
INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 3, DECEMBER 2012 (76-82)

 76

A programming environment having three levels of

complexity for mobile robotics

Entorno de programación con tres niveles de complejidad para robótica

móvil

C. A. Giraldo1, B. Florian-Gaviria2, E. B. Bacca-Cortes3, F. Gómez4, F. Muñoz5

ABSTRACT

This paper presents a programming environment for supporting learning in STEM, particularly mobile robotic learning. It was designed

to maintain progressive learning for people with and without previous knowledge of programming and/or robotics. The environment

was multi-platform and built with open source tools. Perception, mobility, communication, navigation and collaborative behaviour

functionalities can be programmed for different mobile robots. A learner is able to programme robots using different programming

languages and editor interfaces: graphic programming interface (basic level), XML-based meta-language (intermediate level) or

ANSI C language (advanced level). The environment supports programme translation transparently into different languages for

learners or explicitly on learners’ demand. Learners can access proposed challenges and learning interfaces by examples. The envi-

ronment was designed to allow characteristics such as extensibility, adaptive interfaces, persistence and low software/hardware

coupling. Functionality tests were performed to prove programming environment specifications. UV-BOT mobile robots were used in

these tests.

Keywords: Programming environment, mobile robot, STEM, meta-language.

RESUMEN

Este artículo presenta un entorno de programación concebido para apoyar la enseñanza en STEM y en particular la enseñanza de

robótica móvil. Este ha sido diseñado para soportar un aprendizaje progresivo, desde personas sin conocimientos en programación

o robótica, hasta expertos. El entorno es multiplataforma y edificado con herramientas de software libre. Las funcionalidades de

percepción, movilidad, comunicación, navegación, y los comportamientos colaborativos, se pueden programar para diferentes

robots móviles. El usuario puede programar los robots utilizando diversos tipos de lenguajes e interfaces de edición: 1) desde un

ambiente gráfico de programación por bloques (nivel básico); 2) empleando un metalenguaje basado en XML (nivel intermedio); o

3) usando el lenguaje de programación nativo del robot ANSI C (nivel avanzado). El entorno soporta la traducción de los progra-

mas entre los distintos lenguajes de forma transparente al usuario o de forma explícita si este lo desea. El usuario dispone de interfa-

ces para la solución de retos propuestos y la capacitación por medio de ejemplos. El diseño del entorno permite extensibilidad,

adaptabilidad de interfaces, manejo de persistencia y bajo acoplamiento software/hardware. Se realizaron pruebas funcionales

para comprobar las especificaciones de acuerdo con las cuales fue construido el entorno. Para las pruebas se utilizaron los robots

móviles UV BOTs.

Palabras clave: Entorno de programación, Robots móviles, STEM, Metalenguaje.

Received: November 23rd 2011

Accepted: November 9th 2012

1 2

1 Carlos Alberto Giraldo. Affiliation: ATOS International, Spain. MSc in Artificial

Intelligence, Universidad Politécnica de Madrid, Spain. BSc in Systems Engineering

Universidad del Valle, Colombia. E-mail: carlos.giraldo@atos.net
2 Beatriz Florian-Gaviria. Affiliation: EISC, Universidad del Valle, Colombia. PhD in

Technology. Universitat de Girona, Spain. MSc in Computation and Systems Engi-

neering, Universidad de los Andes, Colombia. BSc Systems Engineering, Universidad

del Valle, Colombia. E-mail: beatriz.florian@correounivalle.edu.co
3 Eval Bladimir Bacca-Cortes. Affiliation: EIEE, Universidad del Valle, Colombia. PhD

in Technology, Universitat de Girona, Spain. MSc in Automatic, Universidad del

Valle, Colombia. BSc Electronic Engineering, Universidad del Valle, Colombia. E-

mail: bladimir.bacca@univalle.edu.co
4 Felipe Gómez. Affiliation: Universidad del Valle, Colombia. BSc Electrical Engi-

neering, Universidad del Valle, Colombia. E-mail: felgoriz@univalle.edu.co
5 Francisco Muñoz. Affiliation: Universidad del Valle, Colombia. BSc Electrical

Engineering, Universidad del Valle, Colombia. E-mail: pacho_munoz@hotmail.com

How to cite: C. A. Giraldo, B. Florian-Gaviria, E. B. Bacca-Cortes, F. Gómez, F.

