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Abstract. We consider a model for a damped spring-mass system that is
a strongly damped wave equation with dynamic boundary conditions. In a

previous paper we showed that for some values of the parameters of the model,

the large time behaviour of the solutions is the same as for a classical spring-
mass damper ODE. Here we use spectral analysis to show that for other values

of the parameters, still of physical relevance and related to the effect of the

spring inner viscosity, the limit behaviours are very different from that classical
ODE.

1. Introduction. This paper deals with the large time behaviour of the solutions
of the following problem for the strongly damped wave equation:




utt − uxx − α utxx = 0, 0 < x < 1, t > 0
u(0, t) = 0
utt(1, t) = −ε [ux(1, t) + α utx(1, t) + r ut(1, t)]

(1)

This is a continuous model for a spring-mass-damper system, when possible dif-
ferences in the internal deformation of the spring are considered. We also consider
the stabilizing effects of the internal viscosity of the spring and of an external damper
located at one of the ends of the system. In this equation, u(x, t) stands for the
longitudinal displacement at time t of the x particle of the spring, and the internal
viscosity or damping (of the Kelvin-Voigt type) is represented in the equation by
the parameter α ≥ 0. We also have an external damping, represented by r > 0
at the boundary conditions, which only acts onto the spring through the mass at
the end x = 1. The amount of mass appears at the boundary conditions in (1)
essentially as 1/ε, with ε > 0. A more detailed explanation of the physical meaning
of each term can be found in our previous works [14] and [15].

This problem with ε = α = 1 and r = 0 was considered by M. Grobbelaar-van
Dalsen in [5], where the author gave an appropriate functional setting to study the
problem. Our functional framework is actually strongly inspired by that paper.
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Also in that work, and using the techniques of the previous paper by P. Massat
[12], the well posedness of the problem was proved. These results can also be read
as that it generates an analytic semigroup.

The study of the semigroup generated by a wave equation with localized Kelvin-
Voigt damping was also done by S. Chen, K. Liu and Z. Liu in [2] and in K. Liu and
Z. Liu in [10]. Depending on the localization of this inner damping, the resulting
semigroup could be either analytic or only of class C0. In that paper, the authors
also discussed the exponential decay or not of solutions depending on some different
types of damping. Although this will not be the main point of view of our work, the
results obtained in the present paper could also be related to those decay estimates.

Before these works, an elastic beam equation with strong damping appeared as
an example in the work [18] by D. L. Russell. In that paper only the case ε = 0
was considered. But, in spite of being a very particular problem, it is of interest as
it contains the main characteristics of the case ε > 0 and small. In [18] a spectral
analysis of the operator was done. This was also one of the main tools in our
previous work [15], where a careful study of the spectrum of the operator involved
in (1) revealed that for small positive ε the spectrum is essentially a perturbation
of the explicit spectrum for ε = 0.

In the present paper an analysis of the spectrum is also used to study the large
time behaviour of our problem. As we have seen, spectral analysis has also been
applied to the study of different questions appearing in wave equations. For in-
stance, P. Freitas in [3] used it to study stability in a semilinear wave equation with
strong damping and homogeneous Dirichlet boundary conditions. The description
of the spectrum that we obtain in the present paper coincides in some points with
the results of the analysis done in [3].

The motion of a mass in a spring-mass-damper system is usually modelled by
the second order ordinary differential equation of the damped oscillations, namely:

mu′′(t) = −k u(t)− d u′(t). (2)

where k > 0 is the recovery constant of the spring and d ≥ 0 stands for the
dissipation coefficient. In the model (2), the spring-mass system is treated from
a space-homogeneous point of view, while in the model (1) the space-dependence
of the spring particles is taken into account. Since we have considered in (1) a
different model for the spring-mass-damper system it is reasonable to wonder if
both approaches can be compared. Actually, our main question is if for large times
the solutions of the partial differential equation model (1) tend to solutions of an
ordinary differential equation of the same type as (2). In other words we want to
study the existence or not of a limit ODE for the PDE model, at least for some
values of the parameters. We understand this limit in the sense given by dominant
eigenvalues, that is explained as follows.

