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Abstract

Analyzing the state of the art in order to tackle a new problem is always a mandatory
issue. Literature offers surveys based on summaries of previous works, often based
on theoretical descriptions of the methods. An engineer however, requires some
evidence from experimental evaluations in order to make the appropriate decision
when selecting a technique for a problem. This is what we have done in this paper:
experimentally analyze a set of representative techniques of the state of the art
in the problem we are dealing with, namely the road passenger transportation
problem. This is an optimization problem in which drivers should be assigned to
transport services fulfilling some constraints and minimizing some function cost. The
experimental results have provided us with a good knowledge of several properties
of the methods, as modeling expressiveness, anytime behavior, computational
time, memory requirements, parameters, and free downloadable tools. From our
experience, we are able to choose a technique to deploy our problem. We hope that
this analysis can be also helpful for other engineers facing a similar problem.
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1 Introduction

Whenever either an engineer or researcher faces a new problem, he/she needs
to review the state of the art related to it, in order to be sure that the
problem has not already been solved in the past, and to analyze what the most
promising approach to follow could be in order to achieve the appropriate
development. In each discipline, surveys are being published periodically.
However, most of the surveys are summaries of previous works which give
some hints on what the techniques are. But from the information provided in
the surveys it is often difficult to evaluate the suitability of the techniques for
the problem at hand, unless the techniques are being applied to the particular
problem. This has been our situation.

We are dealing with the road passenger transportation problem. Road passen-
ger transportation has for years been a matter of concern for traffic authorities
in order to minimize bus accidents. Regarding buses, European law is also
evolving in order to control professional driving licences and driving times,
with the aim of assuring the maximum guarantees to the citizens that use road
passenger transport. These new laws and regulations are placing a considerable
number of requirements to inter-urban transport companies related to just-
in-time services. That is, services required within a short period of time,
usually from one day to the next (conference events, holidays, excursions).
The problem of these companies is to allocate once a day drivers to required
services.

The road passenger transportation problem clearly fits in the category of
optimization problems, in which resources (drivers) should be assigned to
tasks (transport services) fulfilling some constraints and minimizing some
function cost. Even that in most cases these problems are solved by the state
of the art techniques, there are still a lot of recent papers dealing with the
driver allocation problem, as (Abbink et al., 2007), (Ramalhinho Lourenço
et al., 2006), and (Laplagne et al., 2005), meaning that the problem is still
open due to the different problem specificities the engineers should tackle.
There appears to be no general guidelines to choose the appropriate technique
given the specific description of a problem. In our case, services are inter-
urban, just-in-time scheduling is required, and new legislation define new
constraints. In addition, computational efficiency is the main feature with
which researchers use to compare techniques, while other features are also
important. For example, expressiveness can be an interesting issue regarding
the solution interpretation or even the posterior incorporation of robustness
into the solution. Our intention with this experimental analysis is to contribute
in the understanding of the current state of the art techniques beyond
a pure efficiency analysis, but with other interesting features as model
expressiveness, anytime behavior, memory requirements, parameter tuning
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Fig. 1. Methods analyzed grouped in categories.

and tools availability. The characterization of the techniques provided in this
paper could be a first step towards the selection of the appropriate general
technique when dealing with similar resource allocation problems and looking
for particular techniques properties.

We have experimentally analyzed a total of 12 techniques, grouped in four
categories: bioinspired methods, metaheuristics, constraint-based methods,
and market-based methods (see Figure 1). Note that this classification is not
crisp, since some of the methods can be assigned to more than one category. For
example, genetic algorithms can be classified as metaheuristics or bioinspired
methods. Nevertheless, we think that the methods chosen to perform the
analysis widely covers the different methods available in the literature in both
Operational Research and Artificial Intelligence fields, including the newest
distributed and market-based approaches. It is important to note that each
technique requires a specific approach to the problem. So for each technique
analyzed we provide some generalities regarding the technique, the modeling
of the problem according to its requirement, and the experimental results
obtained.

By providing an illustrative use of several techniques for dealing with the same
combinatorial problem we intent to help both, beginners in the optimization
world and experts that wish to update their scope on the area.

2 Problem description

In the road passenger transportation problem we are presented with a
set of resources (drivers) D = {d1, . . . , dn} and a set of tasks (services)
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S = {s1, . . . , sm} to be performed by using the resources. The problem
consists of finding the best assignment of drivers to services, given a cost
function and subject to the constraints and preferences provided by the
administration (local, national or European). We are dealing, then, with a
constraint optimization problem, and particularly, with a scheduling problem,
since we are interested in knowing the scheduling of each driver in order
to deploy all the requested services. More concretely, since drivers are our
resources, we are dealing with a resource allocation problem.

There is an alternative approach to the problem, in which services are
grouped according to possible driver journeys. A journey is then defined
as the set of services that can be assigned to a single driver (journey duties
driver). Journey generation is known as the crew scheduling problem, that
is complemented by the rostering problem in which journeys are assigned
to drivers (Ramalhinho Lourenço et al., 2001). In our experimental study,
tackling the problem as a whole (service approach) or in two steps (journey
approach) depends on the modeling capacities of the techniques.

Regarding the problem complexity, when only a driver is assigned to a journey,
as in our case, the crew scheduling problem is known to be an instance of
the set partitioning problem (Laplagne et al., 2005; Kohl., 2003) that is NP-
complete (Saxena, 2007; Garey and Johnson, 1979) 1 . Similarly, when facing
the problem according to the service approach, the complexity is also NP-
complete. As far as we are looking for solutions that minimize the allocation
costs, we are dealing with a NP-hard problem.

2.1 Problem formalization

Definition 1 A service is a tuple si =< sli, f li, sti, fti > where sli is the
start location, fli the final location, sti the initial time, and fti the final time
(sti < fti).

Definition 2 A driver is a tuple di =< bci, kmci, sli, f li, hwi, hci > where bci

is the basic cost, kmci is the cost per kilometer, sli is the start location, fli is
the final location (often sli = fli), hwi are the accumulated two week hours,
and hci is the cost per time unit.

There are two kinds of services to be considered: requested and intervening.
Requested services (or services for short) are the ones that customers have
applied for, while intervening services are those required to move the driver

1 When more than one driver can be assigned to a journey (for reserve situations,
for example (Ramalhinho Lourenço et al., 2001)), the problem is known to be an
instance of the set covering problem, also NP-complete.
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from the end location of a service to the start location of the next service
assigned to him.

Definition 3 Given two services, si and sj, with fti < stj, an intervening
service between si and sj is defined as a tuple si−j =< sli−j , f li−j, sti−j, fti−j >
where sli−j is the start location (with sli−j = fli), fli−j the final location (with
fli−j = slj), sti−j the initial time, and fti−j the final time, with sti−j > fti
and fti−j < stj.

Given a set of services S, and a set of drivers D, a total number of k intervening
services could be required. Let I be the set of such intervening services. Then,

Definition 4 An allocation based on services is a list of pairs Ai =
[(s1, di1), (s2, di2), ...(sl, dil)] where si ∈ S ∪ I, dj ∈ D, and in which all
constraints are satisfied. Furthermore,

⋃
si∈(Ai\I) = S, that is, all requested

services are covered, and
⋂

si∈(Ai\I) = ∅, that is, no service is repeated.

Among all the possible constraints of the problem (see (López, 2005) for
a complete description of the problem) the following constraints have been
considered for the experimental study:

• Overlapping: A driver cannot be assigned to two different services with
overlapping times. In addition, a driver assigned to a service that ends at
time t and location l cannot be assigned to another service that starts at
time t + 1, unless the location of the new service is the same (l).
• Maximum driving time (MaxDT): the driving time required for both the

requested and intervening services.
• Maximum journey length (MJ): the addition of the driving time plus the

free time among assigned services cannot be over the maximum journey
length allowed.
• Maximum driving time per two-weeks (MTB): the maximum driving time

per two weeks cannot be over 90 hours.

