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Abstract

Diradical species are analyzed on the light of the local spin analysis. The

atomic and diatomic contributions to the overall 〈Ŝ2〉 value are used to detect

the diradical character of a number of molecular species mostly in their singlet

state, for which no spin density exists. A general procedure for the quantifi-

cation of diradical character for both singlet and triplet states is achieved by

using a recently introduced index that measures the deviation of an actual

molecule from an ideal system of perfectly localized spin centers. The index

is of general applicability and can be easily determined in equal footing from

a multireference or an open-shell single-determinant wave function.
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Introduction

Salem1 defined diradicals as molecules with two electrons occupying two near
degenerate orbitals. Indeed, how close to degeneracy these orbitals are (HOMO-
LUMO gap) or more generally the singlet-triplet gap is one of the characteristic
features of diradical systems. Diradicals are important in chemistry since they
emerge as intermediates of many chemical reactions.2 Pure, ideal diradicals such
as a dissociated H2 singlet can be easily characterized theoretically from different
indicators, depending on the nature of the wave function. However, the quantifi-
cation of the diradical or diradicaloid3 character of short-lived singlet diradicals is
not so trivial because the formally unpaired electrons do interact to some extent.
There is a continuum between the closed-shell spin-paired and the perfectly local-
ized spin-entangled situations, as exemplified by the dissociation curve of singlet
H2.

Several indices have been proposed in the literature in order to detect and quan-
tify the diradical character of molecular systems, the simplest probably being the
value of 〈Ŝ2〉 of a broken symmetry spin-unrestricted wave function.4,5 For a sys-
tem with an equal mixture of singlet and triplet components one should expect a
〈Ŝ2〉 value close to 1.6 Accordingly, Bachler et al.7 proposed the following index

nrad = 1−
√

1−〈Ŝ2〉BS, (1)

where 〈Ŝ2〉BS represents a UHF broken-symmetry wave function. An alternative in-
dex can be built making explicit use of the occupation numbers of spin-unrestricted
natural orbitals (UNOs). In a system with diradical character, a pair of bonding an
antibonding orbitals are typically associated with the two radical sites. The closer
to 1 the occupation of the antibonding orbital is, the higher the diradical character.
Jung and Head-Gordon3 and Bachler et al. 8 used the occupation numbers obtained
from perfect-pairing approaches and Lopez et al. used the occupation number com-
puted at the natural orbital functional (NOF) level of theory9 to assess the extent
of diradical character of different molecules. Rivero et al. also studied the extent
of radical character from the occupation numbers that are close to one from a spin-



projected Hartree-Fock calculation.10 Similarly, Kamada et al.11 used the index,

y =
(1−T )2

1+T 2 and T =
nHOMO−nLUMO

2
(2)

where nHOMO and nLUMO are the occupations of the bonding and antibonding
UNOs. In a purely closed-shell system nHOMO = 2 and nLUMO = 0, and hence
y = 0. When the occupations of the two orbitals are equal the system is a pure
diradical and y = 1.

When a multiconfigurational wave function is used the occupation numbers of
the orbitals of the radical sites can be replaced by the weights of appropriate con-
figurations of the CI expansion. In the simplest two-electrons in two-orbitals (the
so-called magnetic orbitals) model, the 2x2 CI wave function is build up from a
configuration in which the bonding combination of the magnetic orbitals is doubly
occupied, and another that includes the double excitation to the antibonding com-
bination of the magnetic orbitals. Bachler et. al.7 proposed the following indicator
for diradical character

nCI
rad =

√
2 |cd| (3)

where cd is the weight of the doubly-excited configuration. Later on, other authors
suggested an improved version12 that also incorporates the weight of the other con-
figuration

d = 2

√
c2

0c2
d

c2
0 + c2

d
. (4)

None of the indices described above is of general applicability. Beyond diradi-
cals a signature of polyradical character may be derived from the shape and occu-
pation of the natural orbitals.10,13 The applicability of the indices given in Eqns. (1)
to (4) is thus restricted to diradical systems that can be well described with a two-
electron two-orbital model. A noteworthy alternative is the analysis of the so-called
density of effectively unpaired electrons, u(~r), defined by Takatsuka et al. 14 as

u(~r) = 2ρ(~r)−
∫

ρ(~r;~r ′)ρ(~r ′;~r)d~r ′. (5)

This quantity can be easily obtained at any level of theory from the first-order den-
sity matrix, ρ(~r;~r ′), and provides a spatial distribution of the unpaired or "odd"



electrons in the system, even if the spin density vanishes (e. g. for multiconfigura-
tional singlet wave functions). The total number of unpaired electrons, ND, can be
recovered upon integration of u(~r) over the whole space. The topology u(~r) and the
ND values have been used by Staroverov and Davidson to analyze the evolution of
the radical character upon a chemical reaction, e.g. the Cope rearrangement.15,16