Muñoz. (2012). Programming environment with three levels of complexity for

mobile robotics. Ingeniería e Investigación, Vol. 32, No. 3, pp, 76-82.

Introduction
Despite economic crisis, job demand related to science, technol-

ogy, engineering and mathematics (STEM) has been growing. For

instance, in Washington DC, USA, increase in such labour supply

was 11% between 2001 and 2011 (Koebler, 2011). It has been

estimated that there were eight million STEM-related jobs in the

USA in 2011. The European Union has bonded STEM-related

jobs to its strategic plan concerning education level and as a
motor for competitiveness, productivity and environmental

sustainability (European Center for the Development of Voca-

tional Training - CEDEFOP, 2010). The South Korean research

institute KIST has implemented an educational programme for

assisting learners using mobile robots (Sang-Rok, 2011). Howev-

er, America and Europe have been hit by educational crisis in

STEM-related fields; science, technology, engineering and math-

ematics are considered boring and very demanding. Moreover,

the number of students has decreased in these professional fields

mailto:carlos.giraldo@atos.net
mailto:beatriz.florian@correounivalle.edu.co
mailto:bladimir.bacca@univalle.edu.co
mailto:felgoriz@univalle.edu.co
mailto:pacho_munoz@hotmail.com

GIRALDO, FLORIAN-GAVIRIA, BACCA-CORTES, GÓMEZ, MUÑOZ

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 2, DECEMBER 2012 (76-82) 77

(Ulloa, 2008). Mobile robotics has thus emerged as a popular

concept for engaging learners in STEM-related fields, due to the

fact that it has been shown to be a tool producing tangible re-

sults regarding how learners acquire new knowledge about tech-

nology and related abilities (Brauner, Leonhardt, Ziefle and

Schroeder, 2010). Robotic seedbed experience in Cali, Colombia

(Jimenez Jojoa, Caicedo Bravo and Bacca-Cortes, 2010) has

corroborated a large increase in learners’ motivation and there-

fore their results when children and young people built, pro-

grammed and tested a mobile robot for accomplishing a specific

task involving concepts regarding sensors, actuators, program-

ming and mainly a lot of hands-on tasks.

Teaching STEM concepts nowadays requires a shift in educational

thinking and appropriate learning tools, such as programming
interfaces which adapt in terms of complexity depending on a

particular learning purpose (entertainment, education and/or

research).

Table 1 gives the characteristics of several programming interfac-

es for mobile robots: SR1 (INTPLUS, 2011), Robolab (the LEGO

Group, 2011), Mindstorms (the LEGO Group, 2012), BrickOS

(Noga, 2004), leJOS (Solorzano, 2012), BotStudio (K-Team Cor-

poration, 2011), Cricket Logo (Handyboard, 2009), Webots

(Cyberbotics Ltd., 2012), ARIA (Adept MobileRobots, 2012) and

Pekeel (Wany Robotics, 2012). These programming interfaces

were selected based on criteria such as programming language,

supported operating systems, required level of user expertise in

robotics and software license type. However, based on Univer-
sidad del Valle and Valle Departmental Library robotic seedbed

experience, programming environments typically used in educa-

tion have a very short life-cycle, suddenly ceasing to provide

possibilities of more experiences for children or young people

(Gobernación del Valle del Cauca & Universidad del Valle, 2006).

By contrast, programming interfaces orientated towards re-

search are more complicated to handle for someone lacking

prior knowledge of robotics, and they are designed for audience

prepared in robotics. Table 1 gives programming environments

interacting with mobile robots teaching concepts related to

mobile robotics and STEM (Kammer et al., 2011; Brauner et al.,

2010; Eggert, 2009); however, some handle a single learner level

(Kammer et al., 2011; Brauner et al., 2010). The programming

environment life-cycle thus becomes shortened and prevents

learners achieving more advanced knowledge and skills.

This paper proposes a programming environment involving three

levels of complexity. It offered learners the opportunity to gain

experience through a growing range of knowledge; the pro-

gramming environment life-cycle thus became extended. This

work dealt with mobile robotics because they represent a multi-

disciplinary field, promote teamwork and are an attractive field

for developing scientific and technological knowledge. The three

proposed programming environment levels were basic (for users

lacking experience in robotics), intermediate (for users having

previous robotics experience) and advanced (for users with

previous knowledge in robotics). UV-bot mobile robots were

used for testing, specifications being detailed in Gómez, Muñoz,

Florian-Gaviria, Giraldo and Bacca-Cortes (2008). The proposed

programming environment was multi-platform, developed with

free software tools, extensible, had adaptable interfaces (Op-

permann, Rashev and Kinshuk, 1997), persistence management

and low software-hardware coupling (robot).