Definition 5 A journey is an ordered set ji = {s1, ..., sp} where sj ∈ S ∪ I,
in which the overlapping, maximum driving time and maximum journey length
constraints are satisfied.

Definition 6 An allocation based on journeys is a list of pairs Ai =
[(j1, di1), (j2, di2), ...(jl, dil)] where jk is a journey, dk ∈ D, S ⊂ ⋃

k jk (all
services are covered) and in which all constraints are satisfied.

The cost function that measures the individual cost of a driver i in an
allocation Ak is the following:

cost(Ak, di) = bci +
(distance(Ak, di) ∗ kmci)

α
+(h(Ak, di) ∗ hci)β (1)
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where distance(Ak, di) is the distance covered by the driver in the Ak allocation
measured in kilometers, h(Ak, di) is the journey of the driver in the Ak

allocation (including non occupied time) and α and β are parameters of the
cost function whose purpose it to make kilometers and hours, which have
different scales (kilometers are usually defined in [0,100] while hours in [0,24]),
comparable. After several tries, we have set α = 10.0 and β = 7.0 respectively.

The cost function that measures the cost of an allocation Ak is defined as the
addition of the individual costs of the drivers cost(Ak, di), that is,

C(Ak) =
∑

i∈{1,...,n}
cost(Ak, di). (2)

The road passenger transportation problem consists of finding the allocation
that minimizes the cost ( argmin∀i(C(Ai)) ) subject to the above constraints.

2.2 The workbench

In order to experimentally analyze the different techniques, up to 70 problem
instances have been generated with different complexity. The data correspond-
ing to services (start and end destinations, and start and end times) and drivers
(basic cost, cost per kilometer, cost per time unit, starting and ending location,
and cumulated driving hours) have been generated randomly for each example.
Then, the first instance has been defined with the first generated service and
driver; the second instance with the second two generated services and drivers;
and so on until the 70th example, being the complexity of the 70th instance
greater than in a real case of the application we are dealing with. In this
sense, we can consider that the problem instances of our workbench have been
partially stochastically generated.

With this generation procedure, we have defined three different scenarios
depending on the constraints used:

• Normal: MaxDT=22 time units (tu), MJ=30 tu, and MTB=180 tu (a time
unit = 1

2
hour).

• Relaxed: only considering overlapping constraints
• Harder: MaxDT=18 tu, MJ=25 tu, and MTB=180 tu

By default, the methods has been tested using the normal scenario, and then,
the remainder scenarios have been also used to analyze other possible method
behaviors.
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3 Constraint-based approaches

Constraint-based approaches model the problem as a Constraint Satisfaction
Problem (CSP) by means of variables, their domains, and constraints that
express dependencies among variable assignments. A solution in this approach
is an assignment of a single value from its domain to each variable so that no
constraint is violated (Dechter, 2003; Apt, 2003). A problem with a solution
is termed satisfiable or consistent. A SAT Problem consists of a CSP with
Boolean variables, that is each variable maintains two possible values (Rossi
et al., 2006).

All optimization problems are constraint satisfaction problems in the general
sense (Rossi et al., 2006). Thus a Constraint Optimization Problem (COP) is
defined as a CSP together with an optimization function which maps every
solution to a numerical value. The goal is thus to find the solution with the
best (maximum or minimum) value.

Constraints methods studied in our analysis are organized in three groups
(see Figure 1): systematic, constraint propagation, distributed methods
and mathematical optimization. Systematic methods comprises chronological
backtracking, branch and bound, and constraint logic programming, in which
the flexibility and expressiveness of constraints is enhanced (Barták, 1999;
Garcia de la Banda et al., 1996). Constraint propagation techniques are
combined with systematic search methods in various forms to reduce the search
space (Dechter, 2003; Apt, 2003). Forward checking is the easiest example
of this kind of hybrid method. The third group includes the new trends in
distributed backtracking algorithms (Yokoo and Hirayama, 2000) and, finally,
the fourth category corresponds to the classical mathematical optimization
methods.

3.1 Chronological backtracking

This is the simplest search algorithm. This algorithm explores the search tree
for all possible assignments alternatives according to a depth-first strategy. At
each step, a node is expanded at the lowest level in the tree, meaning that
a value is assigned to a variable in which constraints are satisfied (partial
solution). This process is repeated until either a complete solution is found
or a failure arises, that is, no assignment is possible. Then, the algorithm
returns to a higher level at which one resumes the node expansion (Apt, 2003;
Dechter, 2003) (see Figure 2). Some heuristics can be applied in order to sort
the variables and values to be assigned first, as well as the constraint to be
checked first. When a solution is found, the cost of the solution is computed
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and the process continues. So the complete search space is explored in order
to look for other alternative solutions with a lower cost.

3.1.1 Problem modeling

We have formulated the service approach of our problem in terms of variables,
domains and constraints as follows: services are our variables, xi; the domain
of each variable is the set of drivers D. So when a variable has a value assigned
xi = dj, it means that service si has the dj driver assigned to it. Regarding
heuristics, we have used the following:

• sorting variables: services have been ordered according to their initial start
time (same as in chronological backtracking)
• sorting values: drivers to be assigned to each variable have been ordered

according to their cost; so drivers with lower cost (basic, per hour, and per
kilometer) are tried first.
• sorting constraints: overlapping constraint, driving time, journey length and

cumulated driving time.

Constraints are modeled as follows:

• Overlapping ∀i, j, xi = xj , then fti < stj + duration(si−j) or ftj < sti +
duration(sj−i) where duration(sk) = ftk − stk.
• Maximum driving time: MaxDT ≥ TSPi+

∑
j∈duties(di) duration(sj)+TFPi

where TSPi is the time required for driving from the starting driver position
to the starting location of the first service; duties(di) are the already
assigned services to the driver in a partial or candidate solution, and TFPi

is the time required for driving from the final location of the last service to
the final position of the driver.
• Maximum journey length: MJ ≥ TJi where TJi is the journey duration of

driver di. It is computed as TJi = (ftlast(duties(di))+TFPi)−(stfirst(duties(di))−
TSPi) where the first term computes the initial time in which the driver
starts his/her duties and the second term, the final time.
• Maximum driving time per two weeks: MTB ≥ hwi + TJi.

3.1.2 Results

We implemented the algorithm in Delphi and ran the different problems of the
workbench. The results obtained with simple backtracking are shown in Figure
3 (see CB line). The x axis shows the complexity of the problem (that is, when
solving the 1 service, 1 driver case up to solving the 12 service, 12 driver case
of the workbench), while the y axis provides the time in milliseconds. As it is
possible to see in the graphics, time increases exponentially and no test have
been performed for cases beyond 12. We have obtained similar results in each
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scenario of the workbench.

Regarding expressiveness, in chronological backtracking constraints are coded
so any constraint of a problem can be programmed. Input data to the program
are the services, drivers, locations, and constants used in the constraints (that
is, MaxDT, MJ, and MTB). The inputs and the results are easy to provide
and interpret by a programmer.
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3.2 Branch and bound.

Whenever a partial solution is found, instead of traversing all the search space,
the branch and bound method computes its cost and compares it with the
best solution found so far (upper bound). If the cost of the partial solution
is higher, the algorithm backtracks, pruning the subtree below it (Dechter,
2003). In addition, if the cost of the partial solution is not higher, but it is
possible to estimate its final cost, and the estimation goes over the upper
bound, it is also pruned. So the key issue in this kind of approach is to define
the appropriate estimator.

3.2.1 Problem modeling

The modeling of the problem regarding variables and constraints is the same
as in the chronological backtracking method (service approach). The main
difficulty of using the branch and bound method was to define the appropriate
function to estimate the cost of a partial solution in order to prune the search
and provide an answer in a reasonable time (thus improve the results obtained
from the chronological backtracking method). This estimation function should
take into account the remaining assignments to be performed that depend on
both the requested services and the intervening services. This function can
underestimate the real cost, but never overestimate it, in order to assure that
we are not pruning optimal solutions.

