes, such as the one proposed in [40] for

breast cancer treatment, could be studied with the hybridization and inte-

gration capabilities of eXiT*CBR. Some challenges could be made against

the retrieval methods, since some authors distinguish more than one retrieval

step based on either individual patient history (as in [41]) or problem types

(as in [38]). On the other hand, diagnosis, as shown in this article, is a binary

classification problem that can easily be extended into a multi-class problem

by combining the results of binary classifiers as in [42]. We have started to

develop an application with such features using eXiT*CBR (see [43]).

In future work, we should also analyze the extensibility of eXiT*CBR to

handle other case representations that allow the development of structured

and conversational CBR systems. Representations should also consider graph

structures for dealing with complex medical concepts, as has been done in

[44]. Moreover, the particularities of conversational CBR require the inclu-

sion of question-answer pairs in addition to a textual description of problems

[45]. Finally, textual CBR systems should also be developed due to their

importance in medicine. The works of [46] could be a good starting point.

30

Acknowledgments

This research project has been partially funded by the Spanish MEC

projects DPI-2005-08922-CO2-02 and CTQ2008-06865-C02-02, the Girona

Biomedical Research Institute (IdiBGi) project GRCT41 and DURSI AGAUR

SGRs grants 2005-00296 and 2009-00523 (AEDS). The Wisconsin breast can-

cer database was obtained from the University of Wisconsin Hospitals, Madi-

son from Dr. William H. Wolberg.

References

[1] R. Bergmann, W. Wilke, K. Althoff, S. Breen, and R. Johnston. In-

gredients for developing a case-based reasoning methodology. In R.

Bergmann and W. Wilke (Eds.): Proceedings of the 5th German Work-

shop in Case-Based Reasoning (GWCBR’97), LSA-9701E, University

of Kaiserslautern, pages 49–58, 1997.

[2] R. Bergmann and K.D. Althoff. Methodology for building CBR applica-

tions. In M. Lenz, B. Bartsch-Spörl, H.D. Burkhard and S.Wess (Eds.):

Case-Based Reasoning Technology: From Foundations to Applications.

Springer, Berlin, Lecture Notes in Computer Science 1400, chapter 12,

pages 299–326, 1998.

[3] M. Jaczynski. A framework for the management of past experiences

with time-extended situations. In F. Golshani and K. Makki (Eds.):

Proceedings of the Sixth International Conference on Information and

Knowledge Management (CIKM). ACM Press, New York, pages 32–39,

1997.

31

[4] S. Aitken. CBR shell java-v1.0, http://www.aiai.ed.ac.uk/project/cbr/cbrtools.html.

(Accessed: 8 April 2010).

[5] S. Bogaerts and D. Leake. IUCBRF: A framework for rapid and modular

case-based reasoning system development. Technical Report TR617,

Computer Science Department, Indiana University, 2005.

[6] J.L. Arcos. cf development framework, http://www.iiia.csic.es/˜arcos/.

(Accessed: 16 June 2009)

[7] B. Diaz-Agudo, P.A. Gonzalez-Calero, J.A. Recio-Garćıa, and A.A.

Sánchez-Ruiz-Granados. Building CBR systems with jCOLIBRI. Sci-

ence of Computer Programming, 69:68–75, 2007.

[8] I. Bichindaritz and C. Marling. Case-based reasoning in the health

sciences: What´s next? Artificial Intelligence in Medicine, (36):127–

135, 2006.

[9] I. Bichindaritz, S. Montinali, and L. Portinali. Special issue on case-

based reasoning in the health sciences. Applied Intelligence, (28):207–

209, 2008.

[10] B. López and C. Pous. Applications in medical dababases. In

Saita, L. (Ed): BluePrint in Ubiquitous Knowledge Discovery KDU-

bic. European project IST-6FP-021321 Coordination Action document,

http://www.kdubiq.org/ (Accessed: 16 June 2009), pages 36–39, 2007.

[11] K.J. Cios and G.W. Moore. Uniqueness of medical data mining. Artifi-

cial Intelligence in Medicine, 26(1-2):1–24, 2002.

32

[12] T. Fawcett. An introduction to ROC analysis. Pattern Recognition

Letters, 27:861–874, 2006.

[13] J.A. Swets, R.M. Dawes, and J. Monahan. Better decisions through

science. Scientific American, October 2000.

[14] C. Drummond and R. C. Holte. Explicitly representing expected cost:

an alternative to ROC representation. In S.J. Simoff and O.R. Zäıane

(Eds.): Proceedings of the Sixth ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining. ACM Press, New York,

pages 198–207, 2000.

[15] T.G. Dietterich. Three challenges for machine learning research. Ple-

nary talk at The 9th Ibero-American Conference on AI (IBERAMIA),

Puebla, México, 2004.

[16] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,

methodological variations, and system approaches. AI Communications,

7(1):39–59, 1994.

[17] G. Weiss. Multiagent Systems. A Modern Approach to Distributed Arti-

ficial Intelligence. MIT Press, USA, 1999.

