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Resum

El melanoma maligne és el més rar i mortal de tots els càncers de pell, causant tres

vegades més morts que el conjunt de totes les altres malalties malignes de la pell. Afor-

tunadament, en les primeres etapes, és completament curable, fent de les exploracions

de pell a nivell de cos complert (TBSE, de l’anglés Total Body Skin Examination) un

procés fonamental per a molts pacients. Durant el TBSE, els dermatòlegs busquen els

signes t́ıpics de melanoma en les lesions pigmentades de la pell (PSL, Pigmented Skin

Lesions), aix́ı com PSLs sotmesos als ràpids canvis caracteŕıstics del càncer. Conjunta-

ment amb la fotografia de referència cĺınica i dermatoscòpica, el càlcul de TBSE pot ser

molt tediós i lent, especialment per a pacients amb un gran nombre de lesions. A més

a més, establir correspondències correctes entre el cos i les imatges, i entre les diferents

imatges, per a cadascuna de les lesions, pot ésser d’extrema dificultat.

Malgrat els avenços en les tècniques d’escaneig cutani, les eines per a realitzar

TBSEs de forma automàtica no han rebut massa atenció. Aquest fet es posa de relleu en

la nostra revisió de la literatura, que cobreix l’àrea de l’anàlisi per computador d’imatges

de PSL. En aquesta revisió, es resumeixen vàries aproximacions per a la implementació

del diagnòstic assistit per ordinador, comentant-ne els seus components principals. En

particular, es proposa una classificació ampliada de descriptors de caracteŕıstiques PSL,

associant-los amb mètodes espećıfics pel diagnòstic de melanoma, dividint-los entre

imatge cĺınica i dermatoscòpica.

Amb l’objectiu de l’automatització de TBSEs, hem dissenyat i constrüıt un escàner

corporal de cobertura total per adquirir imatges de la superf́ıcie de la pell utilitzant llum

amb polarització creuada. Equipat amb 21 càmeres d’alta resolució de baix cost i una

plataforma giratòria, aquest escàner adquireix automàticament un conjunt d’imatges

amb solapament, que cobreix el 85–90% de la superf́ıcie de la pell del pacient. La

calibració extŕınseca del sistema es du a terme utilitzant una sola imatge de cada càmera

i un patró de calibratge amb un codi de colors dissenyat espećıficament. A més, hem

desenvolupat un algoritme pel mapeig automàtic de les PSLs i l’estimació dels canvis

entre exploracions. Els mapes prodüıts relacionen les imatges de les lesions individuals

amb la seva ubicació en el cos del pacient, resolent el problema de correspondència

del cos a la imatge i d’imatge a imatge en TBSEs. Actualment, l’escàner es limita a

pacients amb escàs pèl corporal. Per a un examen complet de la pell, on el cuir cabellut,

els palmells de les mans, les plantes dels peus i les parts interiors dels braços han de

ser fotografiats manualment.

Els tests inicials de l’escàner mostren que aquest pot ésser utilitzat satisfactòriament
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pel mapeig automàtic i el control de canvis temporal de múltiples lesions: els PSLs

importants per a realitzar-ne el seguiment han estat mapejats successivament en les

diverses exploracions. D’altra banda, durant la comparació d’imatges, totes les lesions

amb canvis artificials introdüıts han estat correctament identificades com “evoluciona-

des”. Per tal de desenvolupar estudis cĺınics més amplis, amb diferents tipus de pell,

l’escàner s’ha instal.lat a la Unitat de Melanoma de l’Hospital Cĺınic de Barcelona.
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Resumen

El melanoma maligno es el más raro y mortal de todos los canceres de piel, cau-

sando tres veces más muertes que el conjunto de todas las enfermedades malignas de la

piel. Afortunadamente, en las etapas tempranas, es completamente curable, haciendo

que el examen de piel de cuerpo completo (del inglés Total Body Skin Examination,

TBSE) sea un procedimiento fundamental para muchos pacientes. Durante el TBSE,

los dermatólogos buscan los signos t́ıpicos de melanoma en las lesiones pigmentadas de

la piel (Pigmented Skin Lesions, PSLs), aśı como PSLs sometidas a los rápidos cambios

caracteŕısticos del cáncer. Junto a la fotograf́ıa de referencia cĺınica y dermatoscópica,

un TBSE puede ser muy tedioso y lento, especialmente para los pacientes con gran

número de lesiones. Además, establecer correspondencias correctas entre las lesiones

en el cuerpo y las imágenes, o en diferentes imágenes, puede ser extremadamente dif́ıcil.

A pesar de los avances en las técnicas del escaneo corporal, las herramientas para re-

alizar TBSEs de forma automática no han recibido la debida atención. Este hecho queda

patente en nuestra revisión bibliográfica que cubre el análisis de imágenes por computa-

dor de PSLs. En esta revisión, se resumen varias estrategias para la implementación

del diagnóstico asistido por ordenador, comentando sus componentes principales. En

concreto, se propone una clasificación ampliada de descriptores de caracteŕısticas PSL,

asociándolos con métodos espećıficos para el diagnóstico del melanoma, y dividiéndolos

entre imagen cĺınica y dermatoscópica.

Con el objetivo de la automatización de TBSEs, hemos diseñado y construido un

escáner corporal de cobertura total para adquirir imágenes de la superficie de la piel

utilizando luz con polarización cruzada. Equipado con 21 cámaras de alta resolución

de bajo coste y una plataforma giratoria, este escáner adquiere automáticamente un

conjunto de imágenes con solapamiento, que cubre el 85–90% de la superficie de la piel

del paciente. La calibración extŕınseca del sistema se lleva a cabo utilizando una sola

imagen de cada cámara y un patrón de calibración con un código de colores diseñado

espećıficamente. Además, hemos desarrollado un algoritmo por mapeo automático de

las PSLs y la estimación de los cambios entre exploraciones. Los mapas producidos

relacionan las imágenes de las lesiones individuales con su ubicación en el cuerpo del

paciente, resolviendo el problema de correspondencia cuerpo-imagen e imagen-imagen

de las lesiones en TBSEs. Actualmente, el escáner se limita a pacientes con escaso

vello corporal. Asimismo, para un examen completo de la piel, el cuero cabelludo, las

palmas de las manos, las plantas de los pies y las partes interiores de los brazos deben

ser fotografiadas manualmente.
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Las pruebas iniciales del escáner muestran que este puede ser utilizado satisfac-

toriamente para el mapeo automático y el control de cambios temporal de múltiples

lesiones: los PSLs importantes para realizar el seguimiento eran mapeados sucesiva-

mente en varias exploraciones. Por otra parte, durante la comparación de imágenes,

todas las lesiones en las que se han introducido cambios artificiales, han sido correc-

tamente identificadas como “evolucionadas”. Para desarrollar estudios cĺınicos más

amplios con diferentes tipos de piel, el escáner se ha instalado en la Unidad de Mela-

noma del Hospital Cĺınic de Barcelona.
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Abstract

Malignant melanoma is the rarest and deadliest of skin cancers causing three times

more deaths than all other skin-related malignancies combined. Fortunately, in its

early stages, it is completely curable, making a total body skin examination (TBSE) a

fundamental procedure for many patients. During TBSE, dermatologists look for pig-

mented skin lesions (PSLs) exhibiting typical melanoma signs as well as PSLs undergo-

ing the rapid changes characteristic of cancer. Accompanied by clinical and dermoscopic

baseline photography, a TBSE can be very tedious and time-consuming, especially for

patients with numerous lesions. In addition, establishing correct body-to-image and

image-to-image lesion correspondences can be extremely difficult.

Despite the advances in body scanning techniques, automated assistance tools for

TBSEs have not received due attention. This fact is emphasized in our literature

review covering the area of computerized analysis of PSL images. In this review, we

summarize various approaches for implementing PSL computer-aided diagnosis systems

and discuss their standard workflow components. In particular, we propose an extended

categorization of PSL feature descriptors, associating them with specific methods for

diagnosing melanoma, and separating clinical and dermoscopic images.

Aiming at the automation of TBSEs, we have designed and built a total body

scanner to acquire skin surface images using cross-polarized light. Equipped with 21

low-cost high-resolution cameras and a turntable, this scanner automatically acquires

a set of overlapping images, covering 85–90% of the patient’s skin surface. A one-

shot extrinsic calibration of all the cameras is carried out using a specifically designed

color-coded calibration pattern. Furthermore, we have developed an algorithm for

the automated mapping of PSLs and their change estimation between explorations.

The maps produced relate images of individual lesions with their locations on the

patient’s body, solving the body-to-image and image-to-image correspondence problem

in TBSEs. Currently, the scanner is limited to patients with sparse body hair and,

for a complete skin examination, the scalp, palms, soles and inner arms should be

photographed manually.

The initial tests of the scanner showed that it can be successfully applied for auto-

mated mapping and temporal monitoring of multiple lesions: PSLs relevant for follow-

up were repeatedly mapped in several explorations. Moreover, during the baseline

image comparison, all lesions with artificially induced changes were correctly identified

as “evolved”. In order to perform a wider clinical trial with a diverse skin image set, the

scanner has been installed in the Melanoma Unit at the Clinic Hospital of Barcelona.
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Moles are blemishes—not “beauty spots”.

Stanford Cade, “Malignant Melanoma” [2]

Chapter 1

Introduction

The skin is the largest organ in the human body and an excellent protection from

the aggressions of the environment. It keeps us safe from infections, water loss and

ultraviolet radiation (UV). However, if care is not taken, after years of faithful service,

the protector itself can turn into a treacherous and merciless foe: the skin can become

a source of a deadly cancer. Fortunately, this does not happen without warning: the

skin usually exhibits signs which can help detect this dangerous metamorphosis. These

signs may differ according to the type of malignancy and can sometimes be hard to

perceive. Thus, one of the key indicators of malignant melanoma—the deadliest skin

cancer—are melanocytic nevi, also known as moles or pigmented skin lesions (PSLs).

The occurrence of nevi, their appearance and especially their evolution can indicate a

developing or progressing malignancy.

To understand the nature of malignant tumors of the skin better and see how

computer vision can help in their treatment, it is essential to know more about the

clinical aspects of this problem. In this chapter, we offer a brief introduction into the

main dermatological concepts related to melanoma of the skin.

1.1 The human skin

The skin consists of two principal layers: the epidermis and the dermis (see Fig. 1.1).

The dermis is made of collagen (a type of protein) and elastic fibers. It contains two

sub-layers: the papillary dermis (thin layer) and the reticular dermis (thick layer).

While the former serves as a “glue” that holds the epidermis and the dermis together,

the latter contains blood and lymph vessels, nerve endings, sweat glands and hair

follicles. It provides energy and nutrition to the epidermis and plays an important role

1



1. INTRODUCTION

Figure 1.1: Anatomy of the skin showing the epidermis, the dermis, and subcutaneous (hypodermic)
tissue. Illustration used with permission, copyright 2008 by Terese Winslow.

in thermoregulation, healing and the sense of touch [1].

The other layer, the epidermis, is a stratified squamous epithelium, a layered scale-

like tissue, which fulfills the protective functions of the skin. On simple morphological

grounds, the epidermis can be divided into four distinct layers from the bottom to the

top: stratum basale, stratum spinosum, stratum granulosum and stratum corneum [3].

There are four types of cells in the epidermis: keratinocytes, melanocytes, Langer-

hans’ cells and Merkel cells. Keratinocytes represent the majority (95%) of cells in

the epidermis and are the driving force for continuous renewal of the skin [3]. Their

abilities to divide and differentiate allow them to travel for approximately 30 days from

the basal layer (stratum basale) to the horny layer (stratum corneum). During this

time, the keratinocytes produced by division in the basal layer (here called basal cells)

move through the next layers transforming their morphology and biochemistry (differ-

entiation). As a result of this movement and transformation, the flattened cells without

nuclei, filled with keratin, come to form the outermost layer of the epidermis and are

called corneocytes. Finally, at the end of the differentiation program, the corneocytes

2



lose their cohesion and separate from the surface in the so-called desquamation process.

This is how our skin is constantly being renewed.

Merkel cells are probably derived from keratinocytes, but they act as mechano-

sensory receptors in response to touch forming close connections with sensory nerve

endings [3]. In turn, Langerhans’ cells are dendritic cells1 that detect foreign bodies

(antigens) that have penetrated the epidermis and deliver them to the local lymph

nodes.

In this project, the type of skin cells that most interest us are melanocytes. These

are dendritic cells found in the basal layer of the epidermis [3]. Unlike Langerhans’ cells,

melanocytes produce packages of melanin pigment and use their dendrites to distribute

them to surrounding keratinocytes (see Fig. 1.1). Besides protecting the subcutaneous2

tissue from being damaged by UV radiation, melanin also contributes to the color of

the skin (as well as that of the hair and eyes). Whenever the levels of UV radiation

increase, melanocytes start producing more melanin, hence our tanning reaction to sun

exposure.

Nevertheless, it is not the aesthetic results of melanocyte activity that draw our at-

tention, but their malignant transformation potential. Although cancer can develop in

almost any cell in the body, certain cells are more cancer-prone than others and the skin

is no exception. Most skin cancers develop from non-pigmented basal and squamous

keratinocytes. Their transformation results in basal cell carcinoma and squamous cell

carcinoma, respectively [1, 4]. However, melanocytes that undergo a malignant trans-

formation produce a less common but far more deadly and aggressive cancer: malignant

melanoma. The epidemiology and treatment of this cancer, as well as some skin lesions

known as its precursors, are described in the following sections.

1.2 Pigmented skin lesions

When melanocytes grow in clusters alongside normal cells, pigmented skin lesions or

melanocytic nevi appear on the surface of the skin [1] and are considered to be a normal

part of the skin. The most common benign PSLs are:

� Freckle or ephelis – a pale-brown, macular lesion, usually less than 3 mm in

1Dendritic cells have branched projections, the dendrites, that give them the name and a tree-like
appearance. Normally, cells of this kind are involved in processing and carrying antigen material to
cells in the immune system.

2Subcutaneous – being, living, occurring, or administered under the skin (from sub- + Latin cutis
skin). Definition by Merriam-Webster dictionary.
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1. INTRODUCTION

(a)

(b)

(c)

(d)

Figure 1.2: Clinical (right column) and dermoscopic (left column) images of benign pigmented skin
lesions: (a) congenital nevus; (b) dysplastic nevus; (c) blue nevus; (d) Spitz nevus. Images submitted
to www.dermoscopyatlas.com by Dr. Ian McColl (a), Dr. Cliff Rosendahl (b,d) and Dr. Greg Canning
(c). Used with permission.
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diameter with a poorly defined lateral margin, which appears and darkens on

light-exposed skin sites during periods of ultraviolet exposure [5].

� Common nevus – a typical flat melanocytic nevus or mole.

� Congenital nevus (Fig. 1.2a) – a mole that appears at birth, also known as “birth-

mark”.

� Atypical or dysplastic nevus (Fig. 1.2b) – a common nevus with inconsistent

coloration, irregular or notched edges, blurry borders, scale-like texture and a

diameter of over 5 mm [1]. Atypical mole syndrome, also known as “Familial

Atypical Multiple Mole Melanoma” (FAMMM) or dysplastic nevus syndrome,

describes individuals with large quantities of atypical nevi and possibly inherited

melanomas. The relative risk of developing a melanoma in such individuals is

around 6 to 10 times that of people with very few nevi [5].

� Blue nevus (Fig. 1.2c) – a melanocytic nevus comprised of aberrant collections

of benign pigment-producing melanocytes, located in the dermis rather than at

the dermoepidermal junction [5]. The optical effects of light reflecting off melanin

deep in the dermis provides its blue or blue-black appearance.

� Pigmented Spitz nevus (Fig. 1.2d) – an uncommon benign nevus, usually seen in

children, difficult to distinguish from melanoma [5].

Among these benign lesions, congenital and acquired dysplastic nevi are the known

precursors to malignant melanoma [6].

1.3 Malignant melanoma

In 1821, Dr. William Norris, a general practitioner in Stourbridge, England, described

the autopsy of a patient with what he thought was a fungoid disease: ”...thousands upon

thousands of coal black spots, of circular shapes and various sizes, were to be seen closely

dotting the shining mucous, serous, and fibrous membranes of most of the vital organs;

I should think the most dazzling sight ever beheld by morbid anatomist.” [7]. This

somewhat exalted description is one of the first documented clinical observations of a

metastasized malignant melanoma. Later, in 1857, Dr. Norris would state a number of

principles concerning the epidemiology, pathology and treatment of the disease, which

constitute the basic knowledge we have about melanoma to date [8].
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1. INTRODUCTION

(a)

(b)

Figure 1.3: Clinical (right column) and dermoscopic (left column) images of: a) in-situ mela-
noma (stage 0); b) invasive melanoma (Breslow thickness 0.8 mm, stage I/II); Images submitted
to www.dermoscopyatlas.com by Dr. Alan Cameron (a), Dr. Jean-Yves Gourhant (b). Used with
permission.

Malignant melanoma (see Fig. 1.3) is characterized by the most rapidly increas-

ing incidence and causes the majority (75%) of deaths related to skin cancer [4, 9].

White-skinned peoples are the most susceptible to developing this type of cutaneous

malignancy and there is conclusive data showing that the dominant cause is intermittent

sun exposure. Furthermore, sun-beds are also positively associated with melanoma [5].

The highest phenotypic risk factor of this cancer is the presence of increased numbers

of melanocytic nevi (especially in the case of atypical mole syndrome) followed by fair

skin type, high density of freckles, eye and hair color. In addition, family history is a

very important factor in the risk-estimation of melanoma occurrence [5].

In its advanced stages (with signs of metastases), melanoma is incurable, and

the treatment, being solely palliative, includes surgery, immunotherapy, chemother-

apy, and/or radiation therapy [10]. Among other factors, the stage of melanoma is

measured by its depth of invasion. In this respect, the most valuable prognostic factor

is Breslow’s depth or thickness [11]. This means of measuring the vertical growth of

melanoma was proposed by Dr. Alexander Breslow in 1970. In general, the deeper the
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measurement (depth of invasion), the higher the chances for metastasis and the worse

the prognosis.

Fortunately, early-stage melanoma (see Fig.1.3a) is highly curable [9]. In fact, the

results of Breslow’s experiments showed that lesions less than 0.76 mm thick do not

produce metastases [11]. This highlights the critical importance of timely diagnosis

and treatment of melanoma for patient survival [12].

Friedman et al. [6], the authors of the ABCD criteria for early melanoma detection,

emphasized in their paper that “by performing periodic complete cutaneous examina-

tions, by teaching patients the technique of routine self-examination of the skin, and

by proper use of diagnostic aids (particularly skin biopsy), physicians can improve the

chances for early diagnosis and prompt eradication of malignant melanoma”. Thus, the

importance of regular screening procedures for patients with a high risk of developing

melanoma is beyond doubt.

1.4 Melanoma screening

The prevailing strategy for skin screening procedures is total body skin examination

(TBSE) [13]. TBSE consists of meticulously analyzing every pigmented lesion on the

patient’s body and determining those which exhibit signs of a developing melanoma.

This can be a very tedious and time-consuming process (up to several hours), especially

for patients with atypical mole syndrome. To facilitate the recognition of melanoma

during the examination, dermatologists apply specific diagnostic rules and criteria as

well as using various imaging techniques. Furthermore, the application of artificial

intelligence to melanoma diagnosis allows the creation of systems for computer-aided

diagnosis.

1.4.1 Imaging techniques

Dermatologists use a number of non-invasive imaging techniques to help them diag-

nose skin lesions. Besides traditional photography, which has been used for a long

time in dermatology [14], there are a number of imaging modalities that allow the

visualization of different skin lesion structures. These modalities include dermoscopy,

confocal laser scanning microscopy, optical coherence tomography, high frequency ul-

trasound, positron emission tomography, magnetic resonance imaging and various spec-

troscopic imaging techniques, among others. For more information on all the imaging

modalities for melanoma diagnosis, the interested reader can refer to the available re-

views: [12,15–22].
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We have focused our research on the two imaging techniques most commonly used

in dermatological practice: clinical photography and dermoscopy.

1.4.1.1 Clinical photography

Dermatological photographs (digital or not) showing a single or multiple skin lesions on

the surface of the skin are referred to as clinical or macroscopic images. These images

reproduce what a clinician sees with the naked eye [23]. The left column in Figs. 1.2

and 1.3 demonstrate such macroscopic images. Clinical imaging is used to document

PSLs, mapping their location on the human body and tracking their changes over time

as sensitive signs of early melanoma [24].

Apart from taking photographs of single lesions or separate groups of lesions, physi-

cians may recur to total body photography, also known as total body skin imaging

(TBSI) and whole body photography (WBP) [13]. This is a method of photographic

documentation of a person’s entire cutaneous surface through a series of body sector

images.

During a TBSI procedure the patient should assume a set of standardized body

poses (see Fig. 1.4). The lighting conditions must be appropriate to allow the best

contrast between PSLs and the skin. In addition, the setup of a TBSI system should

be easily reproducible for successive acquisitions. The body parts that must be pho-

tographed are: the face, the neck, the area behind the ears, the scalp (in bald indi-

viduals), the anterior and posterior torso, and the extremities (including palms and

soles).

Advantages of total body skin imaging include [24]:

� potential aid for change identification in lesions not suspected at the time of

initial evaluation. The study conducted by Feit et al. [25] showed that TBSI

helped detect new and subtly changing melanomas which did not satisfy classical

clinical features of melanoma;

� efficient evaluation of large numbers of lesions;

� lack of reliance on expert interpretation of dermoscopic images.

Ideally, whole body photography should be systematically combined with other

techniques, including dermoscopy, for improved diagnostic efficiency and accuracy [24].

The study conducted in [26] showed that monitoring by total body photography and

sequential dermoscopy detects thinner melanomas.
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Figure 1.4: Standardized poses for TBSI proposed by Halpern in [13]

The survey conducted in [27] showed that although there was an increase in the

use of TBSI during the last decade, it was only moderate when compared to that of

dermoscopy. Dermatologists specified that using TBSI reduces patient anxiety, helps

early melanoma detection and leads to fewer biopsies. However, logistical and financial

constraints were named as obstacles to its wide application in clinical practice [27].

1.4.1.2 Dermoscopy

Originally, the term “dermoscopy” referred to a non-invasive imaging technique for

PSLs that allows visualization of their subsurface structures by means of a hand-held

incident light magnifying device (microscope) and an immersion fluid (with a refracting

index that makes the horny layer of the skin more transparent to light and eliminates

reflections) [28–30]. Contact between the skin and the glass plate of the microscope is

essential in this case. This technique is also known as dermatoscopy, in vivo cutaneous

surface microscopy, magnified oil immersion diascopy and most commonly, epiluminis-

cence microscopy (ELM). Sample images are shown in the right column of Figs. 1.2

and 1.3. As can be seen in the images, dermoscopy allows visualization of a variety

of different structures such as globules, streaks or pigment networks. It also greatly

improves color contrast within the borders of the lesion.
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(a) Dermliter II Fluid (b) Dermliter II Pro HR

Figure 1.5: Samples of commercially available dermoscopes produced by Dermliter: (a) immersion
fluid dermoscope using non-polarized light; (b) cross-polarized light dermoscope. Both devices can be
attached to a digital camera.

A significant modification in how dermoscopy was conducted came with the substi-

tution of non-polarized light for cross-polarized light. In devices of this type, the use of

immersion fluid or direct skin contact are not needed, and the images acquired by polar-

ized and non-polarized light dermoscopes are almost identical. However, the “almost”

part is responsible for the subtle differences in lesion visualization, such as melanin

brightness or color appearance [30, 31]. In order to differentiate between these two

types of dermoscopy, polarized light dermoscopy is sometimes referred to as “videomi-

croscopy” [30, 32] or XLM (for cross-polarised epiluminescence) [33]. Nevertheless, in

general, the term “dermoscope” refers to devices using both types of light sources.

Fig. 1.5 shows modern dermoscopes based on non-polarized and cross-polarized light

technique.

Another imaging modality related to dermoscopy is the transillumination technique.

In dermatology, this is a technique of visualizing a lesion by directing light onto the

skin in such a way that the back-scattered light illuminates the lesion from within. The

device used for this is patented and called Nevoscope [34–36], but has not been widely

adopted in clinical practice.

1.4.1.3 Baseline images

Baseline cutaneous photography [37] is an important concept in dermatology. The term

“baseline” refers to the date of the patient’s previous cutaneous image, i.e. the newly

acquired images are compared to the baseline image during a follow-up examination
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so that the evolution and/or appearance of new lesions can be detected. Baseline

images can be either clinical or dermoscopic, and do not in fact have to be limited to

photography: images acquired by any other means may have a baseline reference.

1.4.2 Melanoma diagnosis methods

During screening procedures, clinicians and dermatologists use certain criteria to de-

termine whether a given lesion is a melanoma. Performing the procedure without a

dermoscope or with the help of clinical baseline images, the ABCDE criteria [38] and

the Glasgow 7-point checklist [39] can be used.

The latter contains 7 criteria: 3 major (changes in size, shape and color) and 4

minor (diameter ≥ 7 mm, inflammation, crusting or bleeding and sensory change), but

has not been widely adopted [38]. The so-called ABCD criteria, proposed in 1985 by

Friedman et al. [6], have been extensively applied in clinical practice, mostly due to

simplicity of use [17, 38]. This mnemonic defines the diagnosis of a lesion based on its

asymmetry (A), irregularity of the border (B), color variegation (C) and the diameter

(D), that is generally greater than 6 mm for suspicious lesions. Later, in 2004, Abbasi et

al. [38] proposed expanding the ABCD criteria to ABCDE by incorporating the E for

“evolving” of the lesion over time, which reflects the results of the studies similar to the

one performed in [40, 41], and includes changes in features such as size, shape, surface

texture, color, etc.

In order to differentiate between melanoma and benign melanocytic tumors using

dermoscopic images, new diagnostic methods were created and existing clinical crite-

ria were adapted. These methods are summarized in Table 1.1. Note the identical

names of the criteria for different imaging modalities: ABCD rule of dermoscopy and

7-point checklist [42]. It is important to clearly differentiate between them to avoid

any confusion since they attempt to provide lesion diagnosis based on different types

of information.

To this end, Table 1.2 shows differences between methods of melanoma diagnosis

which share practically identical names but refer to different image modalities. As the

table illustrates, the modified meaning of the letters in the ABCD rule of dermoscopy

is: B for border sharpness and D for Differential structures. Importantly, besides these

changes, all the criteria in this method have a fairly different interpretation from their

clinical counterparts. Moreover, the “items” on the 7-point checklist differ completely

from those on the Glasgow 7-point checklist. Although the first three points on both

lists are awarded a higher score, they are all adapted specifically according to the
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Table 1.1: Methods for the diagnosis of melanoma clinically and by dermoscopy.

Clinical image / Naked-eye inspection Dermoscopic image?

ABCD criteria ABCD rule�

ABCDE criteria ABCD-E criteria
— ABC-point list [A(A)BCDE]

Glasgow 7-point checklist 7-point checklist�

— 7 features for melanoma
— 3-point checklist

— Pattern analysis�

— Menzies’ method�

? The list of diagnostic methods by dermoscopy was taken from [42]. References to
respective papers can be found therein.

� These methods were evaluated in the study during the virtual consensus net meeting
on dermoscopy (CNMD) [43].

structures visible in the dermoscopic images (see Table 1.2). More information on the

performance comparison of the ABCD rule of dermoscopy and the 7-point checklist and

implications for computer-aided diagnosis can be found in [44].

Nevertheless, it is important to note that these methods for diagnosing melanoma

from both clinical and dermoscopic images are used to determine only whether suspi-

cious lesions could be melanoma. The actual diagnosis is carried out by a pathologist

after such suspicious lesions are excised (biopsied). A diagram of the lifecycle of a

suspicious lesion can be found in [45].

1.4.3 Automated diagnosis of melanoma

Systems for the automated diagnosis of melanoma, computer-aided diagnosis (CAD)

or clinical diagnosis support (CDS) systems, are intended to reproduce the decision

of the dermatologist when observing images of PSLs. They were primarily developed

to respond to a desired increase in specificity and sensitivity in melanoma recognition

when compared to that of dermatologists, and a reduction in morbidity related to lesion

excisions. Although such systems are being developed for various imaging modalities

(see [46, 47]), in our research we considered automated melanoma recognition systems

based only on clinical photography, dermoscopy and spectrophotometry.

Most of these automated systems are based on the aforementioned melanoma diag-

nostic methods. In general, image processing techniques are used to locate and delineate

the lesion(s), extract image parameters describing the dermatological features of the

lesion(s), and, based on these parameters, perform the diagnosis. The generic steps of
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Table 1.2: Confusing acronyms that have different meanings in clinical (CI) vs. dermoscopic images
(DI). Variation of criteria names is highlighted in bold. Note that even with the identical names of the
criteria their meaning is different for CI and DI.

ABCD� criteria (CI) ABCD rule of dermoscopy (DI)

(A) Asymmetry: overall shape of the lesion (A) Asymmetry: contour, colors and
structures

(B) Border irregularity: ill-defined and
irregular borders

(B) Border sharpness: abrupt cut-off of
pigment pattern

(C) Color variegation: colors are
non-uniform

(C) Color variegation: presence of 6 defined
colors

(D) Diameter: ≥ 6 mm (D) Differential structures: presence of 5
differential structures

Glasgow 7-point checklist (CI) 7-point checklist (DI)

(1) Changes in size (1) Atypical pigment network
(2) Changes in shape (2) Blue-whitish veil
(3) Changes in color (3) Atypical vascular pattern
(4) Diameter ≥ 7 mm (4) Irregular streaks
(5) Inflammation (5) Irregular dots/globules
(6) Crusting or bleeding (6) Irregular blotches
(7) Sensory change (7) Regression structures
� ABCDE (CI) and ABCD-E (DI) exploit the corresponding ABCD criteria and include “evolving”

and “enlargement and other morphological changes”, respectively.

a CAD system for melanoma identification are highlighted in Fig. 2.1.

1.4.3.1 Clinical impact

Studies have shown that the performance of automated systems for melanoma diag-

nosis is sufficient under experimental conditions [48]. However, the practical value of

automated dermoscopic image analysis systems is still unclear. Although most patients

would accept using computerized analysis for melanoma screening, currently it cannot

be recommended as a sole determinant of the malignancy of a lesion due to its tendency

to over-diagnose benign melanocytic and non-melanocytic skin lesions [48]. In addition,

according to Day and Barbour [45], there are two main shortcomings in the general

approach to developing a CAD system for melanoma identification:

1. A CAD system is expected to reproduce the decision of pathologists (a binary

result like “melanoma/non-melanoma lesion”) with only the input used by der-

matologists: clinical or dermoscopic images;

2. Histopathological data are not available for all lesions, only for those considered

suspicious by dermatologists.
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The former is a methodological problem. It reflects the fact that a CAD system

is intended to diagnose a lesion without sufficient information for diagnosis or any

interaction with the dermatologist. This was highlighted by Dreiseitl et al. in their

study into the acceptance of CDS systems by dermatologists [49], i.e. that the currently

available CDS systems are designed to work “in parallel with and not in support of”

physicians, and because of this, only a few systems are found in routine clinical use.

Thus, an ideal CAD or CDS system for melanoma identification should reproduce the

decision of dermatologists (i.e. define the level of “suspiciousness” of a lesion) [45] and

provide dermatologists with comprehensive information regarding the grounds for this

decision [49].

1.5 Research motivation

Over the last 30 years, more people have had skin cancer than all other cancers com-

bined [50]. Accounting for less than 5% of these cases, melanoma causes the majority

of related deaths [10]. It is essential to take measures preventing the development of

this malignancy, but early detection of melanoma is vital.

Total body skin examination plays a primordial role in monitoring and detecting a

developing melanoma. However, non-automated screening of patients with large num-

bers of lesions (e.g., more than 50) can be very tedious and time-consuming. Expert

physicians have to examine every suspicious lesion for the typical signs of melanoma,

and use baseline images to detect those that had evolved. Thus, besides the difficulty of

identifying suspicious lesions, this procedure can also suffer from issues related to estab-

lishing correct body-to-image or image-to-image lesion correspondences. For example,

Fig. 1.6 shows two dermoscopic images of the same mole acquired with a difference of

one year. The report states that during this period there were no significant changes in

the lesion’s structure. But because of the difference in the orientation of the dermoscope

at the moment of image acquisition, the recognition of the PSL is not easy.

Moreover, without proper baseline photographs, it is difficult to determine if a PSL

which exhibits ambiguous dermoscopic signs is:

(a) an old lesion that has evolved since the last examination;

(b) an old lesion that has NOT changed, but was not noticed previously;

(c) a completely new lesion;

Nevertheless, the automation of TBSI procedures, which could eliminate all the

described issues, has not received much attention. Only less than 4% of the publications
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Figure 1.6: Two dermoscopy images of a PSL acquired with a difference of one year using the same
imaging device (MoleMax�). No morphological change was reported. Images courtesy of Dr. J.
Malvehy.

reviewed in this work (see Chapter 2) addressed the computerized analysis of multiple

skin lesions. It is possible that such a low percentage may be the consequence of

the specific nature of the problem. TBSI requires finding a trade-off between image

resolution and body coverage per image, where the resolution is governed by the needs

of change detection.

In spite of the fact that this trade-off is relatively easy to achieve with modern

cameras, and despite the development of total body photographic systems (e.g. [51,52]),

their automation stays mostly at the level of accessing and storing images. This lack

of attention and absence of research on completely automated systems for TBSI at

present seem unjustified considering the importance of this process in detecting early-

stage melanoma.

Therefore, this work attempts to fill the gap in research on computerized analysis

of multiple pigmented skin lesions, and open new perspectives for its application in

dermatological clinical practice. With the objective of facilitating the TBSE proce-

dures for patients and physicians, we designed and built a total body scanner allowing

for acquisition of skin surface images using cross-polarized light. It is capable of cap-

turing a set of 504 photographic images under controlled lighting conditions covering

approximately 85-90% of the body’s surface. For this scanner, we developed a frame-

work of algorithms for automated detection of pigmented skin lesions, their mapping in

three-dimensional space and consequent change detection between screening sessions.