The estimated cost function F e has been defined as the sum of the individual
estimation cost f e of the remaining services, R; that is,

F e(R) =
∑
si∈R

f e(si) (3)

The individual estimation of a remaining service f e(si) is based on the
minimum driver cost to cover the service. According to individual driver cost
of equation 1 two different situations can conflict on the minimum: the driver
with the minimum cost dc, or a driver with the minimum distance to the start
location of the service dd. In order to solve this conflict, the distance to be
covered by both drivers is analyzed, and the minimum one is selected as the
value of f e(si).

3.2.2 Results

The results of the branch and bound method can be seen in Figure 3 (see
B&B line). We also tested the algorithm when constraints are relaxed or,
conversely, are harder, where the algorithm shows a similar behavior. The
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results are slightly better than in chronological backtracking, but the design
(modeling) and the implementation effort were higher. That is to say, the
estimator and the search strategy definition took longer to achieve than the
naive approach of chronological backtracking.

The branch and bound method implemented here is partially anytime. In other
words, if the algorithm is stopped at any moment, it provides the best solution
found so far. But it cannot resume its execution.

3.3 Constraint propagation

Constraint propagation algorithms deal with the search space reduction
through an inference process which reduces variable values (Apt, 2003). There
are two basic schemas: look-back and look-ahead (Barták, 1999). The former
checks among already instantiated variables and solves the inconsistency when
it occurs. The latter schema is proposed to prevent future conflicts.

Forward checking (FC) is the easiest schema of a look-ahead strategy. When
a value is assigned to the current variable, any value in the domain of a future
variable which conflicts with this assignment is temporarily removed from the
domain (Barták, 1999).

3.3.1 Problem modeling

In this model, we have considered the SAT formulation of the service approach
of the problem, that is, each variable maintains two possible values {0, 1}.
Particularly, our variables are the product of drivers and services, as follows:

∀ di ε D, ∀ sj ε S, Xij

where:

• Xij = 0 : service sj doesn’t allocate to driver di.
• Xij = 1 : service sj allocates to driver di.

According to the SAT formulation, constraints are modeled as follows:

• Each service is allocated to only one driver:

∀ sj ε S,
∑

di ε D

Xij = 1

• Overlapping. If sj and sk are services with overlapping times: ∀ di ε D, Xij +
Xik � 1
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• Maximum driving time: ∀ di ε D, MaxDT � TSPi + TDi + TTi + TFPi

where
· TSPi: driving time from the start point of the di driver to the start location

of his first service.

TSPi =
∑

sj ε S

(Tspislj ∗max((Xij −max(min(α, 1), 0)), 0))

where parameter Tspislj is the driving time from the start point of the
di driver to the start location of the sj service, and α is the sum of all
services whose start time < start time of sj.
· TDi: driving time dedicated to the services allocated to the di driver.

TDi =
∑

sj ε S

(Xij ∗ TSj)

where parameter TSj is the driving time dedicated to the sj service.
· TTi: driving time required for the intervening services of the di driver.

TTi =
∑
sj , sk

Tfljslk ∗max(min(Xij , Cik)−max(min(β, 1), 0), 0)

where parameter Tfljslk is the driving time from the final location of the
sj service to the start location of the sk service, and β is the sum of all
services ranged between final time of sj and start time of sk. Falta Cik

· TFPi: driving time from the final location of the last service of the di

driver to his final point.

TFPi =
∑

sj ε S

(Tfljfpi ∗max((Xij −max(min(δ, 1), 0)), 0))

where parameter Tfljfpi is the driving time from the final location of
the sj service to the final point of the di driver, and δ is the sum of all
services whose start time > start time of sj.

• Journey length:
∀ di ε D, MJ � TJi

where TJi is the journey time of the di driver,

TJi = max
∀ j

((ftj + Tfljfpi) ∗Xij)−

min
∀ j

((10001− (Xij ∗ 10000)) ∗ (1− Cij + stj − Tspislj))

being ftj the final time of the sj service, and stj the start time of sj (see
Definition 1).
• Maximum driving time per two-weeks.

∀ di ε D, MTB � hwi + TJi

where hwi is the number of hours that the di driver has driven during the
last two weeks (see Definition 1).
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3.3.2 Results

We have used a well-known CSP solver to evaluate our model by means of
Forward Checking (FC) 2 . Figure 3 shows the computational time required
to solve the problem (see FC line). As it is possible to compare with the
previous branch and bound approach, the inclusion of constraint propagation
techniques improves the results. Now it is possible to solve up to the 20th case
in a reasonable computational time. However, modeling the problem as SAT
is not so easy, and require some additional modeling skills.

3.4 Distributed approaches. Synchronous backtracking

In a distributed constraint-based approach, variables and constraints are
distributed among automated agents (Yokoo et al., 1998; Yokoo and Hirayama,
2000). In (Yokoo and Hirayama, 2000), Yokoo and Hirayana present a
formalization and algorithms for solving distributed CSPs, classify them as
either synchronous backtracking or asynchronous backtracking and differenti-
ates them from previous centralized methods (Yokoo and Hirayama, 2000).
In a centralized approach a single agent keeps all the information about
variables, their domains and constraints, and solves the problem using classical
constraints algorithms (such as the chronological and branch and bound
methods). In a distributed approach a set of agents are committed to a set
of subproblems in order to solve the global problem. These agents can work
in a synchronously or asynchronously way. In a synchronous approach, agents
agree on an instantiation order for their variables. Each agent, receiving a
partial solution from the previous agent, instantiates its variables based on
the constraints that it knows about. If it finds such a value, it adds this to
the partial solution and passes it to the next agent. Conversely, it sends a
backtrack message to the previous agent (Yokoo et al., 1998; Hirayama and
Yokoo, 1997). In an asynchronous approach, each agent runs concurrently and
asynchronously (see next section).

In this section we deal with the synchronous approach following the distributed
framework of (Salido and Barber, 2006) in which the problem is partitioned
in k subproblems which are as independent as possible, the subproblem are
classified in the appropriate order and they are solved concurrently.

2 Forward Checking was obtained from CON’FLEX. It can be found in:
http://www.inra.fr/bia/T/rellier/Logiciels/conflex/.
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3.4.1 Problem modeling

The distribution of the road passenger transportation problem can be carried
out by means of problem topological properties (number of variables) or by
means of problem size (number of constraints). In this work, we tested both
kinds of distributions:

• DCSP by Constraints. Each agent concentrates the constraints of the same
type. Thus, the first agent is committed to solving the CSP restricted
to allocating and overlapping constraints; the second agent works on the
constraints related to maximum driving time; the third agent works on the
journey length constraints; and the fourth agent works with the constraints
related to the maximum driving time per two weeks.
• DCSP by Drivers. Each agent is committed to assigning values to variables

related to a driver. Thus, many related variables are grouped in the same
subproblem.

Regarding the method used in each isolated agent, we followed the FC method
of the previous section.

3.4.2 Results

Figure 3 shows the computational time required to solve the problem using
the synchronous backtracking approach both in the DCSP by Constraints and
DCSP by Drivers) distributions (see the SB-C and SB-D lines correspond-
ingly). As it is possible to observe in the plot, the run-time in all instances
was better in the distributed models than in the corresponding centralized FC
model (see FC line). It must be taken into account that the number of variables
and constraints in the proposed model is large and the complexity grows
exponentially. However, the distributed models behaved more consistently
than the centralized model in all instances.