Table 1 Characterising educational programming environments and
frameworks for mobile robotics

Environment
Mobile

robot

Programming

language

Operating

system

User

level
Licence

SR1 Explorer SR1 BasicX Windows Middle Commercial

Robolab

Block

RCX 2.0

LabView
Windows,

MAC
Basic Commercial

Mindstorms

2.0
Gráfica

Windows,

MAC
Basic Commercial

BrickOS C y C++
Linux,

Windows
Middle GNU

LeJOS Java Multiplatform Middle GNU

Mindstorms

VDK
Java Multiplatform Middle GNU

Torsen Sim. Gráfica y C
PC, MAC,

Android
Middle GNU

BotStudio Hemisson Gráfica Multiplatform Basic Commercial

Cricket Logo
Handy

Crickets
Scripts

Windows,

MAC
Basic Commercial

WEBOTS

Khepera
C, C++, Matlab,

Labview

Linux,

Windows,

MAC

Advanced Commercial

E-Puck

C, Matlab, Perl,

Phyton, Play-

er/Stage

Linux,

Windows,

MAC

Advanced Commercial

ARIA

AmigoBot
C++, Java,

Phyton
Multiplatform Advanced Commercial

Pionneer

3DX

C++, Java,

Phyton
Multiplatform Advanced Commercial

Pekee APIs Pekee
C, C++, Java,

C#, Matlab
Multiplatform Advanced Commercial

Design requirements
The programming environment proposed in this work was de-

signed and implemented to offer users a continuous learning

framework ranging from basic to advanced level and keeping

software engineering complementary requirements in mind. The

following sub-sections describe the firmware and programming

environment requirements around eight cornerstones: mobility,

perception, communications, programming and hands-on chal-

lenges (mobile robot) and usability, adaptability and data persis-

tence (graphic user interface).

Basic complexity level

Mobility, perception, communications and programming func-

tionalities include simple tasks at this level. However, they are

focused on offering users overall knowledge of a robotic percep-

tion system and its actions regarding the environment.

Medium complexity level

Medium complexity includes basic level perception and mobility

and allows users to deal with other concepts, such as 2D robot

movement, distance-based and angle-based movements, com-

municating with other robots using IR modules and using arith-

metic operations.

Advance complexity level

Basic and medium level requirements are used to build robot

control architecture in the advanced complexity level, based on

behaviour programming (Brooks, 1986). Sensor data are fed into

perceptual schemas (Arkin, 1987); seven basic behaviours can be

used individually or cooperatively in this work. A cooperative

A PROGRAMMING ENVIRONMENT HAVING THREE LEVELS OF COMPLEXITY FOR MOBILE ROBOTICS

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 3, DECEMBER 2012 (76-82) 78

Table 2. Basic complexity level requirements

Mobility

DC motors turn on / off

Mobile robot wheels control speed

Pre-programmed wheel turns.

Perception
IR and contact sensors acquire data

Light sensors acquire data

Communications
Sounds and songs

Transmitting and receiving messages from IR

Programming

XML schema for the mobile robot description

Block-based programming (graphical programming)

Graphical block configuration access

Basic arithmetic operations

Control flow blocks (while, if, for, repeat, etc.)

(*) XML validation, programme compiling and download-

ing to the robot’s memory

Explicit switchin to XML programming (medium level

user)

Challenge selection and programming

Challenge evaluation according to expected results

Examples
Basic programmes for finding light or dark places, follow-

ing objects and avoiding obstacles

GUI usability and

adaptability

Showing programming blocks sorted by type

XML schema to adapt the tool palette

Zoom controls in the graphical programming editor

(*) Editing many programmes simultaneously

(*) Showing user challenges and programming examples

with their corresponding explanation

(*) Once an example is selected, its corresponding main

programme is shown

User management
To register, modify and delete users

User authentication

Data persistence

(*) Open, save and close user programmes

(*) XML-based schema for describing and storing user

programmes

(*) XML-based schema for describing and storing user data

(*) Requirement available for all levels of complexity

Table 3. Medium complexity level requirements

Mobility
 Distance-based and angle-based robot movement

 Robot displacements and turns based on sensor state

Perception
 To obtain the XY robot position, orientation and

current speed

Communications
 Transmitting and receiving ID codes using the robot IR

modules

Programming

 XML-based programming

 Maths, shift and logical operations support Building

XSLT files to translate from the graphical programming

interface to XML-based programming

 Explicit switching to ANSI C programming (advanced

level user)