Let us write problem (1) in the evolution form

d

dt
V = Aα V (α ≥ 0) (3)

whose appropriate functional setting will be presented in section 2 below. If we
denote by σ(Aα) the spectrum of the operator Aα, then we say that a finite subset
of isolated eigenvalues {λ1, . . . λk} ∈ σ(Aα) with finite algebraic multiplicities is
dominant if there exist ω1, ω2 ∈ R such that:

Re λ < ω2 < ω1 < Re λi ∀ i = 1, . . . , k , ∀λ ∈ σ(Aα) \ {λ1, . . . , λk}.



SPECTRAL ANALYSIS AND LIMIT BEHAVIOURS IN A SPRING-MASS SYSTEM. 3

In this case, at least for sectorial operators, it is reasonable to say that the ordinary
differential equation generated by {λ1, . . . λk} is the limit equation for the problem
(3) (see [15] for details). Also, a set {λ1, . . . λl} of dominant eigenvalues is called
the maximal dominant if Re λ1 = . . . = Re λl.

In the previous work [15] we proved that for fixed α, r > 0 and ε small enough, the
partial differential equation model (1) admits two dominant eigenvalues. Therefore
it was proved the existence of a second order ODE of the same type as (2) as the
limit of our model when t → ∞ and ε is sufficiently small. In a future work a
nonlinear version of this limit ε → 0 will also be studied.

However, the existence of such a limit ODE may not always occur. In the present
paper, in contrast with [15], we will show three interesting situations for (1), all of
them related with internal viscosity α ≥ 0, where either the nonexistence of a finite
subset of dominant eigenvalues can be proved or where there exists such a finite
subset but the resulting ODE is not of the same type as (2). Thus, the existence of
a limit ODE of type (2) is not an automatic property for model (1) as in principle
one may think, but it only holds in some regions of the space of parameters (ε, α, r).
These three cases are summarized in the following statements, and will be developed
in the sections below.

The first of these three cases is α = 0, that is the purely elastic spring (with
an external damper but without internal viscosity). This case will be treated in
section 3. Although it may seem the most similar situation to the one modelled
by the classical equation (2), we will show the nonexistence of a limit ODE in this
case.

Theorem 1.1. When α = 0 we have the following results:
(i) The spectrum of Aα with α = 0 consists only of eigenvalues {λn}, n ∈ N,

with strictly negative real part that approach the imaginary axis as |λn| → ∞.
Therefore, it does not exist a finite subset of dominant eigenvalues.

(ii) In this case, it can also be seen that all solutions tend to zero as t → ∞, but
there exist solutions which tend to zero with arbitrarily slow rate.

The slow decay to zero of solutions is a phenomenon that has been observed in
several other similar problems. It has been studied mainly from the point of view
of Control Theory. In remark 1 in section 3 below we give some references to these
works.

The second case is α ∼ 0, that is a spring with small internal viscosity, and will
be considered in section 4. This case will be studied as a singular perturbation of
the previous one, but will exhibit very different properties. In section 4 we will
prove the following result:

Theorem 1.2. Aα admits a finite subset of maximal dominant eigenvalues for
each α > 0 if α is small enough. But this set does not depend continuously on α as
α → 0. More precisely, neither the number of these eigenvalues nor their positions
are continuous on α as α → 0.

Finally in section 5 we will study a case with large α, a spring with large internal
damping. As we will prove, the asymptotic dynamics of this situation is also not
well approximated by any ODE of type (2). And, as we also will see, a kind of
infinite-dimensional overdamping will occur:

Theorem 1.3. For some values of ε > 0 and r > 0, and for α large enough, the
operator Aα does not admit a finite subset of dominant eigenvalues. Actually, all
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the eigenvalues {λn}, n ∈ N, are real with −∞ < λn < −1/α, with a subsequence
λ+

n that accumulates at −1/α and the rest of them accumulating at −∞.

These three results allow us to say that an ordinary differential equation of
the type (2) may not be necessarily the most appropriate model to describe the
dynamics of a viscous spring-mass-damper system. This is true at least in the three
cases that we analyze, and we point out that these three cases have relevant physical
meaning.

2. Function spaces and operators. As in many problems with dynamic bound-
ary conditions it is appropriate to work in spaces whose elements are pairs of a
function and its boundary value. Moreover, since we are writing a second order
evolution equation as a first order system our phase spaces will consist of pairs of
such pairs. In this point we are strongly influenced by the work of M. Grobbelaar-
van Dalsen [5]. Part of the definitions and results presented in this section also
appear in [15], but we summarize them here for a better comprehension of the
subsequent results.