[18] K.S. Aggour, M. Pavese, P.P. Bonissone, and W.E. Cheetham. SOFT-

CBR: A self-optimizing fuzzy tool for case-based reasoning. In K.D.

Ashley and D.G. Bridge (Eds.): Case-Based Reasoning Research and

Development (ICCBR). Springer, Berlin, Lecture Notes in Computer

Science 2689, pages 5–19, 2003.

33

[19] H.F. Francisco Núñez. Feature weighting in plain case-based reasoning.

PhD thesis, Technical University of Catalonia, Spain, 2004.

[20] T. Martinez. Selecció d’atributs i manteniment de la les base de casos

per a la diagnosi de falles. Master’s thesis, Universitat de Girona, Spain,

2007.

[21] D.R. Wilson and T.R. Martinez. Improved heterogeneous distance func-

tions. Journal of Artificial Intelligence Research, 6:1–34, 1997.

[22] V. Torra and Y. Narukawa. Modeling Decisions: Information Fusion

and Aggregation Operators. Springer, Berlin, 2007.

[23] S. Zhang, Z. Qin, C. X. Ling, and S. Sheng. Missing is useful: Missing

values in cost-sensitive decision trees. IEEE Transactions on Knowledge

and Data Engineering, 17(12):1689–1693, 2005.

[24] S. Montani. Exploring new roles for case-based reasoning in hetero-

geneous ai systems for medical decision support. Applied Intelligence,

(28):275–285, 2008.

[25] A.O. Bilska-Wolak and C.E. Floyd. Development and evaluation of a

case-based reasoning classifier for prediction of breast biopsy outcome

with bi-radstm lexicon. Medical Physics, 29(9):2090–2100, September

2002.

[26] K. J. Hammond. Explaining and repairing plans that fail. Artificial

Intelligence, 45(1-2):173–228, 1990.

34

[27] D. W. Aha, D. Kibler, and M. Albert. Instance based learning algo-

rithms. Machine Learning, 6:37–66, 1991.

[28] D. Wilson and T. Martinez. Reduction techniques for instance-based

learning algorithms. Machine Learning, 38(3):257–286, 2000.

[29] S. Schulz. CBR-works - a state-of-the-art shell for case-based application

building. In Proceedings of the 7th German Workshop on Case-Based

Reasoning (GWCBR), Wurzburg, Germany, pages 3–5, 1999.

[30] E. Plaza and L. McGinty. Distributed case-based reasoning. The Knowl-

edge Engineering Review, 20(3):261–265, 2005.

[31] J. Nin, J. Herranz, and V. Torra. On the disclosure risk of multivariate

microaggregation. Data & Knowledge Engineering, 67:399–412, 2008.

[32] A. Asuncion, and D.J. Newman UCI Machine Learning Reposi-

tory [http://www.ics.uci.edu/ mlearn/MLRepository.html (Accessed: 8

April 2010)]. Irvine, CA: University of California, School of Information

and Computer Science, 2007.

[33] O.L. Mangasarian and W.H. Wolberg Cancer diagnosis via linear pro-

gramming. SIAM News, 23(5):1–18, September 1990.

[34] C. Pous, P. Gay, A. Pla, J. Brunet, J. Sanz, and B. López. Modeling

reuse on case-base reasoning with application to breast cancer diagnosis.

In D. Dochev, M. Pistore and P. Traverso (Eds.): Artificial Intelligence:

Methodology, Systems, and Applications (AIMSA). Springer, Berlin,

LNAI 5253, pages 322–332, 2008.

35

[35] C. E. Jacobi, G. H. de Bock, B.Siegerink, and C. J. van Asperen. Differ-

ences and similarities in breast cancer risk assessment models in clinical

practice: Which model to choose? Breast Cancer Research and Treat-

ment, 115(2):381–390, 2009.

[36] A. Stahl and T. Roth-Berghofer. Rapid Prototyping of CBR applications

with the open source tool myCBR. In K.D. Atholff, R. Bergmann,

M. Minor, and A. Hanft (Eds): Advances in Case-Based Reasoning

Technology (ECCBR). Springer, Berlin, LNAI 5239, pages 615–630,

2008.

[37] I. H. Witten and E. Frank. Data mining: Practical machine learning

tools and techniques, 2nd Edition. Morgan Kaufmann, San Francisco,

CA, USA, 2005.

[38] C. Marling, J. Shubrook, and F. Schwartz. Case-based decision support

for patients with type 1 diabetes on insulin pump therapy. In K.D.

Atholff, R. Bergmann, M. Minor, and A. Hanft (Eds): Advances in

Case-Based Reasoning Technology (ECCBR), Springer, Berlin, LNAI

5239, pages 325–339, 2008.

[39] C. Pous. Case-based reasoning as an extension of fault dictionary meth-

ods for linear electronic analog circuits diagnosis. PhD thesis, University

of Girona, Spain, 2004.

[40] J. Lieber, M. d’Aquin, F. Badra, and A. Napoli. Modeling adaptation

of breast cancer treatment decision protocols in the KASIMIR project.

Applied Artificial Intelligence, (28):261–274, 2008.

