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Abstract

Trust modcling is widely recognized as an aspect of essential importance in
the construction of agents and multi agent systems (MAS). As a consequence,
several trust formalisms have been proposed over the last years. All of them
have a limitation: they can determine the srustworthiness or untrustworthi-
ness of the information received from a given agent, but they don’t supply
mechanisms for correcting this information, in the case of it being unaccurate,
in order to extract some utilicy from it. In order to overcome this limitation,
this thesis introduces the concept of reliability as a generalization of trust,
and presents Fuzzy Contextual Filters (FCF) as reliability modeling methods
looscly based on system identification and signal processing technigues. This
thesig illustrates their applicability to two domains : the appraigal variance
estimation problem in the Agent Reputation and Trust (ART) testbed and
Bar Systems, a class of optimization algorithms for reactive MAS.






Resum

El modelat de la confianga csta ampliament reconegut com un aspecte d'im-
portancia essencial en la construccié d’agents i de sistemes multi agent (MAS),
1 é8 com a conseqiiéncia d’aixd que als darrers anys 8’han proposat una nom-
brosa quantitat de formalismes de modelat. Tots clls perd pateixen una
limmitacié: poden determinar el grau de confianca que mereix la informacié
rebuda d'un altre agent, perd no proporciones mecanismes per a corregir
aquesta informacid, en cas de no ser acurada, amb vistes a exereure alguna
utilitat d’ella. Per tal de superar aquesta limitaci6, aquesta tesi introdueix
el concepte de fiabilitat (reliability) com a generalitzacit de la confianca, i
presenta cls Filtres Difusos Contextuals (FCF) com a métodes de modelat
de la fiabilitat basats parcialment en técniques d’identificacid de sistemes 1
processament de senyals. La seva aplicabilitat ¢s mostra en dos dominis: ¢l
problema de la estimacio de la varianca de les taxacions a 'Agent Repu-
tation and Trust (ART) testhbed i als Bar Systems, una classe d’algorismes
d’optimitzacio per a MAS reactius.
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Introduction

Motivation
Agents, the new emerging trend in Artificial Intelligence, are

Computer systems capable of flexible autonomous action in dy-
namic, unpredictable and open environments endowed with the
capacity to interact with other systems (artificial or natural). [51]

Agents are, then, situated entities. That is, they are embedded in a envi-
ronment and continually operate into it in a three steps loop: perceive the
environment, decide what action to take and act over the environment con-
sequently. Agents situated in the physical world are known as physically
situated agents.

When two or more agents are situated in the same environment and
interact with each other in a coordinated manner, they form a multi-agent
system (MAS). In MAS, individual agents typically pursue its own agenda
of goals, whose fulfillment may require the interaction with other agents
within the environment. So, agents in a MAS exist in a social environment
determined by:

e The set of agents in the environment, as well as the set of relationships
established between them.

e A culture, understood as a corpus of common knowledge and a set of
norms regulating the social behavior of the agents.

Agents operating in a social environment are called socially situated agents.
A consequence of the social situation is the necessity of a set of social skills
which allow agents to be able to perform efficiently within its social environ-
ment. This set of skills include, among others, the ability to communicate,
cooperate or negotiate with other agents and constitute the artificial social
intelligence of the agent.
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One of the most important social skills for an agent is the ability to decide
when and to what extent trust another agent. It is clear that some amount
of trust is necessary if the agent has to collaborate or coordinate himself with
other agents (the same thing can be said about we humans, we could hardly
risk to cross a street at the crosswalk without some degree of trust in the
drivers waiting for the light to go green), but it is also clear that, in order to
avoid exploitation from other agents, trust can not be unconditional.

Social situated agents, then, must have at their disposal some kind of trust
assigning method, which has to take into account two distinctive features of
trust:

e Trust is dynamic. Trustworthiness of a given agent can change over
time. Any trust model has to take into account the history of interac-
tions, and agents ought to be able to modify the model upon subsequent
interactions.

e Trust is contextual. An agent can be very trustworthy given ad-
vice about cooking but very untrustworthy given advice about playing
bridge. Similarly, an agent can be trustworthy only to a class of agents
(good customers, for example). Finally, an agent’s trustworthiness can
depend on other external facts such as room temperature or the amount
and kind of the other agents making requests to him.

Over the last years, several attempts to devise trust formalizations and trust
assignment methods for MAS have been proposed from diverse points of view
(recommender systems, social networks, electronic commerce. ..). An almost
common trait is that they just provide an agent with some kind of value (let
it be numeric, boolean, a category or even a fuzzy set) somehow represent-
ing the trust that can be assigned to other agents in a given circumstance.
Therefore, their usefulness is limited just to help an agent to decide, in a
given circumstance, whether to believe another agent or not.

The main point of the present PhD. is: in an interaction between agents
consisting of an information exchange (and pretty much every interaction
between agents can be seen as an information exchange), an agent can ex-
tract some utility from the information provided by another agent even if
the first agent does not trust the second agent (that is, believes that the
information provided by the second agent is probably false). An exemple
may help to make this point clear: imagine a broken TV remote control that
makes the TV display Discovery Channel whenever the button for Eurosport
is pressed, display ShopTV when we press the Euronews button and so on, in
such a way that no button is correctly associated to its corresponding chan-
nel. Obviously you can not trust the remote control, but that does not mean
you ought to throw it away. On the contrary, you only need to learn the
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new button-to-channel correspondences (or repaint the top of the buttons)
to have a perfectly useful remote control. As another example, imagine that
some measuring deviee tends to give bad measurements as room tempera-
ture increases. Clearly we can not trust the readings of the device in high
temperature conditions, they will be erroneous, but if we manage to figure
out how the error commited by the device depends upon the temperature,
given a reading and a temperature we would be able to substract the ervor
and obtain a more or less accurate result.

The aim of this Ph.D} is to devise a capture mechanism for the patterns
and regularities found in the erroneous or false information received by an
agent in a MAS in such a way that the agent could, in subsequent interactions,
filter or correct the information received by that same agent in order to make
it useful. We argue that such a mechanism will enhance the social intelligence
of the agents, reducing the amount of communication errors and thus making
the whole MAS more robust.

Overview and main contributions

This work proposes a shift from the concept of trust to the concept of reli-
ability. That is: does the agent respond consistently to its inputs? Does it
tend to give the same or a similar answer under the same or similar stimuli?
If so, after a number of interactions it will be possible to build some kind of
filter or translator able to eliminate the error and produce useful information.

In order to prove that claim, Fuzzy Contextual Filters (FCFs) are intro-
duced. A FCF has, as input, the information received from an agent, jointly
with as many other variables as necessary to speeify the context in which
the interaction has taken place, and produces, as output, a corrected ver-
sion of the information reccived (corrected in the sense that the FCE tries
to eliminate the errors contained in it) as well ag a value (the reliabilioty
value) stating how much confidence it has in the correctness of the filtered
information. The corrective module of a FCF consists mainly of a fuzzy
rule base which codifies, in the form of fuzzy rules, all the past interactions
between the agents. New interactions add new rules to the rulebase. The re-
liability calculation module computes the reliability value by examining the
structure of the fuzzy rule base and applyving three new criteria for fuzzy rule
bases quality assesment: completeness, consistency and redundancy. Those
criteria are generalizations of their crisp counterparts based in Kosko’s Fuzzy
Subsethood Theorem [41].

The second part of the thesis illustrates the applicability of FCFs to two
different domains, the Agent Reputation and Trust (ART) testbed and Bar
Systems. The ART testbed was devised as a framework for the implemen-
tation and testing of trust and reputation formalisms. ART championships
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are held regularly and a FCF-equipped agent, SPARTAN, participated in the
Second International ART competition, held in conjunction with the Sixth
International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2007). It qualified fifth in the preliminary round and then
won a position in the final round to finish in fourth place.