We define the following spaces:

X0 = L2(0, 1)× C
X1 = {(u, γ) ∈ H1(0, 1)× C, u(0) = 0, u(1) = γ} ⊂ H1(0, 1)× C
X2 = {(u, γ) ∈ H2(0, 1)× C, u(0) = 0, u(1) = γ} ⊂ H2(0, 1)× C

and H = X1 × X0, that is a Hilbert space with the following equivalent inner
product:

〈(
(u1, u1(1))

(u0, γ0)

)
,

(
(v1, v1(1))
(v0, β0)

)〉

H

=
〈
(u1, u1(1)), (v1, v1(1))

〉
X1

+
〈
(u0, γ0), (v0, β0)

〉
X0

=
∫ 1

0

(u1)x (v1)x dx +
∫ 1

0

u0 v0 dx +
1
ε

γ0 β0.
(4)

The square of the norm defined by this scalar product (4) can be seen as the
total physical energy of the system: the first term as the elastic potential energy
of the spring, the second as the spring kinetic energy and the third as the kinetic
energy of the mass at the end. This norm in H will be denoted simply by ‖ · ‖.

We define (Aα,D(Aα)) as follows:

D(Aα) =
{(

(u, u(1))
(v, v(1))

)
∈ X1 ×X1, (u + α v) ∈ H2(0, 1)

}
⊂ H

is the domain of Aα, which is:

Aα

(
(u, u(1))
(v, v(1))

)
=

(
(v, v(1))

( (u + α v)xx, − ε (u + α v)x(1) − ε r v(1) )

)
.

Then, equation (1) can be written as the evolution equation:

d

dt
V = AαV, t ∈ (0,∞)

with V =
(

(u, u(1))
(ut, ut(1))

)
∈ D(Aα).
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The previous definitions include the case α = 0, but observe that in this case
one has D(A0) = X2 × X1. Now one has the following theorem on existence and
uniqueness of solutions.

Theorem 2.1. Consider Aα, the corresponding operator when α ≥ 0. Then:
(i) The operator (Aα,D(Aα)) with α > 0 is the generator of an analytic semigroup

in H.
(ii) The operator (A0,D(A0)) is the generator of a C0 semigroup of contractions

in H.

The proof of part (i) can be found in [5] in the context of B-evolutions, and also
in [2] by different methods. The proof of part (ii) can be seen in [14], where it is
used the fact that A0 is a dissipative operator in H (in the sense of Lumer-Phillips
theorem) with the particular energy or scalar product defined above in (4). It can
also be seen that Aα with α > 0 is dissipative with the same energy, although
this is not used in the proof of (i). The dissipatedness of A0 ensures that this
operator generates a C0-contractive semigroup, and the results on the spectrum of
this operator given in section 3 will make clear that the semigroup generated by A0

cannot be analytic.
The main part of the results presented in the following sections will use a careful

study of the spectra of the operators Aα. We will start with α = 0 in section 3,
where we will use the characteristic equation corresponding with problem (1) for
α = 0 and the completeness of the set of generalized eigenfunctions. In section 4 we
will consider the perturbed case α ∼ 0, in which the analysis of the spectrum will
strongly use the concept of generalized convergence. This is the convenient notion of
convergence between operators in order to compare their spectra and so to discuss
the existence of dominant eigenvalues. The analysis of the spectrum in section 5
will mainly rely on the analysis of the corresponding characteristic equation, but
from a different point of view from the one used in section 3.

3. The purely elastic spring or α = 0. The following lemma contains the main
spectral properties of A0. These will be used in the proof of Theorem 1.1.

Lemma 3.1.
(i) The set of generalized eigenfunctions of A0 is complete in H.
(ii) The spectrum of A0, σ(A0), consists only of isolated eigenvalues with finite

algebraic multiplicity.
(iii) There exists C = C(ε, r) > 0 such that −C < Reλ < 0 for all λ ∈ σ(A0).

Proof. (i) Remember that V is a generalized eigenfunction of A0 corresponding
to some eigenvalue λ if (A0 − λI)k V = 0 for some k ∈ N.