Figure 3 also shows that the synchronous backtracking by constraints also
exhibited better behavior than the synchronous backtracking by drivers.
This is due to the fact that in the constraint distribution there are fewer
subproblems (four) than in the driver distribution (as many as drivers).
In this way, if there are many drivers, the communication between agents
becomes hard, and the computational cost increases. Obviously, the required
computational memory in the distributed model is lower that in the previous
FC case. Although each agent performs its own FC process, the problem size
is distributed between all agents.
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3.5 Distributed approach. Asynchronous backtracking

Asynchronous backtracking was one of the first algorithms to cope with
distributed CSP (Yokoo and Hirayama, 2000; Yokoo et al., 1998). In this
method, agents act asynchronously without any global control. Each agent
instantiates a single variable and communicates its value to the agents with
connecting links. Two agents are neighbors if the variables they control have
some constraint/s. Thus each agent is only aware of the constraints associated
to the variables it controls. One of the requirements of the system, then, is
to have a problem in which locality holds; that is, the set of variables can be
partitioned in such a way that constraints can be managed locally.

Asynchronous backtracking has been generalized to solve DCOP which
includes an objective function so that agents coordinate in order to optimize
it (Modi et al., 2005). One of the algorithms proposed in the literature is
ADOPT, in which the strategy used to find the solution is called opportunistic
best-first search (Modi et al., 2005). In this strategy, agents are organized in
a tree structure that establishes a priority among them (parents to children);
that is, constraints are only allowed between an agent in its ancestors or
descendants. The priority is used to guide the backtracking process from the
lower levels to the upper ones. All agents begin to set their variables with an
initial value and send this assignment to the lower levels. When some agent
cannot perform an assignment, it asynchronously sends a nogood message to
its ancestors.

3.5.1 Problem modeling

In this model we followed the service approach, so each variable represents
a service. Then, each variable is assigned to an agent. The cost function is
distributed among variables. So, given a pair of variables si, sj, the cost is
represented as a ”soft” constraint of compatible (good) values and its cost.
For example, constraint ci,j = (k, l, m) means that when si = k then variable
sj can be set to l; and the cost of this assignment is m. Thus, the domain of the
variables cannot be directly the drivers as expected, since the cost associated
to a ”soft” constraint does not depend only on the two services (variables)
but on all the services assigned to the same driver in a journey. Therefore
the domain of the variables is actually in [1, ...nc], where nc is the number
of combinations of journeys assigned to drivers (nc < journeys ∗ drivers). If
variable si is set to j, it means that service i appears in the solution in the j
assignment (journey and driver).

Regarding ”hard” constraints (the primal constraints in our problem defini-
tion), they are represented by an ∞ cost. The total number of constraints
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required is n2 ∗ nc, where n is the number of variables (services) and nc the
number of journey combinations as above.

3.5.2 Results

Thanks to the fact that ADOPT can be used under the GNU licence, we have
had the opportunity to test it in our problem. We cannot test the system
from more than four variables, as shown in Figure 3 (see AB line). The
number of constraints requiring specification is huge, and so the algorithm gets
rapidly collapsed. These results are not surprising since ADOPT was originally
designed to deal with CSP instead of DCOP problems. Recent modifications
of the algorithm, such as (Ali et al., 2005), could improve the results.

3.6 Mathematical optimization. Mixed integer programming

Mixed integer programming (MIP) is probably the most important technique
in the field of Operational Research (Maroto et al., 2003; Hoffman and
Padberg, 1996). In this technique, problems are represented by mathematical
models in which the objective function is linear and the constraints are
given by linear equations and inequalities, and so, variables are necessarily
numerical. If the domain of the variables are integer, we are dealing with
integer programming. When dealing with integer and real variables, mixed
integer programming methods are required. Furthermore, if the relationship
among variables cannot be expressed by a linear function, then non-linear
programming methods are necessary (Cooper and K. Farhangian, 1985).
Other approaches, such as stochastic programming, can also be found in the
literature. See (Orden, 1993) for a review.

3.6.1 Problem modeling

In order to model our problem in the MIP paradigm, all information about
the problem should be known. In this sense, intervening services should be
known in advance, conversely to the service approach of the branch and
bound or chronological backtracking method, which can be generated while
solving the problem. Since the journey approach contemplates a complete
simple formulation, we have adopted it for modeling the problem in linear
programming.

Then, the variables required to model our problem are the following:

• Data: drivers, journeys and services
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• Parameters: cost of the journeys per driver (co), and services included in
journeys (mat).
• Decision variables: journeys included in the solution (sol), and drivers

assigned to those journeys (solution). The linear programming method
should provide the values for these variables, so they are the solution to
the problem. These decision variables are binary (for example if journey j
is included in the solution the value of corresponding decision variable is 1,
otherwise 0). Consequently decision variables are integer values ∈ {0, 1}.
• Objective function to be minimized:

∑
d∈D,j∈J

(co[j, d] ∗ solution[j, d]);

• Constraints
(1) Each journey should appear at most once in the solution

∀j ∈ J
∑
d∈D

solution[j, d] ≤ 1

(2) Each driver should be assigned at most once to a journey

∀d ∈ D
∑
j∈J

solution[j, d] ≤ 1

(3) Each service should appear at most once in the solution (so journeys
including the same services are incompatible)

∀s ∈ S
∑
j∈J

mat[j, s] ∗ sol[j] = 1

(4) Each journey included in the solution should have a driver assigned

∀j ∈ J
∑
d∈D

solution[j, d] = sol[j]

It is interesting to note, then, that MIP allows the definition of the constraints
outside the code of the algorithm, conversely to the branch and bound
methods, in which constraints are coded. However, it requires a lot of data
(journeys, matrix of journeys and costs, matrix of journeys and services). So
for a large problem, a preprocessing step is required in order to generate all
these data.

3.6.2 Results

According to their popularity and the benefits that MIP provides to industries
and companies, several tools have been developed. In particular, CPLEX 3 is

3 ILOG CPLEX: http://www.ilog.com/products/cplex/.
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Fig. 4. Memory in MB required to store the input files for GLPK.

one of the best tools found on the shell. Recently, GLPK 4 has been developed
under the GNU licence with an efficiency close to CPLEX. We have selected
GLPK to cope with our experiments.

Figure 3 shows the computational time required to find the optimal solution
using GLPK (see MIP line). MIP is able to solve all the problems in our
workbench, up to the last one in 32 seconds. In addition to this time, a
preprocessing time is required to generate the journeys and other GLPK inputs
(data, parameter, variables), summing up a total amount of 66 seconds for the
70th case. We have carefully analyzed this results to understand such a good
behavior. In order to solve the integer programming problem, GLPK first
finds a relaxed solution to the problem with continuous variables, and then it
finds the closest integer solution to the original problem. In our case, we have
realized that the continuous solution coincide almost all the times with the
integer one. And this is the cause of obtaining so efficient results.

Nevertheless, we should also analyze other features of MIP. For example,
the amount of memory required to solve the problem (space complexity).
Figure 4 shows the memory required in each experiment. If we need to extend
the problem, we need to review our model, defining new parameters and
data that could increase the space complexity and the preprocessing time.
In addition, the interpretation of both the model and the solution provided by
this technique is not always straightforward when the problem becomes more
complex.

4 GLPK, GNU Linear Programming Kit, Free Software Foundation,
http://www.gnu.org/software/glpk/.
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3.7 Constraint logic programming

Constraint logic programming (CLP) is a general purpose paradigm that deals
with complex problems by means of the power of constraints solvers and
the versatility of the declarativity of logic programming (Jaffar and Maher,
1994; Hentenryck, 1989). Unfortunately, as we will see, this “general purpose”
nature becomes a weakness for our problem, in comparison to specialized
solvers like MIP techniques. The most popular language that implements the
CLP paradigm is Prolog, although there are several other good approaches
(see Ferández and Hill (2000) for a comparative survey). Among them, we have
selected GProlog 5 , which includes a finite domain constraint solver whose
performance is comparable to other commercial systems 6 .