Applied to the acquired images, these algorithms produce a precise map which links

images of individual PSLs with their real locations on the patient’s body, thus, solving

the body-to-image and image-to-image correspondence problems during TBSE.
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1.6 Thesis outline

This thesis describes the research work that resulted in the development and validation

of the algorithms for change detection in multiple nevi using the total body skin scanner.

Prior to designing the algorithms, we exhaustively studied the literature that exists in

the field of computerized analysis of pigmented skin lesions. Chapter 2 reports the

findings of this literature review.

Chapter 3 contains a description of the hardware design of the total body skin

scanner including the screening (image acquisition) and the extrinsic calibration (pat-

tern design and related image processing methodology) procedures.

Chapter 4 presents the software developed for PSL mapping and change detection.

The description is divided into two sections distinguishing the pipelines for intra- and

inter-exploration (examination) image processing.

Chapter 5 reports the results of testing all the algorithms on real datasets acquired

in laboratory and clinical settings, while Chapter 6 concludes this thesis.

Additional information on the techniques used in the implementation of the PSL

mapping and change detection pipelines can be found in the Appendix.
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The measures science gives us in abundance are

to be used not timidly but bravely to combat

this pigmented foe, who claims the fairest and

the youngest and the old with equal impartial-

ity.

Stanford Cade, “Malignant Melanoma” [2]

Chapter 2

Computerized analysis of PSLs: a

literature review

In 1992, Stoecker and Moss summarized in their editorial the potential benefits of

applying digital imaging to dermatology [53]. These benefits were viewed according to

the technology available at the time, including of course the capabilities of computer

vision techniques, and the results of the earlier research in the area (e.g. [34, 54]).

Among others, these included objective non-invasive documentation of skin lesions,

systems for their diagnostic assistance by malignancy scoring, identifying changes, and

telediagnosis. This was the first time a journal had dedicated an entire special issue

to methods for computerized analysis of images in dermatology specifically applied

to skin cancer. Almost two decades later, the 2011 publication of the second special

issue,Advances in skin cancer image analysis [55], allowed us to clearly see the changes

that have taken place in this field. More importantly, we are able to see how close we

are to making certain benefits real rather than potential, and which ones have turned

out to be even more beneficial than initially predicted.

Such an overview can also reveal various problems in the way of achieving one of the

main goals—the creation of reliable automated means of assistance in melanoma diag-

nosis. Apart from the known methodological [45] and the dataset [56] problems, there

exists what we call a bibliography problem. While the research history of computerized

analysis of PSLs is vast and spread across hundreds of publications, comprehensive lit-

erature reviews are scarce. Yet without adequate material facilitating the assessment

of previous work, especially for those new to the field, researchers have to repeatedly

carry out the same work of article look-up, leaving less time for their analysis.

For this reason, we have attempted to create an extensive literature review estab-
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2. COMPUTERIZED ANALYSIS OF PSLS: A LITERATURE REVIEW

Figure 2.1: Literature categorization tree. The rectangles in the highlighted area correspond to generic
steps of the CAD systems for melanoma identification.

lishing both a broad and a more detailed perspective on PSL computerized analysis

aimed at melanoma detection. We classified the available literature into several cate-

gories based on the nature of the analyzed information. In particular, it was subdivided

according to the following two criteria (see Fig. 2.1):

1. The nature of the publication: clinical or computer vision articles.

Clinical articles (published in medical research journals) contain relevant infor-

mation about dermatological disorders, report results from clinical studies on

available CAD systems and algorithms, or review imaging technologies. Clini-

cal articles usually contain from no to a medium amount of technical detail on

the studied algorithms, and also present statistical data. The target audience is

physicians.

Computer vision articles (published in computer vision or technical journals and

in conference proceedings) describe and review research results regarding the de-
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velopment of dermatological CAD systems. They contain a fair amount of techni-

cal detail on the algorithms. The target audience is computer vision researchers.

2. Number of analyzed lesions: single or multiple lesion analysis. This criterion

created a highly uneven distribution of computer vision papers, since less than

4% of all the reviewed papers are dedicated to multiple lesion analysis. This is

an important finding which clearly shows the main focus area in the field: the

analysis of dermoscopic/clinical images of single PSLs.

The detailed subdivision of the literature was based on the typical workflow steps of

CAD systems for melanoma recognition from single lesion images. Fig. 2.1 shows these

steps in the highlighted area, numbered according to their position in the workflow.

Other boxes in the figure represent literature/steps which usually do not form part of

CAD systems, although this is not always the case. Some systems [57, 58] actually

conduct lesion registration and change detection as a part of their workflow or as an

additional function. The category “CAD systems” contains articles describing archi-

tecture of automated melanoma diagnosis systems including all steps of the workflow,

whereas articles from other categories concentrate only on specific steps, but in more

detail. Note that the workflow is defined only for the systems used in single lesion

analysis.

The literature referenced in this work (with publication dates from 1984 to 2013) is

directly related to the computerized analysis of PSLs, and its distribution shows where

efforts have been concentrated in recent decades. Counting more than 400 publications

in total (this only includes papers found relevant for our review, not all of which are

referenced herein), the distribution of clinical to computer vision articles is approxi-

mately 24% to 76%, respectively. The reviewed clinical articles concern only single

PSL analysis, with the majority dedicated to CAD system studies (over 60%). In turn,

publications on “Multiple lesion analysis” are found only among the computer vision

articles. In the latter category, most papers on “Single lesion analysis” concentrate on

“Border detection” (28%) and “Feature extraction” (29%), 19% on “CAD systems”

and 16% on “Classification” categories. The rest of the papers were attributed to other

categories.

2.1 Single lesion analysis

This section reviews computerized analysis methods applied to images depicting a single

PSL. Each subsection below represents a category of the literature classification and
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Table 2.1: PSL image preprocessing operations

Operation References

Artifact rejection

Hair [59–77]
Air bubbles [60,68,78]
Specular reflections [68,79]
Ruler markings [64,68,78]
Interlaced video misalignment [79]
Various artifacts:

Median filter [57,80–85]
Wiener filter [86]

Image enhancement

Color correction/calibration [87–91]
Illumination correction [69,78,92–95]
Contrast enhancement [96–99]
Edge enhancement by KLT [80,82]

provides references to relevant publications and reviews.

2.1.1 Image preprocessing

After a clinical or dermoscopic image is acquired, it may not have the optimal quality for

subsequent analysis. The preprocessing step serves to compensate for the imperfections

of image acquisition and eliminate artifacts, such as hairs or ruler markings. Good

performance of the methods at this stage not only ensures correct behavior of the

algorithms in the following stages of analysis, but also relaxes the constraints on the

image acquisition process.

Table 2.1 contains references to studies which have implemented the most common

preprocessing operations on PSL images. These can be roughly subdivided into ar-

tifact rejection and image enhancement operations. Table 2.1 does not include color

transformation techniques, which are commonly used in dermatological image process-

ing. Celebi et al. in [56] briefly summarize these techniques together with methods of

artifact removal and contrast enhancement.

Among the most common and necessary artifact rejection operations is hair removal.

The main reason for developing such algorithms is the fact that hair present on the

skin may occlude parts of the lesion, making correct segmentation and texture analysis

impossible. To avoid this problem and the need to shave the lesion area at the time of

acquisition, hairs are removed by software.
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A typical hair-removal algorithm comprises two steps: hair detection and hair repair

(restoration or “inpainting”). The latter consists in filling the image space occupied

by hair with proper intensity/color values. Its output greatly affects the quality of

the lesion’s border and texture. And since this information is indispensable for correct

diagnosis from dermoscopic images, it is important to ensure the best hair repair output.

The first widely adopted method of hair removal in dermoscopic images, DullRazor®,

was proposed in 1997 [59]. In 2011, Kiani and Sharafat [71] improved it to remove

light-colored hairs. While some of the approaches use generalized methods of super-

vised learning to detect and remove hairs [61, 72], others use more specific algorithms.

Recently, Abbas et al. [73] reviewed the existing methods and proposed a broad classifi-

cation into three groups based on their hair repair algorithm type: linear interpolation

techniques [59, 60, 63, 70], inpainting by nonlinear partial differential equations (PDE)

based diffusion algorithms [62,66,67,78] and exemplar-based methods [64,65,68]. Their

own hair repair method [73] used fast marching image inpainting, and was later im-

proved in [100].

Median filtering is widely used to suppress spurious noise, such as small pores on

the skin, shines and reflections [57, 81, 85], thin hairs or small air bubbles (minimizing

or completely removing them [80, 84]). Other artifacts in dermatological images also

include ruler markings, specular reflections and even video field misalignment caused

by interlaced cameras (see Table 2.1).

Of image enhancement operations, perhaps the most important one, from the point

of view of lesion diagnosis, is color correction or calibration. This operation consists

in recovering real colors of a photographed lesion, thus allowing for a more reliable use

of color information in manual and automatic diagnosis. Recent studies place special

emphasis on color correction in images with a joint photographic experts group (JPEG)

format (as opposed to raw image files) obtained using low-cost digital cameras [90,91].

Other operations in this category are illumination correction, and contrast and edge

enhancement. In order to perform the latter operation, Karhunen-Loève transform

(KLT), also known as Hotelling Transform or principal component analysis (PCA), is

widely used.

2.1.2 Lesion border detection

An accurately detected border of a skin lesion is crucial for its automated diagnosis.

Therefore, border detection (segmentation) is one of the most active areas in the com-

puterized analysis of PSLs. A lot of effort has been made to improve lesion segmentation
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algorithms and come up with adequate measures of their performance.

The problem of lesion border detection is not as trivial as it may seem. Firstly, since

dermatologists do not usually delineate lesion borders for diagnosis [45] there exists a

ground truth problem. Segmentation algorithms are intended to reproduce the way

human observers, who are generally not very good at discriminating between subtle

variations in contrast or blur [101], perceive the boundaries of a lesion. But because

of high inter- and intra-observer variability in PSL boundary perception among der-

matologists [101–103] the ground truth often lacks definiteness and has to be obtained

as a fusion of several manual segmentations. Secondly, the morphological structure

of a lesion itself (depigmentation, low lesion-to-skin gradient, multiple lesion regions,

etc.) can act as a confusion factor for both manual and automatic segmentation. These

problems have led to the development of a wide variety of PSL segmentation methods

which span all categories of segmentation algorithms [56].

These algorithms can be classified in many ways regarding, for instance, their level

of automation (automatic vs. semi-automatic), their number of parameters or the

required methods of postprocessing [56]. However, the purpose of this subsection is not

to review all these methods, but to provide information regarding available reviews and

comparisons and to emphasize the role of certain approaches to the problem.

2.1.2.1 PSL border detection methodology

Morphological differences in the appearance of PSLs in clinical and dermoscopic im-

ages directly influence the choice of method for border detection. Moreover, various

conditions, such as type of lesion, location, color conditions or angle of view, add to the

diverse difficulties in segmenting using the same imaging modality [56,60,104]. There-

fore, the available methods aim to provide robustness in difficult segmentation cases

adapting to specific conditions of the image type (e.g. [105]).

Clinical images One of the earliest works on skin lesion border detection was pub-

lished in 1989 and used the concept of spherical coordinates for color space represen-

tation [106]. Since then, it has been widely adopted in the literature for lesion feature

extraction and color segmentation. Comparisons of different color spaces applied to

segmentation were carried out in [107,108] and in [96].

In 1990, Golston et al. estimated the role of several determinants of the lesion bor-

der, namely color, luminance, texture and 3D information [109]. While 3D information

was mostly absent, color and luminance appeared to be the major factors for most of the

images. Thus, the authors discussed an overall algorithm that would take into account
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several border determinants based on their level of confidence, and proposed a radial

search method based on luminance information. Similarly, in support of multifactorial

descriptiveness of the lesion border, Dhawan and Sicsu proposed combining grey-level

intensity and textural information [110]. Further works concentrated on improving ex-

isting techniques [111] and applying a multitude of different approaches, including edge

detection [104, 112], active contours [62], PDE [62, 67], gradient vector flow [113] and

many others.

Dermoscopic images Following the trend initiated by clinical images, multiple seg-

mentation algorithms and their combinations were investigated for dermoscopic im-

ages. Fleming et al. [60] discussed several implementations of segmentation algorithms.

Though agreeing that one of the most efficient border determinants is color, they pro-

posed an approach incorporating spatial and chromatic information to produce better

segmentations. After implementing and testing various algorithms, the final method

combined principal component transform, stabilized inverse diffusion equations and

thresholding in the green channel.

Later thresholding approaches became more sophisticated in comparison with the

relatively simple methods of single color channel thresholding proposed earlier [60,114].

Iterative thresholding [115], type-2 fuzzy logic based thresholding [116], fusion of thresh-

olds [117–119], hybrid [120], local entropy [121] and color histogram thresholding [122]

have been proposed recently. Many other approaches have been applied to the seg-

mentation of dermoscopic images. Among them are various algorithms using and

combining different categories of techniques, such as clustering [123–126], soft com-

puting (neural networks [115, 127,128] and evolution strategy [129]), supervised learn-

ing [61,72,130,131], active contours [33,132], and dynamic programming [74], to name

but a few.

Without doubt, all these (and other approaches not mentioned here) have their

advantages and drawbacks. However, it should be noted that most of the algorithms

are tested on various fairly small datasets, not many of which include special “difficult”

cases. Consequently, the performance assessment for these algorithms is not trivial,

especially based only on the results reported by the authors. In this respect, the

comparison studies allow these algorithms to be assessed in a more uniform framework,

clearly defining their strengths and weaknesses.
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2.1.2.2 Comparison of segmentation algorithms

In 1996, Hance et al. published a comparison of 6 methods of PSL segmentation [133].

It included techniques such as fuzzy c-means, center split, multiresolution, split and

merge, PCT/median cut and adaptive thresholding. The latter two methods proved to

be more robust than the others based on the exclusive-OR evaluation metric proposed

therein. Melli et al. [134] compared the performance of color clustering techniques with

the mean-shift algorithm obtaining the best score. In another comparison of segmenta-

tion methods implemented by Silveira et al. [135], an adaptive snake algorithm was the

best among gradient vector flow (GVF), level set, adaptive thresholding, expectation-

maximization level set and fuzzy-based split-and-merge algorithm (which had the best

performance among fully automated methods).

Statistical region merging (SRM) was introduced and compared in [136, 137] to

optimized histogram thresholding, orientation-sensitive fuzzy c-means [123], gradient

vector flow snakes [138], dermatologist-like tumour extraction algorithm (DTEA) [103]

and JSEG algorithm [139]. Overall results from this comparison on 90 dermoscopic im-

ages determined the superiority of the SRM, followed by DTEA and JSEG. However,

Zhou et al. [140] reported that on a considerably larger dataset of 2300 dermoscopic

images SRM, JSEG and a clustering-based method incorporating a dermoscopic spatial

prior [105] were outperformed by a spatially-smoothed exemplar-based classifier algo-

rithm. According to the latest comparison to date (end of 2013) [141], GVF snakes

outperformed automatic thresholding, k-means, mean-shift, region growing, and water-

shed algorithms.

However, these studies still do not provide unified results for all the tested algo-

rithms. Firstly, because of the differences in the datasets employed including different

ground-truth definitions, and secondly, due to different evaluation metrics. In fact, the

two highlighted factors are essentially the basis for performance comparison between

segmentation algorithms.

Almost all standard metrics for evaluation of PSL segmentation algorithms, such

as sensitivity, specificity, precision, border error and others [56,133,142,143], are based

on the concepts of true (false) positives (negatives). Recently, Garnavi et al. [143] pro-

posed a weighted performance index which uses specific weighting for these metrics and

unites them under one value for easier comparison with other methods. Alternative

metrics used by different authors include pixel misclassification probability [102], Ham-

moude and Hausdorff distances (not the most relevant metrics from a clinical point of

view) [135] and normalized probabilistic rand index [142]. The reviews of these metrics

24



can be found in [56, 142, 143]. In addition to this, [56] provides an excellent summary

of 18 algorithms with their characteristics and reported evaluation.

Equally important in this work [56] is the outline of requirements for a systematic

PSL border detection study, which, if a public dermoscopy dataset is provided, can

favor a rapid development of more reliable automated diagnosis systems. Therefore,

such a dataset, with a standardized ground-truth definition, will allow researchers to

immediately report performance results for their methods, and thereby boost overall

progress in the field. The first public database containing 200 dermoscopy images was

published on-line in 2013 by Mendonça et al. [144]. It contains medically annotated

(clinical and histological diagnosis, medical segmentation and the assessment of several

dermoscopic criteria) images of 80 common nevi, 80 atypical nevi, and 40 melanomas.

2.1.3 Feature extraction

To correctly diagnose a PSL (or classify it as “suspicious”), clinicians rely on the so-

called features of the lesion. These features depend on the method of diagnosis in use.

For example, asymmetry of a lesion is a feature of the ABCD-rule, and pigmented

network is a feature in pattern analysis (see Section 1.4.2 for details). In computerized

PSL analysis, in order to classify a lesion most automated systems aim to extract

such features from the images and represent them in a way that can be understood

by a computer, i.e. using image processing features. In this review, for clarity we use

the term “features” to denote clinical and dermoscopic lesion features, and the term

“feature descriptors” for image processing features.

Many works can be found on PSL feature extraction in the literature. However,

only a few of them review or summarize the feature descriptors used in CAD systems.

In particular, in 1997, Umbaugh et al. [145] described a computer program for auto-

matic extraction and analysis of PSL features. They classified the proposed feature

descriptors into binary object features, histogram, color, and spectral features. Binary

object features included area, perimeter, and aspect ratios, among others. Histogram

features comprised statistical measures of grey level distribution as well as features

of co-occurrence matrices. Metrics obtained from color transforms, normalized colors

and color differences were used to represent color features. Finally, spectral features

represented metrics derived from the Fourier transform of the images.

Research carried out by Zagrouba and Barhoumi [146], besides reviewing CAD sys-

tem development, provides a brief look at the feature selection algorithms. Feature

selection is an important procedure to be carried out prior to lesion classification. It
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aims to reduce the number of extracted feature descriptors in order to lower the compu-

tational cost of classification. However, this reduction is not trivial because eliminating

redundancy among feature descriptors may adversely affect their discriminatory power.

The development of feature selection procedures for various sets of extracted feature

descriptors can be found in [83,147–150].

Finally, a very good overview of CAD systems and feature descriptors was published

in 2009 by Maglogiannis and Doukas [151]. In their work, they provided information

regarding methods of PSL diagnosis and a list of typical feature descriptors used in the

literature. They also compared the performance of several classifiers on a dataset of

dermoscopic images using several feature selection algorithms on one feature set (see

Section 2.1.5 for more details). The results obtained showed that the performance

of the classifiers was greatly dependent on the selected feature descriptors. This fact

emphasizes the importance of feature descriptors in the computerized analysis of PSL.

In this work, we propose an extended categorization of feature descriptors (see Ta-

bles 2.2–2.4), associating them with specific methods of diagnosis, separating clinical

and dermoscopic images and discriminating references according to our literature clas-

sification. Such a categorization can help the reader: (1) to gain perspective regarding

the existing approaches in PSL feature description, (2) to clarify differences in the rep-

resentation of clinical and dermoscopic features, and, most importantly, (3) to obtain

a complete source of references on the descriptors of interest.

For the purpose of conciseness and generalization, rather than look at individual

descriptors we attempted to cluster them into groups with other related descriptors. Of

course, taking this approach meant determining how each group of descriptors uniquely

corresponded to the feature it aimed to describe. In other words, while most authors

specified in their publications that a descriptor was mimicking a certain feature, oth-

ers would use it to describe a different feature or not associate it with any feature

in particular. A clear example of such a group is the one labelled “Lesion’s area &

perimeter” (see Tables 2.3 and 2.4). We attributed this group to the “Border irregu-

larity/sharpness” feature in line with most publications, and not to the “Asymmetry”

feature, as some authors have done [93, 187]. Nevertheless, attributing this group is

not such a straightforward task, since, as a geometry or shape parameter, it could well

be used to describe both features. An identical majority reasoning was applied to the

other groups of feature descriptors. Descriptors for which we could not define a specific

clinical attribution were listed separately. All explanations on the groups can be found

in the tables.
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Table 2.2: Feature extraction for pattern analysis [42].

Pattern analysis References

G
lo

b
a
l

p
a
tt

er
n
s Reticular [152–154] [155]a [156]b

Globular [152–154,157] [155] [156]
Cobblestone [153,157] [155]
Homogeneous [152–154,157] [155] [156]
Starburst [155]
Parallel [153,157][155]
Multicomponent [154]
Non-specific —

L
o
ca

l
fe

a
tu

re
s

Pigment network [60,72,158–165] [166–168]c [58]b

Dots/globules [60,61,169] [58]
Streaks [170,171] [166,172]c

Blue-whitish veil [173–176] [172,177,178]c

Regression structures [61,179,180] [172,177,178] [181]b

Hypopigmentation [61] [181]

Blotches [182–184] [185]d

Vascular structures [186]
a Computer vision article from the ”Classification” category
b Computer vision article from the ”CAD systems” category
c Feature extraction following the 7-Point checklist for

dermoscopy
d Clinical article from the ”Studies of lesion features” category

Among the diagnosis methods considered were the ABCD-rule and pattern analysis

for dermoscopic images, and the ABCDE criteria for clinical images. Table 2.2 contains

references to articles aimed at computing descriptors for pattern analysis features [42].

The majority of the papers referenced in this table belong to the “Feature extraction”

category. Among these, a number were dedicated to feature extraction following the

7-point checklist method for melanoma diagnosis from dermoscopic images [166–168,

172,177,178]. A preliminary study on detection of some dermoscopic structures (blue-

whitish veil, atypical pigmented network and irregular pigmentation) can be found

in [44].

Descriptors of features used in the ABCD-rule of dermoscopy and the ABCDE clini-

cal criteria are summarized in Tables 2.3 and 2.4. This separate representation helps to

highlight differences and similarities in the computerized description of these features.

As illustrated by these two tables, the largest groups of feature descriptors are present

in both types of images (clinical and dermoscopy) and define the similarities. The differ-

ences, on the other hand, can be seen in smaller groups or even individual descriptors.

For example, dermoscopic interest points [250], size functions [247–249], scale-invariant
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2. COMPUTERIZED ANALYSIS OF PSLS: A LITERATURE REVIEW

feature transform (SIFT) descriptors and the bag-of-features framework1 are used only

on dermoscopic images, while a series of articles on skin pattern analysis [256,299–302]

and various approaches in describing border irregularity are only used for clinical im-

ages. At the same time, a group of textural feature descriptors (Haralick parameters)

is rather large in dermoscopic image analysis and fairly small when used on clinical

images. This is explained by the fact that dermoscopy images provide more detailed

textural information than macroscopic clinical images [229], enabling a more complex

analysis.

Overall, Tables 2.3–2.2 provide an overview of approaches for extracting features

from PSL images, and an indication of the distribution of research efforts in relation

to specific literature categories. However, it must be noted that these tables do not

contain a complete list of publications in all categories, but only those that appeared

in the scope of our survey and provided sufficient information on the proposed feature

descriptors.

2.1.4 Registration and change detection

In most cases, methods in PSL change detection are dependent on image registration.

Therefore, we will first explain the motivation behind change detection and then intro-

duce several methods used to register PSL images.

2.1.4.1 Change detection

According to the last letter of the ABCDE mnemonic for melanoma detection, a lesion’s

evolution over time is very important in detecting melanoma in its early stages. In other

words, as was mentioned in Section 1.4.2, changes in lesion size and colour are among

the most frequent symptoms in signalling the developing of melanoma. Furthermore,

the study conducted by Menzies et al. [41] demonstrates that change of a lesion alone

(short-term and without exhibiting classic surface microscopic features) can be a reliable

sign of a developing melanoma. Hence, detection of a lesion’s change is as important

as correctly identifying its surface microscopic patterns, and can be a sufficient ground

to excise it.

Many commercial CAD systems (see Table 2.6) offer the function “automatic follow-

up examination”, but this is usually limited to a side-by-side or alternating display of

images (blink comparison) taken at different moments in time. This only facilitates a vi-

sual assessment of changes, without providing any quantitative information that might

1Various schemes for feature sampling are tested and discussed in [308] and [309].
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be useful for lesion diagnosis and discovering new patterns of color and morphology

evolving in skin cancer lesions.

Furthermore, not much attention has been paid to developing automated systems

for assessing changes in PSLs. Popa and Aiordachioaie [310] attempted to use genetic

algorithms to determine changes in lesion borders from two clinical images taken at

different moments in time and from different angles. A method of lesion classification

based on its evolution was presented in [57]. The basic idea of this CAD system was

to employ discretized histograms of oriented gradients to describe lesion evolution, and

use them as an input to hidden Markov models. Another CAD system [58] assesses

lesion changes by segmenting its two images, registering them by means of PCA and

stochastic gradient descent, and obtaining a difference map. A different approach im-

plementing feature-based change detection as opposed to difference maps was presented

by the researches from the same team in [311]. However, the solutions overcoming its

application difficulties outlined in the paper have not been proposed yet.

2.1.4.2 Registration

The methods of automatic and manual2 lesion change detection are dependent on cor-

rectly aligning (registering) two images of a lesion taken at two different moments in

time. In addition to the image registration methods used in work on change detection,

there are some papers which we attributed specifically to the “Registration” category.

In particular, Maglogiannis [312] used the Log-Polar representation of the Fourier spec-

trum of the images, and Pavlopoulos [313] proposed a two-step hybrid method, in which

the scaling and rotation parameters are estimated using cross-correlation of a triple in-

variant image descriptors algorithm, and the translation parameters are estimated by

non-parametric statistical similarity measures and a hill-climbing optimization.

Anagnostopoulos et al. [314] used a modification of the SIFT [315] algorithm bun-

dled with RANSAC [316] to compute a homography model between two images. SIFT

features were also used by Furusho and Iyatomi in [317], but the match outliers were

filtered using a method based on Tukey’s biweight function. Correct point correspon-

dences were also used for color calibration by means of a cumulative brightness transfer

function.

2Side-by-side or blink comparison.
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2. COMPUTERIZED ANALYSIS OF PSLS: A LITERATURE REVIEW

2.1.5 Lesion classification

Lesion classification is the final step in the typical workflow for the computerized anal-

ysis of images depicting a single PSL. Depending on the system, the output of lesion

classification can be binary (malignant/benign or suspicious/non-suspicious for malig-

nancy), ternary (melanoma/dysplastic nevus/common nevus) or n-ary, which identifies

several skin pathologies. These outputs represent classes (types) of PSLs that a system

is trained to recognize. To accomplish the task of classification, the existing systems

apply various classification methods to feature descriptors extracted during the previ-

ous step. The performance of these methods depends both on the extracted descriptors

and on the chosen classifier. Therefore, the comparison of classification approaches

gives optimal results when performed on the same dataset and using the same set of

descriptors.

The article by Maglogiannis and Doukas [151] summarized classification results

reported by the authors of several CAD systems and performed a unified comparison

of 11 classifiers on a set of feature descriptors (applying different feature selection

procedures) using a dataset of 3,639 dermoscopic images. The 11 chosen classifiers

represented the most common classifier groups used in the PSL computerized analysis,

including artificial neural networks (ANN), regression analysis and decision trees among

others. The comparison was conducted in three sub-experiments, which defined the

number of output classes. The first two experiments assumed melanoma/common nevus

and dysplastic/common nevus classes, whereas the third experiment united all three

classes. As a result of these experiments, support vector machines (SVM) showed the

best overall performance. Nevertheless, the authors concluded that it was the selected

feature descriptors and the learning procedure that were critical for the performance

of the classifiers.

Many other articles from the “Classification” and “CAD systems” categories com-

pare two or more classifiers. In particular, the performance comparisons between ANN

and SVM has been reported in several papers: [81, 234, 239, 240, 260, 289, 318]; overall,

the performance of SVM was marginally better. Discriminant analysis (DA) was com-

pared to ANN in [264,277] and to ANN and SVM in [260,289], demonstrating equal or

marginally worse performance. Bayesian classifier was evaluated against SVM in [242]

and against ANN and k-nearest neighbors (kNN) in [85]. It was shown to be inferior

to the ANN but outperformed the kNN algorithm. Despite all these comparisons, it

is still difficult to establish an absolute hierarchy in the performance of classifiers for

PSLs. The reason for this, besides the marginal differences in the numerical evalua-
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tion results, lies in the structure of the comparisons themselves: different feature and

image sets, different classifier parameters and different learning procedures. Nonethe-

less, Dreiseitl et al. [318] took a relative approach to evaluation and concluded their

comparison by ranking the classifiers as performing well (kNN), very well (ANN, SVM

and logistic regression), or not well suited (decision trees paradigm—due to continuous

input variables).

Table 2.5 contains references from three literature categories which use, develop

and/or test classification methods in diagnosing PSL from dermoscopic and clinical

images. The papers in the “Classification” category tend to dwell more on details

specific to the proposed approach of lesion classification. The two other categories

contain references to studies that use one or more classification methods to analyze,

propose or improve complete CAD systems. Therefore, these papers generally provide

less detail on implementation, but still contain comparative performance results.

In Table 2.5 we included papers that classify lesions from images acquired using

either modality. The reason for this being that the classification step in PSL CAD

systems depends not on the information available in the image, but on the interpretation

of this information, i.e. the extracted feature descriptors. However, one may argue that

as these descriptors encode information specific to image types, they are thus distinct

for the two modalities. But even considering this distinction, it is almost impossible to

clearly separate feature descriptors into two classes according to these image modalities,

simply because of the similarity of the feature descriptor groups (see Tables 2.3 and 2.4).

Classification methods were grouped according to their corresponding category

without taking into account specific implementation characteristics. For example, such

groups as ANN and discriminant analysis include various methods that can be consid-

ered “a type” of these larger groups of methods. Also, as several publications compare

algorithms, they can be found in one or more rows of the table. As for the popularity of

techniques used for lesion classification, an obvious preference is given to artificial neu-

ral networks, followed by SVM, discriminant analysis, kNN and decision trees. Other

approaches, such as kernel logistic partial least square regression (KL-PLS) and hidden

Markov models, are also explored and adapted to the problem.

The table also shows that supervised machine learning algorithms are largely pre-

ferred to unsupervised approaches. Above all, this is related to the nature of the

classification problem, and to the high diversity of clinical and dermoscopic features

that can point to the malignant or benign nature of a lesion. Thus, there are many

sample lesions whose corresponding biopsy-established diagnosis partially or completely

contradicts the observed clinical and dermoscopic features [41, 340]. In this case, the
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training/testing paradigm for the development of classification algorithms is widely

used to teach a classifier to recognize such unusual manifestations of malignant tumours.

However, exploring unsupervised learning methodologies also seems promising in un-

derstanding the relationship between observed features and PSL malignancy [201].

2.1.6 CAD systems

This subsection contains an overview of the literature dedicated to developing and

studying computer-aided diagnosis systems for PSLs. Among the first papers to sum-

marize progress in this area were [345] and [346], both published in 1995. Later pub-

lications include [146, 217] and [151] and are targeted at computer vision researchers.

However, most of the papers that compare the performance of CAD systems are clin-

ical study papers (“Studies of CAD systems” category). These papers often provide

comparative tables with different characteristics of the systems such as the size of the

dataset and its distribution (e.g. malignant melanomas versus dysplastic nevi), image

type, classification method(s), and performance metrics (e.g. sensitivity, specificity

and others). Though these tables do not allow for absolute comparison between CAD

systems, they do help to analyze and quantify different aspects of existing approaches.

Such comparative tables can be found in [23,46,47,342,347–349].

Nowadays, a number of systems are commercially available for computer-aided di-

agnosis of PSLs. The literature is abundant with references to studies researching

and developing these systems, which are mainly based on dermoscopy. Table 2.6 lists

some of the proprietary CAD systems we encountered during our literature survey. It

includes systems based on dermoscopy as well as several spectrophotometric systems

(other imaging modalities were not included). Most of these CAD systems are complete

setups consisting of acquisition devices (dermoscopes) and analysis software. Some di-

agnosis systems serve as additional modules to acquisition systems, such as DANAOS

or MoleAnalyser expert systems (see Table 2.6).

One of the most cited CAD systems used for melanoma detection is DB-Mipsr

(Dell’Eva-Burroni Melanoma Image Processing Software). It is also known as DBDermo-

Mips, DDA-Mips, DEM-Mips, DM-Mips and DB-DM-Mips, depending on the period of

development. According to Vestergaard and Menzies who surveyed automated diagnos-

tic instruments for cutaneous melanoma [47], it is difficult to draw overall conclusions

regarding the performance of this system due to the use of different classifiers in differ-

ently structured studies. In particular, they refer to two earlier studies involving expert

dermatologists: [323] and [326]. In the former [323], the classifier’s accuracy was higher
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than that of experienced clinicians using only the epiluminescence technique. However,

in the latter case [326], the specificity of the system was significantly lower. Impor-

tantly, the same classifier, ANN, was used in both settings. The authors of the survey

suggest that these results reflected dramatic differences in the proportion of dysplastic

nevi in the benign sets.

Proprietary systems based on spectrophotometry include MoleMate�, SpectroShader

and MelaFindr. The latter uses multispectral dermoscopy to acquire images in 10 dif-

ferent spectral bands, from blue (430 nm) to near infrared (950 nm) [355]. Siascopy

(MoleMate� system) analyzes information regarding the levels of haemoglobin, melanin

and collagen within the skin by interpreting the wavelength combinations of the received

light [357]. For more references see Table 2.6.

Overviews and comparisons of the technical characteristics of digital dermoscopy

analysis (DDA) instruments can also be found in the literature. DB-Mips, MoleMax II,

Videocap, Dermogenius, microDerm and SolarScan are summarized in [340,360], and

Dermogenius Ultra, FotoFinder and microDerm are compared in [350]. According to

the latter, the reviewed computer-aided diagnostic systems provide little to no added

benefit for experienced dermatologists/dermoscopists. A description of other systems

together with their performance evaluation can be found in [47].