This property will be proved for the operator iA0 instead of A0. The
following decomposition can be done:

(iA0) V = TV + KV

for V =
(

(u, u(1))
(v, v(1))

)
∈ D(A0) = X2 ×X1 and

TV =
(

(iv, iv(1))
(iuxx, −iε ux(1))

)
, KV =

(
(0, 0)

(0, −iε r v(1))

)

It is easy to see that T is a selfadjoint operator in H with the inner product
(4), and that K is a continuous operator with finite rank. Also, the spectrum
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of T is discrete, since it has a compact inverse. Then, by a general result of
Gohberg and Krĕın (see [4], Chp.V.10) the set of generalized eigenfunctions
of T + K is complete in H.

(ii) This is an immediate consequence of the compactness of A−1
0 ∈ L(H,H).

(iii) Consider the energy:

E(u(x, t)) =
1
2

∫ 1

0

|ux| 2 dx +
1
2

∫ 1

0

|ut| 2 dx +
1
2ε
|ut(1)| 2

defined by (4). It can be seen that the following inequality holds for any u(x, t)
solution of problem (1) with α = 0:

dE (u(x, t))
dt

≥ −2εrE(u(x, t))

which, by considering again solutions of the type u(x, t) = eλt ϕ(x), immedi-
ately gives us the desired relation,

−C ≤ Re λ ∀λ ∈ σ(A0).

for any constant C > εr > 0.

Proof of theorem 1.1. The details of this proof can be found in [14], but we sum-
marize here its main parts.

(i) If we consider solutions of (1) when α = 0 of the form u(x, t) = eλtϕ(x), it
can be easily seen by using the equation and the boundary conditions that

ϕ(x) = e

√
λ2

1−λα x − e−
√

λ2
1−λα x

and that the eigenvalues λ of A0 are the roots of the following characteristic
equation:

e2λ =
λ + εr − ε

λ + εr + ε
. (5)

By points (i) and (ii) of lemma 3.1, this set of eigenvalues is infinite and
countable. Expressing each eigenvalue λn as λn = an + ibn, an, bn ∈ R, we
obtain from (5) the following system:





e 2an cos (2bn) =
(an + ε r)2 − ε 2 + bn

2

(an + ε r + ε) 2 + bn
2

e 2an sin (2bn) =
2 ε bn

(an + ε r + ε) 2 + bn
2

.
(6)

From the results of lemma 3.1 and using the previous system (6), we see
that if for a subsequence λk one has limnk→∞ ank

= a then, necessarily,
limnk→∞ bnk

= ∞ and a = 0. Recalling also from lemma 3.1 that there
exists C > 0 such that Re λ ∈ (−C, 0) for all λ ∈ σ(A0) one deduces that
limn→∞ an = 0 for the whole sequence of eigenvalues.

As we have limn→∞Re λn = 0 but Reλn < 0 for all λn ∈ σ(A0), we can
conclude the nonexistence of a finite number of dominant eigenvalues when
α = 0 (see figure 1).

(ii) We have just seen that the asymptotic behaviour of solutions of model (1)
with α = 0 cannot be approached by an ordinary differential equation. Nev-
ertheless, we are able to say something more about this asymptotic behaviour
of the solutions.
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Figure 1. Spectrum of A0.

From the fact that σ(A0) ⊂ {Re λ < 0}, that A0 generates a semigroup
of contractions (see theorem 2.1, part (ii) ) and that the finite combinations
of generalized eigenfunctions are dense in H (part (i) of lemma 3.1), one can
easily deduce that all the solutions tend to zero as t → ∞. But, in our case,
it can also be proved that there exist solutions which tend to zero as slowly as
we wish. This can be formulated in a more precise way: for every continuous
function φ(t) : [0,∞) −→ (0,∞) with lim

t→∞
φ(t) = 0, there exists V0 ∈ H such

that

lim sup
t→∞

‖eA0tV0‖H
|φ(t)| = ∞.

The proof of this follows directly from the fact that A0 is the generator
of a C0 semigroup of contractions in H (see theorem 2.1) and the uniform
boundedness principle.

The idea of these results can also be thought in terms of the eigenvalues
of A0, as all of them have strictly negative real part but they approach the
imaginary axis as much as we wish.