The classical scheme of a CLP program consists of first creating the variables
of our model and assign them a domain, then constraining the variables
depending on the requirements of our problem and finally, asking for an
assignment to the variables, in accordance with their domains, that satisfies
all their constraints. The intrinsic Prolog backtracking allows us to enumerate
all solutions. In our case the variables assignment part must deal not only
with the constraints but also with an optimization requirement.

3.7.1 Problem modeling

We decided to use the journey approach because the translation from the MIP
implementation is quite immediate. In this approach the possible journeys and
cost are already precalculated. We could have used the service approach if our
problem is subject to further new constraints introductions or modifications,
but for the purpose of our exploratory work we believe that the journey
approach is convenient. As we will see, the Prolog code that we propose is
very concise and comprehensible.

First, we define a list L = X1, . . . , Xnc of variables with domain {0, 1} that
correspond to all the combinations of journeys assigned to drivers. Xi = 1
means that the combination is selected, while Xi = 0 means that it does not.
Then, the variable Cost is the sum of Xi ∗ ci’s, where ci is the precalculated
cost associated to the journey and the driver of the i combination. So the
problem code starts as follows:

5 GNU Prolog, Free Software Foundation, http://www.gnu.org/software/gprolog/.
6 We also tried SICStus Prolog, but GProlog performance was slightly better.
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transports([ Cost |L ]) :-

L = [ X1, . . . , Xnc ],

fd domain( L, 0, 1 ),

Cost # = c1 ∗X1 + . . . + cnc ∗Xnc,

We have to impose the constraints of the journey approach model to the
variables. First of all, we require that each driver can do at most one journey :
for each driver d we take the variables X1

d , . . . , X
dj

d , corresponding to all their
possible dj journeys, and force them to be all equal to 0 but one, which can be
equal to 1. To do so we use the finite domain predicate fd atmost(N,List,V)

which posts the constraint that at most N values of List are equal to V:
fd atmost( 1, [ X1

d , . . . , X
dj

d ], 1 ).

Now, we require that each service must be done by exactly one of the journeys
proposed by the solution: for each service s, we take the variables X1

s , . . . , Xst
s ,

corresponding to all the st journeys that include the service, and force them to
be all equal to 0 but exactly one. To do so we use the finite domain predicate:
fd exactly(N,List,V) which posts the constraint that exactly N variables of
List are equal to the value V. That is: fd exactly( 1, [ X1

s , . . . , Xst
s ], 1 ).

Finally, we ask the constraint solver of GProlog to get an assignment to the
list of variables L so that it minimizes the value of the variable Cost, i.e. the
cost of the journeys. We do so using the following finite domain predicates:

• fd labelling(Vars,Options), which assigns a value to each variable of
the list Vars satisfying all the constraints that the variables may have. The
Options parameter allows us to control the way in which the assignments are
obtained. In our application, the option value method(max), that forces the
solver to enumerate the values from greater to smaller, has been empirically
crucial;
• and the optimization predicate fd minimise(Goal,X) that repeatedly calls
Goal to find a value that minimizes the variable X. In fact, this predicate
uses a branch and bound algorithm with restart.

The resulting combination of both predicates is the following: fd minimize(

fd labeling(L, [ value method(max) ]),Cost ).

3.7.2 Results

Results on Prolog have been uncourageous. The computational time obtained
for the tests applied leads us to stop the experimentation in the 10th example
(see CLP line in Figure 3). It is one of the worst obtained in our experiment.
In addition, Prolog only allows a solution to be obtained when it finishes, that
is, it does not exhibit an anytime behavior.
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In our opinion, CLP could be a helpful tool for a dynamic problem where
constraints evolve and versatility is a crucial point. In a work like this where
the constraints and the model are so fixed, specialized tools like the MIP
system take advantage of their specialization with a very powerful (linear)
constraint solver and beat general purpose paradigms like CLP.

4 Metaheuristics

The word metaheuristic was coined by Glover in 1986 (Glover, 1986)
and its meaning has been changing since then. In the original definition,
metaheuristics are methods that combine local improvement procedures and
higher level strategies to create a process capable of escaping from local optima
and performing a robust search for a solution space (Glover and Kochenberger,
2003). Nowadays, metaheuristics can be seen as intelligent strategies to design
or improve heuristics procedures with a high performance generally combining
constructive methods, local search methods, concepts that come from Artificial
Intelligence, biological evolution and statistics methods (Melián et al., 2003).
In this paper we have analyzed GRASP and Tabu search as representative
methods. Genetic algorithms can also be found in this category depending on
the information source consulted.

4.1 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) was developed
by Feo and Resende (Feo and Resende, 1995). It is an iterative procedure
with two phases: the first constructs an initial solution using a randomized
greedy function; and the second improves the quality applying a local search
procedure. The best overall solution is kept as the result.

In the first phase, a feasible solution is constructed iteratively. All the elements
are ordered in a candidate list with respect to a greedy function, which
measures the benefit of selecting each element. The list of best candidates
is the restricted candidate list (RCL). The factor α determines the quality of
the solutions in the RCL; if α=0 only the best candidate is in the RCL making
the algorithm pure greedy; on the other hand, if α=1 all the feasible candidates
are in the list. One candidate of the list is chosen randomly. It is said that
the heuristic is adaptive because the benefit associated with every element
is updated after the selection of the candidate at every iteration to reflect
the changes brought about by the selection. Using this technique different
solutions are obtained at each GRASP iteration.
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The solutions generated by the construction phase do not guarantee they are
locally optimal with respect to a simple neighborhood; therefore, it is good to
apply a local search to attempt to improve the solution constructed. A local
search algorithm works in an iterative way by replacing the current solution
by a better one in the neighborhood. It finishes when no better solution is
found.

4.2 Problem modeling

We have formulated the problem using the service approach. For the construc-
tive phase all the services are ordered by departure time. A list of all possible
drivers that can perform a service is made and the cost of assigning the service
to that driver is calculated. The RCL is built accordingly with the randomize
factor α, that was set to α = 0.1 after 20 trials. A driver from the RCL is
selected randomly and all the variables are updated. We follow this procedure
until all the services have a driver assigned to them.

The local search attempts to reduce the cost by reducing the number of
assigned drivers. In order to do that, the algorithm looks for drivers that
perform only one service and finds out if another driver could do it.

4.3 Results

GRASP, solve all the problems on the workbench, so the solutions found by
this technique satisfy the constraints (see GRASP line in Figure 3). However,
the objective function value is not the optimal but close enough. We have
measured the percentage of average deviation over the optimal solution in the
200,000 solutions generated: 5.07 % (with σ = 0.015). Similar results were
obtained when relaxing the problem or adding harder constraints. In all cases,
the required computational memory is no relevant.

4.4 Tabu search

Tabu Search (TS) was introduced by Fred Glover in (Glover, 1986) and its
main characteristic is the use of adaptive memory which allows to explore
different regions in the search space (short term memory) and to intensify
the search in promising areas (long term memory). Advanced features can be
found in (Melián et al., 2003).

When implementing a basic TS procedure, the first thing to do is to construct
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an initial solution (s). Then, a neighborhood N(s) is constructed to find
adjacent solutions that can be reached from the actual one. A move leads from
one solution to the next in the neighborhood. The tabu structure records a
subset of the possible moves in the neighborhood as forbidden (Tabu) because
they were made in the recent past. Therefore, when doing the local search, a
move that it is not tabu is found.

The move can improve or unimprove the value of the objective function, and
the best overall solution is kept as the result. Figure 5 shows a pseudocode
of this procedure. A comprehensive examination of this methodology and
advanced features can be found in (Glover and Laguna, 1997).

procedure TABU_SEARCH

choose x ε X;
x∗ ← x;
do {

iter ← iter + 1

Find x′εN(x)\T(x) such that f(x′) is minimized;
x← x′;
Update T(x);
if(f(x) < f(x∗) {

x∗ ← x;
iter_best← iter; }

} while(stopping criterion not satisfied)

Return x∗;
end TABU_SEARCH

Fig. 5. Basic Tabu Search Procedure.