Cheng and Hu17 found a good correlation between ND and the singlet-triplet gap
for a set of B2P2 ring derivative diradicaloids. Moreover, population analysis tech-
niques such as Mulliken16 or QTAIM18 have also been applied to recover the av-
erage number of unpaired electrons on a given atom/fragment. It is worth to note
that Mulliken populations of u(~r) are identical to Mayer’s free valence index19,20

for singlet wave functions.
In singlet diradicals the presence of some local spin associated to a given atom

or fragment of the molecular system is assumed. The spin properties of molecu-
lar systems are usually characterized by the analysis of the spin density. In fact,
spin-unrestricted single-determinant calculations often result in broken-symmetry
solutions with non-vanishing spin density. In this case, however , the state of the
system is not described as a pure singlet, as it appears contaminated with higher
spin states. When a proper multireference wave function is used to describe a pure
singlet the spin density exactly vanishes at all points of the space. Yet, one can still
invoke the concept of local spin in the system.

Local spins can be retrieved from wave function analysis by a number of decom-
position schemes.21–27 The most appropriate approach to the problem, as pointed
out by Mayer,23 is probably the exact decomposition of the expectation value of the
spin-squared operator into a sum of atomic and diatomic contributions as

〈Ŝ2〉= ∑
A
〈Ŝ2〉A + ∑

A,B6=A
〈Ŝ2〉AB. (6)

A proper formulation of eqn. (6) can provide vanishing one- and two-center terms
for restricted single-determinant wave functions (thereby distinguishing electron
pairing in bonds from antiferromagnetic coupling), and non-zero ones for pure sin-
glets described by correlated wave functions, thus overcoming the limitation of use
of the spin density. The actual expressions for the one- and two-center contributions
fulfilling these conditions, henceforth local spin analysis, can be found elsewhere.27



In the local spin analysis, the 〈Ŝ2〉A values indicate and quantify the presence
of local spin within the molecule, namely on atom/fragment A. The magnitude and
sign of the diatomic contributions 〈Ŝ2〉AB with B 6= A inform about the nature of
the couplings between these local spins.21,28,29 The physical interpretation of the
〈Ŝ2〉A and particularly 〈Ŝ2〉AB values is somewhat intricate, and has been recently
discussed in detail in several papers.30,31

The ability of both local spin methods and the density of effectively unpaired
electrons to capture the diradical nature of molecular systems has already been dis-
cussed in the recent literature.15,16,32–36 However, their use as a general index for
the quantification of the diradical character has not yet been fully explored. This is
the main goal of the present work.

Computational Details

Since nondynamical correlation is essential to describe the low-spin components of
diradicals, the use of a multireference method is mandatory. All wave functions
for the molecular systems studied have been obtained at the CASSCF level with
the cc-pVTZ basis set, unless otherwise indicated. For the simple diradical model
systems the STO-3G basis set in combination with CASSCF or UHF levels of the-
ory has been used instead. The first- and second-order density matrices have been
obtained using a modified version of Gaussian0337 and an auxiliary program38 that
reads and processes the CASSCF outputs. All local spin components are given in
atomic units. All calculations have been carried out at the geometrical structure of
the molecules optimized at the current level of theory, unless otherwise indicated.
The local spin analysis has been performed with the program APOST-3D.39 For this
work we have make use of the atomic domains provided by the recently introduced
topological fuzzy Voronoi cells (TFVC) scheme.40 It is a fuzzy-atom based alter-
native41 to Bader’s QTAIM domains that produces very similar results with much
less computational effort.40



Results and discussion

Local spin vs density of effectively unpaired electrons

In Figures 1 and 2 we plot the evolution of the indices of Eqn. 1-4 for diradical
character for a simple model system, namely the dissociation of a singlet H2 into
two doublet H atoms described with minimal basis at the UHF and FCI levels of
theory, respectively. The values of the number of effectively unpaired electrons
averaged over one of the H atom, NH

D and the local spin, 〈Ŝ2〉H , are also included.
The later has been rescaled to vary from 0 to 1 for better comparison.
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Figure 1: Indices for diradical character along dissociation of H2 model system at
the UHF level of theory. 〈Ŝ2〉H values have been rescaled (see text).

For a single-determinant wave function the diradical character is exactly zero for



all indices when no BS solution exists (see Figure 1). As the H-H distance stretches
and a BS solution is found, the diradical character monotonically increases in all
cases. At large distances all indices tend to 1, indicating a perfect diradical. For
intermediate distances, the index y from Eqn.(2) seems to underestimate the extent
of diradical character with respect to the other indicators. Both the local spin and the
number of effectively unpaired electrons closely follow the value of 〈Ŝ2〉. For this
model system the nrad index is equivalent to the occupation of the LUMO orbital
(nLUMO).
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Figure 2: Indices for diradical character along dissociation of H2 model system at
the FCI level of theory. 〈Ŝ2〉H values have been rescaled

For correlated wave functions the diradical character predicted by the different
indices is always different from zero. The d index of Eqn. (4) yields a 20% of



diradical character for H2 at the equilibrium distance (0.74 Å), which is probably
somewhat too large. The local spin and number of effectively unpaired electrons on
the H atoms give a similar and much smaller diradical character, and the index given
in eqn. (3) lies in between. In this case, the occupation of the LUMO (antibonding)
orbital consistently yields a smaller diradical character than the other indices. At
intermediate atomic distances the differences between all indices are smaller than
in the case of the UHF-BS description.