Remark 1. Some decaying rate results for other dissipative wave equations can be
found in [7] or [9], for instance. In these works the responsible for dissipatedness
is not an external damping but a coupling with a parabolic part. Other examples
are that of [16], where the damping comes from an imposed external control at the
boundary, or that of [13] that considers elastic solids with voids. In most of these
papers, and also in the general results of [11], a polynomial decay rate for smoother
solutions is proved, a result that perhaps is also true for the problem we are dealing
with in this section.

Remark 2. As we said in the previous section, part (i) from Theorem 1.1 clearly
shows that A0 cannot generate an analytic semigroup.

4. The small dissipation case or α ∼ 0. We start with a description of σ(Aα)
when α > 0, which will also be used in section 5 for large values of α.

Theorem 4.1. Suppose α > 0, then:
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(i) The point λ = −1/α is the only point in the essential spectrum of Aα (and
it is not an eigenvalue). The rest of σ(Aα) consists only of infinitely many
isolated eigenvalues with finite algebraic multiplicities. The eigenvalues are
the roots of the following characteristic equation:

e
2 λ√
1+λα =

λ− ε
√

1 + λα + ε r

λ + ε
√

1 + λα + ε r
(7)

(ii) If εrα ≥ 1 then

σ(Aα) ⊂
(
−∞,

−1
α

]
∪

{∣∣∣∣λ +
1
α

∣∣∣∣ <
1
α

}
(see figure 2, left figure).

If εrα < 1 then:

σ(Aα) ⊂
(
−∞,

−1
α

]
∪

{
1
α
− εr <

∣∣∣∣λ +
1
α

∣∣∣∣ <
1
α

}
(see figure 2, right figure).

Figure 2. Localization of eigenvalues of Aα(ε) when εrα ≥ 1 (left
figure) and when εrα < 1 (right figure).

(iii) The set of eigenvalues can be expressed as the union of two sequences, one
that accumulates to −1/α and the other tending to −∞.

Remark 3. We use here the notion of essential spectrum in the sense of [4] or [6].

Remark 4. Observe that when ε = 0 the eigenvalues for equation (1) turn out to
be explicit. As we mentioned in the introduction, this case was considered by D.L.
Russell in [18]. But we can now observe, at least intuitively, that for small values
of ε > 0 the behaviour of the spectrum proved in theorem 4.1 is just a perturbation
of that limit and explicit case, ε = 0 (see figure 2, right figure, or [15] for details) .

Proof. (i) The proof of this part can be found in [15] and also in [14] with more
details. The fact that the number of eigenvalues is infinite will be seen in part
(iii) as a consequence of Picard’s theorem.

(ii) In the new variable z =
√

1 + λα, the characteristic equation can be expressed
as

A1(z) B1(z) = A2(z) B2(z)
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where

A1(z) =
(

z2 − 1
α

+ εz + εr

)
, B1(z) = e

z2−1
αz

A2(z) =
(

z2 − 1
α

− εz + εr

)
, B2(z) = e−

z2−1
αz

We consider three partitions of the complex plane:

a) {|B1(z)| < 1}, {|B1(z)| = 1} and {|B1(z)| > 1}

b) {|B2(z)| < 1}, {|B2(z)| = 1} and {|B2(z)| > 1}

c) {|A1(z)|2 < |A2(z)|2}, {|A1(z)|2 = |A2(z)|2} and {|A1(z)|2 > |A2(z)|2}

It is easy to see that these partitions do not depend on α, ε nor r except for
the last one in the case εrα < 1 or εrα ≥ 1. One can also see that the three
partitions are compatible among them and with the relation

|A1(z)| |B1(z)| = |A2(z)| |B2(z)|
only if z ∈ {Re (z) = 0} ∪ {|z| < 1} when εrα ≥ 1, or only if z ∈ {Re (z) =
0} ∪ {√1− εrα < |z| < 1} when εrα < 1. Returning then to the variable
λ = z2−1

α we obtain our claim.
(iii) This part follows from the application of Picard’s theorem to the equation

f(z) := e
2


z2 − 1

αz


 (

z2 − 1 + εαz + εαr

z2 − 1− εαz + εαr

)
= 1

that is obtained from the characteristic equation (7) under the change of
variable z =

√
1 + λα. We choose n0 such that f(z) does not have any root

or singularity in D1/n0 (the open disc centered on 0 and of radius 1/n0) apart
from the essential singularity z = 0. We construct then the sequence of
punctured discs:

Ek = D 1
n0+k

\ {0} , k ≥ 0.