4.4.1 Problem modeling

We have formulated the problem using the service approach. The initial
solution is constructed using the same procedure described in Section 4.1
using α = 0. One of the key points is the definition of the neighborhood
for the problem in consideration. We propose a exchange neighborhood, i.e.
remove a driver assigned to one service and add a new one to cover it. The
neighborhood considers all solutions that can be obtained from the current
solution by the exchange of drivers.

In this implementation, a move consists in changing one service from the
actual driver to a new driver. The tabu list keeps the record of the services
moved. To make a move, drivers are ordered increasingly by the number of
services that they have been assigned. The procedure tries to find an active
driver that can do the service. A move can be carried out if all the constraints
for the new driver are satisfied after the change and the move is not in the
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tabu list. The value of each solution is the total cost of the drivers.

The size of the tabu list was determined experimentally with 20 instances and
it was chosen a size of n = 90 % of the number of services in the problem, which
means that a move is in the tabu list during n iterations. For each problem
one initial solution was built and 200,000 moves were performed. The best
overall solution is presented as the solution of the problem.

4.4.2 Results

The solutions found by this implementation of TS are a little more expensive
than the ones obtained by the other metaheuristic method (GRASP): 8.66
% (with σ = 0.30) of average deviation over the optimal cost. This is due
to the simple neighborhood and movements design for the search. However,
the algorithm has a lower computational cost, as it is shown in Figure 3 (see
Tabu line). In addition, when using harder scenario of our problem, it has less
impact on the total computational time that GRASP has. Again, the required
computational memory is not relevant.

4.5 Combinatorial auctions

Auctions have been studied in Economics as a mechanism for dealing
with shared resources. Among the different types of auctions, combinatorial
auctions allow bidders to submit bids on bundles or packages of items
(Kalagnanam and Parkes, 2004; Cramton et al., 2006). Given a set of items
I = it1, ..., itn, each bid bj is characterized by the subset of items g(bj) ⊂ I that
the bidder (agent) requests, and its price, p(bj). Formally: bj =< g(bj), p(bj) >.

The auctioneer is faced with a set of bids (price offers) for various bundles
of goods and his aim is to allocate the goods in a way that maximizes his
revenue, which has been called the winner determination problem (Leyton-
Brown, 2003). The winner determination problem (WDP) is known to be a
NP-complete problem and there are many approaches that can be used to
solve this problem. On one hand there are specific algorithms that have been
created exclusively for this purpose, being CABOB(Sandholm, 2002) the one
that has been proved to be one of the bests. On the other hand, the WDP
can be modeled directly as a MIP and solved using a generic MIP solver. Due
to the efficiencies of actual solvers like GLPK (free) or CPLEX (commercial),
the research community has nowadays mostly converged towards using MIP
solvers as the default approach for solving the WDP.
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4.5.1 Problem modeling

In accordance with our problem, we define drivers as the bidders who are
trying to buy services. This view of the problem makes driver constraints
be managed locally by each driver and facilitates further extensions of the
problem, as adding drivers’ preferences on services.

In addition, there is an auctioneer agent that decides upon the allocation by
solving the WDP. First of all, the auctioneer opens the action by announcing
the services to be deployed. Then, drivers submit their bids according to their
constraints. And then, the auctioneer provides the final allocation.

Each driver generates as many bids as possible according to all the possible
combinations of services (journeys) he can accomplish. The services of a bid
(g(bi)) make up a journey and consistently the price (p(bi)) is related to the
cost of the journey.

Regarding prices, since the WDP consists in maximizing the outcome of the
auction, we develop a mechanism to provide an inverse-like cost function. If
c(bi) is the cost of the g(bi) services of a bid (i.e. journey), it is not enough to
define p(bi) = 1

c(bi)
due to the price additivity, since 1

c(bi)
+ 1

c(bj)
is not the same

as 1
c(bi)+c(bj )

. Given such a situation, we have defined the inverse-like function

as follows:

p(bi) = length(g(bi)) ∗maxCost− c(bi) (4)

where maxCost is a value higher than the cost of any bid.

4.5.2 Results

Figure 3 shows the computational time required to find the optimal solution
(see CA line); this time includes bid generation, and the time required to solve
the WDP (including the MIP model generation and the GLPK time). We are
able to solve up to 45 cases before the problem becomes untractable due to
memory constraints. Even that MIP was efficient to solve the original problem
formulated as the journey approach (see Section 3.6), we have already detected
an exponential increase of the memory required by the method (see Figure 4).
In the combinatorial auction approach, the number of journeys is multiplied
by the number of drivers, so the MIP model that results from the WDP is
n times higher than the original MIP formulation. As a consequence, GLPK
memory collapses after the 45 problem.
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5 Bioinspired approaches

Evolutionary and bioinspired approaches are based on using analogies with
natural or social systems to design non-deterministic and heuristic methods
for searching, learning, behavior, etc. Evolutionary algorithms make use
of computational models of natural processes of evolution of individual
populations through selection and reproduction processes. These approaches
include genetic algorithms, population-based heuristics, memetic algorithms
related to cultural evolution, etc. Recently, another group of proposals inspired
by biological models has arisen, such as those based on colonies of ants,
societies or clusters (hives), the immune system, self-organization or artificial
life, etc.

Evolutionary and bioinspired approaches allow addressing the resolution of a
great variety of problems of optimization and searching in complex spaces.
Due to the scope of these methods, they are also related to metaheuristic
methods, such as Tabu search.

For our exploratory work, we have selected genetic algorithms and ant colonies
methods.

5.1 Genetic algorithms

Genetic Algorithms (GA) were first introduced by John Holland in 1975, and
are inspired on evolution rules. The main idea is that during evolution the best
fitted individuals have greater probabilities to survive and reproduce, while
the least fitted will be eliminated.

Main features in GA are the codification for the n individuals (population),
and the fitness, selection, crossover and mutation functions. Initial population
(p) is usually built of feasible solutions. Each individual of the population can
be seen as a solution, and the genetic information can be expressed as a binary
vector where the solution is encoded. The evaluation function assigns a value
(fitness) to each individual, usually as a measure of its quality. The Selection
Function determines which individuals will generate the new ones. Different
types of selection directly or indirectly use the fitness value to guide the
procedure to find better solutions (Alba et al., 2003). The Crossover Operator
interchange the information between parents and the Mutation Operators
modify the information of the individual in order to introduce diversity into
the population.

Batch update replaces the initial population completely with the new popu-
lation, and is only performed when all the individuals have been generated.

26



To avoid the loss of the best individual, batch update usually transfers the
best individual in the initial population into the new generation (elitism). The
process of generating new population is repeated either for a finite number of
iterations or until some given condition holds.

5.1.1 Problem modeling

We model the problem using the journey approach. This allowed us to divide
the main problem in two subproblems: first the assignment of the journeys to
the solution and, second, the allocation of drivers to journeys. For the first
subproblem we used a GA and for the second one a greedy function.

To solve the first subproblem, each individual of the population codifies the
set of journeys, having as many bits as journeys in the problem. If the bit
value is 1, the journey is in the solution, and 0 otherwise. To build the initial
population, journeys are selected randomly until all the services are covered.

The evaluation function counts the number of journeys that each individual
has, assigning that value as the individual fitness. The selection function is an
inverted roulette where individuals with fewer journeys are more likely to be
selected for crossover.

As the crossover operator we used the fusion operator proposed in (Beasley
and Chu, 1996), which produces only one offspring and selects the offspring
bit values based on the fitness of the parents. Let fP1 and fP2 be the fitness of
the parents P1 and P2 correspondingly, and let C be the offspring. Then, C is
generated as follows: for all i = 1, . . . , n

(1) if P1[i] = P2[i], then C[i] = P1[i] = P2[i]
(2) if P1[i] �= P2[i], then

(a) C[i] = P1[i] with probability p =
fP1

P1∗P2

(b) C[i] = P2[i] with probability 1− p

Mutation function is the standard bit-flip. After crossover and mutation,
individuals may violate the problem constraints (i.e. some services are not
covered). A repair operator was designed to make all solutions feasible. Finally,
we chose a batch population update using the elitism operator.