Examples
 Programme to move the mobile robot to a fixed XY

coordinate

GUI usability and

adaptability
 Embedded XML editor including XML syntax highlight-

er, XML syntax corrector, and debugger

Table 4. Advanced complexity level requirements

Mobility
 Modifying the robot wheels’ speed and the correspond-

ing speed controller parameters

Perception

 Vector-based representation for IR and contact sen-

sors

 Obtaining a free-obstacle angle sector around the

robot with more or less illumination

 Obtaining a vector orientated towards a desired region

of interest on the XY frame

Programming

 ANSI C programming structures and variables defini-

tion

 Building XSLT files to translate from the XML-based

programming interface to ANSI C-based programming

Examples

 Behaviour-based programming examples such as

obstacle avoidance, noise adding, light-based homing,

pose-based homing, wall following and escape

 Cooperative coordinator based on a weighted sum of

priorities to fuse behaviour responses

GUI usability and

adaptability
 Embedded ANSI C editor including C syntax highlight-

er, C syntax corrector, and debugger

Mobility
 Modifying the robot wheels’ speed and the correspond-

ing speed controller parameters

coordinator was used to coordinate behaviour response (Arkin,

1987). Actuator schemas were used to modify the robot’s wheel

speed, robot IR modules and buzzer. Table 4 shows this level’s

additional requirements.

Architecture
Programming environment architecture was based on the model-

view-controller (MVC) design pattern. This pattern separated

logic and data, user interface and control actions into three units

(Crawford & Kaplan, 2003). Figure 1 shows the component

diagram for the programming environment where grey modules

were part of the model, dark grey modules were part of the

view and blank modules were part of the controller. The design

was modular and extensible; it involved a combination of code

written in Java and XML languages.

The controller module received a learner’s requests; it then sent

queries to the data model and decided what action to execute to

build an appropriate view for a learner. When the programming

environment was opened, the first view was the learner manage-

ment module validating a learner through his/her access key and

created new users. Once a learner had been validated, an adapt-

able interface was displayed; the graphical programming module

was displayed for beginners, the XML programming module for

intermediate learners and the ANSI C programming module for

advanced learners. The graphical programming module had two

complements displayed as pop-up windows: challenges and ex-

amples.

The final programme had to be written ANSI C to be compiled

and downloaded to the robot. The environment was responsible

for making a transparent translation of programmes when a

learner used the graphical programming and XML programming

modules. If a learner wished to view his/her programmes’ trans-

lation code, the environment made it possible for beginners to

the highest learning level. Successive actions regarding transla-

tion, compiling and programme download to the robot were

performed, respectively by translation module, compiler module and

communication with robot module. The persistence management

module handled access to and creation and modification of stored

data regarding configuration route, user data, programmes and

challenges. The robot & interface configuration module provided

views for selecting language and organising the tool palette ac-

cording to the custom robot in use.

Figure 1. Diagram of programming environment components

XML schemes describe the structure and restrictions of XML

documents having a high abstraction level, going beyond XML

language syntactical norms (Fawcett, Ayers and Quin, 2012).

XML schemes were joined to the environment architecture to

support extension, adaptability, persistence and low coupling

hardware / software regarding the programming environment.

This programming environment had four XML schemes as its

cornerstones.

GIRALDO, FLORIAN-GAVIRIA, BACCA-CORTES, GÓMEZ, MUÑOZ

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 2, DECEMBER 2012 (76-82) 79

Scheme for robot description (environment.xsd)

This scheme represented the robot’s initial configuration for

basic level programming. It defined available variables and func-

tions and the robot’s mechanical description (number and type
of sensors, engine number, power, etc.). A library of functions

was extensible because multiple robot descriptions could be

created and the objective of low coupling software / hardware

was achieved. The interface configuration presented adapted

forms of functions and graphical appearance of the blocks from

the data types described for function parameters. Table 5 pre-

sents the characterisation of this scheme’s elements, sub-

elements and attributes.