It is also worth mentioning CAD systems that attempt to diagnose a PSL based

on its visual similarity to images of lesions with known histopathology. Systems that

use this approach are called content-based image retrieval (CBIR) systems. The pri-

mary goal of CBIR is to search a database to find images closest in appearance to a

query image. Various metrics establishing similarities between extracted lesion feature

descriptors are used for this purpose: Bhattacharyya, Euclidean or Mahalanobis dis-

tances, among others. The choice of the metric depends on the nature of the feature

descriptors. Thus, Rahman and Bhattacharya [229] and Ballerini et al. [227] use Bhat-

tacharyya and Euclidean distances for color and texture features, respectively, whereas

Celebi and Aslandogan [148] use the Manhattan distance for descriptors based on the

shape information of the lesion. The commonly-used measure for evaluating content-

based retrieval systems is the precision-recall graph [229]. At the present time, results

for systems of both clinical [148,278] and dermoscopic [227,229,263,361] image retrieval

leave room for improvement
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2.1.7 3D lesion analysis

The first attempts to reconstruct 3D images of PSLs were made with the introduction of

the ‘Nevoscope’ device in 1984 [34]. The principle of this reconstruction was based on

obtaining images of a transilluminated lesion at three different angles (90°, 180° and 45°)

and applying a limited-view computed tomography (CT) reconstruction algorithm [34,

35, 362]. As the result of several consecutive reconstructions of a lesion, its changes in

thickness, size, color and structure could be evaluated.

Similar to 2D analysis of PSLs, features extracted from the 3D lesion representation

are used for computer-aided diagnosis. McDonagh et al. [363] apply dense reconstruc-

tion from a stereo-pair image to obtain 3D shape moment invariant features. In order

to automatically distinguish between non-melanoma lesions, they feed these features

into a Bayesian classifier along with relative color brightness, relative variability, and

peak and pit density features.

The latest approach to PSL characterization from 3D information is via photomet-

ric stereo. The features for lesion classification from photometric 3D include skin tilt

and slant patterns [364] and statistical moments of enhanced principal curvatures of

skin surfaces [365, 366]. In [366], the performance of an ensemble classifier compris-

ing discriminant analysis, artificial neural network and a C4.5 decision tree is tested

on enhanced 3D curvature patterns and a set of 2D features: color variegation and

border irregularity. According to the obtained results, 3D curvature patterns did not

outperform traditional 2D features, but definitely demonstrated their effectiveness in

melanoma diagnosis; moreover, an ensemble classifier proved to be more efficient than

single classifiers in this task.

2.2 Multiple lesion analysis

As we mentioned in Section 1.5, the literature on the analysis of multiple PSLs is scarce.

Some publications do exist on the steps essential for assessing change in images of multi-

ple lesions: localization and registration. However, practically the only article in which

lesion localization and registration algorithms are applied together to automatically

estimate dimensional changes in PSLs is the one by Voigt and Claßen [367]. It was

published in 1995 and the authors introduced the technique for lesion tracking/change

detection as “topodermatography”. It used simple image thresholding for PSL local-

ization and the structure elements of the acquisition framework for registration. No

further work on improving the algorithm or implementing it in clinical practice has
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been reported.

2.2.1 Lesion localization

In 1989, Perednia et al. [368] used a Laplacian-of-Gaussian filter to detect the borders

of multiple lesions. They later proposed the concept of “brightness pits”, according to

which multiple levels of brightness pits are detected in the image and a number of their

parameters are extracted [369]. Based on these parameters, DA and kNN algorithms

learn to discriminate pits belonging to skin lesions and localize them in the images.

In [370] and [371], the authors combined multiresolution hierarchical segmentation,

region growing and neural networks. The latter served to analyze nodes of the pyramid

generated by the segmentation step and find the most appropriate representation of

PSLs.

Taeg et al. [372] applied an SVM algorithm to classify PSL candidates, obtained

through difference of Gaussians filtering after a hair removal procedure on the detected

skin regions. The recognition of moles from candidates was also performed in [373],

where a modified mean shift filtering algorithm is applied to the images followed by re-

gion growing, which pre-selects possible candidates. Subsequently, these candidates are

fed to the rule-based classifier for definite identification. Finally, during work conducted

on face recognition by skin detail analysis in [374], PSLs were detected by normalized

cross-correlation matching; a Laplacian-of-Gaussian filter mask was used as a template.

2.2.2 Lesion registration

Several registration approaches have been proposed in the literature. Among them, the

3-point geometrical transformation algorithm based on correct identification of initial

matches was proposed by Perednia and White in [375]. The same authors developed

a method for automatic derivation of initial PSL matches by means of Gabriel graph

representation of lesions in an image [376]. A similar initialization step is a requirement

for the baseline algorithm [377], which exploits geometrical properties of the lesions with

respect to the baselines derived from the two initial matches.

McGregor performs the registration of multiple lesion images in [378] by first cre-

ating lesion maps. This is done by using a centre-surround differential operator to

form clusters and later thinning them via a “centring” mask at different image scales.

These maps are then registered by detecting the 4 pairs of matching lesions that pro-

vide the best “global matching metric”. The registration step requires initial lesion

matches, which are obtained by minimizing the distance and angular error of local
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neighbourhoods.

Huang and Bergstresser treated the problem of PSL registration as a bipartite

graph matching problem [379]. The authors used Voronoi cells to measure similarities

between PSLs, and preserved their topology. Another approach using graph matching

was proposed by Mirzaalian et al. in [380]. In this study, the authors incorporated

proximity regularization, angular agreement between lesion pairs and normalized spa-

tial coordinates into the extended hyper-graph matching algorithm. Coordinate nor-

malization was performed using the human back template, which offers performance

advantages over other methods, as well as challenges such as defining anatomical land-

marks for template creation. Later, in [381] the same authors formulated the PSL

registration/matching problem as the relaxed labeling of the corresponding association

graph in a high order Markov random field optimization framework. They also added

a new entropy term to the objective function encouraging the cost function towards

solutions with low uncertainty.

2.3 Conclusion

Two decades ago, before digital imaging largely substituted film photography in medicine,

researchers envisioned the potential benefits of its application in dermatology [53].

Many of these benefits became a reality: objective non-invasive documentation of skin

lesions, digital dermatological image archives, telediagnosis, quantitative description of

clinical features of cutaneous lesions and even their 3-dimensional reconstruction. And

although automatic PSL diagnosis systems are not yet perfect, their most valuable

functionality has already been achieved: the description of lesion characteristics.

We presented an overview of research in the computerized analysis of dermatological

images. We based it on specific aspects resulting from the fusion of the two different

disciplines: dermatology and computer vision. In particular, the following points were

emphasized:

� The difference between dermoscopic and clinical image acquisition of individual

PSLs, which lies in how the structural information of a photographed lesion is

visualized. It is essential to take this into account when applying pre-processing,

border detection or feature extraction algorithms to the images of skin lesions.

Moreover, frequent discrepancies in terminology found in the literature relate pre-

cisely to this fundamental difference between the two modes of acquisition. As a

consequence, clinical diagnosis methods have at times been incorrectly attributed

to image types in the computer vision literature.
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� Clearly separating publications that analyze images of individual and multiple

pigmented skin lesions. There is a large discrepancy in the number of articles

published on each subject. This may be related to the fact that total body

skin imaging is not widely adopted. Opinion is still divided regarding the trade-

off between its usefulness for melanoma detection versus logistic constraints and

financial considerations related to its application [13]. Consequently, the demand

for automated solutions to total body screening is not as high as that for individual

lesion analysis.

� The analysis of images depicting individual PSLs generally focuses on developing

computer-aided diagnosis systems aimed at automatically detecting melanoma

from clinical and dermoscopic images. Overall, these systems follow the same

workflow: image preprocessing, detection of lesion borders, extraction of clinical

feature descriptors of a lesion and, finally, classification. Various approaches

have been proposed for implementing all of the steps in this workflow; however,

the steps of border detection and feature extraction have the largest number of

publications dedicated to them.

� Scarcity of reported material on automating change detection both in individual

and multiple PSL images. Despite the fact that rapid change in lesion morphology

and size is probably the only sign of an early-stage melanoma, to the best of our

knowledge cases where fully automated change assessment is implemented have

not yet been proposed.

Furthermore, we classified publications related to the computerized analysis of dermato-

logical images into several categories. In the scope of this classification, we reviewed the

categories that comprise the workflow of typical CAD systems and provided summary

tables for those references in which the methods of preprocessing, feature extraction

and classification of PSL images are implemented.

Another important contribution of this review is the extended categorization of

existing clinical and dermoscopic feature descriptors. We clustered these into groups

of related descriptors associated with the specific diagnosis methods, separating clini-

cal and dermoscopic images, and discriminating references according to the literature

classification. Since feature descriptors are critical for PSL classification, such a catego-

rization is useful for a number of reasons: providing an overview of existing methods in

PSL feature extraction, demonstrating the difference between clinical and dermoscopic

feature descriptors, and aggregating a list of corresponding relevant references.
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Computer-aided diagnosis systems for pigmented skin lesions have demonstrated

good performance in the experimental setting and have a high level of acceptance

among patients. However, at present, such systems cannot yet be used to provide the

best diagnostic results or replace the clinicians’ skill or histopathology. Nonetheless,

these systems are now used for educating general practitioners, giving advanced training

to expert clinicians and providing second opinions during screening procedures [46,48].

In other words, “clinical diagnosis support system” might be a more correct term to

refer to CAD systems for skin cancer at the current stage of their development.

Finally, an important step to improve output quality in these systems and unite

the efforts of different research groups working in this area is to provide a publicly

available benchmark dataset for the algorithms being developed. Each PSL image in

this dataset should be accompanied by the ground truth definition of the lesion’s border

and its diagnosis with additional dermoscopy reports [42] from several dermatologists.

Such a dataset has been anticipated for a very long time, and only recently, a relatively

small database satisfying these characteristics was made available for public use [144].
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Although it is the lot of man but once to die, the victim

of malignant melanoma need not die by inches from the

Black Death.

Stanford Cade, “Malignant Melanoma” [2]

Chapter 3

A total body skin scanner

Knowing a PSL’s previous state allows predicting its malignancy using one of the

most reliable signs of a developing melanoma: changes in color, shape and/or size [382].

These changes are also referred to as “evolving” in some of the melanoma detection

algorithms [38].

In order to recognize changing lesions during total body skin examination, physi-

cians need a baseline for each lesion. This baseline can be provided by total body

photography consisting of periodically acquiring photographs of patients in standard-

ized poses (please, refer to Section 1.4 for more details). The images acquired are used

to detect changes in moles via simple visual comparison as described in [25].

Despite a variety of body scanning techniques and devices used in the medical, tex-

tile or cosmetics industries [383], the level of automation of WBP systems for melanoma

detection remains low both in terms of image acquisition and processing. One of the

reasons is that the majority of these systems are designed to recover 3D information of

the body shape rather than considering its textural information. It mainly concerns de-

vices using laser, white light or time of flight technologies. On the other hand, scanners

based on photogrammetry1 need to provide high-resolution images for a comprehensive

analysis together with a sufficient image overlap for 3D reconstruction, which poses

a certain engineering trade-off. Consequently, some scanners using multiple cameras

(e.g., [52]) offer automated image acquisition, but do not report any means to analyze

and compare images automatically.

Taking this trade-off into account, we designed and built a new total body scanning

system capable of automatically acquiring high-resolution images of 85–90% of the

1Photogrammetry based scanners infer 3D information about objects from their photographic im-
ages, acquired using one or several cameras. Computer vision and image processing techniques are used
to this end [384].
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3. A TOTAL BODY SKIN SCANNER

cutaneous surface and creating a precise map of all visible moles. In contrast with

traditional photogrammetry-based systems, our scanner does not rely on dense skin

texture reconstruction, but rather focuses on detecting and mapping individual moles.

Such an approach allows solving the lesion-to-image correspondence problem by having

a direct link between a mole’s location on the patient’s body and its images (at least

two). At the same time, the controlled environment of the scanner offers a solution to

the problem of automatic lesion matching across two different scans, or explorations.

In this way, moles that appear and disappear can be detected, as well as the evolution

of all the lesions can be tracked across explorations, enabling their automatic change

detection.

Further along in this chapter, we describe the design, the calibration procedure and

the operational sequence of the total body skin scanner developed. We also discuss

the limitations of the system imposed by the components employed (the turntable,

the cameras and the dimensions of the booth), and provide suggestions for future

improvements.

3.1 Hardware design

The dimensions of the proposed scanning system illustrated in Figs. 3.1 and 3.2 are

1400×990×2200 mm. The doors are positioned at the front and the side of the scanner’s

cabin allowing for easy access as well as ensuring free exit in case of an emergency stop.

The operator’s control panel is located to the right of the front door and consists of a

19-inch touchscreen, an emergency stop button, operation light-emitting diodes (LEDs)

and a safety key. The touchscreen enables the operator to control the image acquisition

process directly. The three LEDs indicate the power state of the system, whether the

turntable is in motion or the emergency stop has been activated.

The interior of the scanner is divided into two areas: the acquisition and the equip-

ment compartments. The former is the patient area accessible via the doors, while the

latter can be reached by removing the rear composite wall boarding.

1. The acquisition compartment (Fig. 3.1) is a light-tight chamber exposed to

a camera rig, a fluorescent lighting system and a turntable on the floor level.

A backrest column, padded with soft material, is attached to the turntable and

the roof frame. It adds rigidity to the structure, provides support to the patient

and, at the same time, establishes a reference point for his/her positioning in

the chamber. A sliding horizontal bar installed on the backrest column serves

46



Figure 3.1: Exterior view of the scanner (3D model): the acquisition compartment. The two doors
allow for easy entrance and exit regardless of the position of the backrest column. The control panel
is located next to the front door and consists of a touchscreen, emergency stop button and operation
LEDs. The interior of the acquisition chamber is shown in the image on the right (the side door
removed). The camera rig is covered by black paneling and located in the middle of the cabin. On the
side of the rig, there are the two sections of the lighting system as well as the four intake fans. The
backrest column, padded with soft blue material, is attached to the turntable at the bottom and to the
roof frame at the top.

as a hand support. During the exploration, the turntable rotates making several

stops, so that the patient is exposed to the cameras from different angles. These

stops are hereafter called turntable positions or steps, and the proposed prototype

uses 12 steps per pose of the patient (see Section 3.2).

The chamber is ventilated using 6 fans: four for air supply and two for exhaust.

The supply fans, with a diameter of 80 mm, are located symmetrically on the sides

of the lighting system. They force external air, drawn through the ventilation

openings in the rear wall of the scanner, into the acquisition compartment. The

two 120 mm exhaust fans take the air out through the ceiling of the compartment.

Because of the lighting system, the air in the closed acquisition chamber can heat

up rapidly (the working temperature of the fluorescent lamps is 35°C). Hence,

in order to prevent possible excessive heat in the chamber and reduce electricity
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3. A TOTAL BODY SKIN SCANNER

Figure 3.2: Exterior view of the scanner (3D model): the equipment compartment. At the bottom
and the top of the side paneling there are ventilation openings for air intake and exhaust. The interior
of the equipment compartment can be seen in the image on the right (the two parts of the composite
paneling are removed). There are three shelves holding the equipment cabinet, the PC, and the stereo
speakers. Behind the shelves are the camera rig, the lighting system and the intake fans facing the
interior of the acquisition chamber.

consumption, turning the lights off between explorations is recommended.

2. The equipment compartment (Fig. 3.2) contains a personal computer (PC)

and a cabinet with a variable frequency drive (VFD), a transformer and switch

controllers. The PC controls the acquisition process, stores image data and man-

ages all input/output requests. The switch controllers and the VFD allow direct

software communication between the PC and the lighting system and turntable.

The cameras are connected to the computer via USB interface: several external

USB controllers are used for the purpose.

To communicate with the patient while the doors of the cabin are closed, the oper-

ator can use a microphone installed on the control panel. The sound will be amplified

by the speakers located in the equipment compartment (the speakers can be optionally

used for music playback during the scanning procedure). Moreover, the interior of the

acquisition compartment can be monitored from the outside using the live video stream
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transmitted from a USB camera inside the chamber. This is useful for controlling the

scanning procedure (change of pose), as well as for a rapid response to emergency

situations.

3.1.1 The imaging subsystem

The imaging subsystem of the scanner uses 21 identical commercial digital cameras

equipped with 12 mega-pixel charge-coupled device (CCD) sensors (4000×3000 pixels)

and lenses with a focal length of 7.4–44.4 mm (35 mm film equivalent: 35–210 mm)

capable of 6× optical zooming. These cameras support a portable application program-

ming interface that provides a detailed software control over most of the acquisition

parameters. Moreover, their price-quality ratio gives them an advantage over industrial

cameras with similar specifications.

The cameras are installed on two parallel columns in portrait orientation: 11 on the

left and 10 on the right (when looking through the cameras’ viewfinders), as illustrated

in Figs. 3.1 and 3.3a. Both columns are rotated 5° around their vertical axes, so that all

cameras are directed “inwards”. The vertical spacing between any two adjacent cameras

installed on the same column equals 165 mm, while that between those installed on the

opposing columns is two times less, 82.5 mm. The baseline, or the horizontal spacing

between the cameras on the two columns, is 100 mm. With this arrangement and a 3×
zoom factor, we achieve a trade-off between image overlap and resolution/magnification

when the cameras are focused at a distance of approximately 400–450 mm. Moreover,

the cameras’ view angles are suitable for both matching the detected feature points in

inter-column stereo pairs and extracting their 3D positions.

Before calibrating the cameras, they must be initialized with predefined parameters

(F-number, ISO value, exposure time, etc.) and their focus points must be locked at

a fixed distance. We set the aperture to its minimum (F8.0) in order to maximize the

depth of field (DOF), while the exposure time and the ISO value were set to 1/30 of

a second and 200 respectively, resulting in well-lit images and an acceptable tolerance

to the patient’s motion.2 The cameras’ function of automatic focusing by contrast

detection is not used because the skin’s texture is too uniform for an accurate enough

estimation of the focus distance. Moreover, the time needed for each camera to focus

automatically is variable. This does not satisfy the requirement of simultaneous image

acquisition by all the cameras (see Section 4.1.2.1 for details).

2During the exploration, the patient will need to hold the same pose and avoid abrupt movements
while the camera sensors collect light. Since it is nearly impossible for the patient to remain completely
motionless, the scanning system should have a tolerance to slight, unwanted movements.
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Therefore, in order to fix the focus point, we make use of the calibration board,

described further in Section 3.3, whose colored squares have well-defined edges. The

board is placed in the scanner, attached to the backrest column. Then, the turntable

is rotated 90° so that the pattern appears facing the cameras at a distance of approx-

imately 400 mm (395 mm from the pattern to the camera case and 5–15 mm to the

sensor). Each camera takes a single shot using the auto-focusing function, thus, acquir-

ing an image of the calibration pattern. The estimated focus points are retained and

used throughout the exploration(s), while the images serve to compute the extrinsic

parameters of the rig with respect to the center of the turntable.

3.1.2 The lighting subsystem

The acquisition compartment is illuminated by a lighting system consisting of 16 double-

capped fluorescent lamps divided into two sections. Each section is a combination of

four 39-Watt and four 54-Watt lamps with a luminous efficiency3 of 86 lm/W, which

emit high color temperature light (6500K, “cool daylight”). The total nominal luminous

flux4 of the fluorescent lamps in the two sections equals ΦV = 63, 984 lm for the total

wattage ΦE = 744 W.

The lighting system’s lamps and all the cameras are equipped with linear polarizers

and circular analyzers, respectively. The mutual angle between their polarizing axes is

90°, making the acquisition process similar to that of cross-polarized dermoscopy [30].

Using cross-polarized light allows eliminating any reflections on the skin’s surface, how-

ever, at the expense of light energy losses during both emission and capture. We com-

pensate this loss by using a longer exposure time (1/30 s) and a higher ISO sensitivity

value (200) on all cameras.

The resulting illuminance5 at the point lying on the plane of the calibration board,

and equidistant (350 mm) from the two lighting sections, was measured to be approxi-

mately 5000 lx.6 Similar values with minor fluctuations were reported at all heights in

the acquisition chamber along the same vertical line. However, when the measurement

point was moved along the horizontal dimension of the calibration plane closer to the

3Luminous efficiency/efficacy of a light source determines how well it converts input (electrical)
energy into the energy of visible light (measured in lumens per watt (lm/W)).

4Luminous flux/power is a photometric measure of the total amount of light emitted by a light
source (measured in lumens(lm)). In other words, it is the radiance power of the source across the
whole electromagnetic spectrum weighted by the average spectral sensitivity of the human eye at a
given wavelength.

5Illuminance is the amount of luminous flux from a light source falling on a given surface, measured
in lux (lx=lm/mˆ2).

6The measurements were taken with a hand-held analogue illuminometer Kyoritsu Model 5200.
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center of light ray concentration of the lighting system sections, the obtained illumi-

nance values reached as much as 7000 lx. These levels of illuminance are adequate to

uniformly light the skin surface of the patient at the focusing distance of the camera

rig and account for light losses during the image’s capture. For comparison, the recom-

mended level of illuminance for the performance of visual tasks of low contrast or very

small size over a prolonged period (inspection tasks, very difficult assembly or jewelery

manufacturing) is 2000–5000 lx [385].

According to [386], fluorescent light sources with similar characteristics belong to

the Risk Group 0 (RG0, “exempt from risk”) of photo-biological hazard. Moreover,

the effects of short-term exposure to ultraviolet radiation emitted by a fluorescent light

source are thought to be negligible. Similarly, there is no evidence that blue light from

artificial lighting belonging to RG0 would have an impact on the retina greater than

that of sunlight. Therefore, as the sole precaution during the exploration, the patient is

advised to either avoid looking directly at the light source or have his/her eyes closed.

3.2 The scanning procedure

Once the focus points are fixed and the cameras calibrated (see Section 3.3), the image

acquisition procedure can be started. In order to photograph a minimum of 85% of the

skin’s surface, the patient needs to assume two poses:

� Pose 1: face the backrest column with the hands down at the sides (Fig. 3.3b).

Used to scan the posterior region of the body, the shoulders, the arms and the

back of the hands.

� Pose 2: back to the column, grasping the horizontal bar behind with both hands

(Fig. 3.3c). Exposes the anterior region of the body, the face and the sides of the

trunk to the cameras .

To begin, the patient assumes pose 1. The turntable rotates 180 degrees counter-

clockwise making stops for the cameras to acquire images at the following 11 angles or

positions: 15°, 30°, 45°, 60°, 80°, 100°, 120°, 135°, 150°, 165° and 180° (see Fig. 3.4).

In total, there are 12 positions at which the images are acquired, starting with step

0, when the turntable is in the initial state. Note that in the range of the first and

the last 4 positions, the turntable makes 15-degree rotations each step, while at the

four middle positions it rotates 20°. This is done to increase the overlap between the

images acquired when the body (shoulders) is closer to the cameras, and hence, the
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(a) (b) (c)

Figure 3.3: (a) The setup of the cameras on the columns and their indexes. (b) Pose 1 for image
acquisition: the patient faces the backrest column with the arms on the sides. (c) Pose 2: the patient
stands with his/her back to the column, holding the horizontal bar behind with both hands. The
interior of the acquisition compartment shown in (b) and (c) demonstrates the camera rig (with the
cover removed), the lighting system, and the turntable with the backrest column.

relative displacement is bigger. And at the same time, we reduce data redundancy

when imaging the trunk which appears farther from the cameras at steps 5-8.

After the turntable reaches 180°, the patient is asked to assume pose 2. Once

the pose has changed, the operator resumes the procedure and the turntable rotates

180° clockwise making stops at the same positions for image acquisition.7 In total, the

21 cameras capture one image at 24 turntable positions resulting in 504 high-resolution

images covering most of the skin’s surface. Only the inner side of the arms, the palms,

the soles and the upper part of the scalp are not covered during the exploration. In

7In order to differentiate between the turntable’s positions when the patient is in two different poses,
we number them from 0 to 23. The first twelve are for pose 1, and the remaining are for pose 2.
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0 (0°) 1 (15°) 2 (30°) 3 (45°) 4 (60°) 5 (80°)

6 (100°) 7 (120°) 8 (135°) 9 (150°) 10 (165°) 11 (180°)

Figure 3.4: Schematic top views of the acquisition compartment with the turntable at different an-
gles/steps. The patient assumed pose 1 facing the backrest column. After step 12, the patient changes
his/her pose and the turntable rotates clockwise to complete the exploration.

order to complete the TBSE, these areas should be photographed separately by the

operator or the physician.

At the end of the acquisition procedure, all the images are copied from the cameras’

memory modules to the PC and the scanner’s database is updated with the dataset

information using the details of the patient and the operator. The whole procedure

takes approximately 6 minutes, greatly improving the time needed for manual image

acquisition. A non-automated complete skin examination, with or without dermoscopy,

takes less than 3 minutes on average [387]. However, added manual image acquisition

for lesion change tracking, which requires around 1 minute per mole, it will take at

least 30 minutes more for a patient with 30–40 lesions.

3.3 Camera calibration

Besides the specific lighting conditions and positioning of the patient, the controlled en-

vironment of the scanner relies heavily on the camera’s measurements. For this reason,

the cameras in the scanner must be calibrated, both intrinsically and extrinsically.

3.3.1 The intrinsic calibration

The intrinsic calibration procedure is applied to determine the internal parameters of

a camera, which include the focal length, the principal point, and an estimation of
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the lens distortion. These parameters need to be estimated not only to obtain the

exact characteristics of a camera, but also to make use of the epipolar geometry (see

Appendix A.2) when one or two cameras are installed in a stereo rig. In brief, the focal

length is the distance between the focal point of the lens and the image plane (the

sensor of the camera). The projection of the focal point onto the image plane along

the optical axis8 defines the principal point. Finally, there are several types of lens

distortion, such as radial, tangential and “thin prism”, which can be approximated by

means of different models. These models are normally represented using a system of

parametric equations, which reduce the description of distortion to several parameters.

Detailed information on the intrinsic camera parameters and a variety of methods for

their estimation can be found in [388,389].

Despite the fact that all the cameras employed in the scanner are of the same

model, the intrinsic calibration we obtain for one cannot be applied to all. This is

due to distinctions in the acquired parameters which are normally the result of lens

imperfections or differences in the mechanical components. These distinctions lead

to considerable inaccuracies in the epipolar geometry of the camera rig, which is an

important part of the lesion mapping pipeline (see Section 4).

Therefore, each camera had to be calibrated individually. For that purpose, we used

a black-and-white calibration checkerboard containing 19× 27 squares of 9.5× 9.5 mm

and the Camera Calibration Toolbox for Matlabr [390]. According to the pinhole

camera model [388], the projection of a point Q = (X,Y, Z)T , given in the camera’s

reference frame, to the image plane is:

q =

[
f XZ + px

f YZ + py

]
, (3.1)

where f is the focal length of the camera, and (px, py)
T are the coordinates of the

principal point (all expressed in metrics).

The goal of the camera calibration procedure is to find the transformation matrix

K, so that: [
q

1

]
= K[I|0]

[
Q

1

]
. (3.2)

In this equation, I is a 3 × 3 identity matrix, 0 is a 3 × 1 vector of zeros, and the

resulting point q is expressed in homogeneous coordinates. The matrix K is called the

8The optical axis is the line passing through the center(s) of curvature of the lens or an optical
system. This axis normally coincides with the symmetry axis of the lens(es).
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intrinsic camera calibration matrix and has the following form:

K =

f 0 px

0 f py

0 0 1

 . (3.3)

Eq. 3.2 assumes that point Q is expressed in the coordinate system of the camera.

When the point(s) in space Q are expressed in terms of a different coordinate system

(the world coordinate frame), Eq. 3.2 is generalized to include the camera’s orientation

and position with respect to that system:[
q

1

]
= K[R|t]

[
Q

1

]
. (3.4)

R is the rotation matrix and t is the translation vector, which together represent the

extrinsic parameters of the camera.

When we work with CCD cameras, it is convenient to establish direct metric-to-

pixel correspondences. Thus, to obtain a point on the image plane expressed in pixel

units, we can modify K in the following way:

K′ =

mx 0 0

0 my 0

0 0 1

 · K =

αx 0 x0

0 αy y0

0 0 1

 . (3.5)

In this representation, mx and my are the pixel dimensions in the horizontal and vertical

directions respectively, αx = fmx and αy = fmy represent the focal length of the

camera in pixel units, and (x0, y0) are the coordinates of the principal point, also in

pixels. A more generic version of the calibration matrix K′ includes a skew parameter

for non-rectangular pixels K′1,2 = s, however, it is seldom used, and is normally equal

to zero.

However, the simplest pinhole model described above does not provide a description

of the lens distortion, and hence, cannot be accurately applied to real cameras. In order

to add distortion to the pinhole model, we need to start at the very beginning as lens

distortion occurs during the initial projection of the world point to the image plane.

Assuming a normalized projection of point Q onto the image plane (f = 1), and that

the origin of the camera coordinates coincides with the principal point (px = py = 0),
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we obtain

qn =

[
qnx

qny

]
=

[
X
Z
Y
Z

]
. (3.6)

Having a distortion model, we can apply it directly to the normalized image coordinates

and obtain the distorted point qd. The distortion model implemented in [390] combines

the radial and tangential components in the following way:

qd = drqn + dt = (1 + k1r
2 + k2r

4)

[
qnx

qny

]
+

[
2k3 · qnxqny + k4(r2 + 2q2

nx)

2k4 · qnxqny + k3(r2 + 2q2
ny)

]
, (3.7)

where r2 = q2
nx + q2

ny , and {k1, k2} and {k3, k4} are the coefficients for the radial and

the tangential components, respectively.

Now, in order to obtain the normalized distorted point qd in pixel units, it has to

be denormalized and transformed accordingly using the calibration matrix K′:

qp = K′qd. (3.8)

Once the point correspondences Q 7→ qp are known, the calibration using the tool-

box is performed in two steps [390]: the initialization and the nonlinear optimization.

The initialization provides a closed-form solution to compute the calibration parame-

ters based on the vanishing points and using the pinhole model without lens distortion.

During the nonlinear optimization step, the total reprojection error is iteratively min-

imized (in the least-squares sense) over all the calibration parameters by means of the

gradient descent algorithm. As the toolbox also computes the extrinsic parameters of

the cameras with respect to the calibration plane, there will be 8 + 6n parameters

to estimate: 8 intrinsic (αx, αy, (px; py), {k1, k2, k3, k4}) and 6n extrinsic (3 angles of

rotation and 3 displacements, where n is the number of pattern images).

Table 3.1 shows the parameters obtained after calibrating all the cameras in the

rig. As can be seen, there is a considerable discrepancy between the estimated lo-

cations of the principal points for different cameras. In a perfect camera assembly,

we would expect the principal point to be in the geometrical center of the sensor at

the pixel (1500; 2000). However, its mean location for the 21 calibrated cameras is

at (1495.60; 1972.28), with a standard deviation of 94.6 and 30.96 pixels for the hor-

izontal and the vertical coordinates, respectively. The error, or the uncertainty, of

the estimated principal points for all the cameras has a mean value of 2.92 pixels for

the horizontal and 3.15 for the vertical coordinate. This is a solid result, especially

considering the high image resolution of 3000× 4000 pixels.
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Table 3.1: The intrinsic parameters of the cameras obtained using the calibration procedure.

Cam Focal length Principal point Distortion coefficients

idx (px|mm)a coordinates ± errorb (px) k1 k2 k3 k4

0 5555.02 | 10.55 (1406.19; 1939.35) ± (3.90; 3.79) -0.1304 0.2376 -0.0014 -0.0031
1 5547.02 | 10.54 (1390.51; 1989.97) ± (2.73; 2.58) -0.1307 0.2490 -0.0016 -0.0021
2 5596.66 | 10.63 (1404.67; 1985.88) ± (2.37; 2.73) -0.1299 0.2828 0.0004 -0.0018
3 5583.10 | 10.61 (1411.74; 1941.18) ± (1.92; 2.53) -0.1380 0.2947 -0.0011 -0.0008
4 5641.88 | 10.72 (1400.05; 1890.25) ± (3.03; 3.07) -0.1365 0.2670 -0.0034 -0.0034
5 5630.09 | 10.70 (1446.42; 1919.77) ± (3.31; 3.66) -0.1291 0.2427 -0.0020 -0.0035
6 5578.98 | 10.60 (1430.84; 1975.38) ± (3.25; 3.57) -0.1479 0.2990 -0.0016 -0.0032
7 5570.47 | 10.58 (1436.63; 1999.69) ± (2.66; 2.77) -0.1325 0.2513 -0.0007 -0.0030
8 5590.63 | 10.62 (1372.32; 2010.65) ± (2.79; 2.96) -0.1369 0.2578 -0.0013 -0.0041
9 5538.98 | 10.52 (1381.82; 1965.06) ± (2.59; 2.73) -0.1357 0.2420 -0.0007 -0.0032
10 5564.53 | 10.57 (1429.60; 1995.10) ± (2.82; 3.32) -0.1359 0.2542 0.0008 -0.0005

11 5601.63 | 10.64 (1574.84; 1961.87) ± (2.91; 3.07) -0.1217 0.2100 -0.0019 0.0020
12 5576.81 | 10.60 (1618.69; 2014.28) ± (3.35; 3.40) -0.1323 0.2650 -0.0015 0.0011
13 5555.40 | 10.56 (1630.74; 1981.58) ± (2.69; 3.45) -0.1356 0.2838 -0.0027 0.0021
14 5573.02 | 10.59 (1553.92; 1982.88) ± (3.02; 3.29) -0.1394 0.2651 -0.0021 0.0025
15 5601.23 | 10.64 (1596.72; 1955.19) ± (3.24; 3.49) -0.1390 0.2699 -0.0030 0.0027
16 5657.06 | 10.75 (1594.05; 1963.53) ± (3.84; 4.41) -0.1430 0.2642 -0.0034 0.0015
17 5526.78 | 10.50 (1589.61; 1983.77) ± (2.82; 3.06) -0.1382 0.2556 -0.0031 0.0013
18 5569.80 | 10.58 (1577.99; 1990.11) ± (3.19; 3.33) -0.1406 0.2834 -0.0022 0.0020
19 5588.61 | 10.62 (1575.91; 2009.22) ± (2.44; 2.75) -0.1340 0.2513 -0.0020 -0.0002
20 5529.09 | 10.51 (1584.31; 1963.20) ± (2.38; 2.26) -0.1453 0.2912 -0.0013 0.0021

Avg 5579.85 | 10.60 (1495.60; 1972.28) ± (2.92; 3.15) —
a The focal length of the camera is expressed in units of camera pixels ((αx + αy)/2), and in

millimeters (f). The latter is estimated using the pixel size of mx = my ≈ 1.9 · 10−3 mm derived
from the manufacturer’s data sheet.

b The numerical error of the principal point estimation is approximately three times the standard
deviation [390].