By definition, we have Ek+1 ⊂ Ek ⊂ . . . ⊂ E0 for all k > 0 and f(z) with
no zeros and singularities in any of these Ek. By Picard’s Great Theorem,
there exist znk

∈ Ek with f(znk
) = 1 and, by construction of these discs,

limnk→∞ znk
= 0. So, the corresponding λnk

is a sequence of eigenvalues
accumulating to −1/α.

In the same way we can prove that there exists a sequence of eigenvalues
accumulating to −∞.

Now we concentrate on the case of small and positive α. This case will be treated
as a singular perturbation of the case α = 0. The main tool to compare the spectra
will be the concept of generalized convergence of operators of T. Kato in [8].

Lemma 4.2. ‖A−1
α − A−1

0 ‖L(H,H) −→ 0 as α −→ 0. Therefore, Aα converges to
A0 in the generalized sense as α → 0.
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Proof. Writing A−1
α and A−1

0 one can convince oneself that A−1
α , A−1

0 ∈ L(H,H)
and

(Aα
−1 −A0

−1)
(

(u, u(1))
(v, β)

)
=

(
(−α u,−α u(1))

(0, 0)

)

if
(

(u, u(1))
(v, β)

)
∈ H. Then,

∥∥∥∥(Aα
−1 −A0

−1)
(

(w, w(1))
(z, β)

)∥∥∥∥
2

= α2

∫ 1

0

|wx|2 ≤ α2

∥∥∥∥
(

(w, w(1))
(z, β)

)∥∥∥∥
2

.

Proof of theorem 1.2. By lemma 4.2 we know that Aα converges to A0 when α → 0
in the generalized sense for closed operators. As it is seen in chapter IV.3.5 of T.
Kato [8], this implies that bounded sets of the spectra depend continuously on α in
a certain sense.

Theorems 4.1 and 2.1 allow us to say that all points of σ(Aα), α > 0, are isolated
and inside a sector that we call Sα, except for a unique point {−1/α}. These
results together with the generalized convergence theory imply that, if α > 0 is
small enough, we will certainly have a finite number of eigenvalues of Aα with real
part greater than the rest of the spectrum. This happens because −1/α will be
large (if α is small) and negative, and the eigenvalues of Aα will tend to those of
A0 that accumulate to the imaginary axis. So, for a fixed positive small α we have
a finite maximal set of dominant eigenvalues.

Roughly speaking, we are going to see that the eigenvalues of Aα depend con-
tinuously on α and each one approaches a single one of A0 as α → 0. Since the
eigenvalues of A0 approach the imaginary axis, the maximal set of dominant eigen-
values of Aα will necessarily change abruptly infinitely many times as α approaches
0.

This phenomenon can be seen in the figure 3. This figure represents the eigenva-
lues in the complex plane. The eigenvalues for α = 0 are plotted with a star symbol,
and those of α 6= 0 with a circle symbol. Figure 3 left corresponds to α = 0.01 and
we see that the maximal dominant eigenvalues are λ2(α) and λ2(α), while in figure
3 right, with α = 0.001, they have been substituted by λ3(α) and λ3(α). One can
also expect that for some intermediate value of α the set of maximal dominant
eigenvalues will have (at least) four elements.

To prove this, let us see first some properties of σ(Aα). Looking at the character-
istic equation (7), we can check that the eigenvalues are the roots of an holomorphic
function that depends continuously on α. So, each eigenvalue can be expressed as a
continuous function λ(α), perhaps depending on an arbitrary choice at a non-simple
root. If for each λ(α) there exists M > 0 such that

|λ(α)| ≤ M when α → 0,

for a sequence αn → 0 one will have that

λ(αn) → λ0, when n →∞, and λ0 ∈ σ(A0).

By using then the notion of generalized convergence, we will finally have that
λ(α) → λ0 as α → 0.

By contradiction, suppose now |λk(α)| is unbounded as α → 0. Suppose also
that λk(α) belongs to the set of maximal dominant eigenvalues when 0 < α ≤ αk,
for a certain αk > 0. We are going to prove that this is not possible. Let us fix
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Figure 3. Change of the elements of the maximal dominant ei-
genvalues set.