Table 5. Characterising the XML scheme environment.xsd
Element Description

<variable-def>

 <variable>

 </variable>

</variable-def>

These elements allowed enabling and setting a group of

variables taking into account attributes such as name, data

type, and initial value

<types-constrain>

 <constrain>

 <enum></enum>

 </constrain>

</types-constrain>

These elements allowed describing restrictions on data types.

Restrictions were visualised in each block’s graphical configu-

ration interface. Restrictions held attributes such as name,

data type, range, minimum value, maximum value, associated

graphical component and editing authorisation

<functions-def>

 <function>

 <param>

 </param>

 </function>

</functions-def>

These elements defined the library of available functions in

the graphical tool palette. Each function had attributes such as

name, parameters, parameter data type and predefined

parameter value

These elements led to establishing a direct relation between

input parameters and their graphical configuration

Graphic tool palette scheme (blocks.xsd)

This described all available functions on the graphic tool palette

within the graphic programme environment. The user interface

presented functions as graphic blocks. These blocks had the drag

and drop interaction mechanism in the programming space. This

scheme allowed personalising graphic elements by creating func-

tional groups and setting colour, structure and input parameters.

The tool palette was thus extensible. Table 6 presents the char-

acterisation of this scheme’s elements, sub-elements and attrib-
utes.

Table 6. Characterising XML scheme blocks.xsd
Element Description

<group-block>

 <block></block>

</group-block>

These elements described each block group on the graphic

tool palette. Blocks were separated according to functionality.

Each block had attributes such as background colour, block

type, name of represented function, Boolean attribute to

identify whether the block was a conditional one, and block

icon

Data persistence scheme (persistence.xsd)

This scheme represented programming environment persistent

data. It described demographic user information. It also defined

challenges and examples available in the programming environ-

ment. Furthermore, it stated a learners’ performance regarding

challenges and examples. Table 7 presents the characterisation of

this scheme’s elements, sub-elements and attributes.

Scheme for BOT-XML meta-language (meta-language.xsd)

This scheme represented a programming meta-language called

BOT-XML. Its meta-language was built for the programming

environment middle level. BOT-XML was based on o: XML

(Klang, 2007). BOT-XML had some simplifications for evaluating

expressions calculating variable values. BOT-XML supported a
greater number of data types than o:XML, such as int, distance,

angle, direction, sensor, light, motor, speed, angular_speed, state,

song, time, sensor_number.

Table 7. Characterising XML scheme persistence.xsd

Element Description

<users>

 <user></user>

</users>

These elements designated register users with data such as

name, nickname, image and user role. The programming

environment had two user roles: learners and teachers with

administration authorisation

<challenges>

 <challenge>

 </challenge>

</challenges>

These elements defined challenges. Each challenge had a

name, a unique identification, a short description, a long

description, some hints for supporting learners during

solution, a video showing the desired solution and a ques-

tionnaire for learners who finished a challenge

<examples>

 <example>

 </ example >

</ examples >

These elements explained examples (a collection of select-

ed pairs of programmes). Each example had a name, a

summary, a complete description of the solution pro-

gramme and the path of the programme file to be displayed

in the programming environment

<config>

 <config-path>

 </config-path>

</config>

These elements held environment commands and configu-

ration file paths. Each command had identification, a name,

a type and a text field with the path file

Based on this scheme, learners’ programming files were validat-

ed; programming files were thus saved in XML format. Transla-

tion took place at the end the programme to be downloaded to

the mobile robot.

This scheme made it possible to build middle languages for each
robot a user might want to use with the programming environ-

ment (i.e. the mechanism allowing extensibility and low coupling

software/hardware). It also allowed the persistence definition for

learner programmes. Table 8 presents this scheme’s elements,

sub-elements and attributes.

Table 8. Characterising the meta-language.xsd scheme (details of robot
action functions have been skipped due to their extension)
Element Description

Arithmetic operation

<add result="" var1="" var2=""/>

<sub result="" var1="" var2=""/>

<mult result="" var1="" var2=""/>

<div result="" var1="" var2=""/>

<sqrt result="" var1=""/>

<square result="" var1=""/>

<set name="" select=""/>

<variable name="" type="" select=""/>

These elements defined procedures

allowing simple arithmetic operations

Each operation had input operators. The

result was stored in the result attribute

Logical structure (logical operations on integers)