The value corresponding to the focal length of the cameras is expressed in pixel

units: the average of αx and αy in Eq. 3.5. We converted this value into millime-

ters, using the pixel size approximated at mx = my ≈ 1.9 · 10−3 according to the

manufacturer’s specifications. While the focal length indicated in the image EXIF9

data corresponds to 11 mm, the average value of the estimated focal distance is 10.6

mm. The results obtained for the distortion coefficients clearly show that the radial

component has a much higher weight and causes a significant image deformation.

9EXIF (Exchangeable Image File Format) is a standard for data exchange between imaging devices
and software. The type of information stored in a file may vary with the camera model and normally
includes data such as the time stamp, camera settings, color information, etc.
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3. A TOTAL BODY SKIN SCANNER

3.3.2 The extrinsic calibration

The mapping algorithms developed for the scanner rely on information about the po-

sition and orientation of the cameras with respect to some global reference frame. The

scanner’s reference frame has its origin at the center of the turntable with the X-axis

oriented upwards, and the Z-axis directed towards the camera rig (see Fig. 3.5). In or-

der to obtain this information, one must either take very precise physical measurements

(which is extremely difficult, especially for the orientation), or perform the extrinsic

calibration with an object of known geometry. Due to possible changes in the place-

ment of the cameras and the tediousness of taking physical measurements, calibration

appears to be the optimal solution. Hence, we designed a calibration pattern to be

used specifically in this scanning system. It satisfies all of the following requirements,

allowing for an automatic one-shot extrinsic self-calibration of the scanner’s cameras:

� compactness for easy mounting and dismounting;

� being visible to all cameras;

� containing distinguishable visual markers.

Visual markers are needed to establish point correspondences between the calibra-

tion plane and the image planes (camera sensors). Once the point correspondences are

known, the orientations Rn and positions tn of the cameras in three-dimensional space

with respect to a given origin of coordinates can be easily recovered. For this reason,

we once again make use of the functionality of the Camera Calibration Toolbox:

1. Estimate the planar transformation—homography10—between the real pattern

and its image using the normalized direct linear transformation algorithm [388].

The homography obtained is then additionally refined by iteratively minimizing

the reprojection error in the least-squares sense. Note, the resulting homography

matrix contains only the physical part of the transformation, i.e. the rotation and

the translation, because the image points are normalized prior to homography

estimation.

2. Extract the rotation and the translation components from the homography ma-

trix. The image plane and the camera plane are physically related by some

10In computer vision, planar homography can be defined as a projective mapping (a 3 × 3 matrix)
between points belonging to two different planes. Normally, it relates a planar surface in space with the
image plane of a camera observing that surface. Consequently, the homography matrix incorporates
two transformations: the physical rotation and translation of the plane, as well as camera projection
parameters (intrinsics).
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Figure 3.5: Schematic representation of the coordinate systems used in the scanner. The origin of the
world coordinate system Ow is in the center of the turntable. Ob and Oc1 ..Oc21 are the coordinate
origins of the calibration board and the cameras, respectively.

rotation R and some translation t. Hence, we can rewrite Eq. 3.4 to represent

the homography between the point on the plane (Z = 0) and a normalized image

plane point:

[
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XY
1

 , (3.10)

where H is the homography matrix defined up to a scale factor s due to universal

scale ambiguity (s is decoupled from H). From this last equation, we can directly

deduce the translation vector t and the rotation components r1 and r2 which

must be normalized previously. Finally, the third rotation vector can be found

using the orthogonality property: r3 = r1 × r2.

3.3.2.1 The calibration board

The calibration pattern is based on a colored checkerboard with squares of 10 × 10

mm. In this pattern, vertices common to at least four adjacent squares represent
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3. A TOTAL BODY SKIN SCANNER

marker points, which are also referred to as corners. Each corner can be made unique

and distinguishable by means of the colors of the squares and additional symbolic

information. In order to minimize the number of distinct colors used in this encoding

and to maximize the number of codes they provide, the colors are distributed in the

pattern according to what we define as the abacus encoding scheme. The name suggests

an analogy with abacus beads alternately slid along adjacent wires in order to create a

number or, in this case, a pattern.

The idea of the scheme is the following: given n (n ∈ Z, n > 0) uniquely col-

ored squares and one distinguishable separator square, we can build a pattern X =

[x1 · · ·xk · · ·xn+1]T , where x1 . . .xn+1 are row-vectors with (2n + 1) elements, while

k is the position of the middle row. This pattern will contain an n × 2n matrix C of

uniquely encoded internal corners (markers). In order to build X and obtain C, we need

to perform the following steps:

(1) Using the given squares, create a row-vector y = 〈y1, y2, . . . , y6n+1〉, where colored

squares and separators are alternated, so that there are exactly 2n − 1 squares

between any two repeating colors. Start with the separator square.

(2) Superimpose a window w of 2n+ 1 elements on vector y at position pk = 2n+ 1,

so that:

wpk = 〈ypk , ypk+1, . . . ypk+2n+1〉. (3.11)

(3) Determine the index of the middle row (xk) of pattern X and assign the selected

window wpk to it:

k = d(n+ 1)/2e, (3.12)

xk = wpk , (3.13)

where d·e is the ceiling operator returning the smallest integer that is greater than

or equal to the enclosed value.

(4) The rest of the rows in X are assigned by sliding window w left or right along y:

xi = wpi = 〈ypi , ypi+1, . . . ypi+2n+1〉, (3.14)

where

pi =

{
pk +m, if m ∈ 2Z + 1

pk −m, if m ∈ 2Z
and m = |k − i|. (3.15)

(5) Matrix C is formed by the internal corners of pattern X. Each corner is uniquely
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(a) (b)

Figure 3.6: Marker encoding using the colors of the surrounding squares. The
colors are listed clockwise starting from the top left. The markers depicted have
the codes (a) white− red− white− green and (b) blue− white− red− white.

encoded by the colors of its 4 surrounding squares read clockwise starting from

the top left (see Fig. 3.6).

To illustrate the scheme, suppose that we have n = 4 squares colored in red, green,

blue and cyan, and a separator square of white (in Fig. 3.7, the squares are marked

with the initial letters of these colors). We combine them into a sequence y according

to step (1), a part of which can be seen in Fig. 3.7.a. Then, we select a window w wide

enough to include all four squares enclosed by the separators, in total 2 ∗ 4 + 1 = 9

squares (see Fig. 3.7.b). This window is assigned to the middle row xk of the desired

pattern (Fig. 3.7.c), where k = 3.

Next, by moving the window a given number of squares to the left or to the right

from its original position (Fig. 3.7.b), we can obtain the rest of the rows of the pattern.

More specifically, according to step (4), in order to obtain rows x2 and x4, we need to

move the window m = 1 squares to the right (Fig. 3.7.d). And by moving the window

m = 2 squares to the left (Fig. 3.7.e), we get rows x1 and x5. Fig. 3.7.c shows the

complete pattern X as the result of our operations with the sequence of squares y. It

contains exactly 32 (C4×8) unique corners highlighted with circles in the figure. The

uniqueness of each element in C is guaranteed by the four surrounding squares in the

pattern (see step (5) of the scheme). For example, C1,1 is identified as white− cyan−
white− red and C1,2 (row 1, column 2) has the code cyan− white− green− white.

Similarly, on our calibration board, we use a pattern X created with n = 6 colors,

each having a unique number: red (1), green (2), blue (3), cyan (4), magenta (5) and

yellow (6). The separator square is also white (0). The colors’ numbers are used by the

computer to encode and store the marker’s color description. Thus, the corner from

the previous example with the code cyan-white-green-white is represented as 4020.

The pattern is of 7× 13 squares and contains n · 2n = 72 unique markers. However,

this number of visual markers is not enough for a one-shot calibration of all the cameras
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3. A TOTAL BODY SKIN SCANNER

Figure 3.7: The abacus encoding scheme for n = 4 colors. (a) Part of the vector y = 〈y1, y2, . . . , y25〉.
(b) Window w of 2 ∗ 4 + 1 = 9 squares superimposed on y at position 9. (c) Final pattern built by
combining different parts of vector y, obtained in (b), (d) and (e). The circles denote the matrix of
markers (corners) C4×8. (d) Window w slid one square to the right with respect to (b). (e) Window w
slid two squares to the left.

because the pattern would appear in the field of view of only a few of them. There-

fore, we replicated it and tiled the copies along the vertical and horizontal dimensions,

creating a continuous periodic pattern X′. It consists of 33× 2 sub-patterns X, so that

X′i,j = X for i, j ∈ N>0, and measures 1980×250 mm. An image of this pattern acquired

by one of the cameras is shown in Fig. 3.8.

Vertically, the tiling was done so that the last row of the upper sub-pattern X′i,j is

at the same time the first row of the sub-pattern X′i+1,j directly below it. In the same

way, for the patterns tiled horizontally, the last column of sub-pattern X′i,j to the left

is the first column of X′i,j+1 to the right. Each colored square in the pattern X′ bears

a number identifying the row i and the column j of its corresponding sub-pattern X′i,j .

This ensures the uniqueness of the markers in the whole pattern. The numbers are

written inside the squares, and their colors have the same hue, but a lower intensity

as compared to the background. In this way, the numbers are easily readable and the

color integrity of the squares is sufficient.

Overall, using this calibration pattern, all that is needed is to recognize one number

and the colors of two diagonal squares in order to identify all the markers visible in the

image. This makes it a very robust system for automatic camera calibration.
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(a)

(b) (c)

Figure 3.8: Images of the calibration pattern. (a) Part of the real calibration pattern mounted in the
scanner and photographed by camera 16. The image contains fragments of sub-patterns X′17,1, X′18,1,
X′19,1, X′17,2, X′18,2, and X′19,2. The highlighted corners of the cyan square are identified clockwise as
green−white− cyan−white (2040), white− blue−white− cyan (0304), cyan−white− cyan−white
(4040), and white− cyan−white− blue (0403). Next, the cyan square is binarized and analyzed with
the Tesseract OCR engine. The first two digits denote the sub-pattern’s row (18), while the second
two are the column (2). (b-c) Software interface for the extrinsic camera calibration. The two images
demonstrate a part of the pattern shown in (a) in gray-scale and with corners detected, respectively.

3.3.2.2 Visual marker recognition

The main steps for visual marker identification are given in Algorithm 1. Since each

marker is represented by a point common to some adjacent squares of the pattern, the

procedure starts by detecting the corners in the image. For each corner detected, we

assign its four immediate neighbors: the corners located to its north, south, east and

west (see Fig. 3.9). Following that, the attributes of one of the corners in the image—

the colors of its surrounding squares and the number of the sub-pattern it belongs

to—need to be identified. The attributes of the rest of the corners in the image can

be deduced recursively knowing the pattern structure and the corners’ neighborhood

information. In this way we can obtain the correspondences between the real pattern’s
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Algorithm 1: Primary steps for visual marker identification

Data: Image of the calibration pattern I

Result: List of point correspondences pp

1 /* Corner detection */

2 /* 1. Transform I to gray scale */

3 G← colorToGrayscale(I);
4 /* 2. Smooth G */

5 G← applyGaussianFilter(G);
6 /* 3. Find corners in the binary image */

7 cc← detectCorners(G);

8 /* Corner identification */

9 /* 4. Assign neighbors (north, south, east and west) to each corner */

10 nn← findNeighbors(cc);
11 /* 5. Recognize initial corner */

12 ppi ← identifyInitialCorner(cc,nn);
13 /* 6. Identify the rest of the corners recursively */

14 pp← identifyCorners(ppi,nn)

markers and their coordinates in the images.

The steps outlined in Algorithm 1 are applied to all 21 images acquired during the

calibration phase (see Section 3.1.1). The description of each step in the algorithm is

provided below:

1. Color-to-gray-scale image conversion. The main task of the gray-scale image

conversion is to increase the contrast between the white and the colored squares

in the gray-level image. To do this we retain the lowest color intensity value for

each pixel:

Gx,y = min(Ix,y,1, Ix,y,2, Ix,y,3), (3.16)

where x, y are pixel coordinates, and I and G are the color and gray-scale images,

respectively. The white squares have higher intensities than the surrounding

colored squares in all channels, so the contrast between the resulting “white” and

“gray” areas will be significant. See Fig. 3.8b for an example of the gray-scale

conversion.

2. Smoothing the gray-scale image. After the conversion, the gray-scale image

is not going to be uniform. This is due to the image noise and the fact that

the numbers indicating the sub-pattern have lower intensities than that of their

respective squares. For these reasons, the corner detection may produce unwanted

artifact corners inside the squares. In order to smooth the non-uniform areas, the
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image is convolved with a Gaussian filter.11 For the chosen lens magnification

factor and the distance between the calibration board and the cameras, the size

of the filter was set to 9× 9 pixels with σ = 3.

3. The corner detection is performed by means of the Harris corner detector [391].

The minimum distance between the corners found was set to 100 pixels (based

on the calibration images) and only the most stable ones in this vicinity were

retained. The sensitivity parameter of the detector was set to k = 0.2.

4. Neighbor assignment. Each marker in the real pattern has a maximum of 4

immediate orthogonal neighbors: those lying to the north, south, east and west of

the marker of interest (see Fig. 3.9a). Most of the markers have a full 4-connected

neighborhood, except for those located at the extreme corners of the calibration

pattern (2 neighbors) and those on the borders (3 neighbors).

In order to establish a link between the pattern corners detected in the images

and the real markers in the pattern, we need to determine their neighborhoods.

For that, we select the 4 points closest to each corner of interest and assess the

angles between the vectors formed by the neighbor-pairs and the axes in the

image (Fig. 3.9). The angle between the neighbor-pair vector and the vertical

axis (−→x ) conditions the north and the south neighbors, while the east and the

west neighbors are determined by the angle with the horizontal axis (−→y ). Ideally,

the vectors should coincide with the axes, but because the pattern is not strictly

fronto-parallel to the cameras, the angle will be defined within a certain range tα,

which was empirically set to 17°.

Following the example in Fig. 3.9a, point E is assigned as the eastern neighbor of

C if the angle between the vector
−→
CE and the −→y -axis is less than tα. Similarly,

point N is the northern neighbor of C if vector
−−→
CN and the −→x -axis form an angle

less than 180°− tα (compensated for the opposite directions of the vectors). The

other neighbors are assigned in the same way.

5. Corner attribute identification. In order to identify the attributes of a corner

of interest, i.e. the colors of the squares and the sub-pattern number, the regions

of interest (ROIs) corresponding to the diagonally opposite squares have to be

extracted. For that we rely on the neighborhood information obtained in the

previous step and extract the ROI containing the pattern square north-west of

11In 2-D, a circularly symmetric Gaussian filter has the form: G(x, y) = 1
2πσ2 e

− x
2+y2

2σ2 , where σ is
the standard deviation of the Gaussian distribution.

65



3. A TOTAL BODY SKIN SCANNER

(a) (b)

Figure 3.9: Neighbor corners selection. (a) A schematic representation of an image depicting the
calibration board. The points are the corners of the pattern: C is the corner of interest, N,S,E and
W are the closest neighbors of C. The vectors −→x and −→y are the axes of the image. (b) The definition
of the angle α which determines the side of the neighbor (north, south, east or west). −→v is one of the

vectors
−−→
CN ,

−→
CS,

−→
CE or

−−→
CW . Image axis can be either −→x or −→y . If α is less than the threshold angle

tα, then the corner is either the eastern (for image axis −→y ) or the southern (for −→x ) neighbor. While
if α is less than 180°− tα, the neighbor lies to the west (for −→y ) or the north (for −→x ).

the corner of interest. We identify the color of the square by simply taking the

median value of the pixels in each channel and compare them against explicitly

defined RGB ranges.12 If the square color is white, we extract and analyze the

north-east and the south-west squares, otherwise, we continue with the south-

eastern ROI.

After identifying the colors of the two non-white diagonally opposite squares

adjacent to the corner of interest, its sub-pattern number must be determined.

Therefore, we binarize both colored square ROIs and apply the Tesseract optical

character recognition [392] to read the printed digits. The corner will be assigned

to the sub-pattern with the largest identification number, which is especially

important when the marker is on the border between two sub-patterns.

Prior to the ROI binarization, the color images of the squares are transformed to

a gray-level representation. If the color is red, green or blue, the respective RGB

plane is used as the gray-scale image. If the color is yellow, magenta or cyan, we

use the color-constituting plane with the smallest mean intensity value, e.g., for

the yellow color, we choose between the red and the green channel. The binarized

images of the sub-pattern numbers are obtained by globally thresholding the gray-

scale image using the Otsu method [393]. Despite its simplicity, the performance

of this method is sufficient for the Tesseract engine to correctly recognize the

12This solution lacks generality and strongly depends on the lighting conditions but is easy to tune
and works very well in the controlled environment of the scanner.
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digits.

6. Recursive corner identification. Having identified one pattern corner in the

image, and knowing the neighborhood information of the markers in the calibra-

tion board, it is fairly easy to identify the other corners. This can be done by

recursively finding the correspondences between the markers’ neighbors in the

image and those in the real pattern. This procedure is very fast as well as re-

liable: once all parameters are set, failure is possible only if the first corner is

identified incorrectly due to damage of the pattern surface or a drastic change in

the illumination conditions.

3.4 Prototype restrictions

The scanning system described is intended for use in a clinical setting with the aim

of performing total body imaging and detecting new and/or evolving skin lesions. In

this respect, there are several restrictions defining the eligibility of the patients for

scanning. Firstly, the absence or scarcity of body hair. This requirement is essential,

since the automatic assessment of lesion change cannot be performed correctly in the

presence of hair, as can be appreciated in Fig. 3.10a. Moreover, because of body hair,

the algorithms presented in Chapter 4 may fail to establish correspondences between

lesion images that were acquired during consecutive explorations.

Secondly, although the scanner cabin can freely accommodate patients with a height

and weight of up to 199 cm and 200 kg respectively, there is a restriction on the subject’s

body constitution. This is due to the dimensions of the turntable and its distance from

the cameras, which can be defined as follows: all body regions of the patient must be

within the volume created by (1) the plane tangent to the backrest column, and (2) the

larger arc of the turntable formed by the intersection with that plane. This volume is

shown in Fig. 3.11a, and its 2D schematics in Fig. 3.11b. The blue delineation in the

latter figure is the profile of the described volume.

An additional constraint is imposed by the necessity of fixing the focusing points

of the cameras. Consequently, a 400–450 mm distance to the calibration board was

chosen so that the elements of the trunk, including the shoulders when the turntable

rotates, are in focus in all the images acquired. However, the depth of field (DOF)

resulting from the adopted configuration may not perform equally well for all patients

at every turntable position even if they satisfy the previous requirement. Depending on

the constitution of the subject, some body areas, if too far or too close to the camera
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(a) (b)

Figure 3.10: Examples demonstrating limitations of the imaging subsystem. (a) Body hair (pectoral
area) obstructing the view of the skin lesions. The detection and change assessment of PSL may fail
for patients with dense body hair. (b) Blurring in images of body regions that are outside the camera’s
depth of field. The image, captured by camera 19 at turntable position 21 (pose 2), depicts the legs
of a patient above the knees. The left thigh, which is closer to the camera, is in focus, while the right
one in the background is blurred. The body hair on this image is not dense, however, it can pose a
problem for inter-exploration PSL matching (for details, see Sections 4.2.1, 5.3.1, and 6.3)

(a) (b)

Figure 3.11: The volume defining limits of the patient area in the acquisition chamber. (a) A 3D
representation of the volume depicting the turntable, the backrest column and a patient in pose 2
inside the volume. (b) A 2D schematics (top view) of the turntable with the volume profile delineated.
The radius AC of the turntable is equal to 400 mm, the distance from its center to the column is
145 mm, and the length of the chord AB is 372.79 mm. The angle forming the larger arc AB is
360°− 2α = 222.5°, where α = 68.75°.

rig, may appear blurry in the images. For example, the shins of a patient of asthenic

habitus in pose 2 (with the back to the column) will be outside the DOF at turntable

steps 5–6. Similarly, an individual with wide shoulders/hips, or a large abdominal
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region, may be too close to the cameras, exceeding the lower limit of the DOF.

The example shown in Fig. 3.10b demonstrates a scenario of passing the higher

limit of the depth of field, where the right thigh is much farther from the camera than

the left one. As can be seen, besides the expected difference in resolution and level of

detail, the farther thigh is out of focus. It must be noted though, that the imaging

system has not been extensively tested on patients with various body constitutions.

Therefore, the final configuration of the camera parameters and the focusing distance

may be subject to change in the future.

3.5 Conclusions

The total body skin scanner described in this chapter serves to perform a complete

exploration of the patient’s skin surface. Equipped with a rig of high-resolution digital

cameras, polarized lighting system and a mechanically driven turntable, the scanner

provides a controlled environment for an optimal total body image acquisition. The

scanning procedure is automated and requires a minimal involvement of the operator:

necessary patient data input/retrieval and monitoring for pose changes and emergency

situations. The output of an automated skin examination procedure is a set of over-

lapping images (more than 500) covering the entire visible body surface of the patient.

In order to utilize the controlled environment of the acquisition chamber, the cam-

eras must be calibrated both intrinsically and extrinsically. The intrinsic calibration

was performed on each camera separately, using a black-and-white calibration board.

For the purpose of performing a one-shot extrinsic calibration of the camera rig, we

designed a special pattern bearing unique visual markers. We also developed a soft-

ware to automatically recognize the markers in the pattern images and, thus, obtain a

set of corresponding points necessary for the estimation of the cameras’ positions and

orientations.

One of the main hardware trade-offs that we had to accept in this skin scanner

lies in the configuration of the imaging subsystem, i.e. the number of cameras, their

orientations and locations, and their parameter settings. The system must be able to

capture images with high resolution with at least a 50–70% overlap between adjacent

cameras and a large depth of field, so that body regions at different distances from

the cameras are in focus. In addition, the number of cameras had to be minimized in

order to decrease the final cost and complexity of the imaging subsystem. Thus, the

camera set-up, described in Section 3.1.1 reaches a satisfactory trade-off between all the

desired requirements and provides an image resolution in the range of 9–22 pixels per
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millimeter (px/mm), with an average of 14 px/mm.13 Nevertheless, this setup must be

extensively tested in a real clinical setting on patients with different body constitutions,

hence, the established camera parameters and the focusing distance may be modified

to achieve a better overall performance.

In addition, there are ways to improve the image quality with respect to focusing

and image resolution, sacrificing, however, the cost of the scanner. One of them is

using either an external, active auto-focusing system based on ultrasonic sound waves

or cameras equipped with such a system. In this way, it will be possible to dynamically

define the focus point for each camera. Such a set-up can be used as far as the cameras

are able to capture images simultaneously after establishing the focusing distance.

Overall, given the characteristics of the equipment employed, the proposed scanner

set-up provides an optimal balance between the image resolution, the depth of field and

the number of cameras employed. Moreover, the mutual orientation of the two camera

columns allows for reliable interest point matching in stereo images, which, in turn,

forms the algorithmic basis for the PSL mapping proposed in the following chapter.

13This range was estimated using the PSL data of two patients of different heights and weights.
Overall, the image resolution is conditioned by the distances between the cameras and the body region
in the field of view, and will vary depending on the patient’s constitution.

70



Do not “tinker” with pigmented lesions.

Stanford Cade, “Malignant Melanoma” [2]

Chapter 4

Automatic PSL change detection

The total body skin scanner presented acquires 504 high-definition skin surface

images in one exploration. This is a large amount of raw data and cannot be used “as

is” to detect changes in PSLs. In the first place, the data need to be processed so as to

segregate images of lesions which are going to be compared with the baseline. Moreover,

it is clear that many lesions will appear in more than one image, hence, it is essential

that the system identifies these lesions and keeps track of all their views. Finally, all

the PSLs detected during one exploration must be matched to those obtained in a

successive scan. Therefore, a set of image and data processing operations allowing for

such data segregation and organization, which we call mole mapping, must be applied.

Mole mapping means detecting PSLs in the images and establishing their intra- and

inter-exploration correspondences. While the former defines correspondences between

PSLs on the patient’s body and their images acquired during one exploration, the

latter links lesions between two successive scans. In other words, upon completing an

exploration, the scanner will have a set of images from different angles assigned to

each lesion detected. And after scanning the same patient again, it will automatically

determine correspondences between lesions identified in the two explorations.

4.1 Intra-exploration mole mapping

The pipeline for obtaining intra-exploration correspondences, or a mole map, consists

of the three main stages shown in Fig. 4.1. The first stage provides 2D information

about the lesions in the images, i.e. locations and dimensions. Then, this information

is passed to the next stage where groups of moles (mole sets) are acquired at each

position of the turntable. In the final stage, these sets are combined into one map.
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Figure 4.1: The pipeline for creating a mole map. At first, PSLs are detected in the acquired images as
blobs using the MSER detector. Then, these blobs are matched and triangulated in stereo pairs at every
turntable position p ∈ P , where P = [0, 23], resulting in 24 sets of mole representations, with associated
3D coordinates and 2D images. The stereo mole matching is carried out by computing homographies
(using SIFT features) between the lesions’ ROIs and assessing their locations in the common reference
frame. Finally, all the mole sets are merged into a mole map by matching overlapping moles between
sets p and p+ 1, as well as p and p+ 2, and associating all indirect matches.

4.1.1 Mole detection

We detect moles by means of the maximally stable extremal regions (MSER) detec-

tor [394]. The interested reader can find details of this algorithm in Appendix A.1. In

brief, given a grayscale image, MSER is able to find salient blobs of various dimensions

and shapes. Several parameters regulating the stability and size of the resulting blobs

can be used to tweak the algorithm in order to obtain the desired output. Because

PSLs are normally darker spots of variable shapes and sizes on a lighter skin, we can

successfully use this detector to determine their precise locations.

However, depending on the saturation of the background (lighter or darker skin),

lesions with the same real intensity will appear differently.1 Therefore, it is essential

that prior to the detection phase, the input image is preprocessed in such a way that

all distinctions related to skin color are attenuated as much as possible. In concrete,

we want the algorithm to detect well-distinguished lesions that look darker than the

surrounding skin, no matter its color.

4.1.1.1 Foreground (skin) detection

Before enhancing the images, we need to define image areas that correspond to the

patient’s skin (image foreground). This information is crucial, because: (1) the ranges

1Moreover, based solely on the color characteristics of the PSLs, an untrained observer can hardly
distinguish a light-colored nevus from a dark freckle. However, we can ignore this distinction for the
moment as in our study we are interested in the detection of changes in PSLs in general.
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of skin intensities are required for correct contrast stretching, and (2) MSER blobs

and SIFT features detected in the image background (scanner walls or the backrest

column) should not be taken into account. In order to separate the foreground, we

explicitly define the skin region in the HSV (Hue-Saturation-Value) color space, as can

be seen in Algorithm 2. Apart from the fact that it is the simplest of the existing

skin detection techniques [395], due to the controlled environment of the scanner’s

acquisition chamber, it yields excellent results.

The algorithm starts with the conversion of the input RGB image to an HSV color

space:

H = arccos
0.5((R−G) + (R−B))√

(R−G)2 + (R−B)(G−B)
,

S = 1− 3
min(R,G,B)

R+G+B
,

V =
1

3
(R+G+B).

The hue channel of the HSV space is invariant to illumination changes (assuming white

light) [395], hence, it is robust against uneven illumination at different body orientations

with respect to the cameras. After this conversion, the H and V channels are smoothed

using a Gaussian function to attenuate high contrast pixels on the skin’s surface, i.e.

hairs and darker moles. Moreover, we have empirically defined a range of numerical

hue values corresponding to different skin types. Thresholding the hue image using

these values helps create an initial skin mask which serves as the refinement for the

thresholded “value” channel.

By means of a multiplication factor of 3, the “value” channel—or the luminance—is

artificially saturated. Due to the black color of the scanner’s interior (background), the

luminance of the well-lit patient’s skin (foreground) becomes significantly higher and,

after its range is normalized, allows for easy thresholding. But prior to that, the new

luminance channel is convolved with the hue mask to get rid of any foreground artifacts

(hair, clothing if any, etc.). Finally, the obtained mask is smoothed using a median

filter. The filter sizes we used in the experiments were 7× 7 pixels for the median and

11× 11 pixels with σ = 3 for the Gaussian.

4.1.1.2 Image preprocessing

Now, when areas in the images that correspond to the patient’s skin surface are known,

it is possible to prepare the images for the blob detection stage. We use a sequence

of simple operations for this purpose. Namely, given a color image Irgb resized by a
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Algorithm 2: Image foreground (skin) detection

Data: Image Irgb of size 1000× 750× 3
Result: Binary foreground mask MF of size 1000× 750

1 T low
h = 0.01, Thigh

h = 0.25, Tv = 0.4; /* Thresholds */

2 /* RGB to HSV conversion */

3 Ihsv ← RGBtoHSV (Irgb); Ih ← Ihsv(:, :, 1); Iv ← Ihsv(:, :, 3);
4 /* Gaussian smoothing */

5 Ih ← Ih ⊗ g; Iv ← Iv ⊗ g;
6 /* Hue thresholding */

7 for all pixels p in Ih do

8 if Ih(p) > T low
h AND Ih(p) < Thigh

h then
9 MT (p)← 1; /* Temporary skin mask */

10 else
11 MT (p)← 0
12 end

13 end
14 /* Intensity (value) gain and contrast stretching */

15 Iv ← stretchContrast(3 · Iv);
16 /* Hue-based masking */

17 Iv ← Iv ◦MT ;
18 /* Intensity thresholding */

19 for all pixels p in Iv do
20 if Iv(p) > Tv then
21 MF (p)← 1; /* Final foreground mask */

22 else
23 MF (p)← 0
24 end

25 end
26 /* Foregroud mask filtering with median filter */

27 MF ←MF ⊗ f

factor of α = 0.25, the gray-scale image Ig is obtained by finding the minimum intensity

value of each pixel across the 3 channels of Irgb: Ig(x, y) = min(Irgb(x, y, c)), where

(x, y) are pixel coordinates and c ∈ [1, 2, 3] are color channel indices. Next, we improve

the contrast of Ig by stretching the range of skin intensities (obtained using the skin

mask) to the full range of normalized values [0, 1]. Finally, we compute image Igp by

subtracting Ig from its complement: Igp(x, y) = 1−2 ·Ig(x, y). Running a 5×5 median

filter on the resulting Igp helps reduce unwanted image noise. See Algorithm 3 for the

pseudo-code description of the algorithm.

This preprocessing procedure allows emphasizing pigmented lesions which normally

have lower intensity values than the surrounding skin, by practically eliminating higher

intensities in the background. At the same time, undesirable artifacts, such as hair,
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Algorithm 3: Image preprocessing for mole detection

Data: RGB image Irgb of size 4000× 3000× 3
Result: Processed grayscale image Igp of size 1000× 750

1 Irgb ← resize(Irgb, 0.25);
2 /* Obtain grayscale image Ig */

3 for i← 1 to 1000 do
4 for j ← 1 to 750 do
5 Ig(i, j)← min([Irgb(i, j, 1), Irgb(i, j, 2), Irgb(i, j, 3)]);
6 end

7 end
8 /* Stretch image contrast using the skin intensity values */

9 Ig ← stretchContrast(Ig, skinMask);
10 /* Subtract Ig from its complement */

11 Igp ← 1− 2 · Ig;
12 /* Filter the result */

13 Igp ← Igp ⊗ f ;

acne and pores, are attenuated and cannot be represented as stable extremal regions

as PSLs after the preprocessing.

Running the MSER detector on the image Igp yields stable mole regions (blobs)

which are approximated by ellipses with their respective dimensions (major and minor

axes) and locations (center coordinates). Additionally, we filter these blobs based on

their size and aspect ratio. It is rather safe to assume that PSLs with the largest axis

less than Ta = 15 pixels are not going to be useful for a change analysis. Furthermore,

the natural shape of a PSL is an ellipse with a small value of flattening. Highly flattened

shapes, such as blobs produced by hair or skin folds, can be discarded by thresholding

their compression factor: the ratio between the minor and the major semi-axes. The

minimum value allowed was empirically set to Tar = 0.2.

4.1.2 Stereo-pair processing

Depending on the location, each camera in the scanner has 2 or 4 immediate neighbor

cameras, whose arrangement makes a significant vertical or horizontal overlap of their

images possible. We distinguish between vertical and diagonal camera neighbors as:

(a) adjacent cameras on the same column and (b) those belonging to different columns,

respectively. These cameras can be combined into stereo pairs, 39 in total.

The stereo image pairs acquired by these cameras can be used for matching and

subsequent triangulation of the moles detected (MSER blobs). However, stereo pairs

can be combined only using images obtained at the same turntable position p ∈ P ,
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where P = [0, 23]. This condition is based on the fact that the pose of the patient may

not be exactly the same at two turntable positions due to breathing and/or involuntary

movements. This effectively means that the epipolar geometry is not applicable in this

case, and the triangulation error can be too big if the stereo-images are not acquired

simultaneously.

4.1.2.1 Mole matching

In order to match mole blobs in a stereo pair, we make use of epipolar geometry

computed from the extrinsic and intrinsic calibration of the cameras (see Appendix A.2

for details). Given a mole (a MSER blob) in one image, its match candidates in another

image are sought along the corresponding epipolar line. Candidate moles are chosen so

that their distances from the epipolar line do not exceed the threshold Te, which was

empirically set at 60 pixels. This tolerance is acceptable taking into account the size

of the images (4000×3000 pixels) and that in some views the skin surfaces may appear

highly slanted.