Bar Systems, also a main contribution of this thesis, arc a family of
very siinple algorithms for different classes of corplex optimization prob-
lems in static and dynamic environments by means of reactive multi agent
systems. Bar Systems belong to the family of Crew Intelligenee algorithms,
an extension of Swarm Intelligence algorithms that endows individual agents
with additional communicative and local planning abilitics. Bar Systems are
loosely ingpired in the hehavior that a crew of bartenders can show while
serving drinks to a crowd of customers in a bar or pub. This thesis will show
how Bar Systems can be applied to a NP-hard scheduling problem, and how
they achieve much better results than other greedy algorithing in the “near-
est neighbor” style. It will also show how the use of FCFs can enhance the
performance of an agent using a Bar Systems algorithm in a competicive

MAS.

Structure of the document

This thesis is structured in three parts. In part I (Fuzzy Contextual Fil-
ters), chapter 1 discusses social intelligence, trust and the need for trust
formalisms in MAS. Chapter 2 presents the concept of reliability ay an ex-
tengion of trust and introduces Fuzzy Contextual Filters. Tt also includes a
case study to illustrate the applicability of FCFs. In part II {Applications),
chapter 3 shows the application of FCFs to the variance cstimation problem
in the ART testbed and presents several techniques and algorithms used hy
the SPARTAN agent. Chapter 4 introduces Bar Systems and shows how they
can be used to obtain good approximated solutions to a NIP’-hard scheduling
problem. Finally chapter 5 presents a competitive MAS (taxis competing
for customers) and show how agents using FCFs to filter the (probably in-
tentionally erroneous) information provided by other competitor agents can
increase its performance. Part III contains several appendices.



Part 1

Fuzzy Contextual Filters






Chapter 1

Social Intelligence and Trust

1.1 Artificial Social Intelligence

The wide ensemble of abilities that allows humans to, among other things,
reason, learn, communicate with cach other, deal with new situations and
apply knowledge to manipulate our environment, which is called collectively
intelligence, is a multiple faceted phenomenon. Edward L. Thorndike gave
to this notion the shape of a scientific theory as early as 1920 [48, 53], when
he drew an important distinction among three broad classes of intellectual
functioning: abstract intelligence (the one measured by standard intelligence
tests), mechanical intelligence (the ability to visualize relationships among
objects and understand how the physical world works) and social intelligence
(the ability to function successfully in interpersonal situations). In spite of
this, historically, the bulk of the research effort made by both Psvchology
and Artificial Intelligence communities has headed towards the study of the
abstract, classical, part of the intelligence, to the point of most authors reduc-
ing social intelligence just to general intellicence applied to social situations.
The reason for this can, perhaps, be found in the lack of adequate instru-
ments (in the stvle of 1Q} tests) for the measurement of the less conventional
aspects of intelligence and, on the other hand, in the relative success of early
AT research in the development of modeling mechanisms for classes of tasks
directly related to abstract intelligence (i.e., reagoning, planning and problem
solving).

However, this situation has changed over the last years. In Psychology,
the appearance of the Muchiavellion Intelligence Hypothesis [9, 42], accord-
ing to which primate intelligence originally evolved to solve social problems
and was only later extended to problems outside the social domain, has
rapidly increased the interest on the study of social aspects of intelligence.
A similar phenomenon has happened in the Al field after the shift to the
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agent paradigm. The agent paradigm contemplates the physical situation
of agents, the tight coupling between the agent and its environment, as un-
avoidable requirement in order to build intelligent agents'. An agent’s envi-
ronment contains typically other agents with whom it has to interact. This
defines a social environment and justifies the necessity of situation from the
social point of view. Following Edmonds |27]:

“In a physical situation the internal models may be insufficient
because of the enormous computation capacity, amount of infor-
mation and speed that would be required by an agent attemnpt-
ing to explicitly model its environment. In a social situation,
although the speed is not so critical, the complexity of that cn-
vironment can be overwhelming and there is alsa the obvious
external computational resources provided by the other agents
and their interactions. This means that an agent can he said to
be socially situated by analogy with being physically situated - in
hoth cases the balance of advantage lies in using external causal
processes and representations rather than internal ones.”

A consequence of the embedding of the agent into the social environment is
the necessity of development of a set of skills which allow the agent to perform
efficiently within it. As usual, there is not universal agreement about the
precise meaning of Social Intelligence (SI) and Artificial Social Intelligence
(AST) (in fact, Edmonds remarks in |31] that the term social intelligence is
ambiguous in the sense that it can either indicate the intelligence that an
individual needs to effectively participate in a society, or the intelligence that
a society as a whole can exhibit). Duffy |25] defines social intelligence as “the
intelligence that underlies behind group interactions and behaviours” while
Cantor and Kihlstrom [39] redefine the term to refer to “the individual’s fund
of knowledge about the social world”. Edmonds |26] proposes the Turing Test
as a criteria for determining the achievement of truly social intelligence while
Hoggs and Jennings |37] prefer to talk about social rationality?. Kerstin
Dautenhahn [14], finally, gives perhaps the most cited definition of gocial
intelligence as:

'See, for example, in [31], Franklin and Graesser’s definition of agent as “a system
situated within and a part of an environment that senses that environment and acts on it,
over time, in pursuit of its own agenda and so as to effect what it senses in the future”

2Extending Newell’s Principle of Rutionality to state the Principle of Social Rutionelity
“If' a socially rational agent can perform an action whose joint benefit |for the whole
soclety] is greater than its joint loss, then it may select that action.”
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“the individual’s capability to develop and manage relationships
between individualized, autobiographic agents which, by means
of communication, build up shared social interaction structures
which help to integrate and manage the individual’s basic [“self-
ish”) interests in relationship to the interests of the social system
at the next higher level. The term artificial social intelligence is
then an instantiation of social intelligence in artifacts.”

Neither is there a general agreement upon the way ASI has to be implemented
or even what ity final goal has to be. Rescarchers coming from “classic” Al
mostly focus in the human-agent social interaction (i.e., the “human in the
loop” approach [16]). From this point of view ASI has to serve a double
purpose: in one hand, to facilitate the interaction between agents and hu-
mans and, on the other hand, the study of human social processes through
the development of suitable social models. The architecture of this type of
social agents uses to be a extension of some form of BDI architecture (c.g.,
[46]) and its design tends to follow the Life-Like Agents Hypothesis® [15].
Two examples of this type of social agents are the AURORA Project [14], a
remedial tool for getting children with autism interested in coordinated and
synchronized interactions with the environment and the Let’s Tulk! socially
intelligent agents for language conversation training [49).

On the other gide, rescarch coming from the social sciences communicy
is focused in social simmulation. That is, the design of synthetic societies of
agents in physical or virtual environments in order to study the emergence
and evolution of social phenomena like cooperation, competition, trust, rep-
utation, markets, social networks dynamics, norms and languages. The in-
terested reader can find a classical introduction to the ficld in [35]. The
significance of this aspect of ASI has to be expected only to increase due
to the gaining importance that electronic markets and virtual societies will
have in the vears to come.

Finally, a third aspect of ASI rescarch has its roots arguahbly in Artificial
Life and Distributed Problem Solving. It is the “Engineering with Social
Metaphors” approach to ASI, which trics to devise socially inspired problem
solving technigques and algorithms. Perhaps the most representative class of
such techniques are those based in Swarm Intelligence [7].

Whichever point of view is chosen, the field of Socially Intelligent Agents
is a fast growing and increasingly important arca that comprises highly active

¥ uArtificial social agents (robotic or software) which are supposed to interact with
humans are most successfully designed by imitating life, i.e. making the agents mimic as
closely as possible animals, in particular humans.”
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research activities and strongly interdisciplinary approaches coming from as
diverse fields as Organizational Science, Philosophy, Cognitive Science, Arti-
ficial Intelligenee, Cybernetics and Social Simulation.

1.2 The Need for Trust Formalization in MAS

Trust is one of the main concepts upon which human and animal societies
are built. It ig evident, therefore, the importance of its formalization for
the construction of artificial or electronic societies, which so vast amount
of interest have caused not only in the Artificial Incelligence and Computer
Science corumunities, but also in such different ones as Sociology, FEconomics
and Biology. Quoting [51]:

“Artificial Intelligence is quickly moving from the paradigm of
an isolated and non-situated intelligence to the paradigm of situ-
ated, social and collective intelligence. This new para-digm of the
so called intelligent or adaptive agents and Multi-Agent Systems
(MAS), together with the spectacular emergence of the infor-
mation society technologies (specially reflected by the popular-
ization of cleetronic commerce) are responsible for the increasing
interest on trust and reputation mechanisms applied to electronic
socicties.”