<if var1="" op="" var2="">

</if>

Allowed arithmetic comparisons between

two integer values: == equal, > greater, <

less, >= greater equal, <= less equal, and

!= different

<choose var="">

 <when test=""> </when>

 <else> </else>

</choose>

Comparing an input value (var) and

adding a condition to each possible value

which could take that variable by using

the element when

Iterative structures (allow repetitive sequences)

<for from="" step="" to="">

</for>

A determined number of repetitions,

controlled by an initial value (from) to a

final value (to)

<while var1="" op="" var2="">

</while>

Making a number of repetitions con-

trolled by an arithmetic condition

Translation between programming languages

XSLT transformations were used for translating programmes

between programming languages (Tennison, 2005). Transfor-

mation files graphic2sml.xslt and xml2c.xslt collaborated in the

task of code translation within programming environment archi-

tecture.

Results
Figure 2a shows basic GUI level programming and Figure 2b

explains the challenge, involving the following tools: programming

control flow blocks, graphical programming editor, zooming GUI

controls, editor navigation GUI controls and programme editing

tools (delete, add and programming block properties).

A PROGRAMMING ENVIRONMENT HAVING THREE LEVELS OF COMPLEXITY FOR MOBILE ROBOTICS

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 3, DECEMBER 2012 (76-82) 80

 Figure 3a shows XML programming GUI where a XML

editor was used. Using this XML programming GUI, the

mobile robot could be programmed using BOT-XML meta-

language. The XML editor included a console for syntax
error log and another console for compiling results and

showing programme download status.

The ANSI C programming GUI is shown in Figure 3b. An

ANSI C editor was used in this GUI and included the most

common ANSI C editor tools, a console where the compil-

ing results and download status were shown. It started with

a code template in which users had to add the C main pro-

gramme and enable or disable sensor events.

Users could start programming at any level (basic, medium,

advanced), but medium and advanced levels had important

advantages: deeper access to mobile robot functionalities

(robot behaviour, sensor events and perception schemas)

and being able to add custom

utilities.

The tests were divided into two

main parts. Translation between

three programming languages was

tested writing a programme using

the graphical GUI; it was then

transformed to its BOT-XML

equivalent and translated to its

ANSI C equivalent, downloaded

and run on the mobile robot. A

behaviour-based program was

coded (available for the advanced

level) to use and test all inherited

functionalities from the basic and

medium levels.

An obstacle avoidance application

Figure 2. a) Basic level programming GUI showing a built-in exercise. b) Challenge explanation window

Figure 3. a) XML programming GUI (medium level). b) ANSI C programming GUI
(advanced level)

Figure 4. Obstacle avoidance programme. a) Basic programming level (graphical code). b) Medium programming
level

GIRALDO, FLORIAN-GAVIRIA, BACCA-CORTES, GÓMEZ, MUÑOZ

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 2, DECEMBER 2012 (76-82) 81

was used to test translation between the three programming

languages (this task is crucial in mobile robotics). Figure 4 shows

the graphical code written using the basic level and its corre-

sponding translation to BOT-XML language. The obstacle avoid-

ance algorithm was pretty simple; it modified the left and right

motor speed according to right or left contact sensor activation.

Figure 4a shows three columns; the first is the main programme
and the other show each sensor thread modifying the main

programme’s behaviour.

Considering the XML code shown in Figure 4b (basic program-

ming level GUI) and the translation file called xml2c.xslt, defining

translation instructions to ANSI C, Figure 5 shows examples of

translation from BOT-XML to ANSI C for different programming

tags. The <for> tag and its properties (from, step and to) are

shown in Figure 5a; the corresponding translation from the <if>

tag to the ANSI C if control flow sentence is shown in Figure 5b;

Figure 5c shows all the sensor functionalities translated to condi-

tional sentences within an ANSI C function controlling sensor

events. Figure 5d shows the ultimate ANSI C code resulting from

such translation.

The obstacle avoidance programme was then downloaded into

the robot memory and the resulting robot path along the exper-

iment is shown in Figure 6. This robot path was extracted off-line

using a digital image processing tool specifically developed for

this project. Two obstacle configurations were tested: a maze-

based environment and a corridor.

(a) (b)

Figure 6. Robot paths in different environmental configurations. a) Maze.
b) Corridor.

The second batch of tests was focused on using and testing all

inherited functionalities from basic and medium levels achieved

by programming the mobile robot in advanced level, particularly

using the behaviour-based application. Homing is a typical behav-

iour in mobile robotics whose main goal is orientating the mobile

robot towards a region of interest. This behaviours can be com-

bined with other behaviours such as obstacle avoidance and
emergent behaviours thus becomes more complex (Arkin, 1989).