The individual returned by the GA only has the journeys in the solution.
Thus, we eliminate the services that are covered by more than one journey,
by randomly selecting a journey in the solution that covers each one of them.
Finally, to assign the driver, a greedy function finds the lowest cost driver for
the first journey, the second lowest for the second journey and so on. This is
possible thanks to the journeys structure that follows a decreasing pattern:
the first journeys have more services than the last ones.
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5.1.2 Results

First of all, we ran twenty experiments to determine the crossover probability
to 90% and mutation probability to 1%. We set the number of individuals and
the number of generations to 100.

Regarding the workbench, and in order to take advantage of the random
feature of the algorithm, each problem was run 20 times, meaning that for each
problem we generated 200,000 individuals. The second part of the solution is
applied to the individuals in the last generations that has the best fitness, and
the best overall solution is presented as the solution of the problem.

The computing time shown in Figure 3 by this technique (see GA line) im-
proves the results of previous approaches except MIP and GRASP. Regarding
the solution costs, however, the GA systematically finds better solutions than
Tabu search or GRASP: the average deviation over the optimal solution is
4.09 % (σ = 0.023).

5.2 Ant colony optimization

Another bioinspired technique for solving combinatorial optimization prob-
lems is Ant Colony Optimization(ACO). This technique was proposed by
Dorigo and others (Dorigo et al., 1999; Dorigo and Di Caro, 1999) and is
inspired by the behavior of ants in order to find food. The ACO algorithm
consists of a colony of ants that looks for solutions performing randomized
walks on a completely connected graph GC = (C, L). The nodes belong to a
finite set of components C = {c1, c2, ...., cn} and every candidate solution x is
equal to a sequence of these components x = {ci, cj , ..., ch, ...}. GC is called the
construction graph and elements of L are called connections. Each connection
has a value τ(i,j) that represents the goodness of using that connection.

We can see the pseudocode of the ACO algorithm in Figure 6. Three main
steps are considered. First, the ”ConstructAntsSolutions” consists of creating
the ant colony, and sending all its individuals to find solutions in the graph
(problem). Ants walk the graph. An ant at node i that has walked a partial
solution xh decides the next node to visit ch+1 = j based on the probability
Pr(ch+1 = j|xh). This probability is computed as follows:

Pτ (ch+1 = j|xh) =

⎧⎪⎪⎨
⎪⎪⎩

τij
α∑

(i,l)εNk
i

τil
α if (i, j)εNk

i ;

0 otherwise.
(5)

where
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• Nk
i is the neighborhood of ant k at node i; the set consists of all the nodes

that the ant k can visit after node i;
• τ(i,j) is the connection strength of the node i with its neighbors (pheromone

level); it is initialized randomly and updated throughout the process;
• α is an algorithm parameter.

The ants stop walking the graph when a feasible solution has been constructed
or when the neighborhood is empty. In the second case, the ant is useless and
is not taken into account for the following steps.

procedure ACO()

while(termination condition not met)do
ConstructAntSolutions
UpdatePheromones
DaemonActions % optional

end-while
end Procedure

Fig. 6. Basic ACO metaheuristic Algorithm pseudocode.

The second step of the algorithm of Figure 6 consists of updating τ(i,j). On the
one hand, values of the connections that are part of one solution are increased.
On the other hand, all connections that do not participate in a solution are
decreased (pheromone evaporation). The objective of pheromone evaporation
is to avoid a convergence of the algorithm for a suboptimal solution.

Finally, several centralized heuristics can be applied, when required, in the
last step of the algorithm, DaemonActions.

These three steps are repeated in the loop until a termination condition is met.
This condition can be either a given number of iterations or a convergence
criteria, among others. Then, the walk corresponding to the highest τij values
constitutes the best solution.

5.2.1 Problem modeling

To solve the problem studied in this article using ACO, we consider the
construction graph GC where C = S∪D∪dummyNode,which means that the
nodes are drivers and services, and there is an additional initial node that has
neither a service nor driver. The graph is fully connected, so there is a label
li,j for every pair of nodes ci, cj. An ant that walks over the link l(i,j) means
that the service i is assigned to the driver j.

Regarding the first step of the algorithm, the ConstructAntSolution, all ants
are created at the dummy initial node. Ants decide the next node to visit
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according to equation 5 with the following modification. The probability be-
comes 0 when visiting a neighbor node that breaks some problem constraints.
Thus, if i is the initial node, the neighborhood are all the services; if i is a
service node, the neighborhood are all the drivers that can attend to that
service without breaking the problem constraints; finally, if i is a driver node,
the neighborhood are the services nodes that haven’t been visited by the ant.

For the second step of the algorithm, the UpdatePheromones, two updating
functions were defined. First, when each of the ants finds a feasible solution
in the previous step of the algorithm, τij is updated according to the cost.
Regarding the pheromone evaporation, the following function was used:

τij −→ τij ∗ (1− ρ) (6)

where ρ is the evaporation factor and is another parameter of the algorithm.
Finally, no special methods have been implemented for the third step of the
algorithm (DaemonActions).

5.2.2 Results

Based on a series of experiments, the parameters used were α = 2,ρ = 0.1 and
a colony size equal to 100. Due to the fact that the algorithm is probabilistic,
each problem was run 20 times and the best overall solution is presented
as the solution of the problem. The time required for the execution of the
algorithm is shown in Figure 3 (see ANT line). We have not found the
optimal solution in any case; and the solutions found are much worse than
in the metaheuristics and genetic algorithms approaches. This could be due to
stagnation: the undesirable situation in which all ants repeatedly construct
the same solutions making any further exploration in the search process
impossible. Recent versions of the algorithm propose several alternatives to
avoid it, by combining exploitation and exploration (Maniezzo et al., 2004).
Regarding the former, the ants use information of the past found effective
solutions in order to choose the node to visit. On the other hand, exploration
favors the discovering of new paths, trying to avoid stagnation.

6 Discussion

From the experience obtained in our experimental tests of the different
methods, several factors have been measured as relevant ones when selecting
a technique. In particular, we distinguish the following:

• modeling expressiveness: whether the methods allow the specification
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of constraints as part of the program (constraints coded), or whether
constraints should be provided explicitly (the declarative way) by means of
either compatible variable-values pairs or with the use of functions. When
constraints should be provided explicitly and the problem is large, some kind
of preprocessing step is required to obtain the constraint set even though
sometimes the specification language provides some way to specify them by
means of complex expressions.
• anytime: whether the algorithm can be stopped and its execution resumed,

giving the best solution found so far or not, or only partially (can stop but
not resume).
• time complexity: whether the method as tested is able to solve up to the

70th test case (low), up to the 20th case (medium) or few cases (high).
• memory complexity: the amount of memory required by the method, to store

either constraints or internal data. High means that the method requires a
lot of memory, and dynamic memory or other kind of programming tricks
should be used to keep handling memory in an efficient way.
• parameter tuning: whether the method requires several runs in order to tune

the parameters required. In this sense, the label ”Yes” indicates that with
the current parameter estimations the algorithm has not found the best
solution.
• tool: whether there is a free licence tool on the shell to test the problem

or not. Note that tool availability could force the problem to be modeled
according to the tool requirements. In addition, the available tools are not
always the most efficient ones.