δ > 0. Because of the generalized convergence of Aα to A0, the fact that σ(A0)
approaches the imaginary axis and that λk(α) belongs to the maximal dominant
set if 0 < α ≤ αk, it must be satisfied that:

Re λk(α) > −δ for α sufficiently small.

Since we also know by theorem 4.1 that

σ(Aα) ⊂
(
−∞,

−1
α

]
∪

{
1
α
− εr <

∣∣∣∣λ +
1
α

∣∣∣∣ <
1
α

}
,

it is easy to deduce that:

|λk(α)| ≤
√

2 δ√
α

if α is small enough. In particular, we have:

|λk(α)| → ∞ and α|λk(α)| → 0 as α → 0. (8)

Using these limits in the characteristic equation (7) we can say that for all ρ > 0
there exists αρ such that:

∣∣∣e
2 λk(α)√
1+λk(α)α − 1

∣∣∣ < ρ for all 0 < α < αρ

By the properties of the exponential function, there exists r(ρ) > 0 such that:
∣∣∣∣∣

2 λk(α)√
1 + λk(α)α

− 2πikn

∣∣∣∣∣ < r(ρ) , 0 < α < αρ

with kn ∈ Z. Let us take ρ > 0 such that r(ρ) < π. For different kn, the previous
balls are disjoint. So, as λk(α) is continuous in (0, αρ), kn must be the same for all
α ∈ (0, αρ). That is:

∣∣∣∣∣
2 λk(α)√

1 + λk(α)α
− 2πik0

∣∣∣∣∣ < r(ρ) , 0 < α < αρ
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for a certain k0 ∈ Z. Taking limits as α → 0 and using the limits seen in (8), we
get into contradiction and, consequently, λk(α) must be bounded. And, from the
previous argument, λk(α) tends to λk(0) ∈ σ(A0) as α → 0.

We are now ready to prove that the maximal set of dominant eigenvalues changes
as α → 0. Suppose this is not true, that is suppose we have {λ1(α), . . . , λl(α)} as
the maximal set of dominant eigenvalues of Aα for all α small enough. As we have
just proved, it happens that:

λi(α) → λi(0) ∈ σ(A0) , i = 1, . . . , l.

Let us fix µ > 0 sufficiently small (for instance, 0 < µ < min
i∈{1,...,l}

|Re λi(0)|
4

). Using

the results from the theory of generalized convergence of T. Kato in [8], we can
assure that:

|λi(α)− λi(0)| < µ for all 0 < α < αi

for each i = 1, . . . , l. So let us take

αmin = min {α1, . . . , αl} and K = max
i∈{1,...,l}

Re λi(αmin) + µ

which is strictly negative. We obviously have:

Re λi(α) < K < 0 ∀α ∈ (0, αmin) , i = 1, . . . , l.

As σ(A0) approaches the imaginary axis, it exists λ∗(0) ∈ σ(A0) such that:

K

2
< Re λ∗(0) < 0.

By generalized convergence again, there exists λ∗(α) ∈ σ(Aα) with

|λ∗(α)− λ∗(0)| < K

2
if 0 < α < α∗.

Choosing α0 small enough we have that λ∗(α) does not belong to the maximal set
but Re λ∗(α) > K > Re λi(α), if 0 < α < α0. This contradicts {λ1(α), . . . , λl(α)}
to be always the maximal set of dominant eigenvalues if α is small enough.

With this proof we have seen that the elements of the maximal dominant set
cannot be the same as α → 0. Roughly speaking, as α → 0 the ones that were
behind for larger α must jump in front of the previous maximal ones as they have
to reach the imaginary axis. So, the maximal dominant ones are substituted again
and again as α → 0. This argument also allows us to say that the number of maximal
dominants cannot be constant as α → 0 either: at least it increases abruptly at the
moment of these substitutions.

5. The overdamped case. In this section we are going to see that for some
values of α, ε and r (α and ε large and r small) overdamping occurs: as the internal
viscosity increases, solutions tend to zero at a slower rate, contradicting intuition.
This is due to the fact that inner friction is so high that it becomes harder for the
mass to move. This overdamping phenomenon is well known for ordinary differential
equations of type (2), when d is large enough. For wave equations with weak
damping, the corresponding phenomenon has also been observed (see, for instance,
[1]). Moreover, in our case we will also see that this convergence to zero is free from
oscillations because all the eigenvalues are real.
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There is a particular limit case (ε = ∞, r = 0) in which the spectrum can be
computed explicitly and where we can observe this overdamping for α large enough.
In this case, the eigenvalues are:

λ±n =
−(2n + 1)2 π2 α±

√
(2n + 1)4 π4 α2 − 16 (2n + 1)2 π2

8
, n = 0, 1, 2, . . .