In our case, the region of interest was defined using a metric

position in 2D (x, y) or using an environm kinds of behaviour.

(a)

(b)

(c)

Figure 7. Position-based and light-based homing behaviour and obstacle
avoidance. a) Mobile robot behaviour stack. b) Robot path for position-
based homing. c) Robot light-based homing path.

 Position-based homing and obstacle avoidance (Figure 7a)
shows the behaviour stack where homing and obstacle

avoidance were only enabled. Homing behaviour aimed at

an XY position (100cm, 0cm) in the overall framework. The

mobile robot was stopped at the point when it approached

a 5cm region. Figure 7b shows the robot path using a digi-

tal image processing tool developed for this project.

 Light-based homing and obstacle avoidance. The only behav-

iours changed in the behaviours stack was homing behav-

Figure 5. BOT- XML to ANSI C translation. a) <for> tag translation, b) <if> tag translation. c) Sensor event translation. d) ANSI C result

A PROGRAMMING ENVIRONMENT HAVING THREE LEVELS OF COMPLEXITY FOR MOBILE ROBOTICS

 INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 3, DECEMBER 2012 (76-82) 82

iour, changing the criteria used to define the region of in-

terest to sense light intensity. It is worth noting that the

mobile robot did not know the stimulus position in advance,

nor the obstacles’ distribution around the environment. The

perceptual schema obtained high light intensity orientation

using an array of photocells. It was assumed that the mobile

robot had a line of sight towards the light source. The re-

sulting robot path is shown in Figure 7c.

Conclusions and future research work
This work has shown a programming environment having three

complexity levels to enable users to experiment with mobile

robotics using differing degrees of knowledge. Compared to

other mobile robot learning tools considering only one user

profile, this work had the advantage of extending the lifetime of

the programming environment and the hardware platform. Not

only concept-based mobile robotics can be learnt, but also

hands-on STEM-based concepts.

The programming environment proposed in this work, which

was implemented using the MVC pattern, provided a set of

important properties such as a training module for inexperienced

users, exercises at different levels of complexity (basic, medium

and advanced), basic level programming GUI orientated towards

users lacking previous experience in robotics, medium level

XML-based GUI programming and advanced level programming

GUI based on ANSI C, extensibility, interface adaptability, data

persistence, and low software/hardware coupling due to BOT-

XML language. This work was able to translate programmes at

three complexity levels using XSLT translations.

Considering robotic seedbed experience (Jimenez Jojoa et al.,

2010) and current academic and governmental efforts to develop

novel educational strategies (European Center for the Develop-

ment of Vocational Training - CEDEFOP, 2010), the work pre-

sented here represents an interesting option for stimulating

children and young people’s science, technology, engineering and

maths learning.

A challenge management module should be developed to evalu-

ate user learning. Simulating mobile robot behaviour is an im-

portant tool prior to downloading the application into a mobile

robot. Adding remote mobile robot operation and programming

environment represents an interesting direction for future work

in this field.

References
Adept MobileRobots. ARIA. Retrieved from http://robots.mobile

robots.com/wiki/ARIA#Download_Aria. 2012

Arkin, R., Motor schema based navigation for a mobile robot: An

approach to programming by behavior. IEEE International Con-

ference on Robotics and Automation, Vol. 4, 1987, pp. 264 –

271.

Brauner, P., Leonhardt, T., Ziefle, M., & Schroeder, U. (). The Effect

of Tangible Artifacts, Gender and Subjective Technical Compe-

tence on Teaching Programming to Seventh Graders. In J.

Hromkovič, R. Královič, & J. Vahrenhold (Eds.), Teaching Fun-

damentals Concepts of Informatics, Vol. 5941, 2010, pp. 61–71.

Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-

642-11376-5

Brooks, R. A., A Robust Layered Control System for a Mobile Ro-

bot. IEEE Journal of Robotics and Automation, RA-2, Vol. 1, 1986,

pp. 14–23.

Crawford, W., & Kaplan, J., J2EE Design Patterns. O’Reilly Media,

Inc. 2003

Cyberbotics Ltd., Webots: the mobile robotics simulation software.