It is worth to note that Clark and Davidson32 also applied their local spin for-
malism to the dissociation profile of diatomics such as H2 at RHF, UHF and FCI
levels of theory. In their method, the 〈Ŝ2〉A value also tends to 3/4 at the dissociation
limit, but for interatomic distances near equilibrium it tends to 3/8 of the bond order.
The non-vanishing local spin contributions for a genuinely diamagnetic system like
H2 at equilibrium distance difficult their use as indicators of diradical character.

We have just seen that both the number of effectively unpaired electrons and
the local spin analysis quantify in a similar manner the diradical character for a
simple model system. Indeed, several studies have shown that both are very useful
tools for the characterization of the spin distribution in actual molecular systems, in
particular for singlet states.15,16,32–35 However, u(~r) also exhibits some unattractive
peculiarities. First of all, the upper bound for ND was found to be 2N, where N is
the total number of electrons. Thus, the number of effectively unpaired electrons
may be larger than the actual number of electrons.42 This unphysical upper bound
hinders the use of ND as an absolute index for radical character. Another rather
puzzling result was found in the dissociation of O2 in its 3Σ−g ground state into two
triplet 3P oxygen atoms. Staroverov and Davidson42 obtained a value of ND=5 at
the dissociation limit, i.e., each O atom carries an average of 2.5 unpaired electrons,
instead of the expected value of 2 for an isolated triplet. It is worth mentioning that
this finding motivated an alternative definition of u(~r) by Head-Gordon,43 although
not without controversy.44,45

We have further explored this paradigmatic system by considering for a number
of different electronic states the dissociation of O2 into two O atoms. In the dissoci-
ation limit one can have either two radical centers with two unpaired electrons each
(when the O2 dissociates into two triplet 3P oxygen atoms), or no spin centers at all
when it dissociates into two 1D singlet O atoms. Note that neither situations can be



described with eqns. (1) to (4). In Table 1 we collect the values of ND and local
spin on the O atoms upon dissociation for several molecular (and atomic) electronic
states. The wave functions have been obtained at the CASSCF(8,6)/6-31G* level of
theory.

Table 1: Number of effectively unpaired electrons (ND) and local spin values for the
O atoms, 〈Ŝ2〉O, at the dissociation limit of several O2 molecular electronic states.

Molecular Atomic
elec. state ND 〈Ŝ2〉O1 / 〈Ŝ2〉O2 elec. statea

3Σ−g 5 2 / 2 3P/3P
1∆g 4 2 / 2 3P/3P
1Σ+

g 5 2 / 2 3P/3P
1Σ−u 5 2 / 2 3P/3P
3Πu 4 2 / 2 3P/3P
1Πg 5 2 / 2 3P/3P
1Πu 5 2 / 2 3P/3P
1∆u 5.33 0 / 0 1D/1D
1Πu 4.99 0 / 0 1D/1D

a Atomic electronic states at the dissociation limit

For the ground 3Σ−g state, a value of ND=5 is obtained upon dissociation into two
triplet 3P oxygen atoms, as already noted by Staroverov and Davidson.42 However,
this is not always the case. For instance, for the dissociation of the 1∆g and 3Πu

states into two triplet O atoms, the expected ND=4 value is recovered. The 1∆u state
dissociates into two 1D singlet oxygen atoms, but the ND value is 16/3, consistent
with the uniform distribution of 8 electrons into 6 degenerate p orbitals. Thus, by
looking at the ND values at the dissociation limit one can not distinguish two triplet
from two singlet oxygen atoms (in this case the distinction is evident from the en-
ergy values). Moreover, different ND values can be obtained for a system consisting
of two dissociated triplet oxygen atoms, depending on the overall electronic state.
It is worth to note that using Head-Gordon’s43 alternative formulation one would
obtain ND=4 in all cases (in fact, as long as the natural occupations are greater or
equal than 1).