If α > 4/π then the eigenvalues set consists of two sequences of strictly negative
real numbers,

−∞ < λ−n < λ+
n <

−1
α

such that λ−k → −∞ and λ+
k → −1/α. So we see in this case that there is not

a finite subset of dominant eigenvalues, that all the eigenvalues are real and that
increasing α decreases the decay rate of solutions.

This explicit calculation induced us to believe that there may be an ε sufficiently
large and an r sufficiently small for which the same situation is true when α is large
enough. Theorem 1.3 assures that this happens.

Proof of theorem 1.3. As it has been seen in theorem 4.1, under the change of vari-
ables

z =
√

1 + λα

the eigenvalues λ of Aα are the roots of the transformed characteristic equation:

e2 z2−1
αz −

(
z2 − 1− εαz + εαr

z2 − 1 + εαz + εαr

)
= 0. (9)

And when εrα < 1 we have also seen that they are localized in

{Re z = 0} ∪ {√1− εrα < |z| < 1}.
Inspired in the asymptotic behaviour of equation (9) when r = 0 and ε and α tend
to ∞, our claim is that for r small enough and ε, α sufficiently large, equation (9)
can be approximated by

e2 z2−1
αz = −1, (10)

at least in some regions of the complex plane. Actually, we define:

g(z) = e2 z2−1
αz −

(
z2 − 1− εαz + εαr

z2 − 1 + εαz + εαr

)

and

f(z) = e2 z2−1
αz + 1

and we will prove that:

|f(z)− g(z)| < |f(z)| ∀ z ∈ {√1− εrα ≤ |z| ≤ 1} (11)

if ε, α are large and r is small enough. So we will obtain that |g(z)| > 0 ∀ z ∈
{√1− εrα ≤ |z| ≤ 1}. This implies that σ(Aα) ⊂ (−∞,−1/α] for these values of
the parameters. As −1/α is not an eigenvalue (see theorem 4.1), we conclude that
for such values of ε, α, r the eigenvalues of Aα are all real and with real part strictly
less than −1/α.

So it only remains to see the inequality (11) to finish this proof. It has to be
said that we are not interested in finding optimal bounds for the parameters, but
only to prove that (11) holds. In order to do that, let us begin with bounding from
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above the left hand side of the inequality. This can easily be done by writing the
expression of the two funcions and we have that:

|f(z)− g(z)| <
∣∣∣∣

2z2 − 2 + 2εrα

z2 − 1 + εrα + εzα

∣∣∣∣
If r < 3/(4εα) and εα > 8 (observe that we have then εrα < 1 and, therefore,
0 <

√
1− εrα ≤ |z| ≤ 1) we can check, using usual bound rules, that:

|f(z)− g(z)| < 1
εα

(12)

We have now to bound from below the right side of (11). Here we use usual expo-
nential bounds to obtain that:∣∣∣e2 z2−1

αz + 1
∣∣∣ ≥ 2−

∣∣∣e2 z2−1
αz − 1

∣∣∣ ≥ 3− e
8
α . (13)

To join (12) and (13) we impose α > 8. So, we have:

|f(z)− g(z)| < 1
εα

< 3− e
8
α < |f(z)|

if α is large enough (take α > 8 for instance), ε is sufficiently large (take ε > 8/α)
and r is small enough (take r < 3/(4εα)). Hence, our proof is complete.

Remark 5. For these values of the parameters overdamping occurs, in the sense
that increasing the inner damping does not increase the rate at which solutions tend
to zero. Moreover, as there are not non-real eigenvalues, the solutions tend to zero
without oscillations.

Corollary 1. For some values of ε and r, and for α large enough, there does not
exist a limit ODE for equation (1) in the sense explained in section 1.

Proof. Theorem 1.3 implies that for these values of the parameters there is not a
finite subset of dominant eigenvalues, because

−∞ < λ+
n < − 1

α

and λ+
n → −1/α, which is not an eigenvalue of Aα (see theorem 4.1).
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