By definition, an essential characteristic of MAS is the existence of an infor-
mation interchange hetween the individual agents forming the system. In the
case of collaborative MAS, the aim of this communication is the improvement
of the global performance of the system. Therefore agents, in general, do not
lie each other consciously. In the cagse of competitive environments, how-
ever, individual agents are sclfish, in the sense that its behavior is addressed
to maximize some kind of individual utility function, even if that means a
prejudice for the individual interests of the other agents or the diminution
of the overall performance of the system. Communicative acts in compoeti-
tive MAS are therefore addressed to obtain individual benefit and it is more
suitable (because it can be profitable) the conscious communication of false
information.

Both in collaborative and in competitive MAS, however, an emitter agent
can communicate false information te a recipient agent because of several
reasons. The main ones being:

1. The emitter agent is, simply, wrong. He is honcest, in the sense that
he helieves hie is conmunicating a true statement, but the transmitted
information is false.
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2. Emitter and recipient agents do not use the same language. The mes-
sage encloses a true statement, as understood for the emitter agent,
but has a different and false meaning for the recipient agent. That’s
why ontologies are used, just to try to assure that all the agents in a
domain speak the same language

3. A transmission error occurred. The emitted and received messages are
different.

4. The emitter agent consciously transmits a false information to the re-
cipient agent. The aim of such behavior can be supposed to be the
obtaining of some benefit from the prejudicing of the recipient agent.
That ig the typical behavior we can expect in competitive environments

Whatever could be the reason behind the transmission of false information,
individual agents need some kind of mechanism that allow them to deal with
it. Agents can’t afford (specially in competitive environments) to believe
everything the other agents tell to them. A car vendor agent who commits
itsclf to deliver a car “soon” and who says that the car is *fast” can be honest
even if the car lasts a vear to amive and it can not run faster than 100
kilometers per hour. Perhaps he really believed what he was saying, perhaps
the words “soon” and “fast” have a different meaning in the car vending
language or even, perhaps, he said “late” and “slow” but somehow the sounds
changed in their way from their mouth to our hears. More probably, however,
he is deliberately lving to take profit from us. In cither case, we need to
learn from our experience in order to know what can be expected from him
in further deals. Here is where trust and reputation modeling methods come
in as an important field of study inside the theory of MAS.

1.3 Trust Formalisms

Over the last vears, several attempts to devise formalization for the con-
cepts of trust and reputation have been carried out from diverse points of
view (recommender systems, social networks, clectronic commerce. .. ). In
hig PhD dissertation [31], Sabater proposes a set of traits that can allow
to characterize and classify them: paradigm type (cognitive or numerical),
the information sources used to build the model (direct experiences, wit-
nesses information, sociological information and prejudice), visibility types
(subjective and global}, model’s granularity (context dependent or non con-
text dependent), agent behavior assumptions (basically wether the formaligm
includes specific mechanisms to deal with liars}, model type {trust and rep-
utation) and type of exchanged information (boolean and continuous).
Amongst the most widely recognized trust and reputation formalism we
can enumerate those of Marsh [44], the Sporas and Histos models [60], the
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models proposed by Schillo et al. [53], Abdul-Rahman and Hailes [1], Esfan-
diary and Chandrasekharan [29], Yu and Singh [58, 59|, Sen and Saija [54],
Carter et al. [11], Castelfranchi and Falcone |12] and the AFRAS |10] and
REGRET [51] models. Large world wide web marketplaces like Amazon and
Ebay have also developed their own trust modelling frameworks.

It is bevond the scope of this dissertation to discuss the details and merits
of each of those formalisms. A detailed review of each of them can be found
in Sabater’s PhD. dissertation [51], along with a comparison attending the
classification dimensions cnumerated below.



Chapter 2

Fuzzy Contextual Filters

2.1 Beyond Trust. Reliability

While the the trust formalisms briefly enumerated in Chapter 1 can provide
a number, category or even fuzzy statement measuring the trustworthiness
of a given agent or, more precisely, the trustworthiness of the information
provided by a given agent, they fall short, in our opinion, in the sense that
they don’t supply any filtering or correcting method in order to make the
provided information useful, even if wrong, That is, they seem to oversee
the fact that, in some cases, false information transmitced by an agent can
be useful, if conveniently filtered.

It is not necessary to trust an agent (in the sense of believing it is

provided by it. This information can be useful even if it is false,
if it exists some method able to correct it

Let’s put an example: a watch agent that goes two and a half hours in advance
will never tell you the right time, so you will do good not trusting it. Docs it
implies that you can't get any utility from it?. Quite on the contrary, vou can
completely rely on it. Its regularity makes possible to correct the information
it provides and get the exact time, a thing that would be impossible to do
accurately with a watch that goes enly one minute in advance half the time
and one minute in retard the other half, at random. We can say much the
same thing about our car vendor agent. Better for us to do not believe
everything he could tell us, of course, but even if we don't trust him, we can
vet extract some probably uscful information from his offers, perhaps in the
form of upper or lower bounds. Moreover, with the time, if we deal with
him often enough, we can arrive to learn its language, that is, to capture
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regularities in it which can allow us to, for example, reject at once a car if
he says of it to be “not very old”.

The key concept in order to be able to correct messages coming from
other agents is reliability'. If an agent tends to communicate similar infor-
mation under similar circumstances, a moment will arrive when we will be
able to extrapolate the circumstances, more or less correctly, from the received
messages. On the contrary, if an agent emits just random messages it will
be very difficult, if not impossible, to obtain from them any utility at all.

These corrective mechanisms able to convert false but reliable input in-
formation into correct information, which we will call filters, can have very
different structures. The filter for a watch agent that goes two hours and a
half in retard could be as simple as adding 150 minutes to the time he says
it is. On the other hand, we will need a much more sophisticated filter when
dealing with the car vendor agent, maybe some kind of expert system. In
the following section we will show how simple filters, based on fuzzy systems,
can be constructed and how they can be learned and used to improve the
performance of individual agents in their social environment.

2.2 Fuzzy Contextual Filters

Think about the following problem: An agent A interacts with several other
agents in a multi-agent environment requesting from them some kind of in-
formation, which they supply (this information can be false because of any
of the reasons exposed in Section 1.2). Suppose also that the correct answers
to A’s requests are made available to A by the environment in a posterior
time instant, in such a way that A is able to know which agents told the
truth and which agents lied, and how much. Our point is: for A to be able
to perform well in this kind of environment it has to maintain a set of filters
(one of them for each agent it interacts with) which allows it to correct the
information received from the other agents, as well as to assess the possible
utility of the corrected information. These filters must be dynamic, in the
sense that they must evolve and adapt to changes in the environment and
in the behavior of the other agents. So, (see figure 2.1) filters will act as a
translative layer easing the process of interpretation of the messages sent by
other agents. They can also, on the other hand, help the agent to translate
the information it wants to transmit to the language spoken by the other
agents, increasing therefore the probability of being correctly understood.

'From reliable, in the sense of “giving the same result in successive trials”. (From the
Merriam- Webster Online Dictionary [45])
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.

Figure 2.1: The set of filters of an agent act as a translative layer.

As we have said, it is also very important for the agent that owns the filter
to have some kind of measure of the correctness of the filtered information,
that is, the degree to which it can be expected to reflect the reality. We
will call this value reliability and the filter will compute it basically from the
observed regularities in the behavior of the filtered agent in past interactions.