On the other hand, the local spin values always yield the expected values for the
dissociating oxygen atoms. Matito and Mayer24 already reported proper asymp-



totics of the atomic local spin contributions for the lowest-lying triplet and singlet
states. We have considered here the dissociation of five more molecular singlet and
triplet states that dissociate into two 3P oxygen atoms and in all cases 〈Ŝ2〉O = 2 (see
Table 1). For the states that dissociate into two singlet 1D oxygen atoms, namely
1∆u and 1Πu, the local spin analysis yields 〈Ŝ2〉O = 0. The diatomic spin compo-
nents also differentiate when the two oxygen triplets are coupled as a singlet, like in
the 1∆g state for which 〈Ŝ2〉O,O =−2, or as a triplet, like in the 3Σ−g state, for which
〈Ŝ2〉O,O =−1 is obtained.

Thus, the local spin analysis appears to be more suitable tool than the number
of effectively unpaired electrons when it comes to the formal breaking of more than
one bond. This is in essence because the 〈Ŝ2〉A terms include contributions from the
cumulant of the second order-density matrix, whereas the number of effectively un-
paired electrons is obtained only from the first-order density matrix. Accordingly,
our goal, which is the quantification of diradical character, will be better accom-
plished by making use of the descriptors obtained from the local spin analysis.

Quantification of diradical character in molecules

The spin distribution of diradical species has already been analyzed in the light
of the number of effectively unpaired electrons and different local spin indicators.
Typically studied examples are benzyne isomers.26,46–48 Clark and Davidson an-
alyzed their electronic structure making use of the density of effectively unpaired
electrons49 and also their local spin formalism.32,33 The evolution of local spins32

and the number of unpaired electrons34 along reactive processes involving benzyne
were also discussed in detail.

For the present work we have studied a number of diradical and diradicaloid
species at equilibrium geometries. The species considered are depicted in Figure 3.
For all of them we have performed the local spin analysis, but the results will not be
discussed in detail here (for that we refer to the supporting information). Instead,
we will focus essentially on the actual quantification of the diradical character. For
this purpose, only the atomic contributions of the local spin analysis will be taken
into account.
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Figure 3: Diradicals and diradicaloids considered in this work

Most recently we have introduced as a general measure of k-radical character
the following index

∆(k) =

√
∑A(〈Ŝ2〉A−〈Ŝ2〉idA )2

n
, (7)

where the 〈Ŝ2〉idA represent the atomic ideal values and n is the total number of



atoms/fragments considered in the local spin analysis (for most applications the
hydrogen atoms can be safely ignored.)31 Since the “ideal” value for the diatomic
terms depends upon the particular electronic state (singlet, triplet, ... ) and also the
type of wave function (broken-symmetry vs multireference), the index only uses the
atomic contributions of the local spin analysis. The main advantage of this index is
that, contrary to most approaches in the literature, it is calculated in the same manner
from both multireference and unrestricted single-determinant wave functions, and
for any electronic state. The smaller the ∆(k) value the closer the system is to a
reference picture of k perfectly localized spin centers. So far, the use of eqn. 7 has
been restricted to k = 3, for the quantification of the triradical character.31

For diradical or diradicaloid species in singlet-state one can calculate both ∆(0)

and ∆(2) values. The former will measure average deviation from a nonradical
closed-shell picture, and the latter will indicate the deviation from a perfect diradi-
cal. This provides a numerical criterion to identify diradicaloids as either diradicals
or nonradical species.

Table 2: k-radical character index, ∆(k), for a set of diradicals and diradicaloids.
Values in parenthesis computed at the UB3LYP level of theory.

Singlet Triplet
Molecule ∆(0) ∆(2) ∆(2)

ortho-benzyne 0.18 0.28 0.14
meta-benzyne 0.28 0.19 0.13
para-benzyne 0.49 0.12 0.12

TME 0.77 0.02 0.05

(CH)2(CH2)2 0.41 (0.42) 0.12 (0.12) 0.12 (0.12)
(BH)2(PH2)2 0.10 (0.00) 0.46 (0.53) 0.39 (0.34)
(BH)2(NH2)2 0.17 (0.18) 0.41 (0.40) 0.38 (0.36)

[1,1,1]propellane 0.02 0.47 –
[2,2,2]propellane (RC-C=1.536Å) 0.01 0.36 –
[2,2,2]propellane (RC-C=1.988Å) 0.16 0.22 –
[2,2,2]propellane (RC-C=2.532Å) 0.05 0.33 –

The computed ∆(0) and ∆(2) values for the species of Figure 3 are gathered on
Table 2. The trends of the ∆(0) and ∆(2) values along the series of singlet ortho-,



meta- and para-benzyne are very illustrative. For ortho-benzyne ∆(0) = 0.18 and
∆(2) = 0.28, indicating a smaller deviation of this species with respect to a closed-
shell picture. For meta-benzyne the situation is just the opposite, and the system is
better identified as a diradical. For para-benzyne the ∆(2) value is very small (0.12)
and much smaller than the ∆(0) one (0.49), which is consistent with a diradical
picture. Thus, both ∆(0) and ∆(2) values are able to reproduce the assumed trend
ortho < meta <para of the diradical character of benzyne isomers.32,46,47 For triplet
states only the ∆(2) values are meaningful. The values are quite small and do not
differ too much from one isomer to another. The trend along the series is the same
as for the singlet states, i.e., , triplet para-benzyne is more diradical than ortho-
benzyne.