36

[41] O. Vorobieva and R. Schmidt. CBR investigation of therapy inefficacy.

In 2nd Workshop on CBR in the Health Sciences,Madrid, Spain 2004.

http://www.cbr-biomed.org/jspw/workshops/ECCBR04.jsp (Accessed:

June 17th 2009).

[42] D.M.J. Tax and R.P.W. Duin. Using two-class classifiers for multi-

class classification. In R. Kasturi, D. Laurendeau, C. Suen (Eds.): Pro-

ceedings 16th International Conference on Pattern Recognition (ICPR),

IEEE Computer Society Press (Los Alamitos, California), Volume 2,

pages 124–127, 2002.

[43] B. López, C. Pous, A. Pla, and P. Gay. Boosting CBR agents with

genetic algorithms. In L. McGinty, and D.C. Wilson (Eds): Case-Based

Reasoning Research and Development, 8th International Conference on

Case-Based Reasoning, ICCBR. Springer, Berlin, LNAI 5650, pages

195–209, 2009.

[44] E. Armengol and E. Plaza. Relational case-based reasoning for carcino-

genic activity prediction. Artificial Intelligence Review, 20(1–2):121–141,

2003.

[45] D. W. Aha, L. A. Breslow, and T. Maney. Supporting conversational

case-based reasoning in an integrated reasoning framework. Applied

Intelligence, 14:9–32, 1998.

[46] M. Lenz, A. Hëbner, and M. Kunze. Textual CBR. In M. Lenz, B.

Bartsch-Spörl, H.D. Burkhard and S.Wess (Eds.): Case-Based Reason-

37

ing Technology: From Foundations to Applications. Springer, Berlin,

Lecture Notes in Computer Science 1400, pages 115–138, 1998.

38

Retrieve

CBR

Retrieve

Reuse

Revise

Batch

Cross-validation

Multi agent

Retain

Multi-agent

Pre process
Experiment

On-line Off-line

Pre-process
interpreter

core

Post-process

Visual. Plots Mesurements

Discretization Feature sel.Normalization

Experiment

navigator

Figure 1: eXiT*CBR framework.

39

�������� ���� 	���
���������� ��� ��
���
������ �
� ��
� ��� �������������

 ������������������ ���� 	���
�� � ��
��
� �������� �����
� ��� ��
���
� ����������� � �������������������������� ���� 	���
�� ��������� ��� ��
��
� �������� �����
� ��� ��
� ����������� �
Figure 2: The two main experimental methods in eXiT*CBR.

40

######################################

Configuration File v 2.0

######################################

Data:

########

Directory = C:/Results

Name = Original

Data = /Datasets10

Class = A1_1_1#8

#############

Pre-process:

#############

Discretization = EqualWidthIntervalBinning;B2_6#42/5.0

Normalization = MaxMin

AttributeSelection = null

#############

CBR Model:

############

Retrieve

Retrieve_Unknown = SimpleAll

Retrieve_Num_Local_Distance = Euclidean

Retrieve_Cat_Local_Distance = Hamming

Retrieve_Global_Distance = Average

Retrieve_Selection = MajorityK;5

Reuse = ReuseProbabilisticPous;[0:0.1:1],0.7

Revise = null

Retain = Never

#################

Experimentation:

#################

Measures = truePositiveFalsePositiveRates

Visualization = ROC

Method = CrossValidation

##############

Post-process:

##############

Post-process = Off_line

End

Figure 3: Configuration file.
41

Figure 4: Retrieve modules.

Results

Destination folder 1

CrossValidation-CBR-20080516-124248

CrossValidation-CBR-20080516-124500

CrossValidation-CBR-20080516-125421

Back-up

Confusions

Set 0

Set 1

Set 10

Root

Destination folder 2

Batch-CBR-20080516-135224

CrossValidation-CBR-20080516-144248

Batch-CBR-20081016-171035

Back-up

...

Grafica.png

Figure.png

Classification.csv

Conf_file.conf

Classification.csv

Globaldistances.csv

Test.zip

Test.zip

Set 0.zip

Set 1.zip

Test.zip

Test.zip

Test.zip

Train.zip

Globaldistances.csv

Grafica.png

Figure.png

Conf_file.conf

Confusions

Figure 5: File structure.

42

Test Train Remaining

n patient n control q r Set 1

Original
…

g

data

n patient n control q r Set m

Figure 6: Datasets generated by stratified cross-validation.

Expand

figure

Expand

figure
Overlapping figures

Figure 7: Expansion of different experiments and comparison.

43

Figure 8: Integration of other techniques, such as plug-in, in eXiT*CBR.

������� ����	
 ������������	��������� �����	�� ���� ��������������� ������������������ ���������������	��� 	��� ��� ��������
Figure 9: The main steps followed to develop the breast cancer application.

44

���� ������
Figure 10: First graphical results obtained with the tool. The AUC value has been enlarged

for clarity reasons.

� �������� �	
�� ���������������� �	
� ������
Figure 11: Comparison of two experiments through the experiment navigator enlargement

facility.

45