In addition, the match candidates detected undergo a filtering procedure that elim-

inates obvious erroneous correspondences. This procedure is based on the known in-

formation about the cameras’ mutual arrangement. In other words, by comparing the

row-coordinates of the target mole and its match candidates, we can expect a certain

pattern. Namely, for the vertical camera neighbors, the coordinate difference should

be greater than 1
3 of the image’s height (∼1300 px), while for the diagonal neighbors it

must not exceed 2000 pixels.

Next, the mole candidates acquired are compared visually. This is done by comput-

ing a homography transformation H3×3 between image patches (ROIs) taken around

the corresponding MSER blob centers.2 For this purpose, we use SIFT [315] to detect

and describe salient keypoints in both ROIs and then find their correspondences. The

foreground (skin) masks are used to discard any keypoints detected in the background.

Next, the obtained SIFT correspondences are fed into the random sample consensus

(RANSAC) algorithm [316] for inlier detection based on fitting a projective homogra-

phy model (see Appendices A.3 and A.4 for more information on these algorithms).

The homography, if computed and valid, serves to transform one of the ROIs into the

reference frame of the other. And by estimating how close the two mole blobs are to

each other in the common reference frame, it is possible to determine whether they rep-

resent the same real lesion. Therefore, in order for two mole representations to match,

2Since the camera-to-body distances are similar for most patients, we empirically fixed the ROI size
to 400× 400 pixels.
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Algorithm 4: Mole matching in a stereo pair

Data: Images I1, I2; lists of detected MSER blobs in each image m1,m2;
threshold TH
Result: Matrix M containing index pairs of matching MSER blobs

1 /* Get epipolar match candidates */

2 cM ← getEpipolarMatches(m1,m2);
3 for all candidates c in cM do
4 /* Extract image ROIs around the blobs */

5 R1 ← extractROI(I1,m1); R2 = extractROI(I2,m2);
6 /* Extract skin mask ROIs around the blobs */

7 B1 ← extractSkinMask(I1,m1); B2 = extractSkinMask(I2,m2);
8 /* Compute homography transformation */

9 H← computeHomography(R1, R2, B1, B2);
10 if H is NOT empty AND exp(abs(ln(abs(H(3, 1)) + abs(H(3, 2))))) > TH then
11 /* Warp the MSER ellipse of mole2 to the ref. frame of mole 1 */

12 m2 ← warp(m2, H);
13 /* Compute the distance between the two ellipses */

14 d← euclideanDistance(m1.location,m2.location);
15 if d < m1.majorAxis AND d < m2.majorAxis then
16 Append m1(cM(c, 1)) and m2(cM(c, 2)) to M
17 end

18 end

19 end

the following condition has to be satisfied:

� The distance between the centers of the moles’ ellipses must be smaller than both

their major axes.

See Algorithm 4 for the pseudo-code of the matching procedure.

If the homography can be computed, i.e. there are enough SIFT feature matches,

its validity is verified by satisfying the condition

e|ln(|H3,1|+|H3,2|)| < TH, (4.1)

where TH = 800 is the accepted threshold. The absolute sum of the elements H3,1 and

H3,2 of the normalized homography can give an idea of how misshaped the image will be

after the transformation: the larger the value, the more the induced deformation. An

excessively misshaped image means that the transformation homography was computed

using wrong SIFT feature matches and, thus, should be discarded. By using logarithmic

and exponential functions, we can amplify the resulting value so that the threshold can

reliably cut off incorrect transformations.
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4.1.2.2 Mole triangulation

Once the matching MSER blobs in a stereo pair have been found, we can now acquire

their locations in 3D space, i.e perform the triangulation. Knowing the intrinsic and

extrinsic parameters of the stereo rig, the reconstruction by triangulation is unambigu-

ous and straightforward. The “mid-point method” [396, 397] used for this purpose is

very simple. Although its accuracy is considered to be poor [397], it can well be applied

to obtain the 3D locations of PSLs. Firstly, because the final triangulation output is

not expected to be, nor can be, precise due to the unavoidable motion of the subject

during the exploration. And secondly, due to the linear implementation, the algorithm

is very fast, which is an important advantage when processing many points (lesions).

The interested reader can find a detailed explanation of the algorithm in Appendix A.5.

During the triangulation, we also compute normals to the local surfaces of the

lesions. To do this, a ring of 180 points is placed around the center of the mole ellipse

in one ROI. The diameter of the ring is equal to the major axis of the mole’s MSER

ellipse. Knowing the homography transformation between the two regions of interest,

the coordinates of each point in the ring can be computed in the other ROI. Then, by

triangulating these points, a three-dimensional ring surrounding the detected lesion is

obtained. The normal of the plane fit to the 3D point ring is the normal to the mole’s

surface.

Using the normal to the lesion surface, we can compute two important metrics. One

is the resolution of the image at the mole site, which shows how many pixels of the mole

ROI constitute 1 millimeter on the skin’s surface (px/mm). In order to compute this,

we need to know the distance from the camera to the PSL and its estimated diameter

in millimeters. While the former is straightforward, the latter can be obtained using

the relationship from the pinhole camera model [388]:

d

D
=
f

L
. (4.2)

In this relationship, f is the focal length of the camera, L is the distance between the

mole and the camera, and D and d are the diameter of the mole and its projection (in

mm), respectively. Consequently, the local resolution of the image at the lesion site is

γ =
d′

D
, (4.3)

where d′ is the diameter of the lesion’s blob in pixels.

The second metric η is a relative quantitative measure which will serve to define
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Figure 4.2: The projection, n̂, of a lesion’s normal unit vector, n, to the image plane. It is used to
compute the η-metric for best mole view selection.

the best view of a mole among the available images (at least two). In this metric, we

seek to maximize the pixel-per-millimeter resolution and, at the same time, minimize

the skew of the mole’s projection on the image plane. In other words, a camera with

the smallest η will be both close to the lesion and as perpendicular to its normal as

possible. The definition of the metric is

η =
|n̂2|
γ
, (4.4)

where n̂ is the image projection of the unit vector normal to the surface of the lesion

(see Fig. 4.2). The less perpendicular the mole’s normal is to the camera plane, the

larger the length of the projected vector. In addition, we raise the numerator to the

second power to prioritize the orientation of the mole over the image resolution.

Overall, the result of the stereo-pair processing performed at each turntable position

is a set of 3D points corresponding to the centers of the real PSLs. Each 3D point

has a local surface normal and is connected to the two ROIs of the stereo pair with

known px/mm resolutions and η-metrics. At this stage, the points representing the

same real lesion, but obtained using different stereo pairs, are not yet identified. This

identification is done at the next stage of the mole mapping pipeline—the mole set

creation.

4.1.3 Mole set creation

Once the detected PSLs are matched and triangulated across all stereo pairs, they

can be grouped into mole sets. A mole set is a totality of all detected lesions linked
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with their 2-D views (ROIs containing MSER ellipses) and triangulations3 at a given

turntable position. Throughout the text, the elements of mole sets are referred to as

mole representations or virtual moles.

In order to create a mole set, the ellipses and triangulations of every PSL obtained

using various stereo pairs have to be linked together. For example, if MSER ellipse

number 15 in image 5 (m5
15) is matched to ellipse number 19 in image 6 (m6

19), which,

in turn, is linked to m16
20, it means that ellipses m5

15 and m16
20 must be connected as

well. Using recursive tracing, it is easy to recover all such indirect connections of

the triangulations via the lesion’s direct stereo match information. In this particular

example, when searching for all 2D views of a mole represented by m5
15, we will first

explore its stereo matches (m6
19), then the matches of the matches (m16

20), and so on,

until the total number of connected ellipses has been covered. In this way, we will

get a set of MSER ellipses (here, it will include only m5
15, m16

20, and m6
19) and their

corresponding triangulations representing one real PSL on the patient’s body.

The schematic in Fig. 4.3a demonstrates an ideal input for the tracing algorithm:

the MSER ellipses successfully matched and triangulated across the AB, AC, AD, BD

and CD stereo pairs. Had connections AB and AC not been established previously, the

recursive search would still show that the ellipses in images A, B, C and D represent

the same real PSL.

However, in certain cases, the tracing may not produce the desired results: it can

either create false connections or skip the true ones. Consequently, it is possible that

one lesion has multiple representations, and vice versa—several real PSLs can be rep-

resented as one mole.

4.1.3.1 Multiple representations of one lesion

It is possible that during stereo matching, an image pair depicting the same PSL is

not registered correctly due to an insufficient number of SIFT feature matches for

homography computation. Effectively, this will lead to a break in the recursive search,

and two or more groups of stereo triangulations may not be merged, creating several

representations of one real mole (see Fig. 4.3b for the schematic of such a scenario).

The problem during SIFT feature matching can be a result of the peculiarity of the

skin area around the lesion (e.g. lesions on skin folds or in areas with a non-uniform

3A real mole can have more than one triangulation because it appears in more than one stereo pair
at the same turntable position. Although not coinciding completely due to image noise, their positions
are very close normally, hence, their average is a good approximation of the real mole’s location in 3D
space.
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(a) (b) (c)

Figure 4.3: Schematics of possible scenarios during mole set creation. Squares A–D denote images
acquired by the cameras of the rig with their layout preserved. The ellipses represent MSER blobs
after mole detection. (a) Ideal scenario. The ellipses in images A–D represent the same real PSL, all
stereo-pair matches have been computed correctly. (b) Multiple representations of a single lesion. The
MSER ellipses could not be matched in the image pairs AC, AD and BD. Simple recursive tracing will
yield two moles instead of one. (c) Single representation of multiple lesions. Ellipse C.3 is the “bridge”:
moles 1 and 2 have been detected as one blob by MSER. Lesion 2 in image B and lesion 1 in D have
not been detected by MSER. Because the bridge blob was matched to A.1 on one side, and A.2 and
D.2 on the other, real lesions 1 and 2 will be represented as one after the recursive tracing.

surface profile, such as the ears or the nose) combined with the specific orientation of

the patient with respect to the cameras. These combinations may cause the appearance

of skin patches to differ in a stereo pair to such an extent that only one or two SIFT

features can be matched correctly. An example of a homography computation failure

is shown in Fig. 4.4.

In order to overcome such situations, we rely on the precision of the intrinsic and

extrinsic camera calibration. Specifically, given that the triangulations obtained using

stereo-images have sufficient precision (see Section 5.1.5), it is possible to define a

distance threshold below which two mole points in 3D are considered as representing

the same real PSL. Based on our experiments, we set the threshold’s value at Td = 4

mm. In addition, this thresholding is safeguarded by a condition which prevents the

algorithm from erroneously merging two triangulations representing distinct lesions

located close to each other. It checks whether any two MSER ellipses linked to these

triangulations have been detected together in at least one image. If this condition is

not satisfied, it is safe to assume that there was a mismatch, and that the two mole

representations should be merged.
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Figure 4.4: Failed homography computation using SIFT features. Blue lines connect SIFT points
satisfying the homography model estimated by RANSAC. Points without a match are outliers for this
model. The images are acquired by cameras 4 (on the left) and 15 (on the right) at turntable position 9.
The lesion is located in the central part of the lumbar area next to the vertebral column (paravertebral
region). The convexity formed by the spinal muscles, together with the orientation of the patient with
respect to the cameras, causes a substantial difference in the appearance of the skin patch in the two
images.

4.1.3.2 Single representation of multiple lesions

As a side effect of using MSER for PSL detection, sometimes two lesions located close

to each other (3–5 mm) may be detected in an image as one blob. The factors that play

a major role in correct/incorrect detection are the angle of view of the camera, the size

of the lesions and the relative skin-lesion contrast. The more slanted the view and/or

the smaller and lighter the moles, the more probable it is that these moles will appear

as one larger blob. Such blobs, which include two or more smaller lesions, are further

referred to as “bridge blobs” or “bridge moles”. An example of a detected bridge blob

is shown in Fig. 4.5.

The output of the recursive tracing algorithm, given the presence of a bridge blob,

can be predicted looking at the schematic diagram shown in Fig. 4.3c. Image A contains

two MSER ellipses representing two real PSLs. The rest of the images contain only one

mole each: mole 1 is detected in B, mole 2 in D, and C.3 replaces both moles at once.

Since, the stereo-pair matching showed that the bridge ellipse C.3 is the same as A.1,

A.2 and D.2, the tracing will yield that all ellipses represent a single real PSL.

Fortunately, it is very easy to detect a “bridge” scenario. If after the tracing pro-

cedure the group of MSER ellipses representing a real mole contains more than one

ellipse per image (this is how we know the number of real PSLs), it means that there

is at least one bridge in this group. However, depending on the situation, the available
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(a) (b)

Figure 4.5: Two small PSLs located on the left cheek of a patient. Images acquired by cameras 11(a)
and 1(b) at turntable position 20. Due to the small size of the lesions, their proximity to each other
and the low contrast against the skin, the MSER detects them as a single lesion in image (b), and the
algorithm later defines them as a bridge blob.

direct matches may not indicate which one of the ellipses it is (although the hypothet-

ical example in Fig. 4.3c provides such information). Most of the time, they will have

to be identified by visual comparison of the patches depicting non-bridge ellipses with

the rest. For this purpose, we use the matching procedure described in Section 4.1.2.1

with the only difference that the match candidates are already available.

4.1.4 Mole set merging

When the mole sets are generated for every turntable position p, we can plot the 3D

triangulations of each PSL representation (the elements of the mole sets) in the global

reference frame.4 The sets of 3D points corresponding to the neighboring positions

p ± 1 and p ± 2 will have considerable overlaps, i.e. the points representing the same

real PSLs will be located very close to each other or even coincide. The task of the

mole set merging is to identify and merge the virtual moles which belong to different

sets but represent the same real lesions. In this way, a single complete set of virtual

moles—a mole map—can be created.5 Two such maps acquired at different moments

in time can be registered and used in an automatic change assessment of individual

lesions.

The main difficulty of this task is that with two mole sets, reliable ways of comparing

their elements are scarce. In the case of treating both sets simply as two clouds of 3D

points and performing non-rigid registration, there is a high risk that a misalignment

4See Section 3.3.2 for coordinate system definitions.
5It must be noted that the mole map will actually contain two sets of virtual moles for the two poses

(turntable positions [0, 11] and [12, 23]). The respective mole sets must be merged separately.
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will occur. The most probable scenario for that happening is the following:

� Two lesions are located next to each other on the patient’s body. One of them

was detected and triangulated only in the first mole set, while the other mole was

detected only in the second set. Using only a distance constraint with respect to

the rest of the moles, it is impossible to distinguish between the two lesions while

merging the sets, so they are very likely to be registered incorrectly.

Thus, we can use the geometrical constraint only when coupled with some additional

information such as the moles’ appearance. But the parameters of the moles’ MSER

ellipses (dimensions and orientation) are not sufficient in the case of resembling lesions

or when there is a drastic change in the viewing angle. Therefore, besides the visual in-

formation of the lesion itself, the topological information around the mole (neighboring

lesions and the skin) must be taken into account as well.

4.1.4.1 Matching moles across mole sets

In order to carry out the comparison of two virtual moles belonging to different mole

sets, taking into account both the geometrical and visual constraints, we can apply

the principle of the mole matching procedure described in Section 4.1.2.1. However, a

number of important adjustments and modifications need to be made:

1. Match candidate selection. The candidate pairs are selected based on their

distance from each other in 3D space: moles within the radius of rc = 30 mm are

chosen for visual comparison. This distance is enough to account for slight pose

shifts of the patient during the turntable rotation. Using this approach, every

mole will have to be compared with each of its neighbors,6 making it a rather

computationally expensive procedure.

One way to reduce the number of comparisons per two mole sets is to prune the

candidate pairs after a successful match. We can discard the pairs that include

one of the moles just compared, if the following condition is satisfied:

� The distance computed in an image between the matched lesion from one

mole set, m1, and a candidate from the same set, mc, must exceed, up to

a factor, the size of the major axis of the matched lesion from the other

set, m2. Of course, to compute this distance, m1 and mc must have their

corresponding MSER blobs detected in the same image.

6Due to the possible presence of bridge moles (see Section 4.1.3.2) in one of the sets, an exhaustive
comparison is preferred.
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To put it in an example, suppose that mole 8 (m8) at position p matches mole

10 (m10) at p+ 1, and there are two more candidate pairs including m8 and m10:

(m8 ↔ m12) and (m7 ↔ m10). These candidate pairs will be discarded if the

following holds true:

d(m8,m7) < k ·A(m10) and d(m10,m12) < k ·A(m8). (4.5)

In these inequalities, d is the Euclidean distance between the locations of the two

moles in an image, A returns the size of the mole’s major axis and k ∈ R+
1 is a

multiplicative factor, which, based on our experiments, was assigned the value of

3.

2. Camera/view selection. When the candidate pair is known, we need to choose

the optimal images for comparison. The larger the interval between the turntable

positions, the greater the difference in the viewing angles and the more difficult it

is to compute the homography. Hence, the views containing the candidate moles

need to be chosen so as to minimize the viewing angle difference.

For this reason, we establish the preference system, where, for merging mole sets

at positions [0, 11], the preferred camera at position p should be on the left column,

and at p + 1 on the right (vice-versa for positions [12, 23]). Fig. 4.6 shows such

preferred image planes highlighted in red. If the available views do not satisfy

the preference, the optimal camera is the one with the smallest corresponding

η-metric (see Section 4.1.2.2).

3. The ROIs of the lesions. In order to account for distinct viewing angles

at different turntable positions when detecting and matching SIFT features, the

ROIs should have adequate dimensions. Otherwise, there is a risk of not obtaining

enough correct matches to compute the homography, especially when matching

moles at positions p and p+ 2. Because of this, following a series of experiments

with images of different body regions, we increased the original 400× 400 ROI to

600× 600 pixels.

In addition, to make use of the visual information from the lesion’s neighbors in

the mole set, the ROI is extracted so that its center coincides with the center

of gravity of the lesion neighborhood. The neighborhood is defined in 3D as a

sphere with the radius of rn = 20 mm: any lesion lying within this sphere and

having a projection in the selected view will be added to the neighborhood.
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Figure 4.6: Best camera/view selection during mole set merging for the patient’s pose 2 (turntable
positions [12, 23]). Lesions m1 and m2 belong to the mole sets acquired at turntable positions p and
p + 1, respectively. Squares A–D denote images acquired by the cameras of the rig with their layout
preserved. Red dots are the projections of m1 and m2 on the images. The optimal views to compare
the two moles are highlighted in red. The arrows denote the normals to the camera and the mole
planes.

4. ROI pre-warping. In order to facilitate the computation of the homography,

prior to extracting SIFT features from the ROI images, we use the known camera

geometry at both positions and “pre-warp” the ROIs. In other words, we compute

an approximate homography transformation between the two selected views using

the plane of the mole in 3D [388]:

Hp = K2(R− tnT /d)K−1
1 , (4.6)

where R and t are the rotation matrix and the translation vector of camera 1 with

respect to camera 2, n is the vector normal to the mole’s plane, d is the distance

from the mole’s plane to camera 1, and K1 and K2 are respective camera matrices.

This transformation would be precise if not for patient’s motion and image noise.

Applying it to one of the ROIs results in having two views with roughly the same

viewing angle, which facilitates SIFT feature matching and the computation of

the final homography.

5. Inverse homography and putative matches. Depending on the skin patch

being observed (non-planar surfaces, such as ears, the nose, etc.), it is possible

that the homography cannot be computed even using a “pre-warped” image (see

86



Fig. 5.10 for an example). To deal with such cases, we make use of the inverse ho-

mographies. That is to say, given the left and right ROIs from different turntable

positions, we first find two “pre-homographies” to warp the left ROI onto the

right image, and vice versa. After that, we try to compute the homography

transformations for the two pairs of ROIs using SIFT features.

When a valid homography cannot be obtained for one of the pairs, it is probable

that the second pair will give a correct transformation. If this is not the case

(this may happen for the aforementioned areas when merging nonconsecutive

mole sets), the match is considered to be a putative match:

� The moles may represent the same or different real PSLs, but because of the

viewing angles neither statement can be confirmed.

When the merging procedure of the two mole sets has finished, some of the result-

ing putative matches can be pruned by simply checking if one of the candidate

moles was matched to any other mole. In a further stage of the mole match prop-

agation (see the next subsection), all putative matches are completely filtered.

6. Match condition. When the homographies between the two selected views have

been computed and the ROIs warped, it must be established whether the two vir-

tual moles represent the same real PSL. In most cases (especially for consecutive

mole sets) the matching ellipses will have their centers within each other’s bound-

aries. But due to the difference in the viewing angles and the skin patch topology,

it is possible that while not satisfying the “centers-in-the-boundaries” condition,

the two ellipses still represent the same real lesion. A straightforward workaround

for such cases would be to increase the allowed distance between the centers of

the ellipses. However, an opposite scenario is also possible—two virtual moles

representing different lesions can be located very close to each other (Fig. 4.7d),

making such thresholding inefficient. Thus, an alternative and more elaborate

condition is needed.

To ensure that all the scenarios shown in Fig. 4.7 are correctly resolved, an alter-

native condition should provide a trade-off between the relative dimensions of the

ellipses and the distance between their centers. Effectively, the two ellipses should

be considered matching if (1) the distance between their centers is comparable

with their minor axes and (2) their orientations are aligned.

The first requirement can be satisfied using the line connecting the centers of both

ellipses and the points where this line intersects them. The distance along this
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(a) (b) (c) (d)

Figure 4.7: Various possible scenarios when comparing moles during the mole set merging. The blue
and the red ellipses correspond to the original and the warped ROIs, respectively. In scenarios (a)–(c),
both ellipses represent the same real lesion. Both moles in (a) satisfy the condition of the stereo-pair
matching. The red ellipse in (b) is a bridge mole. The ellipses in scenario (c) do not satisfy the condition
of the stereo-pair matching, but still represent the same real PSL. In scenario (d), the ellipses represent
different lesions, but are close to each other because of the transformation inaccuracies.

line from the center of one ellipse to the intersection point on the other ellipse

can give an idea of the degree of overlap between the two moles.7 The second

requirement can be fulfilled by finding the angle between the major axes of the

ellipses and incorporating it into the assessment of the distance criteria.

Fig. 4.8 demonstrates the condition graphically. The line connecting the centers

C1 and C2 of ellipses e1 and e2 intersects them at points P1 and P2, respectively.

If we steadily move the two ellipses towards each other, distances C1P2 and C2P1

will decrease accordingly. The two moles match if one of these distances is smaller

(up to a factor) than the semi-minor axis of the corresponding ellipse, i.e.

|C1P2|< c ·B(e1) · (1− sin(α)) or |C2P1|< c ·B(e2) · (1− sin(α)), (4.7)

where B returns the size of the moles’ minor axis, α is the angle between the major

axes of the two ellipses, and c ∈ R1
0 is the scale factor. If the orientations of the two

ellipses coincide, there is no penalty on the distance threshold, whereas if they are

perpendicular, the condition is unlikely to be satisfied. We set the multiplicative

factor c = 2
3 empirically as a trade-off between discarding all mismatches and

recovering the likely matches.

7Another approach would be to compute the area of intersection of the two moles and compare
it with some threshold value. The drawback is that it is unclear how to define this threshold, i.e.
which ellipse should be used to compute the intersection area percentage corresponding to a pair of
matching moles. The proposed method avoids this ambiguity and relies on the dimensions of the moles
themselves.
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Figure 4.8: The lesion matching condition during the mole set merging procedure. C1 and C2 are the

centers of ellipses e1 and e2, respectively. Line
←−→
C1C2 intersects e1 at point P1 and e2 at P2. The two

moles match if Eq. 4.7 is satisfied.

4.1.4.2 Mole match propagation

Once the mole sets have been merged at all successive turntable positions (p± 1,p± 2),

we need to run a recursive procedure to associate mole matches from nonsuccessive

positions (p ± x, where x ∈ Z>2). That is to say, two moles from mole sets A and B

can match another mole from set C, but not match each other (indirect match). The

objective of the association procedure is to make every mole match its counterparts

from other sets directly examining all indirect matches recursively. In this way, for

each mole of every set, there will be a group of lesions it matches in the rest of the sets.

The procedure is very similar to that described in Section 4.1.3, although the ex-

ceptions have to be resolved in a different manner. The main exception scenario also

involves bridge moles, whose simplest case is shown in Fig. 4.9a. Two moles from set

A as well as the mole in set C match the bridge mole in set B. As the result of the

recursive match propagation procedure, all the moles in the three sets will be grouped

to represent one real lesion.

Fortunately, it is easy to detect such exceptions, because in a group of virtual moles

representing a real lesion, there should not be more than one lesion per set.8 If this

condition is not satisfied, it indicates the presence of at least one bridge mole. However,

determining which one(s) of the moles is/are the bridge(s) is not as straightforward.

Ideally, it will be the lesion(s) directly matching two or more moles from the same mole

set. But not all bridges in a group can be discovered in this way, as there may be

several consecutive bridge moles, some of which are matched only to a single mole in

8In fact, it can happen that a bridge mole connects only single lesions in other mole sets. In this
case, it is not possible to detect the exception, but the inconsistencies in the mole representation will
not be present either.
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(a) (b)

(c)

Figure 4.9: Some of the possible bridge exception scenarios during the mole match propagation. In
each scenario, the ellipses represent virtual moles and the capital letters denote different mole sets. (a)
The simplest case, resolvable by recursive tracing. (b)–(c) More complex scenarios that require visual
comparison of lesions from nonconsecutive mole sets.

each set. An example of such a scenario can be created if we substitute mole A.2 in

Fig. 4.9c with a bridge mole, which, applying this logic, will not be detected as such.

Nonetheless, such undetected bridges can be identified in later stages.

The main difficulty related with this scenario is the impossibility of assigning lesions

that have direct matches only with bridges to any group representing a real PSL. Or

rather, it is impossible to do this without a visual comparison of the lesions belonging

to nonsuccessive mole sets, described in the previous section. For example, lesion 2

belonging to mole set D in Fig. 4.9b was matched only to the bridge mole at position

B, and it is not clear whether it should match A.1 or A.2. Similarly, in Fig. 4.9c, such

a problematic lesion belongs to mole set A.

Thus, the generic steps for resolving the bridge exceptions during the mole set

match propagation are listed in Algorithm 5. In order to split a group of virtual moles

containing a bridge, we need to identify as many bridge moles as possible. Then, a

recursive tracing is run on each lesion of the group cutting the search at the bridge(s).

This effectively splits the given group into subgroups of connected lesions. At this

point, these subgroups can still be merged further because lesions from nonconsecutive

mole sets may be isolated by the bridge moles (see Figs. 4.9b–4.9c). The merging can

be carried out only by direct visual comparison of the lesions described in detail in

Section 4.1.4.1). Finally, after all comparisons have been done, the unidentified bridge
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Algorithm 5: Resolving a bridge exception during mole match propagation

Data: A group of virtual moles with bridge moles, g
Result: A set of groups representing real lesions, G, the result of splitting g

1 /* Detect identifyable bridge lesions */

2 b← identifyBridgeMoles(g);
3 /* Trace the direct matches of every mole in the group, trimming the

search at the bridges. Concatenate the obtained subgroups into a set.

*/

4 for all m in g do
5 gTemp← traceMatches(m, b);
6 G← concatenate(G, gTemp);

7 end
8 /* Search for indirect matches: compare the groups in G visually and

merge the ones matching */

9 mm← compareSubgroups(G);
10 G← mergeSubgroups(G,mm);
11 /* Detect any unidentified bridge moles by checking for the repeating

moles across the subgroups */

12 b← identifyBridgeMoles(G)

moles can be detected by simply checking the subgroups for common lesions.

Once the matches have been propagated across all the turntable positions, the

mole map is ready. In fact, the map has the same structure as a mole set, with

the 3D locations and the local normals of the PSLs computed as the average of the

corresponding values in the matching mole sets. Similarly, each virtual mole will have

a number of corresponding 2D images from different viewpoints with a given η-metric

and px/mm resolution, which will be employed in the change detection procedure.

4.2 Inter-exploration operations

Two explorations of the patient’s skin surface performed several months apart can be

used for automatic detection of changes that individual lesions undergo over time (see

the general schema in Fig. 4.10). To do this, we only need to establish the correspon-

dences between the lesions of the two mole maps, i.e. given a PSL in one map, we have

to find which lesion it corresponds to on the other map. Once it has been done, the

change detection using the image patches around the moles is straightforward.
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Figure 4.10: The pipeline for detecting new and evolving lesions given two mole maps acquired several
months apart. The change detection is carried out on images of individual PSLs after the inter-
exploration mole correspondences have been established.

4.2.1 Mole matching

Thanks to the controlled conditions in which skin explorations are performed, the

process of finding correspondences is fairly simple in the vast majority of cases. A PSL

photographed during a baseline scan by camera A at turntable position p is likely to be

found in the image acquired by the same camera at the same position during a follow-

up scan. Thus, a PSL match in another exploration can be determined using the same

principle of visual comparison we employed for stereo matching and mole set merging

(see Sections 4.1.2.1 and 4.1.4.1, respectively), with the only difference being that the

candidate search can be limited to the image area containing the lesion because the

viewing angles across explorations will coincide for most PSLs.

However, some lesions will not satisfy the assumption above. Due to slight dif-

ferences in the orientation of the patient with respect to the cameras and/or specific

locations of the PSLs on the body, the views in which the lesion appears in the two

explorations may not coincide. For example, a lesion detected during scan 1 in the right

part of image/view A at position p, in a subsequent exploration may appear in the left

part of the same image A, but at position p + 1 (see Fig 4.11). A similar scenario is

possible in the vertical dimension when, in the latest exploration, the mole appears at

the same position p, but in the view directly above or below A.9 Thus, when matching

lesions across explorations, all such exceptions must be taken into account.

The following steps are used to find a PSL in the target exploration, Et, that

matches a lesion in the reference scan, Er, while accounting for both general and

exception scenarios:

1. Determine the optimal camera view of this mole in Er based on the η-

metrics computed earlier (see Section 4.1.2.2 for details). In addition, we can

9This may happen if (1) the PSL is located on the arms or on the face, which are positioned
differently as compared to the baseline exploration; or (2) the distance between the skin surface of the
patient and the cameras is different (e.g. due to leaning to the side).
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Figure 4.11: An example of non-coinciding views of the same mole in 2 explorations. The patient during
the first scan was standing 1–2 cm closer to the backrest column than during the next exploration. As
a result, mole 3 was photographed by camera A at a different turntable position.

constrain the selected view by ignoring lesions detected too close to the image

borders. This will ensure a correct window selection for further change detection.

2. Extract a ROI around the reference mole in the image corresponding to the

optimal view. For the best SIFT feature detection, the ROI must contain a

sufficient area of the texture-rich surrounding skin. Moreover, the ROI should be

wide enough to include the corresponding mole in the view of Et, whose precise

location is not yet known.10

Thus, in order to ensure the right ROI size for all PSLs, we need to take into

account their distances to the selected camera plane. To do this, we establish the

minimum and maximum possible widths of the ROI (in our experiments, we used

700 and 1500 pixels, respectively) which will correspond to the farthest and the

nearest visible PSL from the selected view at a given turntable position. Using

these corresponding extrema, we can introduce a simple hyperbola function to

describe a continuous relation between the ROI width and the distance from the

camera. The coefficients of this function can be obtained by solving the following

system of equations for a and b:wmin = a
dfar+b

,

wmax = a
dnear+b

,
(4.8)

where dfar and dnear are the distances from the farthest and the nearest moles to

the camera plane, while wmin and wmax are the corresponding desirable widths of

10Assuming that this mole is likely to appear in the same image in both target (Et) and reference
(Er) explorations, the mole’s ROI in Et is extracted from the same view.
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the ROI.

3. Compute the homography between the two ROIs and check its validity using

the condition described in Section 4.1.2.1. We can set the threshold to a higher

value (TH = 2500) because the two ROIs are going to have almost the same

viewing angle.

However, an erroneously computed homography means that the contents of the

two ROIs will differ significantly. This can happen because of (1) an abrupt

movement by the patient during the image acquisition, (2) a slightly different

arm positioning when assuming the pose, or (3) if the skin patch of the reference

mole is altered in Et (foreign marks on the skin, clothing, body hair, etc.). If the

failure happened due to (1) or (3), it will not be possible to establish the lesion

correspondence. However, if the homography could not be computed because of

a slight shift in the patient’s pose, selecting a different view will help. Hence,

we can try the available views in order to compute a valid homography, and if

none of the views produces one, we can assume that it is impossible to find the

correspondence automatically. That said, a reference lesion will not be matched

to a PSL in Et only if the image acquisition protocol is not followed precisely.

4. After the homography has been computed successfully, adjust the target im-

age ROI. Depending on the contents of the ROIs, after applying the computed

transformation, the following scenarios are possible:

(a) The target mole ellipse in Et is within the ROI and a smaller mole window11

can be extracted.

(b) The target mole ellipse is outside or too close to one of the ROI borders, but

is within the image boundaries and the mole window can be extracted (see

Fig. 4.12a).

(c) The ellipse is outside or too close to one of the image borders (Figs. 4.12b–c)

and the mole window cannot be extracted.

In the first scenario, we can proceed directly to subsequent steps in the algorithm,

while in the last two, we need to select a different ROI in either the same or

adjacent view acquired in Et. Thus, in scenario (b), we will simply need to

center the ROI on the ellipse projection and extract it from the same image

11A mole window is a small ROI image big enough only to contain the entire PSL and is necessary
for the change detection phase.
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(a) (b)

(c)

Figure 4.12: Scenarios for the view/image selection in the target exploration after applying the homog-
raphy transformation. The larger squares denote views in Et, while the smaller rectangles are image
ROIs. The dots denote the locations of the target mole found using the homography transformation.
The dashed views correspond to the initially selected views, and the dashed ROIs are the initial regions
of interest. (a) The mole ellipse is outside or too close to at least one of the ROI borders (some possi-
ble ROIs shown in different colors) and there is enough space in the image. Solution: keep the same
view/image and center the ROI on the ellipse’s location. (b) The mole ellipse is outside or too close to
the top/bottom border of the image. Solution: use the view immediately above/below the initial view
and determine the ellipse’s new approximate location using the 3D coordinates of the reference mole.
A↑ and A↓ denote the views directly above and below A, respectively. (c) The mole ellipse is outside or
too close to the left/right border of the image. Solution: use the same view at the following or previous
turntable position. The position is determined based on the pose and the edge of the image closest to
the ellipse. The approximate location of the ellipse in the new image is found similarly to (b).