Sometimes the spin delocalization hinders the recognition of the formal spin
centers, like in the well-studied tetramethylenethane (TME) diradical.50,51 At the
CASSCF level of theory the lowest energy structure has D2 symmetry, with a di-
hedral angle relating the two allyl moieties of 70.6 deg. The active space included
6 electrons and 6 orbitals (in the D2h symmetry they correspond to the set of 6 π
orbitals.) The results of the local spin analysis are discussed in detail in the support-
ing information. Essentially, the analysis reveals that TME is made up from two
independent allyl radicals bonded by the central carbon atoms. The spin distribu-
tion among the atoms of the allyl fragments is very similar for both the singlet and
triplet states.

Thus, for this molecule it is more appropriate to consider two allyl fragments in
eq. 7, instead of all atoms separately. The local spin contribution of a molecular
fragment is simply obtained by summing up all atomic and diatomic contributions
of the atoms that form the molecular fragment. The ∆(2) value taking the two allyl
moieties as spin centers is very small (0.02) in the singlet state, and somewhat larger
in the triplet (0.05) due to the enhanced delocalization of the spins between the two
moieties. The ∆(0) value is clearly too large to consider this system as a closed-shell
species at all.

The distinction between a singlet diradical and a nonradical closed-shell species
is sometimes not so evident. Diphosphadiboretanes and their analogues are some of
the most controversial systems discussed in the literature. Scheschkewitz et al. 52



reported several years ago a 1,3-diphospha-2,4-diboretane derivative singlet diradi-
cal that exhibited indefinite stability at room temperature. Several theoretical stud-
ies3,8,17,53 followed that work, aimed at the quantification of the diradical character
of this species and its analogues. We depict on Figure 3 some of these four-member
ring diradicaloids. The species (CH)2(CH2)2 corresponds to a planar transition state
structure on the singlet potential energy surface of bicyclobutane (a triplet state lies
ca. 2-3 kcal/mol lower in energy.) (BH)2(PH2)2 is simplest diphosphadiboretane
and (BH)2(NH2)2 is a diaza-analogue of the former. This system is interesting be-
cause even though it exhibits a much shorter B-B distance (2.04 Å) than in diphos-
phadiboretane (2.60 Å), its diradical character was estimated to be smaller.53

We have studied these systems with an unrestricted single-determinant wave
function (UB3LYP) for both their singlet and triplet states. We have also consid-
ered a single-point CASSCF(2,2) wave function at the UB3LYP optimized struc-
tures for comparison. For the singlet states, the atomic local spin values are very
similar for CASSCF(2,2) and UB3LYP methods, provided a broken-symmetry so-
lution is found for the latter (the local spin contributions are exactly zero for a
restricted single-determinant wave function, as in (BH)2(PH2)2). Remarkably, a
broken-symmetry wave function that yields a wrong value of 〈Ŝ2〉 does seem to
provide appropriate atomic 〈Ŝ2〉A contributions. The flaw of the broken-symmetry
solution is found on the diatomic spin-spin interactions between the local spin cen-
ters: the UB3LYP values are significantly smaller than the CASSCF(2,2) ones. Yet,
the negative sign still indicates the antiparallel arrangement of the local spins (see
supporting information). For triplet states the local spin analysis yields very similar
one- and two-center contributions for both methods. This is not surprising since
with a CASSCF(2,2) approach the mS = |S| state is described by a ROHF wave
function. Therefore, since the indices of eqn. 7 use only the atomic local spin con-
tributions, their values for a broken-symmetry and a CASSCF wave function will
be very similar.

We find that singlet (CH)2(CH2)2 is best described as a diradical. The ∆(2)

value is similar to that of para-benzyne (0.12), whereas ∆(0) is much larger. These
values are indeed almost the same for CASSCF(2,2) and UB3LYP wave functions.
The ∆(0) value for (BH)2(PH2)2 is trivially zero at the UB3LYP level of theory,
as it corresponds to a restricted closed-shell solution. For CASSCF(2,2) the value



slightly increases to 0.10 but still is significantly smaller than the ∆(2) value. Clearly,
this species can not be considered a diradical, in agreement with Jung et al. .53 For
the diaza analogue, ∆(0) increases to ca. 0.17 and ∆(2) decreases to 0.41. Thus,
(BH)2(NH2)2 is more diradical than (BH)2(PH2)2, but still it is best described as a
closed-shell species. For triplet states, the local spin analysis reveals in the case of
(BH)2(PH2)2 and (BH)2(NH2)2 that the four atoms of the ring exhibit similar but
small local spin contributions (see supporting information). The large ∆(2) values
for the triplet states of (BH)2(PH2)2 and (BH)2(NH2)2 are thus consistent with the
observed delocalized-spin picture.