Figure 2.2 shows the suggested structure for the construction of these
filters, which we call fuzzy contextual filters (FCFs) [19]. A FCF F has two
parts, the corrective module and the reliability calculation module. The cor-
rective module is in charge of converting the probably false input information
or data provided by the agents into correct useful information that reflects
better the reality. The reliability calculation module tries to measure the
confidence the agent can have in the correction of the filtered information
provided by the corrective module. Obviously, the reliability value has to
be high for predictable agents (those that act in a similar way under similar
circumstances) and low for the unforeseeable, chaotic or random ones. In the
following sections we will take a closer look to those two modules.
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2.3 The Corrective Module

The corrective module is a special case of a Mamdani fuzzy inference system?
where the fuzzy rules have the form:

If Ay is S; and ...and A,, is S, and V is L1 then W is Lo

where:

e 51,55 ...5, are linguistic labels, defined by fuzzy sets on universes of
discourse X1, Xs...X,, respectively.

e Ay, Ay... A, are are fuzzy variables taking values over the fuzzy power
sets of X1, Xo... X, respectively.

e [ and Lo are linguistic labels defined by fuzzy sets over the universes
of discourse U; and Us, respectively. U; and Uy can be, and usually
are, the same set.

e V and W are are fuzzy variables taking values over the fuzzy power
sets of Uy and Us, respectively.

We will call A1, Ay ... A, the context variables, V the main variable and W
the filtered variable. We can see the operation of the corrective module as
a transformation of fuzzy sets over the universe U; to fuzzy sets over the
universe Us (which will be usually the same as Uj) in a way that depends
on the values of the context variables as well as on the value of the main
variable. The corrective module of a FCF, then, filter the values (fuzzy sets)
of the main variable to obtain new values (fuzzy sets over the same universe
or another one) which are expected to be more suitable for some purpose. As
is the case with general Mamdami fuzzy systems, it is possible to use FCFs
on crisp input values to produce crisp filtered values by using appropriate
fuzzification and defuzzification procedures.

The rule base of the corrective module has two components, the static
and dynamic rule bases. The static rule base is fixed (and possibly the same)
for every agent. It expresses the a priori assumptions about the behavior of
the other agents in the environment and serve as a departing point in the
interpretation of other agents’s assertions. It can be as simple as the identity
function or can, for instance, incorporate some common sense knowledge
about the behavior which can be expected from certain kinds of agents. The

2 A explanation of fuzzy sets, fuzzy logic and fuzzy inference systems’ theories is beyond
the scope of this thesis. The reader can find several basic definitions in Appendix A.
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Figure 2.2: Structure of a fuzzy contextual filter

purpose of the initial rule base is to provide the system with a sensible initial
structure from which the filtering process can start. The influence of the
initial rule base in the general filtering process must diminish as new rules,
due to direct interactions with the filtered agent, are incorporated into the
dynamic rule base.

The dynamic rule base is built upon the information extracted (in the
form of fuzzy rules) from the interactions between the agent which owns the
filter and the filtered agent. Each interaction involves the observation of
several values at a given time t: the values of the contextual variables, the
predicted value for the output value and the true observed value. Returning
to the watch example introduced in section 2.1, think about a stopwatch
whose exactness depend on the temperature and assume that it tends to run
slow with lower temperatures and to gain with higher ones. One interaction
with the stopwatch agent will involve the observation at a given time of the
value of the temperature, the time marked by the stopwatch and the true,
exact time. Such an interaction can allow the FCF to build a fuzzy rule of
the form:

If temp is Hot and watchTime is AMinute then time is A MinuteTen

for suitable fuzzy sets defining the labels High, AMinute and A MinuteTen
(see Figure 2.3).

A new rule can be added at each interaction, so the rule base is dynamic
in the sense that it evolves with time and can adapt itself to changes in the
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environment and in the behavior of the filtered agents.

So, the construction of the dynarmic rule base can be viewed as a svstem
identification task where the behavior of the filtered agent has to be modeled
from a set of examples, the results of past interactions between the mod-
eling and the modeled agents. As a system identification problem, several
modeling methods can be used, ranging from those based on a neuro-fuzzy,
backpropagation-like approach (Jang’s ANFIS [38] would be a good example
of this) to those based on lookup tables [57] or, even, genetic algorithms [13].
We will see an example of a somewhat simpler approach in the case example
of section 2.5.

2.4 The Reliability Calculation Module

The function of the sccond part of the FCF, the reliability calculation mod-
ule, is to compute the reliability of the value of the filtered variable obtained
by the corrective module. Reliability is a function of the main and context
variables, that is, given values for the main and contexs variables, the relia-
bility calculation maodule must produce a value representing the coufidence
we can have in the exactitude of the value of the filtered variable computed
by the corrective module. Reliability will depend upon the number of prior
similar interactions between filtering and filtered agents as well as upon the
regularities observed during that interactions.

The problem can be stated as follows: given a fuzzy system defined by a
set of fuzzy rules obtained from a set of interactions like the one explained in
the last section, how can we define a set of criteria that allow us to assess the
reliability of the fuzzy system output for given values of the input variables?

There are different classes of such criteria. On one hand we have perfor-
mance based criteria, where confidence is given to the systems on the basis
of previous performance. On the other hand we have formal and structural
methods, where confidence is given depending on the structural properties of
the system. Structural methods exploit the knowledge about the structure
of the system (the rules and fuzzy sets used in their definition) rather than
the knowledge about the problem the system solves.

There is a previous extensive work on validation and verification of rule-
based knowledge systems that could help us. Unfortunately, it is mainly
focused on classical boolean or multivalued logic, few methods are oriented
towards the evaluation of fuzzy knowledge sources based on production ruley
[40, 52]. The present work {based on a previous work done by the author
that can be found in [23]) focuses on structural criteria and methods for fuzzy
rule bases quality and reliability measurement.

We define three new "a priori" criteria to measure the quality of fuzzy
systems, they are Completeness, Redundancy and consistency. They are
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Figure 2.4: The outer square encloses 2%, the set of all the fuzzy subsets of X =
{z1,22}. We represent the fuzzy set F defined by mp(xz1) = 0.5, mp(z2) = 0.66
as a point inside the unit square. The darker region contains all the proper fuzzy
subsets of I ,that is, all the fuzzy subsets F' such that ' C F.

based on similar criteria used in classical logic, but we generalize them to
the fuzzy domain. This is mainly done making use of Kosko’s set-as-points
framework [41] and his subsethood theorem. The section is structured as
follows: in first place we introduce the sets-as-points framework and use it to
define a new fuzzy subsethood relationship. Secondly we introduce the three
new structural criteria.

2.4.1 The Sets-as-Points Framework.

Given a set X = {x1..z,}, we can establish a bijection between the fuzzy
power set of X and the [0,1]" hypercube. So, each fuzzy subset F of X is
represented by a single point p = (mp (1) ,mp (z2) ...mp (z,,)) in [0,1]" . The
vertices of the hypercube will correspond to classical or crisp sets while other
points will correspond to fuzzy ones (see Figure 2.4). This way of defining
fuzzy sets is called the Set-as-Points framework [41], opposite to the classical
[61] Sets-as-Functions definition.

The Set-as-Points framework allows us to assign a geometrical meaning
to the concepts of fuzzy sets theory and to define new ones. Particularly, it
is quite straightforward to define the concept of distance between two fuzzy
sets as the distance between the points representing them.

Definition 2.1 Let X = {z1..z,} be an universal set. Let F' and G be two
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fuzzy subsets of X. We define the family of distances dP between F and G
as:

4’ (F,G) = (ZlmF (i) —mg (ﬂfz')lp)p (2.1)
=1

The simplest distance is d', or fuzzy Hamming distance, while d? corresponds
to the fuzzy euclidean distance.