Retrieved from http://www.cyberbotics.com/. 2012

Eggert, D. W. (). Using the Lego Mindstorms NXT Robot Kit in an

Introduction to C Programming Class. Journal of Computing

Sciences in Colleges, Vol. 24, No. 6, 2009, pp. 8–10.

European Center for the Development of Vocational Training

(CEDEFOP). Skills for Green Jobs (European Synthesis Report).

2010.doi:10.2801/31554

Fawcett, J., Ayers, D., & Quin, L. R. E., Beginning XML (5th Editio.).

John Wiley & Sons, Inc. 2012

Gobernación del Valle del Cauca, & Universidad del Valle. ().

Curso “Semillero de Robótica” en la Biblioteca Departamental.

Retrieved from http://www.valledelcauca.gov.co/publicacione

s.php?id=1089, 2006.

Gómez, F., Muñoz, F., Florian-Gaviria, B., Giraldo, C. A., & Bacca-

Cortes, E. B., Diseño y prueba de un robot móvil con tres niveles

de complejidad para la experimentación en robótica. Ingenie-

ría y Competitividad, 10(2), 53–74. Retrieved from

http://ingenieria.univalle.edu.co:8000/revistaingenieria/index.p

hp/inycompe/article/view/151. 2008

Handyboard., Cricket Logo. Retrieved from http://handyboard.

com/cricket/program/, 2009

INTPLUS., SR1 Robot Movil Multifuncional. Retrieved from http://

www.superrobotica.com/sr1_Robot.htm, 2011

Jimenez Jojoa, E. M., Caicedo Bravo, E., & Bacca-Cortes, E. B.

Tool for Experimenting With Concepts of Mobile Robotics as Ap-

plied to Children’s Education. IEEE Transactions on Education,

Vol. 53, No. 1, 2010, pp. 88–95. doi:10.1109/TE.2009.2024689

K-Team Corporation., BotStudio. Retrieved from http://www.k-

team.com/mobile-robotics-products/hemisson, 2011.

Kammer, T., Brauner, P., Leonhardt, T., & Schroeder, U., Simulating

LEGO Mindstorms Robots to Facilitate Teaching Computer Pro-

gramming to School Students. In C. D. Kloos, D. Gillet, R. M. Cre-

spo García, F. Wild, & M. Wolpers (Eds.), Towards Ubiquitous

Learning, Vol. 6964, 2011, pp. 196–209. Berlin, Heidelberg:

Springer Berlin Heidelberg. doi:10.1007/978-3-642-23985-4

Klang, M., o:XML - object-oriented XML. Retrieved from http://

www.o-xml.org/about/, 2007

Koebler, J. (). D.C., Maryland and Washington State Hold Highest

Concentration of STEM Jobs. Retrieved from http://www.usnews.

com/news/blogs/stem-education/2011/09/30/dc-maryland-nd-

washington-state-hold-highest-concentration-of-stem-jobs, 2011

Noga, M. L., BrickOS. Retrieved from: http://brickos.sourceforge.n

et/, 2004

Oppermann, R., Rashev, R., & Kinshuk, Adaptability and adaptiv-

ity in learning systems. Knowledge transfer, 2, 1997, pp. 173–179.

Retrieved from:http://torcaza.uis.edu.co/~clarenes/docencia/

3501MO0660/pdfs/adaptability-adaptivity-kinshuk.pdf

Sang-Rok, O., The real facts about Korea’s kindergarten teaching

robots. Retrieved from http://www.everything-robotic.com/2011

/03/real-facts-about-koreas-kindergarten.html, 2011.

Solorzano, J., leJOS, Java for LEGO Mindstorms. Retrieved from

http://lejos.sourceforge.net/links.php, 2012

Tennison, J., Beginning XSLT 2.0: From Novice to Professional. C.

Mils, Ed., Apress, 2005.

The LEGO Group., RoboLab. Retrieved from http://www.legoengi

neering.com/robolab-submenusupport-141.html, 2011

The LEGO Group., LEGO MINDSTORMS. Retrieved from http://mind

storms.lego.com/en-us/products/default.aspx, 2012

Ulloa, G., ¿Qué Pasa con la Ingeniería en Colombia? Interacción,

Vol. 28, No.4, 2008, pp. 3–5. Retrieved from http://www.icesi.ed

u.co/revista_interaccion/edicion042007/index.htm

Wany Robotics., Pekee Mobile Robot Platform. Retrieved from

http://www.wanyrobotics.com/pekeeI.html, 2012