Finally, the nature of the central C-C bond in strained systems such as propel-
lanes has been subjected to debate in the literature for years. The formal picture
of these species in the absence of this bond would be a diradical. However, the
diradical character in the ground state has been ruled out in the case of [1,1,1]pro-
pellane by Wu et al.,54 on the basis of a large vertical singlet-triplet gap (over 100
kcal/mol). The authors used a detailed Valence Bond analysis to classify the central
C-C interaction as charge-shift bond. Lobayan et. al.55 also analyzed the density of
unpaired electrons and its topology for this species at the CISD level of theory and
ruled out the presence of a 3c-2e bond. Yet, the overall number of unpaired elec-
trons (ND) they obtained at the CISD/6-31G* level of theory was quite significant
(ca. 1.22).

We have performed the local spin analysis for [1,1,1]propellane and [2,2,2]pro-
pellane species at the CASSCF(10,10)/cc-pVTZ//UB3LYP/cc-pVTZ level of the-
ory. The results are gathered on Table 3. For [1,1,1]propellane, the central C-C
distance is 1.568 , very similar to that of ethane for the same level of theory (1.528
). We have found that the local spin on the central C atoms is completely negligible.
In fact it is even smaller than the local spin con the C atoms of ethane described
at the same level of theory (0.009 and 0.018, respectively). Accordingly, the ∆(0)

value is very close to zero (0.018), as expected for a nonradical species. For this
level of theory we obtain an overall ND=0.46, a value significantly smaller than that
obtained by Lobayan and in more agreement with a nonradical picture.



Table 3: Local spin on central C atoms, central C-C bond orders (see text) and
total number of unpaired electrons for ethane and several propellane species at the
CASSCF(10,10)/cc-pVTZ//UB3LYP/cc-pVTZ level of theory

Molecule RC-C BOC-C BOC-C 〈Ŝ2〉A ND
(Å) (fluct.) (exch.)

ethane 1.528 0.78 0.91 0.018 0.318

[1,1,1]propellane 1.568 0.44 0.66 0.009 0.463

[2,2,2]propellane 1.536 0.77 0.87 0.028 0.095
1.988a 0.33 0.43 0.313 1.082
2.532 0.00 0.15 0.091 0.700

a Transition state structure.

The potential energy surface of [2,2,2]propellane was studied in detail by David-
son56 with different levels of theory with the 6-31G* basis set. There are two similar
minimum energy structures for the singlet state. In the most strained one, the central
C-C distance is ca. 1.54 Å. Another minimum energy structure is found at a much
longer C-C distance (2.54 Å). Both are connected by a transition state structure at
an intermediate distance of ca 2 Å. Both UB3LYP and CASSCF(n,n) methods with
n=2,4,8 yield similar structures and energetics. The strained minimum structure is
about 5-10 kcal/mol higher in energy than the stretched one, and the barrier for the
interconversion (from the strained structure) is about 15-20 kcal/mol.56 The mul-
tireference average quadratic coupled cluster (MRAQCC) results obtained by Antol
et. al.57 with the same basis set were very similar to those reported by Davidson. It
is worth to note that Davidson found that a low-energy broken-symmetry solution
occurs from a C-C distance of ca. 1.7 Å at the UHF/6-31G* level, whereas for
UB3LYP the broken-symmetry solution only exists between C-C distances of 1.9
to 2.3 Å.

We have optimized the three structures at the UB3LYP/cc-pVTZ level of theory.
Only the transition state structure lead to a broken-symmetry solution. Then we
carried out single-point energy calculations at the CASSCF(10,10)/cc-pVTZ level
to perform the local spin analysis. The a1’, a2" and two sets of e’ and e” orbitals
were included in the active space. For the strained minimum (RC-C=1.536Å) the
local spin in the central C atoms is again negligible (0.028), and so is the number



of unpaired electrons ( ND=0.095). The corresponding ∆(0) value is similar to that
obtained for [1,1,1]propellane.

In the stretched global minimum structure (RC-C=2.532Å) there is no central
C-C bond. The bond orders are 0.15 and 0.00 for the exchange and fluctuation for-
mulations, respectively).58 Also, the number of unpaired electrons is significantly
larger than for the strained structure (ND=0.70). Yet, the local spin on the central
C atoms is still very small (0.091). The ∆(2) value of 0.33 is too large to consider
this species as a diradical at all, specially when compared with the value for ∆(0)

(0.05). Since the UB3LYP description of this species is spin-restricted, ∆(0)=0 by
definition at this level of theory.

The transition state structure (RC-C=1.988Å) does exhibit significant local spin
in the central C atoms (0.31), as well as larger number of effectively unpaired elec-
trons (ND=1.08). The ∆(0) and ∆(2) values are 0.16 and 0.22, respectively. Thus,
the diradicaloid character at the transition state is larger than that of the minimum
energy structures, but the species is still best pictured as a nonradical.