The cardinality or measure M of a fuzzy set F' has a natural geometric
interpretation in the Set-as-Points framework. M (F') equals the magnitude
(making use of Hamming distance) of the vector drawn from the origin to
the point representing the fuzzy subset F. That is, M (F') equals the fuzzy
Hamming distance from the point representing 0 x (the origin) to the point
representing F":

M(F) =Y mp(2;) = d"(F,0x) (2.2)

i=1

2.4.2 The Subsethood Relationship

The classical fuzzy containment relationship (see Appendix A) is a crisp one.
That is, given an universal set X and two different fuzzy subsets of X, F
and G, at most one of FF C G and G C F is true. It seems possible and
desirable to introduce a fuzzy version of the containment relationship that
help us measuring the degree that F' and G contain each other. We will call
it the subsethood relationship

Definition 2.2 Let X = {z1..x,,} be an universal set. Let F and G be two
fuzzy subsets of X. We define the subsethood relationship between F' and G,
(that is, the degree that F is a subset of G) as:

iy max (0, mp (i) — mg (2:))

S(F,G)=1- M (F) (2.3)
or, equivalently (Subsethood theorem,):
_ M(FNQG)

Shortly, S(F, G) measures the distance between F' and the closest-to-F' proper
subset of G. The interested reader can find several justifications of this rela-
tionship, as well as the proof of the Subsethood theorem, in [41]
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2.4.3 Three structural criteria for fuzzy systems reliability
assessment

In this section we will try to define and formalize three criteria for structural
evaluation of fuzzy systems quality: completeness, redundancy and consis-
tency. We borrow them from classical crisp logic and then we "fuzzyfy"
them making use of the subsethood theorem. We define each criteria in two
complementary ways: locally and globally. The local value refers to a single
point in the input space, while the global value refers to the overall fuzzy
system. So, we will talk, for example, about the overall completeness of a
fuzzy system and, also, about the consistency of a fuzzy system for a given
value of the input variables.

Although several other criteria could have been defined in similar ways,
we have found completeness, redundancy and consistency to be the more
simple and adequate. We will return to this point in the conclusions part.

2.4.3.1 Notation

Let Ux = {x1...2,} and let Uy = {y1...ym} be two universal sets and
V={vi...vp} and W = {w; ... wy} be two families of fuzzy subsets of Ux
and Uy respectively, defined by the two families of functions:

my, Ux —[0...1] 1<i<p
My, Uy —[0...1] 1<i<gq
Let A and B be two fuzzy variables (being A the input fuzzy variable and
B the output fuzzy variable) taking values on the fuzzy subsets of Ux and
Uy respectively.
Let K be a fuzzy system formed by a set R = {ry...ry} of rules of the
form?®:

3We are not losing any generality by considering only rules with a single antecedent.
Any rule in the form:

IF Ay =v; AND A; =v, AND ...AND A, =v, THEN B =w
is equivalent to the single antecedent fuzzy rule:
IF (A1, As,...,Ay) =v" THEN B=w
where v* = v1 X v2 X ... X v, is defined by the membership function:

my=((z1, T2, ...,2n)) = min; (Mo, (;))
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IF A =v; THEN B = w; (for some v; € V and w; € W)

For each rule r € R, we will call the antecedent fuzzy set of r (ant(r)) to
the fuzzy set in the IF part of the rule (the fuzzy set v; in the rule above).
Similarly, we will call the consequent fuzzy set of r (con(r)) to the fuzzy
set in the THEN part of the rule.

2.4.3.2 Completeness

Intuitively, we can see the completeness of a fuzzy system as the degree
to which every possible value of the input variable is contemplated in the
antecedent part of the rule set R. That is, a fuzzy system is more incomplete
as there are more values of the input variable that does not fire any rule or
that fire few of them weakly.

For example, suppose we have two fuzzy systems F' and S. F’s rule base
is formed by nine rules and S’s rule base consists of just three rules. Both
F’s and S’s rules have the form:

IF A=v; THEN B =u;

Suppose the fuzzy sets corresponding to the antecedent part of the rules are
as depicted in Figure 2.5. It is quite clear that the lower definition of the
antecedent sets leads to a quite incomplete fuzzy system where most values
of the input variable do not fire any rule or fire a single rule weakly. On
the other hand, the upper definition of the antecedent sets leads to a pretty
complete system where almost every value of the input variable fires several
rules almost completely.

Let 0y, be the empty fuzzy subset of Ux. We will define the global
completeness of the fuzzy system K as the degree to which the union of the
antecedent fuzzy sets of the rule set R differs from (7. This is the same
as comparing the superposition of all the antecedent fuzzy subsets of R with
Duy - Let us formalize this concept a little more.

Definition 2.3 We define the union of the antecedent fuzzy sets of the rule
set R = {ry...rs} as the fuzzy subset ANTgr = |J,cpant(r) given by the
function:

MANTR (J,’Z) = I:leaé{ Mant(r) (xl) Vo € Ux, (25)

How can we compare ANTRg and 0,7 We can use the concept of distance
between fuzzy sets as defined in Equation 2.1. The completeness of R will
be proportional to the distance between ANTR and (.
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Figure 2.5: a) A quite complete antecedent set. b) A quite incomplete one.



The Reliability Calculation Module 25

Definition 2.4 We define the global completeness of the fuzzy system K,
with rule set R as:

d(ANTg , 0yy)
d(Q)UX ; CUX)

where COM P(K) is normalized by dividing d (ANTR, 0y, ) by the maximal
distance between fuzzy subsets of Ux, d (0y,,Cuy ), and d is some general
distance. Particularly, for the rectangular distance, we can develop the for-
mula to obtain:

COMP(K) =

(2.6)

COMP(K) = ZwieUx‘Z‘;’NTR (i) _ i mz:LNTR (@) (g7

To restrict the definition to a single point in the input space is quite straight-
forward:

Definition 2.5 We define the completeness of the fuzzy system K, with
rule set R, at the point x; € Ux of the input space as the value of the
membership function of ANTR in this point:

COMP(K, :L‘l) = MANTg (l'z) Va; € Ux. (28)

We can observe that, when using rectangular distances, the global com-
pleteness of a fuzzy system is the average of the completeness of the system
at each point of the input space. This does not hold, however, in the general
case.

2.4.3.3 Redundancy

Redundancy in a rule base refers to the existence of clusters of very similar
rules. If the rule base has been built from a set of examples, redundancy is
a favorable feature, because it indicates a degree of regularity in the system
(similar inputs result in similar outputs). On the other hand, depending on
the propagation model used by the fuzzy system, a big number of redundant
rules just burdens the output computation process without substantially af-
fect the overall response of the system.

The concept of rule redundancy relies on the concept of rule subsumption.
Let us introduce it.

Definition 2.6 Given two rules r1 and ro of the form:

T J IFA:U1 THENB:w1
To 2 IFA:UQ THENB:w2
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we will say that ro is subsumed by r1 if and only if:

e vy C vy. The antecedent part of rule ro is more constricting than the
antecedent part of rule ry’s.

o w1 C wo. The consequent part of rule r1 is more specific than the
consequent part of rule rs.

where C is the classical fuzzy inclusion relationship (that is, a C b if and
only if mq(z) < mp(x) for all z € Ux). From this definition, subsumption is
clearly a crisp concept. Given two rules 71 and 79, one and only one of the
statements “ry is subsumed by 73” and “r; is not subsumed by r5”
However, from Figure 2.6, where we can see three examples of rule pairs
with different values for v1, v, w1 and wy, it seems clear that subsumtion is
a matter of degree. We need, then, to extend the concept of subsumption to
the fuzzy domain. We can derive a fuzzy subsumtion relationship by using
the fuzzy subsethood relationship in the following way:

18 true.

sub(r1,r2) = min (S (v2,v1), S (w1, ws)) (2.9)

Clearly, given two rules, the more one of them subsumes the other, the more
redundant they are. So, now we can define the pairwise redundancy of two
rules r1 and r9 as :

pw_red(ry,re) = max (sub(ry, r2), sub(ra,r1)) (2.10)

Furthermore it is clear that, in order to affect the output of the system,
redundant rules have to fire. So, if we want to compute the redundancy of
a pair of rules for a given value of the input variable we have to weight the
redundancy found using Equation 2.10 by a value proportional to the degree
to which both rules are firing, that is, the degree to which the value of the
input variable belongs to the antecedent fuzzy sets of the two rules. Thus,
given a point x; in the input space, we can define the pairwise redundancy
of two rules r1 and ro at the point z; as:

pw_red(r1,r2, x;) = Min(Many(r) (i), Mant(ry) (i) - pw_red(ry,ra) (2.11)

We can now define the global and local redundancy of a fuzzy system as the
average value of the redundancies for each unordered pair of different rules:

Definition 2.7 We define the global redundancy of a fuzzy system K with
rule set R ={r1...rs} as:

RED(K):<S>_1~ S pw_red(ri,ry) (2.12)

2 =
1<4,5<s,i<j
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Figure 2.6: a) Rule 1 and rule 2 are not redundant at all. b) Rule 2 is partially
subsumed by rule 1. ¢) Rule 2 is completely subsumed by rule 1.
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Definition 2.8 Conversely, we define the redundancy of a fuzzy system K
with rule set R = {ry...rs} at a point z; of the input space Ux as:

RED(K,:zi):<S>—1- S pw_red(ri 1y a;) (2.13)

2 =
1<4,5<s,i<j

2.4.3.4 Consistency

Inconsistency in a rule base refers to the existence of rules with similar an-
tecedent parts and different consequent parts. Inconsistent rules are not
favorable features for a rule base and can indicate a irregular, aleatory or
chaotic behavior in the modeled system, as well as the occurrence of mis-
takes in the modeling process.