In Table 1 there is a summary of the methods analyzed together with a
checklist of the properties that they exhibit. Regarding computational time,
MIP is the one exhibiting the better behavior. Other recent paradigms like
Tabu search, GRASP, genetic algorithms and ant colony optimization are also
able to deal with the whole workbench at a reasonable computational effort.
In Figure 7 the methods are organized in the three time complexity categories
according to the results obtained in our experiments. This does not mean that
the optimal solution could be found in either Tabu, GRASP or GA, but a
quasi-optimal one (see Figure 8 for a comparison on the cost of the solutions
found). Much more effort should be made to find the different parameters
that tune the algorithms. In this sense, there is much more uncertainty in the
development of the algorithm from an engineering point of view.

Regarding modeling expressiveness, in general, declarative methods are the
easiest way to make initial approaches to simple problems. However, with
complex problems, with many constraints, search methods (chronological
backtracking and branch and bound) and constraint propagation methods
have proved to be the easiest way to approach the problem the first time. This
has been our case. So, even though better computational times are obtained
with mixed integer programming, the mixed integer programming model was
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Method Modeling Anytime Time Memory Tuning Tool

Chronological
backtracking

Coded Partial High Low No No

Branch&Bound Coded Partial High Low No No

Mixed integer
programming

Declarative No/Yes Low High No GLPK

Constraint logic
programming

Declarative No High Low No GProlog

Forward checking Declarative No Medium Medium No ConFlex

Synchronous
backtracking

Declarative No/Yes Medium Medium No No

Asynchronous
backtracking

Declarative No High High No ADOPT

Tabu Coded Yes Low Medium Yes No

GRASP Coded Yes Low Medium Yes No

Combinatorial
auctions

Coded Partial Medium High No GLPK

Genetic
algorithms

Coded Yes Low Low Yes No

Ant colony opti-
mization

Coded No Low Medium Yes No

Table 1
Summary of the analysis: Techniques and their properties.

hard to build from scratch, but easier after the approximation achieved in the
systematic approaches.

The requirement of defining all constraints explicitly is also a hard limitation
of mixed integer programming. The amount of memory required, as well
as the preprocessing step to generate them are also an issue that should
not be forgotten, especially when dealing with large-scale problems. For
example, in (Lim et al., 2005), heuristic approaches performed better than
CPLEX in large-scale problems. In addition, if we wish to contemplate
other issues such as delays or exceptions in our problem (see the complete
definition of the problem in (López, 2005)), it is not so easy to imagine how
these new constraints could be linearized. Thus, constructive models (like
chronological backtracking, branch&bound, etc.) can manage these kinds of
complex constraints. Moreover, the great importance of an adequate modeling
in GRASP, Tabu and genetic algorithms approaches should be taken into
account, as has been shown in the respective sections.
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Fig. 7. Maximum problems managed by the methods and the associated execution
time.

Conversely, distributed approaches and, particularly, the synchronous one that
allows partitioning the problem in different sizes shows an average computa-
tional time has additional interesting features to continue their exploration.
First of all, the synchronous distributed approach can take advantage of
classical techniques when solving subproblems. In our experimental analysis,
each subproblem was solved using Forward Checking methods. In addition,
they exhibit good modeling expressiveness. Since it is backtracking based, it
is possible to imagine the extension of the algorithm to exhibit an anytime
behavior.

Regarding hybridization, it is also present in another of the techniques
analyzed: combinatorial auctions. We have used mixed integer programming
techniques to solve the winner determination problem that the combinatorial
auction poses. The best current algorithm, CABOB, also uses MIP techniques
(CPLEX) to perform estimations in order to prune the search space. Hy-
bridization tries to use the advantages of classical methods, and it is a good
direction to look in, since looking at Table 1 no single method can be claimed
to be the best in all the properties.

Finally, we should remark that in this paper, only general methods and
techniques for solving combinatorial problems have been analyzed. Some of
these techniques make use of domain-independent heuristics in the search (for
instance, constraints satisfaction techniques). Others methods (for instance,
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solution. Only MIP finds the optimal solution.

branch&bound techniques), require the design of domain-dependent heuristics.
However, we do not have deepened on the design of specific domain-dependent
heuristics. It is clear that adequate domain-dependent heuristics, specifically
designed for each kind of problems, can obtain good solutions in good
computational times. But they would require a deeper work on each of the
techniques and the results would strongly depend of each domain of problems.
Therefore, the scope of our results would be too narrow to be of general
interest. Our goal in this first approach to our problem is to show how general
techniques can be applied to combinatorial problems, and the specific features
of each approach in order to facilitate the selection of the appropriate technique
to dedicate much more effort in solving the complete problem with the most
suitable one.

7 Conclusions

When facing a new complex problem, especially in optimization, several
techniques are available, either from the Operational Research or Artificial
Intelligence fields. The selection of one technique or another is a critical issue.
Even though in the literature there are some previous similar problems, slight
differences in the problem data can decide upon the suitability of one technique
or another. Experimentation with the problem data is often the only way to
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know, step by step, what the particular challenge of the problem is and what
the different techniques offer. This is what we have done when trying to select
the most appropriate technique for the road passenger transportation problem.

In this paper we have experimentally analyzed several techniques, from classi-
cal ones like search, constraint propagation and mixed integer programming, to
new ones as metaheuristics, combinatorial auctions and distributed approach.
All the results were obtained in a comparable PC configuration (Pentium IV
3GHz, 1Gb of RAM).

The results have shown us that even though mixed integer programming is
the one that outperforms the best in a non large-scale problem, the modeling
of a problem in this method is not always straightforward. A change in
the problem data could derive in the revision of the complete model of the
problem. Conversely, general search methods are more flexible and versatile
and allow any new constraint to be defined at your convenience, but at a
higher computational cost. New search distributed methods can offer a new
opportunity for general search methods in order to improve efficiency, in
addition to guaranteeing privacy and security issues on the data. This latter
feature is interesting in our problem, since driving preferences can be added
to the problem in a distributed way. In addition, distributed approaches offer
us the possibility of hybridizing the solution, by merging classical well proven
techniques in the subproblems.

To summarize our results, we provide a feature table, in which the main
differences between the analyzed methods have been shown, as some guidelines
that should help the choice of one technique or another, given a specific
problem. We hope that this information can be useful helps to other engineers
and researchers to understand the kind of optimization techniques currently
available on the shell.
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Melián, B., Moreno, J., and Moreno, J. (2003). Metaheuristics a global view.
Revista Iberoamericana de Inteligencia Artificial, (19):7–28.

Modi, P., Shen, W., Tambe, M., and Yokoo, M. (2005). Adopt: Asynchronous
distributed constraint optimization with quality guarantees. Artificial
Intelligence Journal, 161:149–180.

Orden, A. (1993). Lp from the ’40s to the ’90s. Interfaces, 23(5):2–12.
Portugal, R., Ramalhinho Lourenço, H., and Paixao, J.P. (2006). Driver

Scheduling Problem Modelling. Working Papers (Universitat Pompeu
Fabra. Departamento de Economa y Empresa), num. 991.

Ramalhinho Lourenço, H., Pinto Paixao, J., and Portugal, R. (2001).
Metaheuristics for the bus-driver scheduling problem. Transportation
Science, 3(35):331–343.

Rossi, F., van Beek, P., Walsh, T. (2006). Handbook of Constraint
Programming. Elsevier.

Salido, M.A. and Barber, F. (2006). Distributed CSPs by Graph Partitioning.
Applied Mathematics and Computation, (183), pages 491-498.

Sandholm, T. (2002). Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, (135):1.

Saxena, R.R. (2007). Enumeration Technique for Set Covering, Partitioning
and Packing Problems with Non-Linear Objective Function: A Combinato-
rial Approach. ICCOPT II & MOPTA-07.

Yokoo, M., Durfee, E., Ishida, T., and Kuwabara, K. (1998). The distributed
constraint satisfaction problem: Formalization and algorithms. IEEE Trans.
on Knowledge and DATA Engineering, 10(5).

Yokoo, M. and Hirayama, K. (2000). Algorithms for distributed constraint

37



satisfaction: A review. Autonomous Agents and Multi-Agent Systems, 3:185–
207.
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