Conclusions

The general quantification of diradical character from wave function analysis is
shown to be a non-trivial task, particularly for singlet states. In this work we illus-
trate how the descriptors obtained from a local spin analysis can be used to define
a general measure of the diradical character. Indices ∆(0) and ∆(2) quantify devi-
ation from a nonradical and a perfect diradical picture, respectively. The method
reproduces the expected trend ortho-benzyne<meta-benzyne<para-benzyne of di-
radical character, for both the singlet and the triplet states. Also, it is found that
diphospadiboretane and its diaza-analogue are best described as closed-shell and
delocalized-spin species in their singlet and triplet states, respectively. The analysis
performed on strained propellanes also confirm their nonradical nature, even in the
absence of the central C-C bond.
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Diradical character from the local spin analysis
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1 The local spin analysis

In the local spin analysis, the 〈Ŝ2〉A values indicate and quantify the presence of
local spin within the molecule, namely on atom/fragment A. The magnitude and
sign of the diatomic contributions 〈Ŝ2〉AB with B 6= A inform about the nature of the
couplings between these local spins. The physical interpretation of the 〈Ŝ2〉A and
particularly 〈Ŝ2〉AB values is somewhat intricate, and has been recently discussed in
detail in several papers.1,2 We provide here a brief account of its general character-
istics for ideal systems.

When two perfectly localized spins are coupled as a singlet, a proper multiref-
erence wave function is needed to account for the spin properties of the system.
In that case, the local spin analysis yields 〈Ŝ2〉A = 3/4 and 〈Ŝ2〉AB = −3/4, which
account for the expected overall 〈Ŝ2〉 = 0. The 〈Ŝ2〉A value is consistent with the
corresponding 〈Ŝ2〉 = s(s+ 1) value for the isolated one-electron system and the
negative sign of 〈Ŝ2〉AB indicates that the two local spins are coupled as a singlet
(entangled). With a single-determinant broken symmetry description of the same
system one would obtain similarly 〈Ŝ2〉A = 3/4, but now 〈Ŝ2〉AB = −1/4, for an
overall value of 〈Ŝ2〉 = 1. Both 〈Ŝ2〉A and 〈Ŝ2〉AB monotonically decrease as the
two spins become more amd more delocalized. In the limiting case of a closed-
shell single-determinant description, all local spin contributions exactly vanish.



If the two perfectly localized spins on centers A and B are parallel, the local spin
analysis would yield 〈Ŝ2〉A = 3/4 and 〈Ŝ2〉AB = 1/4, for an overall value of 〈Ŝ2〉=
2, as expected for a triplet. The one-center term is again consistent with a one-
electron system, and the positive sign of the diatomic contribution now indicates
that the local spins are parallel. In a parallel-spins situation, if the two spins are not
perfectly localized the value of 〈Ŝ2〉AB decreases, but that of 〈Ŝ2〉A increases. The
latter is an indication of partial triplet character on the given center.

2 Local spin analysis of diradicals and diradicaloids
Tetramethyleneethane (TME) is a well-studied diradical.3,4 This molecule has been
optimized under three different symmetry constrains, namely D2, D2h and D2d at
the CASSCF level of theory. The active space included 6 electrons and 6 orbitals
(in the D2h symmetry they correspond to the set of 6 π orbitals.) The lowest energy
structure has D2 symmetry, with a C1-C2-C4-C5 dihedral angle (α) of 70.6 deg (see
Figure 1).

The results of the local spin analysis are gathered on Table 1. The atomic and
diatomic spin components are almost independent of the rotation with respect to the
central C-C bond. The vertical singlet-triplet gaps, sometimes used to assess the
radical character,4 are not too different for the D2, D2h, and D2d structures (-1.33, -
3.91, and -2.05 kcal/mol, respectively). We will focus on the results obtained for the
global minimum (D2 symmetry). The main spin centers are C1 and the symmetry
equivalent C3, C5, and C6, with 〈Ŝ2〉C values of 0.35 and 0.36 for the singlet and
triplet states (the local spin involving the H atoms is negligible). The diatomic spin
terms 〈Ŝ2〉C1,C2 and 〈Ŝ2〉C1,C3 (and their symmetry equivalents) also equal in both
electronic states. The sign of these spin contributions indicates the alternation of
the spins within each allyl fragment, as indicated in Figure 1. The main differences
between the local spin distribution of the singlet and triplet states are found in the
diatomic terms involving the C atoms on the different allyl fragments. In the singlet
state, the atoms 1, 3, and 4 have parallel spins, as indicated by the sign of 〈Ŝ2〉C1,C3

and 〈Ŝ2〉C1,C4 terms, whereas centers 2, 5, and 6 exhibit antiparallel arrangement
with respect to them.