In classical logic, we say that two rules are inconsistent if they have the
same antecedents and contradictory consequents; we can extend the concept
to the fuzzy domain in the following way:

Definition 2.9 Given two fuzzy rules r1 and ro:

T IFA:U1 THENBZwl
Ty IFA:UQ THENB:w2

we will say that ro is tnconsistent with r1 if and only if :

o vy C vi. The antecedent part of rule ro is included in the antecedent
part of rule r1.

o wy C wi. The consequent part part of rule ro is included in the com-
plement of the consequent part of rule ry.

where a C b is the classical fuzzy inclusion relationship (that is a C b if and
only if mgy(z) < my(x) for all x € Uy.

Inconsistency as defined in Definition 2.9 is a crisp concept. However, in
Figure 2.7 we can see three different examples of rule pairs which make quite
apparent the fuzzy character of inconsistency. As in the case of redundancy,
we need to extend the concept of consistency to the fuzzy domain.

Like subsumption, inconsistency is crisp because of the fuzzy inclusion
relationship. Again, we can derive a fuzzy inconsistency relationship for a
pair of rules r; and ro using the fuzzy subsethood relationship as follows:

inc(ri,re) = min (S (vg, v1) , S (wa, wY)) (2.14)

And now we can define the pairwise inconsistency of two rules r1 and ro as
the maximum of the mutual inconsistencies:
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pw__inc(ry, r2) = max (inc(ry, r2), inc(ra, r1)) (2.15)

As it was the case with redundancy, if we want to compute the pairwise
inconsistency of two rules at a given point of the input space, it is necessary
to weight the value found using Equation 2.15 proportionally to the degree
to which both rules fire at that point. So, given a point x; in the input space,
we define the pairwise inconsistency of two rules 1 and ro at the point x; as:

pw_inc(rh 72, xl) = min(mant(rl) (xz)a Mant(ry) (xz)> : pw_inc(rlv TQ) (216)

We are interested in computing consistencies, rather than inconsistencies.
Values obtained from Equations 2.15 and 2.16 rank between 0 and 1. This
allows us to straightforwardly define the pairwise consistency of two rules rq
and r9 as:

pw_con(ry,ra) =1 —pw_inc(ry,r2) (2.17)

and the pairwise consistency of two rules 1 and ro at a given point x; as:
pw_con(ri,ra,x;) = 1 — pw_inc(ry, ro, x;) (2.18)

Finally, we can define the global and local consistency of a fuzzy system as
the average value of the consistencies for each unordered pair of different
rules:

Definition 2.10 We define the global consistency of a fuzzy system K
with rule set R ={r1...rs} as:

CON(K):@)l. S pw_con(riry) (2.19)

1<i,j<s,i<j

Definition 2.11 Conversely, we define the consistency of a fuzzy system
K with rule set R ={ry...rs} at a point x; of the input space Ux as:

CON(K,a:i):G)l- S pw_con(ri,ry ;) (2.20)

1<i,j<s,i<j

2.4.4 The reliability function

We have defined a total of six different criteria for fuzzy rule base quality
assessment, three refer to the quality of the overall rule base and the other
three refer to the quality of the rule base for a given a point in the input
space. The combination of these six criteria into a single reliability function
can be done reasonably in a big number of ways. In any case it is no evidence
of such a combination to be more useful than using the criteria separately.
We will come back to this point in our case study.
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2.5 Case Example: Calibration of an Ammeter

An ammeter is a measuring instrument used to measure the electric current
in a circuit. Electric currents are measured in amperes, hence the name.
Let’s use an idealized ammeter as a case study in order to exemplify the
concepts introduced in the previous sections as well as to gain some insight
into their applicability and appropriateness.

Suppose we have a cheap, inexact ammeter A that gives wrong readings
in a way that depends on the intensity of the current and some other ex-
ternal variable (temperature, let’s say). Suppose the error in the ammeter
measurement to be an aleatory variable with mean and variance directly pro-
portional to current intensity and room temperature. Suppose, finally, that
we have an exact ammeter that allows us to determine the error committed
by the inexact ammeter A in a set of measurements. That is, we have a set
E ={e1, e, ,e,} of examples in the form of triplets:

ei = (i, T;, Ri)

Where I; stands for the intensity measured by A at instant 4, T; is the
temperature at this instant and R; is the true current intensity as measured
by the unbiased ammeter at the same instant ¢. Can we use this knowledge
to build a fuzzy contextual filter able to correct A’s readings in subsequent
measurements in such a way that the expected value of the error diminishes?
Moreover, how to compute the reliability criteria introduced in this chapter
and how to use them to assess the reliability of the corrections introduced by
the fuzzy contextual filter? We will try to give an answer to these questions
in the next sections.

2.5.1 Modeling the ammeter

In order to collect the set of examples E and evaluate the performance of the
fuzzy contextual filter, we need a model of the behavior of the ammeter A,
that is, a function relating temperatures (T') and real current intensities (R)
to current intensities (I) as measured by A. A reasonable model to choose
is the following one:

I(T,R,a1,00,K) = R+a; + N (a2 ‘R,(K - T)2) (2.21)

where T and R are the actual temperature and current intensity, respec-
tively and g,y and K are parameters that allow the modulation of the
model’s behavior. Parameter «ay represents a constant bias in the ammeter
and N (ag ‘R, (K - T)Q) is a normal random variable with mean as - R and
standard deviation K -T. Parameter K, therefore, establishes how “noisy” is
the error committed by A. For K = 0, the error will be a constant a1 +ag- R
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and for greater values of K the error will fluctuate randomly with amplitude
proportional to the product of the magnitude of the parameter and the tem-
perature.

In order to avoid having to manage too many combinations of parameter
values through all the set of simmulations, a; and as have been given adequate
values, namely 4 and 0.2, respectively. On the other hand, the rank in which
the input variables temperature and current intensity can take values has
been limited to [0, ..., 50] in some well suited units.

Figure 2.8 shows representative examples of the error committed by am-
meter A for different values of the parameter K, namely 0, 0.01, 0.05, 0.1,
0.2 and 0.5. As can be seen, for K = 0 the error is independent from the
temperature. As K’s value increases, so does the influence of the tempera-
ture in the overall error. At high temperatures and for large values of the
parameter K, measurements of the ammeter are essentially random.

2.5.2 Building the Fuzzy Contextual Filter

We can see the problem represented in Figure 2.9. We have an ammeter that
gives wrong readings, the error depending, in some way unknown to us*, on
the magnitude of the current intensity and the ambiance temperature. The
problem consists in building a FCF which takes A’s readings as the input
variable and the temperatures as the only context variable and produces, as
output variable, an estimation of the correct value of the current intensity,
jointly with some kind of measure of the accuracy of the estimation.