(Fig. 4.12a). In turn, scenario (c) can be further subdivided depending on if the

ellipse projection is close to the vertical (c.1) or horizontal (c.2) image borders.

The schematics of scenario (c.1) are shown in Fig. 4.12b. In the case of the ROI

being close to the upper or the lower border of the image, we select the view just

above or below the current camera, respectively. The location of the projection

ellipse in the new image is estimated by computing an approximate homography

transformation, the “pre-warping” homography described in Section 4.1.4.1. In

this way, using the 3D coordinates of the reference mole in Er, we can deduce the

approximate location of the matching mole in Et in the new image.

The scheme of scenario (c.2) is depicted in Fig. 4.12c. The procedure to select

the new ROI follows the same logic as in (c.1) with the exception that in the
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absence of horizontally adjacent views, we select the images acquired at other

turntable positions. Concretely, depending on the pose of the patient (direction

of the turntable rotation) and whether the lesion is closer to the left or the right

border of the image, we select either the next or the previous turntable position,

as shown in the figure.

After acquiring the new ROI in Et, we register the reference and the target ROIs

by once again computing the homography transformation using SIFT feature

matching.

5. Obtain the ellipse of the target mole. This ellipse is needed to extract

a target mole window of adequate size for the change detection as well as to

determine the index of the matching mole in the map of Et. If the ellipse was

detected in the Et mole mapping stage, it can be identified by means of a simple

distance threshold. However, it can either form part of the mole map or not

(the mole could not be matched with other lesions in the stereo pairs or at other

turntable positions).

If it is a new lesion, or if this PSL was not detected during the mapping proce-

dure, it must be segmented using MSER. For this purpose, we use the procedure

described in Section 4.1.1.

6. Extract mole windows from the reference and the target ROIs using the mole

ellipses. The side of the window is equal to

N = 2 · l ·max(A(mr),A(mt)), (4.9)

where mr and mt are the ellipses of the moles in Er and Et, respectively, function

A returns the size of the mole’s major axis and l is a scale coefficient (in our

experiments, we used l = 1.5). However, at this stage, the size of the window

around mt is multiplied by 1.5 for the subsequent stage of image alignment by

translation.

7. Register mole windows by means of the weighted normalized cross-

correlation (NCC). This step is important for a more precise alignment of the

two mole windows. The NCC [398] is performed on the normalized blue channels

of the images, which provides the best skin-lesion contrast and, at the same time,

eliminates weak artifacts such as hair or skin pores. In addition, the area of

the lesion in the window containing mr is weighted, so that significantly more
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emphasis is put on the relevant pixels.

8. Prepare the mole masks. The binary masks specifying the PSL area in the

mole windows can be obtained using the MSER segmentations computed earlier

(see Section 4.1.1). These segmentations need only to be fit into the windows at

the locations of the mole ellipses.

After all the steps of the algorithm have been performed, for each PSL there will

be a pair of aligned images acquired in the two explorations. These images can be used

for the assessment of changes the lesion has undergone before the follow-up screening.

4.2.2 Change detection

With the aligned mole images and masks extracted from the reference and the target

explorations, the detection of changes in a lesion is straightforward. It is important to

note that we do not intend to describe the changes precisely. Rather, the goal is to

be able to indicate to the physician that certain PSLs are undergoing changes and are

worth a closer examination. In addition, parameterizing the importance of the change

should give a way of controlling noise tolerance in the system’s output.

Algorithm 6 shows the basic steps needed to acquire the change mask of a lesion

from two consecutive scans. At first, the images of the lesion are converted to the

HSV representation, since it allows a more intuitive description of the changes in the

appearance, clearly separating color and saturation. Then we compute a difference

image using each channel individually (hue, saturation, value). This image shows how

each pixel in one image is different from its corresponding pixel in the other image.

From the difference image we generate the gray-level change map by finding the

maximum value of each pixel across all channels and applying a median filter to remove

spurious noise. Now, this map can be binarized using the threshold provided, which, in

our experiments, was set to Tb = 0.1. This parameter allows controlling how sensitive

the system is going to be to the changes detected.

Finally, we combine the lesion masks from both images into one unified mask which

defines the area where change is to be sought. In order to keep only the changes

that occurred within the PSL and not in the surrounding skin, the binary change map

obtained is merged with this unified lesion mask. Using the ratio of the total change area

to the area of the mask, we can parameterize the importance of the lesion’s evolution.

For example, if we set this parameter to Tc = 0.15, the lesions with 15% of their area

altered will be considered as undergoing important changes.
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Algorithm 6: PSL change detection

Data: Mole images I1 and I2, mole masks M1 and M2, binary threshold τ
Result: Change mask C

1 /* Convert RGB images to HSV representation */

2 H1 ← RGBtoHSV (I1);
3 H2 ← RGBtoHSV (I2);
4 /* Compute the difference image (channel subtraction) */

5 D ← |H1 −H2|;
6 /* Find the biggest change for each pixel across all channels */

7 C ← max(DH , DS , DV );
8 /* Apply median filter */

9 C ← C ⊗ f ;
10 /* Binarize the change mask */

11 C ← binarize(C, τ);
12 /* Obtain the unified mask */

13 M ←M1 ∨M2;
14 /* Combine the change mask with the unified lesion mask */

15 C ← C ∧M ;

4.3 Conclusion

This chapter described an approach to automatic detection of changes in multiple

pigmented skin lesions using images acquired in the total body skin scanner. This

approach consists of two main pipelines: the intra- and the inter-exploration operations.

The former pipeline results in the creation of a map of distinguishable PSLs present on

the patient’s body. In the later, the maps of two consecutive explorations are registered,

so that changes in individual lesions can be assessed.

Building the mole map consists of the following stages: (1) mole detection in in-

dividual images, (2) stereo-image processing, (3) creation of mole sets and (4) their

merging into the final map. Prior to the detection of PSLs, all the images are prepro-

cessed so as to distinguish the foreground (skin) areas, attenuate noise and highlight

the lesions. After the PSLs have been detected in the images, they are matched to those

photographed by the adjacent cameras (stereo pairs), and triangulated. The triangu-

lations (3D locations) of the moles and their corresponding images at every position of

the turntable form 24 mole sets. Finally, these mole sets are merged into a complete

map covering the whole visible skin surface of the patient (maps acquired for pose 1

and 2 are stored separately).

The mole map registration is based on the assumption that most PSLs in both

explorations can be found within the same view (camera and turntable position), if the
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image acquisition protocol is followed carefully. Given the image region containing the

lesion in the 1st exploration and the image area where we expect to find this lesion

in the 2nd scan, we can compute a transformation between them. By assessing this

transformation, we will verify whether the assumption holds, and if so, determine the

exact location of the mole in the second image. After aligning the two image regions, it

is easy to compute the difference image and estimate the amount of change the lesion

has undergone between explorations.

The parameters required by the algorithms and their default values are summarized

in Table 4.1. Some of the size parameters and thresholds (e.g. Sr, TH or Sm) have

different initializations in different parts of the pipelines. In order to keep the unique

identification of the parameter values in use, they are marked with superscript indexes.

Both pipelines primarily rely on the narrow set of computer vision tools: MSER

for mole detection and segmentation, epipolar geometry for triangulation, and SIFT

features with RANSAC fitting for homography computation during lesion matching.

Some points regarding the mole detection and matching procedures need to be stated:

� Mole detection. In this work, no clear distinction has been made between nevi

and freckles. Freckles are normally lighter, but may vary in size, and, depending

on the color of the surrounding skin, often manifest themselves as maximally sta-

ble regions during the detection. In addition, it may be difficult for an untrained

person to distinguish a light brown nevus from a darker freckle. This fact adds an

additional requirement to the mole detection procedure which, besides the detec-

tion of skin lesions, should differentiate between moles and freckles discarding the

latter. A possible approach would be to use the mechanisms of a MSER detector

for finding blobs to classify later into several categories (e.g. nevus, freckle, and

other) by means of a supervised learning algorithm such as ANN or SVM. To the

best of our knowledge, there have been no methods proposed to perform such a

classification, which makes it a new perspective line of research.

� Mole matching. Given a mole’s image, locating it on the body of a patient

with a large number of PSLs poses a nontrivial problem for physicians during

a TBSE procedure. It is also complicated by the fact that sometimes it is very

hard to distinguish two moles visually without relying on the lesions surrounding

them, especially if we consider evolving moles. Essentially, this is a comparison

problem, when given two images, we need to determine if they depict the same

lesion. Thus, the main challenge solved by our scanning system is carrying out

this comparison automatically for all detected PSLs.
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Table 4.1: Summary of the parameters used in the mapping and change detection pipelines.

Parameter Nomenclature Value

Skin detection
1 Image resize factor α 0.25
2 Hue threshold (low | high) Th 0.01 | 0.25
3 Value threshold Tv 0.4
4 Median filter size (px) S1

m [7× 7]
5 Gaussian filter: size | std. deviation (px) Sg | σ [11× 11] | 3

Preprocessing
6 Median filter size (px) S2

m [5× 5]

MSER
7 Relative stability score ∆ 40
8 Absolute stability score v 0.999
9 Minimum blob area Amin 2.7 · 10−4 ·Atotal
10 Maximum blob area Amax 0.01 ·Atotal
11 Max. size of the ellipse’s large axis (px) Ta 15
12 Min. allowed ratio of the ellipse Tar 0.2

Stereo matching
13 Max. candidate-to-epipolar-line distance (px) Te 60
14 Homography threshold T 1

H 800
15 ROI size (px) S1

r [400× 400]
16 Peak threshold (SIFT) ρ 0
17 Edge threshold (SIFT) ε 5
18 Matching threshold (SIFT) T 1

sm 1.4
19 RANSAC distance threshold T 1

rd 0.05

Mole set computation
20 Min. accepted PSL size (mm) Ts 2
21 Min. distance between two different PSLs (mm) Td 4

Mole set matching
22 Candidate neighborhood radius (mm) rc 30
23 Neighborhood radius for ROI selection (mm) rn 20
24 Multiplicative factor for candidate selection k 3
25 ROI size (px) S2

r [600× 600]
26 Multiplicative factor for the matching condition c 2/3

Inter-exploration matching
27 ROI size (px) S3

r [700× 1500]
28 Matching threshold (SIFT) T 2

sm 1.7
29 RANSAC distance threshold T 2

rd 0.005
30 Homography threshold T 2

H 2500
31 Multiplicative factor for smaller ROI selection l 1.5
32 NCC weight ω 6

Change detection
33 Median filter size (px) S3

m [3× 3]
34 Binarization threshold Tb 0.1
35 Change threshold Tc 0.15
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In the same way as physicians constrain their search by knowing the region of the

body depicted in an image, our system uses the known geometry of the cameras.

However, our approach to determine the precise location of a mole is different.

Unlike physicians, who normally refine their search using the moles’ dermoscopic

structures, the proposed system relies strongly on the visual information of the

skin surrounding the mole. One of the drawbacks of such an approach is that it

can be sensitive to the viewing angle of the cameras.

For instance, the appearance of a mole located on the medial border of the shoul-

der blade can vary in two images to an extent that it is impossible to find corre-

sponding SIFT features. This may happen when comparing mole images acquired

at the pth and (p + 2)th turntable positions. In such cases, it is unclear whether

two images depict the same lesion, so the result is considered to be a putative

match until it can be resolved by the match association procedure.

A putative match cannot be resolved only when one of the moles does not have

any matches in other mole sets. However, we discard such lesions, because, as

experiments have shown, these are less stable and/or undersized moles/freckles

which are not yet of interest for future change detection. But if, with time, these

lesions enlarge or grow darker, they will be automatically detected during the

exploration and compared with the baseline.

The experimental results of applying the proposed algorithms to real data are dis-

cussed in the next chapter.
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...we must reinforce argument with results.

“The Booker T. Washington Papers: 1903–4” [399]

Chapter 5

Results and discussion

This chapter presents experimental results of the algorithms for the automatic PSL

change detection in images acquired using the total body skin scanner described in

Chapter 3. All input parameters for the algorithms were set empirically during the

experiments. The results reported herein contain all necessary references to the de-

scription of the algorithms.

5.1 Intra-exploration operations

In each of the following subsections, we analyze and discuss the performance of indi-

vidual stages of the mole mapping pipeline (intra-exploration operations).

5.1.1 Skin detection

Prior to the image processing and detection of PSLs on the patient’s body, we generate

a “skin mask”: a binary image that defines the foreground area where the lesions are to

be detected. This mask is essential for a correct estimation of the skin’s intensity ranges

during the preprocessing stage. It is also useful for discarding MSER blobs detected

on background elements such as the backrest column. This algorithm was described in

Section 4.1.1.1, and the results of its application to the scanner’s image data are shown

in Fig. 5.1.

As illustrated in the figure, the approach, although simple, allows for correct de-

tection of skin of different types without producing many artifacts. Figs. 5.1a and b

demonstrate a successful detection even in the presence of a tanned skin and clothing.

A slight inconsistency in the masks can be seen in shaded underlit areas, for example,

in Figs. 5.1c or 5.1e. In the former, it is the area of the chin, while in the latter, it is the
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: Foreground detection in images of different skin types. Images (a) and (b) demonstrate
successful skin detection in the presence of a tan and clothing. (c)–(f) contain false negative and false
positive pixels. In concrete, the dimly lit areas located in the chin area of (c) and between the right
arm and torso in (e) produce incorrectly labeled “skin” pixels. On the other hand, the false positive
pixels originating from the patient’s fair hair and clothes (the belt and shorts) are shown in (d) and
(e)–(f), respectively. In all these cases, the hue of the positively labeled areas appears within the
pre-determined “skin range”.

shaded stripe between the right arm and torso (on the right). In order to avoid very

dark lesions being labeled as non-skin areas, we use Gaussian filtering prior to the hue
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thresholding. Among our test images, there were no natural lesions mislabeled even

without the filtering. However, we decided to apply additional smoothing because of

erroneous masking results produced for some artificial lesions that were drawn with a

black marker. Yet, this approach should be validated using more images of different

patients to make sure that the masking operation does not produce incorrect labeling

for any type of PSL.

Because the masking method is based on the hue information from the images, the

false positive areas may include head hair. This is not the case for dark-haired patients,

whereas directly lit fair hair is likely to produce some artifacts (Fig. 5.1d). Another

source of false positives is undergarment worn by the patient during the exploration.

As shown in Figs. 5.1e and f, the color of the clothing under direct illumination may

fall into the predefined skin hue range and affect the final mask. It must be noted

though, that in the clinical setting, the patient will be required to wear dark underwear,

or alternatively, offered special clothing with a well-defined “non-skin” color (blue or

green).

Overall, this simple method performs satisfactorily, providing a mask that, in most

cases, reliably outlines the foreground for further operations.

5.1.2 Image preprocessing

In order to prepare image data for the MSER blob detection, we perform a preprocessing

operation that emphasizes PSLs and attenuates the background (see Section 4.1.1.2

for description). Ideally, the intensity values corresponding to the lesions and the

background in the output image should be on opposite ends of the intensity scale.

While this is possible for relatively dark well-defined PSLs, pigmented lesions that are

less salient will have intensities closer to the middle of the bandwidth. Consequently,

using the MSER terminology, these lesions appear in images as less stable blobs, and

the change in illumination or angle of view will largely affect the detection outcome.

Fig. 5.2 shows the preprocessing results for images of two different skin types. In

order to develop an algorithm that robustly emphasizes PSLs on both fair and dark

skin (upper and lower rows of the image, respectively), we employed a minimum-value

gray level conversion scheme1 along with the contrast stretching using the foreground

mask. In addition, the image obtained was subtracted from its complement to improve

the contrast between the lesions and the background skin. The effect of this operation

can be seen by comparing images (b) and (c), and (f) and (g) in Fig. 5.2.

1When converting an RGB image to gray scale, each pixel is assigned the smallest intensity value
among all color channels.
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Images (d) and (h) demonstrate the output of this algorithm using a luma-based

gray level conversion:2 Y ′ = 0.299R′ + 0.587G′ + 0.114B′, with R′, G′ and B′ being

gamma-corrected color channels. The darker (more stable) lesions have a slightly better

contrast compared with those in (f) and (g), but some brighter PSLs are faint or even

invisible (see the yellow arrows). Thus, the preprocessing method proposed results in

an image where pigmented lesions of different brightness (and type) have a chance of

being detected by MSER regardless of the patient’s skin type. And since in this work

no distinction between nevi and freckles was assumed, we are interested in retaining

as many PSLs as possible. This will allow gathering enough experimental data during

clinical trials of the scanner and creating additional PSL filters/classifiers if needed.

Consequently, the preprocessing scheme employed provides the MSER algorithm

with an input adapted for the detection of both dark and light PSLs in different types

of skin.

5.1.3 Mole detection

Once the input image is enhanced for the best performance of the MSER algorithm, we

can apply the detector directly using a set of predefined parameters. These parameters

(see Appendix A.1) were chosen empirically after numerous trials on images of various

skin types acquired by cameras in different orientations and turntable positions:

1. Relative stability score of the blobs: ∆ = 40.

2. Absolute stability score: v = 0.99.

3. The maximum and minimum allowed for the blob’s areas are defined using the

fraction of the total area of the input image: Amin = 2.7 · 10−4 · Atotal and

Amax = 10−2 · Atotal, respectively. Note that the image is resized prior to the

detection, so that Atotal = 1000 × 750 = 75 · 104 px. In addition, we filter the

blobs detected according to the major semi-axis length (Ta = 15 pixels) and the

aspect ratio (Tar = 0.2).

The results of the detection of PSLs located on the back and arms of two patients

can be seen in Fig. 5.3. The blue ellipses highlighting the lesions are fit into the

maximally stable extremal blobs that those lesions represent in the processed images.

2 Luma (Y ′) is formed as a weighted sum of R′G′B′, approximating the lightness response of
vision [400]. The ITU-R Recommendation BT.601 standardizes the channel weighting coefficients for
use in standard-definition television (SDTV). In our experiments, this method showed slightly better
results than color channel averaging.
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5. RESULTS AND DISCUSSION

(a) (b)

(c) (d)

Figure 5.3: The output of mole detection using the MSER algorithm with the following parameters:
∆ = 40 and v = 0.99 (see Appendix A.1 for details). Area A of the regions detected is in the range
2.7 ·10−4 < A < 10−2 of the total image area. (a)–(b) Mole constellations on the upper and lower back,
respectively. The yellow arrow points to an artificially modified lesion. Regardless of color discrepancies
between the original and the drawn mole parts, the lesion is detected as one region. (c)–(d) PSLs on
the upper arm of two different patients. Note that in both cases many lesions detected are freckles,
and not nevi. The arrow in (d) highlights two lesions detected as one (single representation of multiple
lesions).

Fig. 5.3a contains the detection results for the image we looked at earlier in Fig. 5.2g.

It can be seen that the blue and black artificial nevi at the bottom and the top of the

image respectively, have not been detected by MSER. The former was discarded in the
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skin masking stage because bright blue is outside the defined skin color range. The

latter mole is located in the dimly-lit area, so the contrast between the lesion and the

skin does not meet the limitations imposed by the MSER parameters. This could be

improved by using an illumination correction algorithm or an adaptive procedure for

local contrast enhancement. However, the drawback with these approaches would be an

unnecessary amplification of other skin details such as hairs, pores or spots. Besides,

the goal is not to detect all PSLs in one image, but rather concentrate on those in

the best lit central area of the image. This is because we want to have the best view

possible of each lesion (good lighting conditions, minimum body curvature, best angle

of view) in order to assess the changes correctly. At the same time, multiple cameras

and a sufficient number of turntable steps give a certain freedom to discarding less

suitable lesion images.

In Fig. 5.3b, all the PSLs have been detected correctly, including a mole with an

artificial change indicated by an arrow. The lesions detected in Figs. 5.3c and d are

mostly freckles. Because the arms appear closer to the cameras during the image

acquisition, the resolution in that area is better and it is easier for the algorithm to

distinguish even the smallest PSL. One future improvement of this system will include

a dynamic threshold definition for the minimum/maximum lesion size depending on

the turntable’s position at which the images were acquired.

An example of a single representation of two lesions, as discussed in Section 4.1.3.2,

can be appreciated in Fig. 5.3d. Despite the fact that one of the two PSLs is a light

freckle, in images acquired at different positions, or by a neighboring camera, they

can be detected as a single lesion, causing a special situation during mole set creation

or merging. These cases can be recognized and corrected by means of the heuristics

described in the previous chapter.

In conclusion, the MSER algorithm is a powerful tool for the detection and coarse

segmentation of multiple PSLs. Since its output is largely dependent on the intensity

information of the input image, we can modify it to direct the method towards the result

we want to obtain. Additionally, its output can be further improved by controlling the

size limitations of the lesions detected as well as by applying machine learning to identify

their types.

5.1.4 Mole matching in stereo pairs

In order to identify a skin lesion in a stereo pair, one must carry out a comparison of

the moles’ visual properties, such as size and shape. Human observers normally rely
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5. RESULTS AND DISCUSSION

(a) (b)

(c) (d)

Figure 5.4: SIFT feature matches in stereo images. Blue lines connect SIFT points satisfying the
homography model estimated by RANSAC. Points without a match are outliers for this model. (a) A
PSL located in the lumbar region of patient 1, captured by cameras 4 and 14 (diagonal stereo pair). (b)
The same lesion compared to its neighbor located 5 cm above (left image). (c) A mole in the lumbar
region of patient 2 viewed by cameras 5 and 15. (d) A small PSL found on the right calf of patient 2,
photographed by cameras 8 and 9 (vertical stereo pair). The results of the PSL matching in (a), (c)
and (d) are positive, while the lesions in (b) are different. Note that hair on the skin does not impede
correct feature matching.

on this information when the lesion to be matched has unique properties, at least in its

neighborhood. But, because moles may have a very similar appearance, we tend more

to analyze their spatial information, such as location and surrounding lesions.

Unfortunately, when it comes to carrying out such a comparison automatically,

these options become insufficient. Thus, at least two counter-examples can be given:

� When relying on the surrounding moles of a lesion of interest, no decisive conclu-

sions can be drawn in their absence.

� If two very similar moles are found close to each other, they can be easily mis-

matched: it is enough that one of them is detected only in the first image, and

the other only in the second.

Taking this into account, the mechanism of automatic lesion comparison should

use information of a different kind. Creating a reliable and distinctive descriptor for
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PSLs is a very challenging task because of their similarities independently of their

location on the body. Fortunately, some additional information can be extracted from

a seemingly uniform background—the skin itself. We have noticed that the images’

resolution allows an efficient description of this information by means of the scale-

invariant feature transform (SIFT, see Appendix A.3). Features detected and described

in one image can be matched with their counterparts in the other image of a stereo pair.

Having enough matches, as shown in Figs. 5.4a, c and d, we can deduce a sufficiently

precise transformation (homography) between the two images. And when both are in

the same coordinate frame, it is easy to determine whether they depict the same real

PSL based only on the locations and dimensions of the corresponding MSER ellipses

(Section 4.1.2.1). In the case of there not being enough correct SIFT matches to

compute the homography, as demonstrated in Fig. 5.4b, it is clear that these images

show different moles located far from each other.

The SIFT features detected in stereo images showing the same lesion will be matched

correctly in the vast majority of cases. Exceptionally, when the skin surface is highly

slanted with respect to both or one of the cameras, there may be not enough matches

to compute the homography (see Fig. 4.4 in Section 4.1.3). However, in these cases,

a successful matching is not important, because more suitable views for lesion change

assessment can be found at other turntable positions.

It must also be noted that body hair will not pose a problem for SIFT feature

detection and matching in stereo images acquired simultaneously (Fig. 5.4c and d).

However, this is not always true for images acquired in different explorations. For

example, if the hair orientation is altered during undressing, the gradient information

in the current and baseline images will be radically different (see Section 5.3.1). This

will cause the keypoints to have different locations, orientations and descriptors, failing

to produce enough matches for proper homography estimation. Because of this, we

will exclude all patients with body hair from the scanner’s initial clinical validation

(see Section 5.2).

Fig. 5.5 shows mole matches in the images acquired by two camera pairs: vertical

(cameras 13 and 14) and diagonal (4 and 14). As can be seen, the direction of the

match lines is not uniformly defined due to the skin surface being at different distances

from the cameras. Nevertheless, the matching lesions lie along epipolar lines, and the

visual comparison is performed regardless of the distance to the cameras.

Overall, the stereo-matching procedure reliably establishes lesion correspondences

in images acquired by neighboring cameras at the same turntable position. Failure is

possible only when one of the lesion views is too slanted due to the position of the
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(a)

(b)

Figure 5.5: Mole correspondences in stereo pairs. (a) A vertical pair: images acquired by cameras 13
(left) and 14 (right) at turntable position 6. (b) A diagonal pair: cameras 4 and 14 at position 10.

patient with respect to the cameras and/or skin surface topography. However, such

views can be ignored, because it can be safely assumed that the images acquired at

other turntable positions will have a better view of the lesion.
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5.1.5 PSL triangulation and mole set creation

Although the goal of the mole mapping is not to produce an accurate estimation of the

moles’ locations, but how well the system performs on average. The results of mole

triangulation can be evaluated with respect to repeatability (precision) and accuracy.

While the precision defines the consistency of the scanning system in estimating a

3D point’s location with different stereo pairs, the accuracy indicates how close these

estimations are to a real point. In order to determine these measures, we conducted two

experiments: (1) using 4384 visible markers in the calibration pattern and (2) 579 PSLs

detected in four explorations of two different patients. The first experiment included

the ground truth for the 3D points of the calibration board, which provided a basis

for the accuracy computation. For the PSL data of real patients, it is very difficult

to acquire such a ground truth, especially when taking into account the involuntary

movements during image acquisition.

In both experiments, we computed a number of unsigned distances between 3D

points and determined their means and standard deviations; for the accuracy, the dis-

tances between the estimated and real points, and for the precision, those between

triangulations produced by different stereo pairs for the same points/moles. Fig. 5.6

shows the probability density distributions describing the values obtained.3 The dia-

grams clearly demonstrate the difference in precision between the “synthetic” markers

in the pattern and the real mole points (the red lines). The standard deviation is three

times larger in the second experiment, with a mean precision 1.09 and 2.73 millimeters,

respectively. This is explained by the fact that the calibration markers are well defined

“corners” in space, so the detection noise has a much lower impact on the triangulation

precision. In contrast, real lesions are three-dimensional surfaces of different sizes pro-

jected onto the 2D planes of the sensors. The coordinates of their projections’ centroids

are dependent on the orientation of the lesions with respect to the cameras and the

accuracy of the blob detector. This inevitably leads to discrepancies in the 3D points

estimated.

The blue line in Fig. 5.6b confirms that it is practically impossible to obtain accurate

locations of the nevi on the patient’s body due to the use of a turntable. Nevertheless,

the precision shown by the algorithm in this experiment has the mean value of 5.55 mm

with a standard deviation of 3.9 mm. Together with the accuracy measured at µ = 3.24

mm with σ = 0.82, which was obtained on the “synthetic” data points (Fig. 5.6a), this

estimation is sufficient to approximately determine a PSL’s location on the body.

3Because the values are unsigned, the resulting Gaussians are not zero-centered.
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Figure 5.6: Evaluation of PSL stereo triangulation. (a) Normal probability distributions of the accuracy
and precision across all cameras of the scanner. The precision (µ = 1.09, σ = 0.7) is defined by the
pairwise distances between all estimated coordinates of a point produced by different stereo pairs. The
difference between the estimated and actual location of a 3D point describes the accuracy (µ = 3.24,
σ = 0.8). The mean and standard deviation values for both distributions were obtained using 4384
points in the fixed calibration pattern.
(b) PSL triangulation precision within the same turntable position (µ = 2.73, σ = 2.4) and across
different positions (µ = 5.55, σ = 3.9). The latter distribution is less dense and has a larger mean
value because the repeatability across different positions depends on the turntable’s rotation noise and
patient’s movements. These functions were computed for a total of 579 PSLs mapped in 4 explorations
(2 patients).

When all the PSLs detected are triangulated at every turntable position, they are

unified into mole sets: groups of mole representations that have a unique 3D location

linked with several 2D images. Mole sets are created by recursively tracing known stereo

matches and performing visual comparisons in special situations (Section 4.1.3). The

three-dimensional component, i.e. the PSL triangulations, of three non-overlapping

mole sets is shown in Fig. 5.7. This is the result of scanning a patient with multiple

nevi, lentigines and freckles. The mole blobs detected by MSER were not size-filtered,

so that many small lesions could be triangulated and matched in stereo images. Due

to the density of the lesions, the point cloud outlines the contours of the back, both

arms and head of the patient.

The turntable stop angles were set up in a way that provides a sufficient over-

lap between neighboring mole sets. Examples of three consecutive sets are shown in

Fig. 5.8a. The area zoom-in reveals the discrepancy between triangulations made at

different stops (positions), which is consistent among individual moles of the sets. More-

over, the orientations of the normals to the local planes of the PSLs are also estimated

consistently. Fig. 5.8b shows a portion of mole representations from all sets computed
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Figure 5.7: Mole sets (triangulated points) computed at three different turntable positions: 0, 5 and
11 (shown in red, blue and green, respectively). The larger coordinate system denotes the scanner’s
global reference frame—the center of the turntable. The smaller systems mark the locations of the
cameras relative to the turntable’s motion at each of the three positions (see Fig. 3.5 for the exact
axes notation). Although the three point sets neither overlap nor cover the whole body surface, the
resulting lesion cloud transmits the aspect of the human body with well distinguished arms, back and
cheeks.

for the first pose (see Section 3.2). It can be seen that there are plenty of redundant

mole representations for the patient’s back. This leaves room for the optimization of

the turntable step configuration; however, as more experimental data is needed at this

point, we decided to maintain the current configuration until more patients of different

complexions are scanned.
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(a)

(b)

Figure 5.8: A 3D component of overlapping mole sets. (a) Mole sets computed at turntable positions
3 (red), 4 (blue), and 5 (green). The smaller arrows denote normals to the local planes of the moles,
which are marked by square patches of the same color. The zoom-in of the selected area demonstrates
the proximity of the lesions triangulated at different positions, as well as the similarity of their normals.
(b) All mole sets (0–11) computed for pose 1. Each camera coordinate frame in the semicircle represents
the whole rig at the given turntable position.

We can conclude that the triangulation step of the mapping pipeline produces a

very good positional estimation of individual PSLs detected in stereo images. Given

that the image acquisition procedure follows the established protocols (no abrupt move-

ments or untimely pose changes), the discrepancies in 3D locations estimated at dif-

ferent turntable positions are minimal. During the mole set creation stage, the lesion
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representations (images and triangulations) obtained with the stereo pairs at every

turntable step are linked together. Essentially, these sets contain information about

PSLs visible to the cameras from a certain point of view (stop angle).

5.1.6 Mole set merging

In order to create a complete map of the PSLs on a patient’s body, the sets of mole

representations obtained at every turntable position must be merged together. The

merging is to be carried out separately for the two poses: turntable steps [0,11] and

[12,23]. For the moment, we have not considered merging the two resulting parts of a

full map, however, this will be addressed in future work (Section 6.4).

The mole set merging procedure uses the same principle of homography-based visual

comparison of individual lesions applied in stereo-pair matching (see Section 4.1.4). Due

to the fact that the images to be compared are not acquired simultaneously and the

patient is not absolutely still, we cannot rely on the epipolar geometry for the match

candidate selection. Instead, the Euclidean distance between moles’ triangulations is

used for the purpose. Images depicting moles are selected so that the difference in the

viewing angles is minimized, and the ROIs are transformed according to the known

camera geometry prior to extracting and matching the SIFT points.

Fig. 5.9 shows an example of a successful matching of mole representations at con-

secutive turntable positions. The lesion highlighted in Figs. 5.9a–c was photographed

by cameras installed on both columns, and has a different appearance in each image.

The view in Fig. 5.9c has the lowest η-metric because the lesion is most fronto-parallel

to camera 14 at position 5. In order to compare any two of the mole’s ROIs, one of

them is transformed using the fixed camera geometry to obtain roughly the same point

of view of the lesion as in the other ROI. Thus, Fig. 5.9d shows SIFT matches between

the transformed image (a) on the right and the original image (b) on the left. The lesion

was photographed at positions 3 and 4 respectively, making it a “p±1” matching case.

Likewise, in Fig. 5.9e, the “p± 2” candidates are matched, with image (a) transformed

accordingly (on the right).

Nevertheless, the visual comparison based on SIFT feature matches may fail in

certain cases. When the difference between the viewing angles of two images is too

sharp and the skin surface around a lesion is not planar, the SIFT points detected

will have dissimilar descriptors. Consequently, the result of SIFT-feature matching

will contain too many outliers, causing the homography estimation by RANSAC to be

unable to converge to a solution. An example of such a failure is shown in Fig. 5.10,
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(a) (b) (c)

(d)

(e)

Figure 5.9: Successful mole matching at different turntable positions. (a)–(c) Images of the same lesion
captured by cameras 3, 13, and 14 at positions 3, 4, and 5, respectively. These images were selected
by the algorithm based on the mutual proximity of the views (Section 4.1.4.1). Note the distinctions
in the appearance of the lesion due to different angles of view of the images. (d) The corresponding
SIFT features detected in images (b) on the left and (a) on the right. The latter was “pre-warped” to
appear as if captured from the same angle as (b). (e) The same thing happens but between (c) and
(a).

where visual comparison is attempted on lesion images acquired at turntable positions

5 and 7. Despite the prior transformation of the ROI in (a), most of the SIFT point

matches selected by RANSAC are outliers, and the candidates are labeled as a putative

match (see Section 4.1.4.1).