Figure 1: Numbering scheme of tetrathyleneethane (TME) and local spin distribu-
tion of the singlet state.

The diatomic terms 〈Ŝ2〉C1,C5 present a rather small value of -0.17. However,
this value accounts for most of the expected diatomic spin contribution of -3/4 be-
tween the two allyl centers, as there are four such diatomic contributions equivalent
by symmetry. In the triplet state, the local spins on the C atoms of one of the allyl
moieties are flipped with respect to the singlet state. The four symmetry-equivalent
diatomic terms 〈Ŝ2〉C1,C5 = 0.05 account for the spin-spin interactions between the
allyl moieties.

The diatomic spin contribution between atoms C2 and C4 is almost zero. More-
over, the one- and two-center contributions involving atoms C1, C2 and C3 are very
similar to those observed for a single allyl radical.5 In fact, summing up all one-
and two-center contributions for all atoms of each allyl moiety gives a local spin
on each fragment very close to 3/4 in all cases (see bottom of Table 1). Thus, the
TME molecule can be regarded as a diradical made up from two independent allyl
radicals bonded by the central carbon atoms. The local spin analysis unravels the
spin distribution among all centers or fragments on the same footing both different
electronic states, i.e., even if no spin density exists.



Table 1: Local spin analysis of the TME molecule for the singlet (S) and triplet (T)
states of different geometries.

Atom/Atom pair D2 (α = 70.6) D2h (α = 0) D2d (α = 90)
Fragment/ Fragment pair S T S T S T

C1 0.36 0.37 0.36 0.37 0.35 0.37
C2 0.14 0.14 0.14 0.14 0.14 0.14

C1,C2 -0.09 -0.09 -0.08 -0.09 -0.09 -0.09
C1,C3 0.08 0.08 0.08 0.08 0.08 0.08
C1,C4 0.03 -0.01 0.03 0.00 0.03 -0.01
C1,C5 -0.17 0.05 -0.17 0.04 -0.17 0.05
C1,C6 -0.18 0.05 -0.19 0.04 -0.17 0.05
C2,C4 -0.01 -0.01 -0.02 -0.02 -0.01 0.00
allyl 0.77 0.80 0.79 0.81 0.76 0.79

allyl1,allyl2 -0.77 0.20 -0.79 0.19 -0.76 0.21

Diphosphadiboretanes and their analogues are some of the most controversial
diradicaloid systems discussed in the literature. For these systems we have carried
out the local spin analysis with both an unrestricted single-determinant (UB3LYP)
and a CASSCF(2,2) wave function for comparision, and for both their singlet and
triplet states. The results are gathered on Table 2.

Table 2: Local spin analysis of four-member ring diradicaloids for different spin
states and levels of theory

〈Ŝ2〉A/〈Ŝ2〉AB
Molecule Atom/Atom pair CASSCF UB3LYP

Singlet Triplet Singlet Triplet
C 0.58 0.59 0.59 0.59

(CH)2(C’H2)2 C’ 0.05 0.05 0.05 0.06
C-C -0.46 0.15 -0.16 0.16
B 0.10 0.27 0.00 0.32

(BH)2(PH2)2 P 0.09 0.26 0.00 0.22
B-B -0.04 0.03 0.00 0.05
B 0.19 0.28 0.20 0.31

(BH)2(NH2)2 N 0.14 0.25 0.15 0.24
B-B -0.07 0.03 -0.03 0.05



The local spin values (atomic terms) for singlet states are very similar for
CASSCF(2,2) and UB3LYP methods, provided a broken-symmetry solution is
found for the latter. For singlet states, the species with a larger local spin contribu-
tions is (CH)2(CH2)2. The value for the CASSCF(2,2) wave function (0.58) is not
too far from that expected for a perfectly localized electron (3/4). In (BH)2(NH2)2

the local spin is significantly smaller (0.19), which should indicate a much weaker
diradical character. In the case of the diphosphadiboretane species the local spin is
almost negligible (0.10), consistent with a residual diradical character.

For triplet states the local spin analysis yields very similar one- and two-center
contributions for both methods. This is not surprising since with a CASSCF(2,2)
approach the mS = |S| state is described by a ROHF wave function. The atomic
contributions of (CH)2(CH2)2 are essentially the same as in the singlet state. The
diatomic term involving the two main local spin centers is now positive, indicating
parallel arrangement of the spins. In the case of (BH)2(PH2)2 and (BH)2(NH2)2 the
four atoms of the ring exhibit similar but small contributions. In fact, the sum of the
terms reported on Table 2 is still far from the overall 〈Ŝ2〉 ≈ 2 value. This is because
the hydrogen atoms (omitted thus far) exhibit small but significant contributions of
ca. 0.05-0.10. Thus, these species do not exhibit significant spin centers and the
molecular spin is delocalized over all atoms.
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