Building the corrective module of the FCF from the set of examples E
is a quite straightforward task. Recall that each example e; has the form
e; = (I;, T;, R;), where I; stands for the intensity measured by A at instant
1, T; is the temperature at this instant and R; is the true current intensity as
measured by the unbiased ammeter at the same instant ¢. We can produce
a fuzzy rule from each one of the examples interpreting the values I;, T;, and
R; as fuzzy numbers much in the same way as stated in section 2.3. So, the
set ' of examples will define the dynamic fuzzy rule base of the corrective
module of the FCF. The initial rule base is not needed in this example so it
will be considered empty.

Let us elaborate a bit more upon the process of construction of the dy-
namic rule base. For our purpose, given a real number a, we will define Fy,
the fuzzy number associated to a, as the fuzzy set over the reals defined by
the following membership function:

4We use the model defined in the previous section to collect the set of examples and to
simulate the behavior of the ammeter but, obviously, we can’t use it to build the FCF
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Figure 2.8: Error committed by ammeter A for different values of the parameter
K. From top to bottom and from left to right, the value of K is 0, 0.01, 0.05, 0.1,

0.2 and 0.5



34 Fuzzy Contextual Filters

A's lecture of Estimation of
current intensity correct current
-] intensity
4’
—
FCF
— - L =
—_— Reliability
Temperature values

Figure 2.9: Representation of the problem
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0 otherwise.

a sort of Gaussian function with its tails truncated (that is, the value of the
function is set to zero at every point far away enough from the center of the
bell) in which the parameter ¢ regulates the amplitude of the bell, as well as
the truncation point®.

Now, for each example e; = (I;, T;, R;), the following rule is added to the
dynamic rule base:

If A’s reading is Fy, and temperature is Fr, then correctIntensity is Fpg,

This process produces a fuzzy rule base that can be used, after the addition
of the appropriate fuzzification and defuzzification mechanisms, as a fuzzy
system able to estimate correct current intensity values from A’s current
intensity readings and environment temperatures. In this example, the whole
process of fuzzyfication, propagation and defuzzification can be summarized
as follows: given a current intensity x measured by the ammeter A and a
value y of the environment temperature, the estimation r(x,y) of the correct
current intensity (the output of the fuzzy system) is computed using the
following formula:

5The reason for this truncation is mainly practical, if it did not exist, every rule of the
rule base would fire, even if to a minute degree, for every pair of input variables. On the
other hand, the truncation will make much more efficient the computation of the reliability
criteria introduced in Section 2.4.
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- Z(I,T,R)GE min (mg, (), mp,(y)) - R
E(I,T,R)GE min (mg, (), mp; (y))

Figure 2.10 shows six examples of the error committed by the fuzzy sys-
tem in the particular case of parameter K in equation 2.21 taking value 0
(comparisons for other values of the parameter K will be seen later in the
Results section). It is interesting to compare those errors with the top left
graph of Figure 2.8, which shows the error committed by the ammeter A for
the same value of the parameter K.

Figure 2.10 shows error graphs for different values of the cardinal of the
examples set and the parameter ¢ (from Equation 2.22, the parameter that
regulates the fuzzy number width). From left to right and top to bottom,
the three first graphs correspond to a set E of 100 examples and the three
last ones to a set E of 1000 examples. For each of the groups of three, the
values of the parameter c are 1,2 and 4 respectively. The importance of both
parameters is quite clear: in the cases of fuzzy systems with few rules or
small fuzzy number width there is a lot of input pairs that do not fire any
rule, thus giving output 0 and producing a big error®. On the other hand,
when both values are high enough to make every pair of input values fire one
or more rules (100 examples and ¢ = 4, 1000 examples and ¢ = 2 and 1000
examples and ¢ = 4), the error committed by the fuzzy system is much lower
than the error committed by ammeter A.

r(x,y) (2.23)

2.5.3 The reliability calculation module

In order to test and compare their usefulness, all three reliability criteria
introduced in Section 2.4, (completeness, redundancy and consistency), have
been implemented in the simulation.

2.5.4 Results

A total of 72 simulations have been carried out for different values of the
parameters n (number of examples and rules), ¢ (width of the fuzzy numbers)
and K (standard deviation of the random part of the error, see Equation
2.21). Specifically, the values tested are n = 100,500, 1000, ¢ = 1,2,4 and
K =10,0.01,0.025,0.05,0.1,0.2,0.5, 1.

For each combination of parameter values, each simulation consisted in
the following steps:

6This issue could be easily solved by, for example, establishing R; = I; when none of
the fuzzy rules in the rule base fires. However this is not necessary to show our point
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Figure 2.10: Graphs of the errors committed by the FCF for K = 0 and for
different values of the parameters ¢ and number of rules. From left to right and
top to bottom, graphs 1,2 and 3, 100 examples, graphs 4, 5, and 6, 1000 examples.
Graphs 1 and 4, ¢ =1, graphs 2 and 5, c = 2 and graphs 3 and 6, c = 4.
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1. Populate the example set E with n examples according to Equation
2.21 for random values of I and T in the real interval [0, ..., 50].

2. Build the fuzzy rule base as explained in section 2.5.2.

3. Generate a new example set S (we will call it the reference example
set) using Equation 2.21 to simulate the behavior of ammeter A for
every pair (I,T) € {0,1,...,50} x {0,1,...,50}.

4. Compute the error committed by ammeter A for each example (I, 7T, R)
in the reference example set S as:

erra(I,T,R) = |I - R| (2.24)

5. Compute the output of the FCF for all pairs (I,T) € {0,1,...,50} x
{0,1,...,50}.

6. Calculate the error committed by the FCF for each example (1,7, R)
in the reference example set S as:

errper(l, T, R) = [r(I,T) — R (2.25)

where r(I,T) is the output of the FCF for the input pair (I,T) as
shown in Equation 2.23.

7. For the fuzzy rule base built in point 2, compute all the reliability
criteria for FCFs introduced in section 2.4.3.

8. Compare the errors committed by the FCF and the ammeter A and
relate them to the reliability criteria calculated in the previous step.

Over the next pages, we can see the results of the simulations. Figures 2.11,
2.12 and 2.13, relate the errors committed by ammeter A and the FCF using
the global reliability criteria for different values of the parameters n (number
of examples in the example set E or rules in the rule base), ¢ (width of the
fuzzy numbers) and K (standard deviation of the random part of the error,
see Equation 2.21).

Figure 2.11 corresponds to a 100 examples rule base. Each row shows the
relationship between the reliability criteria values for the rule base and the
error committed by ammeter A for the reference example set S, with and
without making use of the FCF. Each row correspond to a different value of
the parameter ¢, which gets the values 1, 2 and 4 in the upper, middle and
bottom rows respectively. It can be observed how both errors depend directly
on the value of K. The figure shows quite dramatically the importance of
parameter ¢ in the case of a rule base with few rules: if ¢’s value is small,
there is a lot of points in the input space which do not fire any rule in the rule
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base, this resulting in a big overall error. This can be seen in the upper row
of the figure, corresponding to a value 1 for the parameter c. Using a FCF in
this case results in a bigger error than not using it at all. All three reliability
criteria can help in detecting this situation, though. Both consistency and
redundancy get extreme values (near 1 and 0 respectively) due to the fact
that very few points in the input space make more than a rule fire at once.
On the other hand, more importantly, the completeness value of the rule base
is very low.

As can be seen in the middle and bottom rows of the figure, as the
width of the fuzzy numbers increases, so does the completeness of the FCF
and the difference between the error committed by ammeter A when not
using the FCF and the error committed when using it. Finally, for values of
the parameter ¢ high enough (bottom row, ¢ = 4), the performance of the
ammeter when using the FCF is clearly superior to its performance without
using it.

Figures 2.12 and 2.13 show information similar to Figure 2.11 when using
500 and 1000 examples in the construction of the FCF rule base, respectively.
In both cases, the relatively big number of fuzzy rules makes the completeness
of the fuzzy rule base increase enough to avoid the misbehavior observed in
the top row of Figure 2.11. It can be observed, too, how the increase in the
completeness value provoked by the increment of the parameter ¢ translates
itself in a better performance of the ammeter A, when using the FCF. It is
also interesting to note how, for fixed values of the parameter ¢ (and, thus,
constant completeness value), higher values in the FCF error (directly related
to the the K parameter) correspond to lower values for the consistency and
redundancy criteria.