Normally, putative matches can be resolved if the candidates match mole repre-
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(a) (b)

(c)

Figure 5.10: Unsuccessful matching of moles at remote turntable positions. (a)–(b) Images acquired
at positions 5 and 7 by cameras 3 and 14 respectively, the lesions do not match. (c) The difference in
the angles of view (even taking into account the initial warping) together with the specific relief of the
skin surface around the PSL cause most SIFT features to have very dissimilar descriptors.

sentations at other positions. Otherwise, these lesions are considered unimportant for

documentation because the absence of matches at neighboring positions suggests that

they are either too small or not salient enough. Unfortunately, the true quantification

of the failure rate during mole set matching is impossible without a generalization over

numerous scans of patients of different constitutions and PSL counts. This quantifica-

tion will be done as a part of a clinical validation of the scanner in the Melanoma Unit

of the Hospital Cĺınic de Barcelona (see Section 5.2).

Once the virtual moles are matched at all positions p±1 and p±2, the propagation

procedure automatically relates lesions matching indirectly at positions p±x. Fig. 5.11

demonstrates lesion correspondences and their propagation graphically. The points

and arrows represent lesion triangulations with their normals, and the colors denote

the mole sets these lesions belong to: red (1), blue (2), green (3), and brown (4).

Fig. 5.11b shows these mole sets after p± 1 and p± 2 matching has been carried out,

leaving the red and brown mole sets unmatched. Running the propagation procedure
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(a) (b) (c)

Figure 5.11: Mole set match propagation. (a) Lesion representations belonging to four different mole
sets: 1 (red), 2 (blue), 3 (green), and 4 (brown). The points are the mole’s 3D locations and the arrows
represent normals to their surfaces. (b) Correspondences after the p± 1 and p± 2 matching procedure.
(c) The result of match propagation.

completes the matching and relates virtual moles connected indirectly (Fig. 5.11c).

An important shortcoming of our approach to mole set merging is its inability to

find corresponding PSLs when they do not belong to successive mole sets. For example,

if a lesion is represented in mole sets 3, 4 and 7, it is impossible to connect virtual moles

at the 4th and 7th turntable positions. As a result, the map will contain an undesirable

artifact created by two representations of one lesion. These artifacts can be produced by

smaller/less salient PSLs detected unevenly across the turntable steps. This problem,

together with the MSER blob filtering and turntable step adjustment, will be addressed

in future work

In conclusion, the proposed configuration of the scanner, which uses a turntable to

obtain a 360° view of the patient’s skin surface, creates the need for mole set merging.

A drawback of this operation is that it requires multiple visual comparisons of PSLs

over various turntable steps leading to an increased computational load. This can

be overcome only by changing the hardware configuration of the scanner, e.g., using

replicated camera arrays instead of a rotating platform. However, besides physical

changes to the acquisition chamber, this approach requires considerable expenses for

cameras, means of their interfacing and data collection unit(s). Therefore, the use

of a turntable together with the proposed mole set merging scheme offers a trade-off

between hardware cost/complexity, mapping precision and computational load.
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Figure 5.12: Examples of outliers, or false PSLs, present in a mole map. The contours denote rough
segmentations provided by the MSER detector, and the scales correspond to 5 mm on the skin’s surface
at a given view. Locations of the outliers from left to right : right ear, right nostril, abdominal area
(body hair), and right eye.

5.2 Mole map validation

The output of the pipeline described above is a mole map, i.e. images of pigmented

lesions linked with their approximate 3D locations on the patient’s body. The three-

dimensional components of this map for the two patient’s poses are shown in Figs. 5.13a

and b. The camera planes in the images denote turntable positions, and the coordinate

systems refer to the global reference frame at the center of the turntable. The 3D points

are triangulations of all the PSLs detected, which, besides nevi, freckles, lentigines

and other lesions, also include outliers. Outliers comprise image blobs that represent

maximally stable regions during the detection phase that are clearly unrelated to PSLs.

For example, these can be MSER blobs detected on the ears, nose and even body hair

(see Fig. 5.12).

5.2.1 The ground truth problem

Attempting the validation of the mole mapping pipeline raises the cornerstone question:

what is the ground truth? This question seems a trivial one, however, a conclusive

answer can be given only taking into account the goal of mole mapping. We stated

our principal goal in the beginning of this document: the detection of changes in PSLs

indicative of melanoma. It is known that not all changing lesions are equally important

from the diagnostic point of view. Moreover, in practice, dermatologists performing

a total-body skin examination look for “suspicious” lesions: those that have specific

malignancy features related to shape and/or color. Depending on the patient, they

may also consider looking only for an “ugly duckling”,4 paying less attention to the

lesions that are unlikely to be or become malignant from their point of view.

4An “ugly duckling” is a PSL with significant morphological differences as compared to the rest of
the patient’s skin lesions. This may be a sign of a developing malignancy.
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(a) (b)

Figure 5.13: A complete PSL map of the reference patient. The lesions that have been undergoing
dermoscopy follow-up during the last 11 years are highlighted and numbered (see Fig. 5.14 for their
images). (a) Pose 1: patient facing the backrest column of the scanner. Lesions 1–12 are located on the
patient’s back in the scapular and paravertebral regions. Moles 13 and 14 are found on the right arm,
while lesion 15 is on the left shoulder. (b) Pose 2: patient with back to the column. Lesions 16 and 17
are located in the right lumbar region of the abdominal area and mole 18 is located on the patient’s
chest.
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Consequently, we are discussing a restriction on the total body skin examination

to the lesions considered relevant. This is a rational approach which saves time in

the presence of numerous nevi; however, the definition of relevance is rather subjective

and can vary from physician to physician. Relevant lesions may also include different

types of PSLs depending on the patient’s history and risk factors. For example, in

some patients, a physician will bias the screening to dysplastic nevi, while in others,

lentigines will be of interest too. As a result, lesions irrelevant from the point of view

of a dermatologist are ignored during the examination, and their evolution over time is

not closely followed.5 In most cases, these skipped lesions do not have any malignancy

potential. However, a manual PSL screening influenced, in addition, by subjective

criteria leaves room for human error.

From this point, we can see that there is no general unambiguous answer to the

ground truth question. Nevertheless, at the current stage of the scanner’s development,

we can specify the minimum results the mapping is expected to produce. In particular,

an exploration map should contain all lesions considered relevant by dermatologists for a

specific patient, as well as those satisfying some appearance criteria. Without additional

filtering (e.g. based on machine learning), the appearance criteria are conditioned only

by the scanner’s camera system and the skin-to-lesion contrast. The camera resolution

restricts the size of observable PSLs, while low-contrast lesions are discarded to avoid

cluttering the map. Having more than relevant lesions in the map reduces the risk of

missing PSLs that can potentially lead to a malignancy.

Thus, in order to comprehensively evaluate the performance of the PSL mapping, we

need to have the ground truth of the patient’s lesions which are considered relevant by

several dermatologists. In clinical practice, such data collection requires combining both

a manual TBSE procedure and an automated exploration using the scanner prototype.

Therefore, the scanner was recently installed in the Melanoma Unit of the Hospital

Cĺınic de Barcelona for clinical validation under the supervision of Dr. Josep Malvehy

and Dr. Susanna Puig.

5.2.2 Preliminary evaluation

For evaluation of the algorithms’ performance in a laboratory setting, we used the total

body examination history available for one of our volunteer patients. This history data

5In this respect, there is an important conceptual advantage with our scanner. If a lesion that was
not detected previously is detected during the latest scan, it is possible to verify whether this is a result
of its evolution over time or was simply missed before. By tracking only relevant lesions, as currently
practiced in TBSE, this verification is impossible.
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included dermoscopy (MoleMax�) and clinical images of several PSLs undergoing regu-

lar monitoring over the last 11 years. During this period, the patient was examined by

several dermatologists trained in dermoscopy, and the images were acquired by different

technicians. The clinical photographs comprise only low-resolution macroscopic images

of the patient in standardized poses (see Section 1.4.1.1), while the high-resolution

dermoscopy images were used for the analysis and temporal monitoring of the lesions.

Hence, the PSLs subject to dermoscopy follow-up were qualified as the relevant lesion

ground truth for that patient.

We selected a total of 17 lesions in the areas visible by the scanner’s cameras6 and

not completely occluded by body hair. The moles undergoing dermoscopy follow-up

were found in the paravertebral and scapular regions, as well as on the right arm,

left shoulder and chest (Fig. 5.13). As shown in Figs. 5.13 and 5.14, all these lesions

were successfully mapped by the scanner. The side-by-side views of the clinical and

corresponding dermoscopic images of the moles are shown in the latter figure. Although

the level of detail offered by the images of different types is incomparable, the scanner’s

photographs can be well used for the detection of changes in the lesions’ shape and

color.

While the lesions in the clinical photographs have the same global orientation,7

their orientations in the dermoscopic images are arbitrary. We deliberately left them

unaltered in order to demonstrate the difficulty of establishing lesion-to-image corre-

spondences manually (see also Fig. 1.6 in Section 1.5). In addition, one of the lesions

examined in the chest region (#18), heavily occluded by body hair, was mapped by

the scanner as well. However, due to the hair occlusion, it cannot be used in automatic

change detection.

The results of the preliminary evaluation do not give a definitive assessment of the

mole mapping pipeline. Nevertheless, they provide valuable information that will help

to anticipate and improve the performance of the algorithms in future clinical trials.

Thus, the following conclusions of this validation can be highlighted:

� In a larger trial, we strive to achieve the same results regarding the sensitivity:

in the test patient, 100% of the lesions considered relevant were mapped.

� The repeatability of mapping smaller/less salient lesions (freckles and lentigines)

should be improved: on average, 7–10 PSLs mapped in one exploration were

missed in other scans. In total, 208–222 lesions (the minimum and maximum

6The lesions found on the soles, the palms and the scalp were not taken into account.
7The vertical dimension of the images coincides with the vertical axis of the scanner.
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Figure 5.14: Clinical and dermoscopy images of regularly monitored PSLs of a reference patient acquired
by the scanner and using MoleMax� (courtesy of Dr. Malvehy), respectively. The locations of these
lesions are highlighted in Fig. 5.13. The automatically selected views of each mole minimize its skew
and maximize its image resolution (px/mm) (see Section 4.1.4.1). The scales in the images correspond
to 5 mm on the skin at the moles’ locations.
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mole counts across 3 explorations) were mapped for the test patient in pose 1,

and 81–90 in pose 2. The PSLs marked as relevant were repeatedly mapped in all

explorations. It must be noted though, that less salient lesions missed in one of

the explorations will still be compared with their baseline images in the change

detection pipeline (see the following Section).

� The MSER detection outliers and mole set merging artifacts should be eliminated

from the map.

Overall, our approach to PSL mapping, even taking into account its current imper-

fections, demonstrated promising results. The scanner is able to create a permanent

visual record of all the patient’s moles, mapping distinguishable PSLs with a diame-

ter larger than 2 mm. In this way, change tracking is not limited only to the lesions

considered relevant by the dermatologists.

5.3 Inter-exploration operations

With two maps of a patient’s skin lesions created at different times, we can use the

change detection pipeline to assess the evolution of each PSL (Section 4.2). To do this,

we need to (1) determine corresponding lesions in the maps and (2) perform change

detection in their aligned ROI images.

5.3.1 Lesion matching

In this work, we used a naive approach to inter-exploration lesion matching. Our

main assumption (given that the scanning procedures were followed correctly) is that

PSLs photographed during one exploration, E1, by camera C at position P , are very

likely to be found in the same P -C view in another exploration, E2. This assumption

holds true for most lesions, however, it may fail for those detected closer to image

borders. The reason for this being slight differences in the patient’s position during

image acquisition. It especially concerns PSLs located on the arms when the patient is

in pose 1, because it is more difficult to ensure that they are in the same exact position

in all the explorations.

Nevertheless, when using the SIFT-based visual comparison of image ROIs (see

Section 4.2.1), it is still possible to verify whether our assumption holds true for a

particular lesion. A valid homography transformation between two ROIs, like the one

modeling SIFT feature matches shown in Fig. 5.15a, projects the location of the mole

mapped in E1 to the image in E2. Our assumption fails if the projection is outside the
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(a)

(b)

(c)

Figure 5.15: Inter-exploration lesion matching. SIFT feature correspondences in the images of the same
lesions in different explorations after fitting a homography model using RANSAC. (a) Outliers removed,
the homography model is correct. (b) Not enough inliers due to different body hair orientation. (c) No
inliers because of pressure-induced skin marks in the left image (e.g. marks on the back after driving
a car for some time).

image borders, however, the projection coordinates, together with the direction of the

turntable’s rotation, will point to the view in which this lesion is likely to be found.

The main drawback of the naive approach to PSL matching is that it is not always

possible to establish the map index of the corresponding lesion in E2. Since a map

index is determined based on the mole’s MSER ellipse location, a PSL not detected in
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a particular image will be untraceable. On the other hand, this approach will succeed in

performing change detection even though the lesion in E1 is not mapped in E2 because

it will still be present in both images. Therefore, in order to produce stable map index

matches as well as account for missing lesions, the naive approach can be combined

with a more sophisticated technique, e.g. based on a non-rigid point cloud registration.

This will be addressed in future work.

The estimation of a homography between two skin image patches can fail if the

images have completely different gradient information. This will lead to a proportion

of false feature correspondences that the RANSAC algorithm is unable to filter out. In

our experiments, we have determined two situations causing such behavior:

1. Body hair in the image patches with different orientations, Fig. 5.15b.

2. Presence of pressure-induced skin marks in one of the images, Fig. 5.15c.

As the figures demonstrate, the RANSAC algorithm was not able to estimate a correct

homography model, because the percentage of SIFT match outliers is too high. Conse-

quently, as these results suggest, the scanning procedure should be limited to patients

with no or little body hair, and any skin alteration that drastically changes its image

gradient information should be avoided.

5.3.2 Change detection

After applying a homography to align the images and refine this alignment by means of

normalized cross-correlation, we can obtain a difference image of the two skin images.

Figs. 5.16a–d show image patches of moles that did not evolve between explorations.

The respective change maps in Figs. 5.16a, b and d, nevertheless, contain artifacts

(clusters of black pixels) that correspond to alignment inaccuracies, sensor noise and

body hair influence. Such artifacts do not produce false change alerts as they are

filtered out by thresholding the ratio of their total area to the union area of the two

lesion segmentations (see Section 4.2.2).

Because our experiments were conducted using limited data, we modified some of

the patients’ lesions and added new moles using color markers. The newly appearing

“lesions” are shown in Figs. 5.16e–f. The difference images masked by the coarse MSER

segmentations indicate a 100% change. In other words, it can be automatically deter-

mined that the lesion was not there during the previous exploration. This demonstrates

that the scanner is capable of early detection of small (less than 3 mm) new lesions.

Examples of the detection of artificial changes are shown in Figs. 5.16g–j. Real

changes, in most cases, may not have as high a contrast between the skin and lesion
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(a)

Map1 Map2 Change

(b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.16: The detection of new and evolving (synthetic) skin lesions. In each subfigure, the images
are ordered from left to right: lesion view in the 1st exploration, transformed view in the 2nd exploration
and the change map. The scales correspond to 5 mm on the skin’s surface at the lesions’ location. (a)–
(d) Lesions without any evolution. (e)–(f) Newly appeared artificial “moles”. (g)–(j) PSLs with changes
added using black and red markers.

texture. Nevertheless, these approximations can give an idea of the scale at which

the changes can be easily detected. In Fig. 5.16h, the segmentations of the lesion are

fairly inaccurate, and can potentially lead to missed changes. Therefore, besides the

global MSER detection/segmentation, it may be useful to apply additional algorithms

for refining the border delineation.
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Due to the use of an HSV color space, subtle differences, such as the artificial red-

dening in Fig. 5.16i, can be easily spotted. Of course, this can also produce false positive

changes due to sensor noise or illumination inconsistencies caused by the camera-to-

skin-surface angle. However, the actual influence of the noise on change detection can

be fully analyzed after a much wider validation on real changing lesions. It must also be

noted that the current approach does not take into account skin tan variations between

images acquired in different seasons. In order to account for such differences, we will

need to build an appropriate illumination model based on future exploration data.

Overall, Fig. 5.16 demonstrates the ability of the skin scanner to automatically de-

tect new and evolving lesions between explorations, although, for now, just on synthetic

examples. The initial experimental material, gathered during the validation of all the

steps in the mapping and change detection pipelines, highlights both advantages and

drawbacks of our approach, suggesting ways to improve the algorithms. This is further

discussed in the next and concluding chapter of this thesis.
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Chapter 6

Conclusions

Ever since the first description of melanoma as a disease entity in 1806 [8], science has

been trying to find efficient ways to fight this dangerous malignancy. As a consequence,

numerous important findings about the nature and features of this cancer have been

made and have led to the elaboration of various methodologies to recognize melanoma

as well as the creation of its core treatment philosophy: excision as early as possible.

Adhering to this philosophy, dermatologists seek reliable visual signs that would

indicate an early melanoma in order to remove it safely and eliminate any chance of

cancerous spreading. However, the appearance of pigmented skin lesions, the precursors

of melanoma, can be exceptionally misleading and renders lesion feature interpretation a

particularly difficult task whose outcome greatly depends on the professional experience

of the physician. Moreover, the most advanced state-of-the-art artificial intelligence

systems cannot as yet outperform human experts.

Nevertheless, there is an alternative way in which computer vision can significantly

contribute to the timely detection of melanoma. A factor which is widely acknowl-

edged to be indicative of a developing deadly malignancy is rapid evolution of or some

change in pigmented lesions. This change may be hard to perceive with the naked

eye, especially since the term “rapid” normally refers to a period of 3 to 6 months.

Consequently, during a patient’s examination, physicians rely on baseline photography

and an unaided visual search for lesions that could have evolved since the previous

check-up. It is not difficult to imagine the amount of work and error risk involved

when examining a patient with dozens of atypical moles exhibiting ambiguous features.

Moreover, the recognition and localization of lesions depicted in baseline photographs

can be extremely time-consuming.

Hence, it is clear that the automation of routine TBSE/TBSI procedures can save
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time and resources, reduce patient morbidity, and minimize potential detection errors.

For this reason, we have carefully reviewed the literature related to the application

of computer vision to diagnosing melanoma. Our review showed that throughout the

entire history of the field, change detection has not received due attention, and few

attempts have been made to automate the multiple lesion analysis. This important

finding gave us motivation to develop a tool for TBSE automation as well as attract

more attention to the problem of automatic change detection in PSLs.

6.1 Summary of the thesis

We started our research by studying the intersection area of computer vision with

the part of dermatology concerned with malignancies developing from pigmented skin

lesions. The introduction chapter briefly presented the medical aspects of the field

clarifying ambiguities in terminology and explaining in detail the motivation behind

this work. In particular, it described the structure of the human skin and the main

types of cells present in the cutis, gaving basic information about benign PSLs that

are known to be precursors of melanoma, and outlining the imaging techniques and

diagnosis methodologies used to detect this deadly cancer. We highlighted the fact

that a primordial role in detecting a developing melanoma is played by a total body

skin examination, and that its automation has not received due attention.

Chapter 2 extended this study by an in-depth review of the literature addressing

the computerized analysis of PSL images (micro- and macroscopic) aimed at diagnosing

melanoma. We classified the existing literature according to the nature of publication

(clinical or computer vision articles) differentiating between individual and multiple

PSL image analysis. Relevant references were categorized, emphasizing the impor-

tance of the difference in content between dermoscopic and clinical images. Various

approaches for implementing PSL computer-aided diagnosis systems and their stan-

dard workflow components were reviewed and summary tables provided. Based on the

conclusions drawn from this review, we directed our work towards the development of

a strategy aimed at the automation of TBSE/TBSI procedures.

In Chapter 3, we described a new total body skin scanning system designed and

built in-house (briefly presented in [15] for the first time). This chapter dwells on the

system’s hardware including the imaging module, operation concept and the calibration

procedure. The scanner allows for the acquisition of a series of overlapping cross-

polarized high-resolution images covering 85-90% of the patient’s skin surface. In order

to process these images and use their content for change detection in multiple nevi, we
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have developed a set of computer vision algorithms described in Chapter 4.

Instead of performing a complete reconstruction of the patient’s skin surface (this

is practically possible), our strategy consisted of binding locations of individual PSLs

with their images acquired by means of the scanner. Thus, after each exploration, the

lesions are detected in the images, matched across stereo pairs at different positions

of the turntable and grouped into sets. Merging these sets into a mole map creates a

topological description of all visible PSLs on the patient’s body. Using the controlled

environment of the acquisition chamber and following the scanning protocol, two such

maps from different scans can be matched, and temporal changes in individual lesions

detected. The results of a successful application of these algorithms to the real image

sets are reported in Chapter 5.

6.2 Contributions

The following are the major contributions of this thesis:

� A set of algorithms used in conjunction with a total body skin scanner that

automatically solve two important TBSE problems:

– Lesion-to-image and image-to-lesion correspondence: localize the PSL on

the patient’s body given its image, and vice versa.

– Inter-exploration lesion correspondence: match an image of a PSL acquired

during examination 1 to the image of the same lesion after examination 2.

As a result, the scanner is able to assist in routine TBSE procedures and auto-

matically select lesions that require a closer analysis due to changes they have

undergone since the baseline examination. It allows verification of the previous

state of any PSL, and not just those considered relevant by a dermatologist during

a previous examination. This is the first research work proposing a complete solu-

tion (software- and hardware-wise) for the problem of automatic change detection

in multiple PSLs.

� An in-depth literature review spanning publications from over 20 years of research

in the field of computerized analysis of PSLs. The review demonstrated a large

discrepancy in the number of articles published on individual and multiple PSL

image analysis and a scarcity of reported material on the automation of lesion

change detection. Furthermore, we proposed an extended categorization of PSL
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feature descriptors, associating them with the specific methods for diagnosing

melanoma and separating images of the two modalities.

� A method for pattern assembly using several unique squares and one separator

square: the “abacus encoding scheme”. The internal corners of the resulting

pattern hold a unique signature conditioned by the four surrounding squares.

The scheme was used to design the color-coded pattern for a one-shot external

calibration of the scanner’s camera rig.

6.3 Limitations

Any device has its limitations, and the total body skin scanner presented is no ex-

ception. The nature of the algorithms and the hardware design establishes 2 main

shortcomings:

� Body hair restriction. Due to the properties of the SIFT detector, which, in

this case, relies heavily on the skin texture, patients undergoing the scanning

procedure should have as little body hair as possible. Although the mole mapping

pipeline will perform as expected even in the presence of thick hair, the inter-

exploration mole matching may fail because of an alteration in their orientation.1

Such an alteration results in a change of skin texture, which in turn leads to a

significant dissimilarity of the SIFT points detected in the images from different

explorations. Therefore, ideally, body hair should be completely removed before

the examination.

� Unreachable body regions. The two poses assumed by the patient during the

scanning procedure leave some areas unobserved: the soles of the feet, the palms

of the arms, the inner surface of the arms, the scalp and the area behind the

ears. For a complete TBSE, these areas should be photographed and analyzed

separately.

6.4 Further work

The main directions for further work can be viewed in short-term and long-term per-

spectives. The short-term goals include:

1This may happen when changing clothes, for example.
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� Continuous validation of the scanner’s hardware and software in a real clinical

setting. This stage is vital for discovering potential weak points in the approach,

correcting exiting errors (”debugging”) and fine-tunning the parameters.

� Various algorithm improvements: removal of the mole set merging artifacts, en-

hancement of the inter-exploration lesion matching (naive approach + point cloud

registration) and refinement of rough MSER segmentations.

� Merging the mole maps for the two poses. Some of the lesions mapped when the

patient is in pose 1 will overlap with those acquired at pose 2, for example PSLs

on the shoulders and cheeks. A unified representation of the map for the whole

body will reduce unnecessary redundancy and facilitate data interpretation for

physicians.

� PSL classification. Apart from the nevi, interesting from the point of view of

melanoma diagnosis, the output of the mole detection may contain other “blobs”.

For example, lesions of similar appearance, such as freckles or acne, or even non-

lesion spots, e.g. nostrils or ear convolutions, can be detected as PSLs. They

produce noise in the output of the change detection pipeline as well as waste

computational resources, and thus should be discarded in earlier stages. One

possible way to do this is by applying a binary classifier to the detected blobs,

which, based on certain features, can determine whether these blobs represent a

PSL of interest or not. The research alone needed to obtain such a classifier forms

some serious scientific work.

Among the long-term work directions we can highlight the following:

� Improve camera focusing. In the presented scanning system, the focusing in some

images is clearer that in others. This is conditioned by the fact that the focus

distance is fixed throughout the entire exploration, while the space between the

body and the cameras varies. Consequently, the established depth of field of the

cameras is not enough to account for the difference. This can be overcome by em-

ploying an external focusing aid (e.g. ultrasonic sensors) or using cameras/optics

allowing for a more flexible tuning. In either case, simultaneous image acquisition

by all the cameras must be preserved.

� Improve camera resolution. In order to perform a more minute analysis and catch

the smallest change in a PSL, the image resolution should be increased (currently,

the cameras acquire 12-megapixel images). As a side effect, this will increase the
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amount of image data as well and affect the performance of the algorithms, so

the data handling procedures must be changed accordingly.

� Change characterization. Given the higher-resolution images with improved fo-

cusing, we can work out strategies for detailed automatic change characterization.

Since lesions change not only in size, but also in color and morphology, the scan-

ning system may be used to better study the character of changes in malignant

growths.
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Appendix A

Methodology

A.1 Maximally Stable Extremal Regions

The notion of maximally stable extremal regions (MSER) was introduced by Matas et

al. in [394]. The MSERs are sets of image elements (pixels), closed under the affine

transformation of image coordinates and invariant to affine transformation of intensity.1

In other words, these regions are salient image areas that can preserve their structure

over a wide range of binarization thresholds.

The authors described MSERs informally in the following way: given a sequence of

all possible intensity thresholds applied to an 8-bit gray-scale image, the resulting 255

binary images can be combined into a motion picture, where frame t corresponds to the

image after binary thresholding at intensity level t. Some frames in this “movie” are

shown in Fig. A.1. Playing back this frame sequence, the observer will see a completely

white image at first, then, black regions will emerge, grow and join together, until the

entire image changes its color to black. Consequently, it is possible to define stability

criteria for these changing regions and detect the most salient ones, based on how stable

they are over the applied thresholds.

In order to formally define and describe maximally stable extremal regions, it is

essential to introduce the concepts of regions, their outer boundaries and extremal

regions as used in [394]:

1. For an 8-bit grayscale image I and a 4-neighborhood pixel connectivity A, a region

1In accordance with the affine photometric model, given N measured images of a static scene q, the
following holds: gi = aiq + bi, where gi is the i-th measured image, and the gain (ai) and offset (bi)
parameters can model global external illumination changes and camera parameters such as exposure
rate, aperture size, and white balancing. The affine model is successful when photometric changes are
small [401].
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(a) Grayscale image (b) tbin = 32 (c) tbin = 64

(d) tbin = 128 (e) tbin = 192 (f) tbin = 254

Figure A.1: Sample image of binarization using different intensity threshold values tbin. The image
shows cells in a 70-micrometer thick piece of vocal cord from a pig. Taken with a two-photon fluorescence
microscope (Ben-Yakar Group, University of Texas at Austin).

Q is a group of adjacent image pixels, so that for two pixels p, q ∈ Q there is a

sequence of pixels a1, a2, . . . , an ∈ Q so that pAa1, aiAai+1, anAq.

2. The outer region boundary ∂Q is the set of pixels not belonging to Q that are

adjacent to at least one pixel of Q.

3. A region Q is extremal if all pixels p in region Q and all pixels q on its boundary

∂Q satisfy the inequality I(p) > I(q), yielding a maximum intensity region (or

I(p) < I(q) defining a minimum intensity region). In the informal explanation

above, the set of all the connected components of all the frames in the movie is

the set of all extremal regions in the image.

In this way, given a sequence of nested extremal regions Q1, . . . , Qi−1, Qi, ..., i.e.

Qi ⊂ Qi+1, extremal region Qi∗ is maximally stable if and only if the function

f(i) =
|Qi+∆ \Qi−∆|

|Qi|
, (A.1.1)
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(a) ∆ = 20, v = 0.15 (b) ∆ = 20, v = 0.4 (c) ∆ = 50, v = 0.4

Figure A.2: Example of MSER detection with different parameters of relative (∆) and absolute (v)
stability scores.

has a local minimum at i∗. Operator \ denotes set-theoretic difference of two sets,

while |.| is a set’s cardinality (number of elements). Among several nested extremal

regions, the maximally stable one is the one whose area is the largest in comparison

with the area of the set-theoretic difference of its bounding (outer) and bounded (inner)

sets. The nesting level of the outer and inner sets is controlled by the relative stability

parameter, ∆. During MSER detection, it is also possible to parameterize the absolute

stability score of f , known as maximum variation of the region. An example of a MSER

detection results is shown in Fig. A.2.

Maximally stable extremal regions have a number of important properties which

make them particularly interesting for PSL detection in the scanner:

� Invariance to affine transformation of image intensities. This means that the same

skin area photographed at two different moments in time using the same camera

orientation will produce the same MSERs (given that the skin’s surface change

is not radical).

� Covariance to continuous linear transformations in the image domain preserv-

ing pixel adjacency. Although the transformation between the stereo images in

the scanner is not linear, the repeatability of the MSER detector is very good,

especially for darker lesions with a well-marked border.

� Stability of the regions. Only areas virtually unchanged over a range of thresholds

are selected, so unstable image artifacts such as thin body hair, light freckles,

rashes or acne will be discarded.

� Multi-scale detection. It is possible to detect both smaller and larger lesions
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without specific multi-scale processing.

� Fast detection: the set of all extremal regions can be enumerated in O(n log log n).

The algorithm’s performance is very important given the amount of images to be

processed per exploration. The processing speed can be additionally improved by

detecting MSERs in resized images.

In this project, we used the Matlab® implementation of the MSER algorithm from

the VLFeat library [402].

A.2 Epipolar geometry

Epipolar geometry is the intrinsic projective geometry between two views of a scene [388].

It is defined by the intersection of the image planes with the family of planes passing

through the line joining the camera centers (the baseline). Fig. A.3 describes the epipo-

lar geometry in the context of a point correspondence search. A point X in space is

viewed at x and x′ by the cameras with centers C and C′, respectively. The baseline

of the cameras is the segment CC′. The epiploar geometry in a generic camera view

configuration, such as the one in Fig. A.3, is defined by the following elements:

� The epipoles e and e′. These are the points of intersection of the baseline with

the camera planes. Equivalently, e is the image of C′ in the left view, and e′ is

the image of C in the right view.

� An epipolar plane passing through the baseline CC′. As shown in Fig. A.3, this

plane also passes through the point in space X, and its projections x and x′.

� Epipolar lines produced by the intersection of an epipolar plane with the image

planes (in Fig. A.3, these are l and l′). All epipolar lines intersect at the epipole.

Thus, knowing the coordinates of one of the projections, x, the coordinates of the other

projection, x′, can be found along line l′. In other words, there is a projective mapping

x 7→ l′,

so that a point in one image corresponds to an epipolar line in the other image. This

mapping is defined by the so called fundamental matrix, F.

The definition of F can be derived using the notion of planar homography. Consid-

ering that the point in space X lies on plane π that does not pass through either of
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Figure A.3: Point correspondence and epipolar geometry. The two cameras are represented by their
image planes and centers C and C′. The line connecting the camera centers is called the baseline. The
baseline intersects the image planes at points e and e′, called epipoles, which, together with the point
in space X, its projections x and x′, and the camera centers, lie on the epipolar plane. The intersection
of the epipolar plane with the image planes produces epipolar lines, l and l′. If X lies on plane π that
does not pass through either of the two camera centers, projections x and x′ are related by a planar
homography Hπ: x′ = Hπx.

the two camera centers (Fig. A.3), the projections x and x′ will be related by a planar

homography, Hπ:

x′ = Hπx.

Furthermore, the epipolar line l′ passing through x′ and the epipole e′ can be defined

as a cross-product:

l′ = e′ × x′ =

 0 −e3 e2

e3 0 −e1

−e2 e1 0


x
′
1

x′2
x′3

 = [e′]×x′.

Since x′ = Hπx, we have

l′ = [e′]×Hπx = Fx,

where F = [e′]×Hπ is the fundamental matrix. It is a rank 2 homogreneous matrix with

7 degrees of freedom. For the corresponding image points x and x′, x′TFx = 0, while

for the epipoles: Fe = 0 and FTe′ = 0.

For a stereo rig, calibrated both intrinsically and extrinsically, the fundamental

matrix can be computed from the essential matrix. The essential matrix is the spe-

cialization of the fundamental matrix to the case of the normalized image coordinates:
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x̂ = K−1x, where K is the intrinsic calibration matrix (see Eq. 3.3 in Section 3.3.1).

With the effect of the known K removed, the camera matrix K−1P = [R|t] is called a

normalized camera matrix. Given two such matrices, P = [I|0] and P′ = [R|t] with the

world origin at the first camera, the essential matrix has the form (for proof, see [388]):

E = [t]×R =

 0 −t3 t2

t3 0 −t1
−t2 t1 0


r1

r2

r3

 .
Therefore, the defining equation for the essential matrix is

x̂′TEx̂ = 0.

The fundamental matrix can be obtained from E substituting for x̂ and x̂′:

x′TK′−TEK−1x = 0,

hence

F = K′−TEK−1.

A.3 Scale-Invariant Feature Transform

Scale-Invariant Feature Transform (SIFT) is an algorithm for the detection and de-

scription of interest points in gray level images, developed and patented by David

Lowe [315]. It is widely used in computer vision for view-based feature matching and

object recognition. The main advantage of SIFT points (features) is their invariance to

image scale and rotation. This means that a salient point detected by SIFT in image

I will be detected at the same location in the resized and/or rotated version of I, and

will have the same or a very similar descriptor.

SIFT features are also robust against changes in a 3D viewpoint and illumination.

These are especially important properties for the PSL matching scheme used in this

work. In the scanner, the images may be acquired at different viewing angles and have

variable illumination, depending on whether the body region viewed is farther from or

closer to the lighting system. Chapter 5 of this thesis reported a successful application

of SIFT in the lesion mapping pipeline, and below, we provide a brief description of

this algorithm.

The detection of SIFT features in a grayscale image is performed using a cascade
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filtering approach which includes scale-space extrema detection, accurate keypoint lo-

calization, post-filtering, and orientation assignment. Then, using the gradient infor-

mation, the feature descriptor encodes a local image neighborhood at the location of the

stable keypoints. In this explanation, all the steps leading to a SIFT feature extraction

are joined in one sequence:

1. Scale-space extrema detection. In this step, the original image is represented

as a multi-resolution image pyramid. Each level in this pyramid contains a stack of

repeatedly smoothed images, called scale space. The scale-space representation is

motivated by the basic observation that objects at different scales are composed of

different structures. For example, a forest consists of individual trees, the trees have

boughs, branches and leaves, etc. Hence, to discern structures within an object at

a larger scale, we need to ignore smaller details. To do this, we can either stand

farther away from the object, or observe it with squinted eyes. The more our eyelids

are drawn together, the blurrier the object is going to appear, rendering fine details

indistinguishable, but emphasizing coarser elements of its structure.

The scale-space representation imitates this approach allowing for the detection of

fine and coarse structures of the object(s) in the scene. Thus, the scale space of an

image is a collection of smoothed versions of this image, controlled by one parameter

σ, that can be defined as the function

L(x, y, σ) = G(x, y, σ) ∗ I(x, y), (A.3.1)

where G is a variable-scale Gaussian kernel, I is the input image, and ∗ is the

convolution operator. The Gaussian kernel is defined as

G(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (A.3.2)

with σ being the standard deviation of the Gaussian distribution. Fig. A.4 shows

the scale-space representation of a tree drawing at different scales. The discrete size

of the Gaussian filter applied to the image was set to 6σ×6σ pixels, since the pixels

outside this range have a very low statistical significance. Notice, how at higher

(coarser) scales it gets harder to distinguish individual branches of the tree.

To efficiently detect stable keypoint candidate locations, Lowe proposed [403] finding

the scale space extrema in the difference-of-Gaussian (DoG) function. This function

can be computed as the difference of the nearby scales of I separated by a constant
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(a) σ = 0 (b) σ = 1 (c) σ = 2.5

(d) σ = 4 (e) σ = 7 (f) σ = 16

Figure A.4: Image scale-space representation: the drawing of a tree at different scales of Gaussian
smoothing. The support of the Gaussian filter is 6σ × 6σ pixels.

multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y) = L(x, y, kσ)− L(x, y, σ). (A.3.3)

The DoG function was chosen because it is simple and efficient to compute (just an

image difference) and, in addition, it provides a close approximation to the scale-

normalized Laplacian of Gaussian σ2∇2G, whose maxima and minima produce the

most stable image features [315]. Moreover, it allows filtering key points located

along the edges and those with low contrast.

Furthermore, to create the image pyramid needed for scale-invariant2 feature detec-

tion, the scale-space sampling is combined with the image downsampling (resizing).

This effectively divides the scale space into octaves in which smoothed images with

the same resolution are separated by a constant scale factor k (scale sampling).

Fig. A.5 shows a graphical representation of octaves. The amount of prior smooth-

2The term “scale” may have different meanings depending on the context. In the scale-space rep-
resentation of a signal/image, “scale” refers to the level of the signal’s detail: fine (lower) or coarse
(higher) scale. However, when referring to an image, scale is the image’s size (resolution).
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Figure A.5: The scale-space pyramid with s = 2 intervals and s + 3 images per octave. The octaves
of the scale space are formed by repeatedly convolving the original image with Gaussians. The initial
image of each subsequent octave is the down-sampled (halved) version of the last image in the previous
octave. The subtraction of adjacent Gaussian images produces the difference-of-Gaussian images.

ing σ0, constant for the whole scale-space, defines the space sampling of the pyramid.

The scale of an octave’s initial image is two times smaller than the scale of its last

image:

σos+1 = 2σo1,

where o represents the octave’s index, and s is the integer number of intervals, so

that k = 21/s. The initial image of each successive octave is the down-sampled

(halved) version of the last image of the preceding octave:

σo+1
1 = σos+1.

Adjacent image scales are subtracted to produce the difference-of-Gaussian images.

Note that since the scale-space extrema are computed from the DoG function (as

shown further), we must obtain s+3 blurred images per octave to cover all its scales

(see Fig. A.5).

To give an example, for O = 3 octaves divided into s = 2 intervals with the initial

scale σ0, the Gaussian scale-space of a 200 × 200 image will contain the following

image scales (see Fig. A.5 for the first two octaves):
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Figure A.6: Extrema detection in the difference-of-Gaussian images. The pixel of interest in a DoG
image is compared to its 26 neighbors in the 3× 3 region at the current and adjacent scales (above and
below). A pixel is considered an extremum if it is larger or smaller than all of the 26 neighbors. Pixels
belonging to the scales at the top and bottom of a DoG octave are not checked for extrema.

Octave 1 (200× 200): σ0 2
1
2σ0 2σ0 2

3
2σ0 4σ0

Octave 2 (100× 100): 2σ0 2
3
2σ0 4σ0 2

5
2σ0 8σ0

Octave 3 (50× 50): 4σ0 2
5
2σ0 8σ0 2

7
2σ0 16σ0

2. Keypoint localization. To detect local extrema in the DoG images, each sample

point (pixel) is compared to its 26 neighbors: 8 at the same image scale and 9 at the

scales immediately above and below (see Fig. A.6). The point will be selected only if

it is larger or smaller than all of its neighbors. The experiments conducted by Lowe

in [315] showed that the highest repeatability of keypoint detection with respect to

location and scale was achieved with prior smoothing σ0 = 1.6 and s = 3 intervals

per octave. Moreover, if the original image is doubled in size after smoothing with

σ = 0.5, it increases the number of stable keypoints by a factor of almost 4.

Once the local extrema in the DoG images have been found, their locations are

refined by using quadratic interpolation. For that purpose, the author used the

Taylor expansion up to the quadratic terms to represent the DoG image:

D(x0 + h) = D(x0) +

(
∂D

∂x

)T ∣∣∣∣
x=x0

· h +
1

2
hT · ∂

2D

∂x2

∣∣∣∣
x=x0

· h, (A.3.4)

where x0 is the candidate extremum point, h = (x, y, σ)T is the offset from x0 to

the precise location of the extremum, and

∂D

∂x
=


∂D
∂x
∂D
∂y
∂D
∂σ

 and
∂2D

∂x2
=

Dxx Dxy Dxσ

Dyx Dyy Dyσ

Dσx Dσy Dσσ


are the first- and the second-order derivatives (Hessian matrix) of D at the candidate
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point. The offset h to the precise extremum point is found by taking the derivative

of D (Eq. A.3.4) with respect to h and setting it at zero:

∂D

∂x

∣∣∣∣
x=x0

+
∂2D

∂x2

∣∣∣∣
x=x0

· h = 0.

Hence,

h = −

(
∂2D

∂x2

∣∣∣∣
x=x0

)−1

· ∂D
∂x

∣∣∣∣
x=x0

. (A.3.5)

The derivative and the Hessian are approximated by neighboring pixel differences,

and the resulting 3×3 linear system of equations can be solved with minimal cost. If

the offset value h is larger than 0.5 in any dimension, it means that the extremum lies

closer to a different sample point, and the interpolation is performed there instead.

3. Keypoint filtering. The unstable extrema points (keypoints with low contrast) are

rejected by thresholding the value of D at the interpolated location h. The authors

chose to discard all extrema with |D(h)|< 0.03 corresponding to the “peak threshold”.

The value of |D(h)| can be found by substituting equation A.3.5 into A.3.4:

D(h) = D(x0) +
1

2

(
∂D

∂x

)T ∣∣∣∣
x=x0

· h. (A.3.6)

Keypoints originating from edges are often represented by flat peaks in the DoG

function, which makes them unstable in the presence of noise. These keypoints can

be removed by evaluating the principal curvatures3 of D at the corresponding peak.

The idea is that a poorly defined peak will have a large principal curvature across

the edge, but a small one in the perpendicular direction. Therefore, we can discard

peaks based on the ratio of the principal curvatures only.

This ratio can be obtained from Hessian matrix H computed at the location and

the scale of keypoint x:

H(x) =

[
Dxx Dxy

Dxy Dyy

]
. (A.3.7)

The eigenvalues of Hessian matrix H(x) are proportional to the principal curvatures

of D(x), but their explicit computation can be avoided by finding the trace and the

3The principal curvatures are the maximum and minimum normal curvatures of a regular surface at
a given point. The normal curvature at a point is the amount of the curve’s curvature in the direction
of the surface normal.
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determinant of H(x), respectively:

Tr(H(x)) = Dxx + Dyy = e1 + e2,

Det(H(x)) = DxxDyy − (Dxy)
2 = e1e2.

Here, e1 is the eigenvalue with the largest magnitude and e2 is the smallest one.

By representing the ratio between the eigenvalues as e1 = r · e2, we can obtain an

equation with only one unknown, r:

Tr(H(x))2

Det(H(x))
=

(e1 + e2)2

e1e2
=

(re2 + e2)2

re2
2

=
(r + 1)2

r
. (A.3.8)

Thus, to discard keypoints with a principal curvature ratio below some threshold,

r, it is enough to check that

Tr(H(x))2

Det(H(x))
<

(r + 1)2

r
.

The experiments conducted in [315] assumed an “edge threshold” r = 10.

4. Keypoint orientation assignment. The filtered keypoints can be invariant to ro-

tation if they are represented relative to their orientation in the local neighborhood.

This representation is done by means of a histogram of gradient orientations. In par-

ticular, using the scale of the keypoint of interest, we select the Gaussian smoothed

image L with the closest scale, σL. For each pixel in L, the graident magnitude

m(x, y) and orientation θ(x, y) are precomputed using the pixel differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2,

θ(x, y) = tan−1L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)
.

An orientation histogram is formed within a region around the keypoint of interest

defined by a Gaussian-weighted circular window, GL with a standard deviation 1.5 ·
σL. This histogram consists of 36 bins covering a 360° range of orientations. The

pixels added to the histogram are weighted by their gradient magnitude and GL.

Peaks of this orientation histogram correspond to dominant directions of the gradi-

ents in the neighborhood. The keypoint is assigned the orientation corresponding

to the highest peak, as well as any other peak within 80% of the highest magnitude

(up to 2 peaks in total). In this way, there can be several keypoints with the same
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Figure A.7: Creation of a SIFT keypoint descriptor. First, the gradient magnitude and orientation
are computed at each image sample point in a region around the keypoint location and weighted by
a Gaussian window (blue circle). The computed samples are then accumulated into a 2 × 2 array of
orientation histograms that summarize the contents over 4 × 4 neighborhoods (shown on the right).
Each histogram consists of 8 bins, and the lengths of the arrows correspond to the sum of gradient
magnitudes of all samples falling into that bin. In the experiments described in [315], the author used
4× 4 descriptors computed from 16× 16 sample regions.

location and scale but different orientations. This approach contributes significantly

to the stability of feature matching.

5. Local image description. The keypoints acquired using the previous operations

have an assigned image location, scale and orientation. In this step, SIFT creates a

distinct encoding of the local image information around the points which makes the

features robust against changes in 3D viewpoint and illumination. At first, orienta-

tions and magnitudes of the image gradient are sampled around the feature location

in the blurred image of the Gaussian scale-space corresponding to the scale of the

feature.4 In order to achieve orientation invariance, the coordinates of the descriptor

and the gradient orientations are rotated relative to the keypoint’s orientation. In

Fig. A.7 (left), the gradients are denoted by small arrows: the longer the arrow, the

larger the magnitude of the gradient. The magnitude of each gradient is weighted

by means of a Gaussian function with σd = 1
2wd, where wd is the width of the

descriptor. The weighting window is centered on the descriptor as shown by the

blue transparent circle in Fig. A.7. This window is used to avoid abrupt changes

in the descriptor due to small shifts in the keypoint’s location. In addition, it gives

less importance to pixels farther from the center of the descriptor which are more

susceptible to misregistration errors.

4The gradients were precomputed for all levels in the pyramid in the previous step.
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The descriptor window is divided into sub-windows which are then used to create

gradient orientation histograms, as shown in Fig. A.7 (right). The lengths of the

arrows correspond to the magnitudes of the histogram entries, and in this example,

the 8-bin histograms are created over 4 × 4 sample neighborhoods. During the

histogram creation, trilinear interpolation is used to distribute the gradient sample

values into adjacent bins. This is done to avoid boundary problems caused by

samples shifting smoothly from one histogram to another. Thus, each entry into the

bin is multiplied by 1− d for each dimension, where d is the distance of the sample

from the central value of the bin as measured in units of the histogram bin spacing.

The final feature vector is formed by concatenating the values of all the orientation

histogram bins (the lengths of the arrows). Fig. A.7 shows a 2× 2 histogram array,

while in his experiments the author used a 4×4 array of histograms with 8 orientation

bins in each, yielding a 128-element feature vector. To make the SIFT features

robust to affine changes in illumination, such as image contrast and brightness, the

vector is normalized to unit length. However, the effects of non-linear illumination

changes (e.g. camera saturation or uneven illumination of 3D surfaces with different

orientations) can cause important changes in gradient magnitudes. In order to reduce

this effect, the values of magnitudes in the unit vector are thresholded so that they

are not greater than 0.2 (determined experimentally), and the vector is renormalized.

After this operation, the distribution of gradient orientations has more importance in

the feature vector than the magnitudes of large gradients. Fig. A.8 shows an example

of SIFT features detected in a drawing of a tree. We used the implementation of

SIFT provided by the VLFeat library [402]. The algorithm was run with the default

parameters: O = 3 octaves in the Gaussian scale space, s = 3 intervals per octave,

zero “peak threshold”, and “edge threshold” r = 10.

A.4 The RANSAC algorithm

RANSAC, or RANdom SAmple Consensus, is an algorithm introduced by Fischler and

Bolles [316] for general parameter estimation from data with a large proportion of

outliers. RANSAC is a re-sampling technique that partitions a data set into inliers and

outliers. The inliers are the largest consensus set of the data that satisfies the model

sought, while the outliers are the rest of the data.

Algorithm 7 summarizes the main steps in the RANSAC algorithm [388]. The

sequence starts with the smallest possible subset of the input data (a sample) used to

estimate the parameters of the model that describes it. Then, RANSAC extracts all
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Figure A.8: Sample SIFT feature detection in a drawing of a tree. The different sizes of the descriptors
correspond to features detected at different scales.

data points, Si, that satisfy this model (the inliers) based on some distance function

and a threshold, t. The algorithm continues by randomly selecting new samples until

either the number of data points satisfying the model is sufficient (|Si|> T ), or the

iteration limit, N , is reached. Thus, the goal is to find a set of model parameters that

describe as many points of the data as possible.

For homography estimation, the RANSAC algorithm is applied to the putative set

of SIFT feature correspondences in a stereo pair. It solves two tasks at the same

time: filtering out incorrect feature correspondences and finding the parameters of the

Algorithm 7: The RANSAC robust estimation algorithm.

Data: Dataset S with outliers
Result: A model M robustly fit to the dataset

1 Randomly select a sample subset of s data points from S and use it to initialize the
model M .

2 Determine the set of data points Si which are within a distance threshold t of the
model. This set is the consensus set of the sample and defines the inliers of S.

3 Check the number of inliers (the size of Si). If it is greater than some threshold T ,
re-estimate M using all the points in Si and terminate. If it is smaller than T , repeat
steps 1–3;

4 After N trials, the largest consensus subset Si is selected, and the model is re-estimated
using all the points in subset Si.
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Algorithm 8: Adaptive algorithm for determining the number of RANSAC sam-
ples, N .

Data: Dataset S

1 N =∞ ; /* Number of samples */

2 n = 0 ; /* Sample count */

3 while N > n do
4 Choose a sample of s points and count the number of inliers, |Si|;
5 ε = 1− |Si|/|S| ; /* Probability that a data point is an outlier */

6 Compute N for p = 0.99 (Eq.A.4.2);
7 n = n+ 1;

8 end

homography matrix between the two images. Each sample used by RANSAC for this

purpose is size s = 4, and the distance function is defined as the symmetric transfer

error:

d2
transfer = d(x, H−1x′)2 + d(x′, Hx)2, (A.4.1)

where x ↔ x′ are the point correspondences in the two images, H is the estimated

homography, and d returns the Euclidean distance between the points.

One of the key features of the RANSAC approach is that, instead of trying every

possible sample for model estimation, it uses a limited number of randomly selected

samples, N . This number is chosen high enough to ensure a probability (normally,

p = 0.99) that at least one of the random samples of s points does not contain any

outliers. If ι is the probability that any selected point is an inlier, ε = 1− ι defines the

probability that it is an outlier. Thus, we need to select at least N samples, containing

s points each, in order to obtain one that is free of outliers with a probability p:

(1− ιs)N = 1− p,

hence,

N =
log(1− p)

log(1− (1− ε)s)
. (A.4.2)

When ε is unknown, the number of samples can be set adaptively as the proportion of

outliers determined from each consensus set, as described in Algorithm 8.

In our pipeline, we used the implementation of RANSAC for homography computa-

tion from [404], which does not employ the T threshold and relies only on the adaptive

N . The value of the distance threshold, t, was set to 0.05.
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Figure A.9: Triangulation of a 3D point using its projections in stereo images. Rays
−−−→
OLPL and

−−−→
ORPR

should intersect at point P , however, this is not true in most cases. The right part of the image is

a zoomed-in area of the supposed intersection. Line
−−−−→
XLXR is orthogonal to both rays and intersects

them at points XL and XR. According to the “midpoint method”, point P can be approximated by
the midpoint of the line segment XLXR.

A.5 Triangulation5

A point P in the scene is projected onto the image planes πL and πR of the two cameras,

producing points PL and PR, respectively (see the left part of Fig. A.9). Rays
−−−→
OLPL

and
−−−→
ORPR, starting at the cameras’ optical centers OL and OR and passing through

PL and PR respectively, should intersect at point P . However, in reality, due to image

noise, the rays will not actually intersect but will pass close to intersection point P , as

shown on the right in Fig. A.9. In this case, the simplest solution would be to find a

point of minimum distance from both rays, i.e. the midpoint, X0, of the line segment

XLXR perpendicular to both
−−−→
OLPL and

−−−→
ORPR.

In order to do this, we need to introduce the parametric representation of the line

passing through points M1 and M2:

←−−→
M1M2(k) = M1 + k(M2 −M1), (A.5.1)

where k(M2 −M1) is the direction of the line and k ∈ R is a scalar parameter. This

representation allows for the definition of any point on the line using the variable

parameter k. Fig. A.10 demonstrates its geometrical meaning.

In this way, the parametric representations of rays
−−−→
OLPL and

−−−→
ORPR will be the

following:

5This explanation was inspired by [405].
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Figure A.10: Line parameterization according to Eq. A.5.1.

−−−→
OLPL(a) = OL + a(PL −OL) = aPL, (A.5.2)

−−−→
ORPR(b) = OLR + b(PLR −OLR) = t + bRTPR, (A.5.3)

where a, b ∈ R+
0 are the ray parameters. Since all calculations are made in the reference

frame of the left camera (OL is the origin), the resulting equation for the
−−−→
ORPR(b) ray

is based on the following: OLR = RTOR + t = t and PLR = RTPR + t. R and t

are the rotation matrix and the translation vector between the left and right cameras,

respectively.

The endpoints XL and XR can be given as

XL = a0PL and XR = t + b0R
TPR, (A.5.4)

with a0 and b0 being the values of the parameters a and b corresponding to the inter-

section points of rays
−−−→
OLPL and

−−−→
ORPR with line

←−−→
XLXR.

Then, the ray beginning at XL and passing through XR is parameterized by c ∈ R+
0 :

−−−−→
XLXR(c) = XL + c(XR −XL) = a0PL + cw. (A.5.5)

X0, the midpoint of XLXR, is computed for c = 1/2. Vector w (the direction of
−−−−→
XLXR)

orthogonal to both
−−−→
OLPL and

−−−→
ORPR is given by the cross-product:

w = ML ×MR = (PL −OL)× (PLR −OLR) = PL ×RTPR, (A.5.6)

since PR = R(PLR −OLR).

Finally, point XR lies on ray
−−−−→
XLXR and can be computed for some c = c0:

←−−→
XLXR(c0) = XR (A.5.7)

a0X1 + c0w = t + b0R
TPR (A.5.8)

a0X1 − b0RTPR + c0(PL ×RTPR) = t. (A.5.9)
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After solving the system of equations A.5.9 for a0, b0 and c0, points XL and XR can

be easily found from equation A.5.4. With the points obtained, X0 can be computed

from the parameterized equation A.5.5 for
−−−−→
XLXR.
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tool to assist dermatologists in melanoma detection from dermoscopic images of

pigmented skin lesions,” Pattern Recogn. Lett., vol. 32, no. 16, pp. 2187–2196, 2011. 12,

27, 36

[45] G. Day and R. Barbour, “Automated skin lesion screening—a new approach,” Melanoma

Res., vol. 11, no. 1, pp. 31–35, 2001. 12, 13, 14, 17, 22, 36

[46] R. Marchesini, A. Bono, C. Bartoli, M. Lualdi, S. Tomatis, and N. Cascinelli, “Optical

imaging and automated melanoma detection: questions and answers,” Melanoma Res.,

vol. 12, no. 3, pp. 279–286, 2002. 12, 37, 44

[47] M. Vestergaard and S. Menzies, “Automated diagnostic instruments for cutaneous mela-

noma,” Semin. Cutan. Med. Surg., vol. 27, no. 1, pp. 32–36, 2008. 12, 37, 39

[48] J. Frühauf, B. Leinweber, R. Fink-Puches, V. Ahlgrimm-Siess, E. Richtig, I. Wolf et al.,

“Patient acceptance and diagnostic utility of automated digital image analysis of pig-

mented skin lesions,” J. Eur. Acad. Dermatol. Venereol., vol. 26, no. 3, pp. 368–372,

2011. 13, 44

[49] S. Dreiseitl and M. Binder, “Do physicians value decision support? A look at the effect

of decision support systems on physician opinion,” Artif. Intell. Med., vol. 33, no. 1, pp.

25–30, 2005. 14

[50] R. S. Stern, “Prevalence of a history of skin cancer in 2007: Results of an incidence-based

model,” Arch. Dermatol., vol. 146, no. 3, pp. 279–282, 2010. 14

[51] A. C. Halpern, “The use of whole body photography in a pigmented lesion clinic,”

Dermatol. Surg., vol. 26, no. 12, pp. 1175–80, 2000. 15

160



REFERENCES

[52] R. Drugge, C. Nguyen, L. Gliga, and E. Drugge, “Clinical pathway for melanoma detec-

tion using comprehensive cutaneous analysis with Melanoscan®,” Dermatol. Online J.,

vol. 16, no. 8, 2010. 15, 45

[53] W. V. Stoecker and R. H. Moss, “Editorial: digital imaging in dermatology,” Comput.

Med. Imaging Graph., vol. 16, no. 3, pp. 145–150, 1992. 17, 42

[54] A. Green, N. Martin, G. McKenzie, J. Pfitzner, F. Quintarelli, B. Thomas et al., “Com-

puter image analysis of pigmented skin lesions,” Melanoma Res., vol. 1, no. 4, pp. 231–236,

1991. 17, 30, 36

[55] M. E. Celebi, W. V. Stoecker, and R. H. Moss, “Advances in skin cancer image

analysis,” Comput. Med. Imaging Graph., vol. 35, no. 2, pp. 83–84, 2011. 17

[56] M. Celebi, H. Iyatomi, G. Schaefer, and W. Stoecker, “Lesion border detection in der-

moscopy images,” Comput. Med. Imaging Graph., vol. 33, no. 2, pp. 148–153, 2009. 17,

20, 22, 24, 25

[57] V. Berenguer, D. Ruiz, and A. Soriano, “Application of Hidden Markov Models to mel-

anoma diagnosis,” in Proc. Int. Symp. Distrib. Comput. and Artif. Intell., J. Corchado,

S. Rodriguez, J. Llinas, and J. Molina, Eds., vol. 50. Berlin: Springer, 2009, pp. 357–365.

19, 20, 21, 28, 33, 36

[58] S. Skrøvseth, T. Schopf, K. Thon, M. Zortea, M. Geilhufe, K. Mollersen et al., “A com-

puter aided diagnostic system for malignant melanomas,” in Proc. Int. Symp. Applied

Sciences in Biomed. and Comm. Tech. (ISABEL). Piscataway, NJ: IEEE Press, 2010,

pp. 1–5. 19, 27, 28, 33

[59] T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean, “DullRazor®: A software

approach to hair removal from images,” Comput. Biol. Med., vol. 27, no. 6, pp. 533–543,

1997. 20, 21

[60] M. G. Fleming, C. Steger, J. Zhang, J. Gao, A. B. Cognetta, llya Pollak, and C. R.

Dyer, “Techniques for a structural analysis of dermatoscopic imagery,” Comput. Med.

Imaging Graph., vol. 22, no. 5, pp. 375–389, 1998. 20, 21, 22, 23, 27

[61] O. Debeir, C. Decaestecker, J. Pasteels, I. Salmon, R. Kiss, and P. Van Ham, “Computer-

assisted analysis of epiluminescence microscopy images of pigmented skin lesions,” Cy-

tometry, vol. 37, no. 4, pp. 255–266, 1999. 20, 21, 23, 27

[62] D. H. Chung and G. Sapiro, “Segmenting skin lesions with partial-differential-equations-

based image processing algorithms,” IEEE T. Med. Imaging, vol. 19, no. 7, pp. 763–767,

2000. 20, 21, 23

[63] P. Schmid-Saugeon, J. Guillod, and J. Thiran, “Towards a computer-aided diagnosis

system for pigmented skin lesions,” Comput. Med. Imaging Graph., vol. 27, no. 1, pp.

65–78, 2003. 20, 21, 28

161



REFERENCES

[64] H. Zhou, M. Chen, R. Gass, J. Rehg, L. Ferris, J. Ho, and L. Drogowski, “Feature-

preserving artifact removal from dermoscopy images,” in Proc. SPIE, ser. Medical Imag-

ing: Image Processing, J. M. Reinhardt and J. P. W. Pluim, Eds., vol. 6914(1B). San

Diego, CA: SPIE, 2008. 20, 21

[65] P. Wighton, T. Lee, and M. Atkins, “Dermascopic hair disocclusion using inpainting,”

in Proc. SPIE, ser. Medical Imaging: Image Processing, J. M. Reinhardt and J. P. W.

Pluim, Eds., vol. 6914(27). San Diego, CA: SPIE, 2008. 20, 21

[66] F.-Y. Xie, S.-Y. Qin, Z.-G. Jiang, and R.-S. Meng, “PDE-based unsupervised repair of

hair-occluded information in dermoscopy images of melanoma,” Comput. Med. Imaging

Graph., vol. 33, no. 4, pp. 275–282, 2009. 20, 21

[67] C. Barcelos and V. Pires, “An automatic based nonlinear diffusion equations scheme for

skin lesion segmentation,” Appl. Math. Comput., vol. 215, no. 1, pp. 251–261, 2009. 20,

21, 23

[68] Q. Abbas, I. Fondón, and M. Rashid, “Unsupervised skin lesions border detection via

two-dimensional image analysis,” Comput. Meth. Programs Biomed., vol. 27, no. 1, pp.

65–78, 2010. 20, 21

[69] K. Møllersen, H. Kirchesch, T. Schopf, and F. Godtliebsen, “Unsupervised segmentation

for digital dermoscopic images,” Skin Res. Tech., vol. 16, no. 4, pp. 401–407, 2010. 20

[70] N. Nguyen, T. Lee, and M. Atkins, “Segmentation of light and dark hair in dermoscopic

images: a hybrid approach using a universal kernel,” in Proc. SPIE, ser. Medical Imaging:

Image Processing, B. M. Dawant and D. R. Haynor, Eds., vol. 7623(4N). San Diego,

CA: SPIE, 2010. 20, 21

[71] K. Kiani and A. R. Sharafat, “E-shaver: An improved DullRazor® for digitally removing

dark and light-colored hairs in dermoscopic images,” Comput. Biol. Med., vol. 41, no. 3,

pp. 139–145, 2011. 20, 21

[72] P. Wighton, T. Lee, H. Lui, D. McLean, and M. Atkins, “Generalizing common tasks in

automated skin lesion diagnosis,” IEEE T. Inf. Technol. B., vol. 4, pp. 622–629, 2011.

20, 21, 23, 27

[73] Q. Abbas, M. Celebi, and I. Garcia, “Hair removal methods: A comparative study for

dermoscopy images,” Biomed. Signal Process. Contr., vol. 6, no. 4, pp. 395–404, 2011.

20, 21

[74] Q. Abbas, M. E. Celebi, and I. F. Garćıa, “Skin tumor area extraction using an
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ser. LNCS, V. Hlaváč and R. Šára, Eds. Springer Berlin Heidelberg, 1995, vol. 970, pp.

190–197. 78

189

http://www.vision.caltech.edu/bouguetj/calib_doc/


REFERENCES

[398] J. Lewis, “Fast normalized cross-correlation,” in Vision interface, vol. 10, no. 1, 1995, pp.

120–123. 96

[399] B. Washington, The Booker T. Washington Papers: 1903-4, L. Harlan and R. Smock,

Eds. University of Illinois Press, 1977. 103

[400] C. Poynton, Digital Video and HDTV: Algorithms and Interfaces. USA: Morgan Kauf-

mann Publishers, 2003. 107

[401] R. Lukac, Ed., Computational Photography: Methods and Applications. CRC Press,

2010. 137

[402] A. Vedaldi and B. Fulkerson. (2008) VLFeat: An open and portable library of computer

vision algorithms. [Online]. Available: http://www.vlfeat.org/ 140, 150

[403] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proc. IEEE Int.

Conf. Comput. Vis. (ICCV), vol. 2. Ieee, 1999, pp. 1150–1157. 143

[404] P. Kovesi. (2006) MATLAB and octave functions for computer vision and image

processing. [Online]. Available: http://www.csse.uwa.edu.au/∼pk/research/matlabfns/

152

[405] G. Bebis. Lecture notes on stereo reconstruction. University of Nevada, Computer

Vision Department. [Online]. Available: http://www.cse.unr.edu/∼bebis/CS791E/

Notes/StereoReconstruction.pdf 153

190

http://www.vlfeat.org/
http://www.csse.uwa.edu.au/~pk/research/matlabfns/
http://www.cse.unr.edu/~bebis/CS791E/Notes/StereoReconstruction.pdf
http://www.cse.unr.edu/~bebis/CS791E/Notes/StereoReconstruction.pdf

	Publications
	Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	1 Introduction
	1.1 The human skin
	1.2 Pigmented skin lesions
	1.3 Malignant melanoma
	1.4 Melanoma screening
	1.4.1 Imaging techniques
	1.4.1.1 Clinical photography
	1.4.1.2 Dermoscopy
	1.4.1.3 Baseline images

	1.4.2 Melanoma diagnosis methods
	1.4.3 Automated diagnosis of melanoma
	1.4.3.1 Clinical impact


	1.5 Research motivation
	1.6 Thesis outline

	2 Computerized analysis of PSLs: a literature review
	2.1 Single lesion analysis
	2.1.1 Image preprocessing
	2.1.2 Lesion border detection
	2.1.2.1 PSL border detection methodology
	2.1.2.2 Comparison of segmentation algorithms

	2.1.3 Feature extraction
	2.1.4 Registration and change detection
	2.1.4.1 Change detection
	2.1.4.2 Registration

	2.1.5 Lesion classification
	2.1.6 CAD systems
	2.1.7 3D lesion analysis

	2.2 Multiple lesion analysis
	2.2.1 Lesion localization
	2.2.2 Lesion registration

	2.3 Conclusion

	3 A total body skin scanner
	3.1 Hardware design
	3.1.1 The imaging subsystem
	3.1.2 The lighting subsystem

	3.2 The scanning procedure
	3.3 Camera calibration
	3.3.1 The intrinsic calibration
	3.3.2 The extrinsic calibration
	3.3.2.1 The calibration board
	3.3.2.2 Visual marker recognition


	3.4 Prototype restrictions
	3.5 Conclusions

	4 Automatic PSL change detection
	4.1 Intra-exploration mole mapping
	4.1.1 Mole detection
	4.1.1.1 Foreground (skin) detection
	4.1.1.2 Image preprocessing

	4.1.2 Stereo-pair processing
	4.1.2.1 Mole matching
	4.1.2.2 Mole triangulation

	4.1.3 Mole set creation
	4.1.3.1 Multiple representations of one lesion
	4.1.3.2 Single representation of multiple lesions

	4.1.4 Mole set merging
	4.1.4.1 Matching moles across mole sets
	4.1.4.2 Mole match propagation


	4.2 Inter-exploration operations
	4.2.1 Mole matching
	4.2.2 Change detection

	4.3 Conclusion

	5 Results and discussion
	5.1 Intra-exploration operations
	5.1.1 Skin detection
	5.1.2 Image preprocessing
	5.1.3 Mole detection
	5.1.4 Mole matching in stereo pairs
	5.1.5 PSL triangulation and mole set creation
	5.1.6 Mole set merging

	5.2 Mole map validation
	5.2.1 The ground truth problem
	5.2.2 Preliminary evaluation

	5.3 Inter-exploration operations
	5.3.1 Lesion matching
	5.3.2 Change detection


	6 Conclusions
	6.1 Summary of the thesis
	6.2 Contributions
	6.3 Limitations
	6.4 Further work

	A Methodology
	A.1 Maximally Stable Extremal Regions
	A.2 Epipolar geometry
	A.3 Scale-Invariant Feature Transform
	A.4 The RANSAC algorithm
	A.5 Triangulation

	References