To summarize, two observations can be done with respect to the results
shown in Figures 2.11, 2.12 and 2.13:

e Generally, the global performance of the ammeter is distinctively much
better when using the FCF. This is specially true for small values of
the parameter K. For big values of the parameter (corresponding to
big variances in the random part of Equation 2.21) the improvement,
if it exists at all, is not so notorious.

e It is clear that the global completeness of the fuzzy rule base is a good
indicator of the overall performance of the FCF. On the other hand,
when the global completeness of the rule base is high enough and the
parameters ¢ (fuzzy number width) and n (number of rules) are such
that there is a reasonable probability for a random point in the input
space to make two or more rules fire, it is a clear correlation between
global consistency and global redundancy criteria (specially the last
one) and the error committed by the FCF. The distinct merit of both
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global criteria is not at all clear. Redundancy seems to have the edge
due to the larger rank of values it takes over the different values of the
parameter K but, on the other hand, they seem to be highly correlated.

Figures 2.14 to 2.19 show several 7 detailed graphs of the local consistency,
redundancy and completeness reliability criteria values, jointly with graphs of
the errors committed by the uncalibrated ammeter compared to the ammeter
using the FCF, for different values of the parameters n (number of rules), ¢
(fuzzy number width) and K (random error standard deviation).

Figures 2.14, 2.15 and 2.16 show the results for the cases (n = 100, ¢ = 4,
K = 0), (n = 100, ¢ = 4, K = 0.05) and (n = 100, ¢ = 4, K = 0.5).
The most interesting part of the figures is, perhaps, the completeness graph,
in the middle row. It is exactly the same graph for the three figures (that
is, the completeness value in each intensity-temperature point (I,7") of the
input space is the same). This is due to two reasons: in one hand, the set of
intensity-temperature pairs used to build the three set of examples (this is
step 1 in the simulation, see Subsection 2.5.4) is the same in he three cases.
Because of this, left parts of the rules in the three rule bases are equal (This is
purposely this way in order to ease comparisons. Right parts will be different
due to the different values of K, which will introduce errors of different
expected magnitude in each case). The second reason is that, by definition
(see Subsection 2.4.3.2), completeness of a rule base depends only upon the
left parts (the antecedents) of the rules, which, in our case, are determined
by the aforementioned intensity-temperature pairs. Completeness of a rule
base mainly depends upon the two parameters n and c¢. A larger number of
rules and a larger amplitude for the fuzzy numbers defining the antecedents
of the fuzzy rules in the rule base will tend to produce a smaller probability
that a random intensity-temperature input pair did not fire any rule and,
thus, larger values for the global and local completeness criteria.

It is easy to recognize the left parts of the rules of the rule base in the
completeness graph. Fach of them corresponds to a little brown square in
the graph (the width of the square depending on the parameter c). It is also
easy to see that there are big areas in the input space whose completeness
value equals zero. These areas correspond to the points in the input space
(that is, the intensity-temperature pairs) that do not fire any rule in the
fuzzy rule base. These areas can be observed in the bottom-right graph of
the figures to correspond to high error areas for the ammeter using the FCF
(the center and the right side of the graph, mainly). On the other hand, as
could be expected, the error committed by the ammeter using FCF tends to

"The complete set of results can be found in Appendix B.



Case Ezxample: Calibration of an Ammeter 43

be low in high completeness zones of the input space. This is particularly
true in areas where the random error part of the ammeter lecture (that is, the
third term of the right part of Equation 2.21) is expectedly low, and tends to
become less certain in areas corresponding to expected higher random error
(be it because the value of the temperature or the value of the random error
standard deviation K). Observe, for example, Figure 2.14. In it, the value
of the parameter K equals zero and, consequently, from Equation (2.21),
the error committed by the uncalibrated ammeter is not random, and has a
value a1 + g - R, as can be seen in the lower left graph of the figure. The
graph corresponding to the error committed by the FCF (lower row to the
right) shows an evident correspondence between areas of large completeness
and areas of small error, independently of the temperature. This is not so
true for figures 2.15 and 2.16, where the increment of K’s values (to 0.05
and 0.5), increase the influence of the random component of the error at
higher temperatures, as can be seen in the bottom left graphs of the figure.
This translates itself to bigger errors in the ammeter using the FCF. In
particular, in Figure 2.16, where K = 1, FCF error is quite independent
from completeness except for points with very low temperature.

For redundancy and consistency criteria to be meaningful at a given input
point, it is necessary that two or more rules fire (the more the better, ideally).
So, those two criteria will have greater usefulness and significance in rule
bases with high global completeness values and in points of the input space
with high local completeness. In the case of Figures 2.14, 2.15 and 2.16,
due to the fact of the low completeness of the rule base (only 100 rules) it
is difficult to observe a relation between redundancy, consistency and the
error committed by the ammeter using the FCF. It is nevertheless possible
to observe a general decrement in the consistency and redundancy values as
parameter K increases. This is more patent in areas corresponding to high
temperatures.

Figures 2.17, 2.18 and 2.19 show a similar series of results for the cases
(n =1000,c = 2, K = 0), (n = 1000,¢c = 2, K = 0.05) and (n = 1000, ¢ =
2, K = 0.1). The rule bases have 1000 rules each and, as can be expected,
even if the value of the parameter ¢ is now smaller than before, completeness
values are larger at almost every point in the input space. Comments about
completeness stated about the anterior set of figures also apply to this set:
on one hand, areas of low completeness in the input space correspond to
high error areas for the ammeter using the FCF. On the other hand, the
error committed by the ammeter using the FCF tends to be low in high
completeness zones of the input space, depending of the relative magnitude
of the random part of the error committed by the uncalibrated ammeter.

The problem regarding the effectiveness of the completeness criteria lies,
then, in areas of the input space with high completeness that correspond to
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high expected error zones for the uncalibrated ammeter (high temperature
zones). In them, the filtered value given by the FCF will have a big complete-
ness value (a lot of rules will fire) and also a high expected error. consistency
and redundancy criteria will help us to detect such zones in the input space.

Take a look, for example, to Figure 2.17. In it, the value of the parameter
K is zero, this meaning that the random part in the error committed by the
uncalibrated ammeter is a constant depending only upon the current intensity
(that is, the same intensity-temperature input pair always will correspond to
the same output. See Equation (2.21)). Several considerations can be done:

e Ascan be seen in the corresponding consistency and redundancy graphs
(upper row of the figure), local consistency and redundancy values are
relatively high. They are also highly correlated with completeness val-
ues, that is, they are high in areas of high completeness and low in
areas of low completeness.

e No significant difference can be seen across the whole input space re-
garding the mean values of local consistency and redundancy values
(that is, they are independent from temperature values). That could
be expected, given the absence of a random component in the error.

e Comparing the two graphs in the bottom row of the figure, we can
see that the ammeter using FCF performs much better than not using
it. The FCF is able to correct the intensity measure output by the
ammeter to give very approximately the true value across the whole
input space.

Let us take a look, on the other hand, to Figures 2.18 and 2.19 . In them,
the values of parameter K are 0.05 and 0.1 respectively. This translates
itgelf in the appearance of a random component in the error made by the
ammeter which depends upon the value of the temperature. The higher the
temperature, the higher the random error in absolute value. This can be
seen in the graphs representing the total error made by the ammeter when
not using the FCF| in the lower left corner of the figures 2.18 and 2.19. The
random component of the error also reflects itself in the consistency and
redundancy graphs in the upper row. We can see that:

e Consistency and redundancy values are no longer more or less uniform
across the whole input space. There is a gradient in the values of both
criteria corresponding inversely to changes in the temperature. The
higher the temperature is, the higher the expected value of the random
component is (see Equation (2.21))) and, correspondingly, the lower
values of consistency and redundancy are.
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e The magnitude of the consistency and redundancy values are inversely
proportional to the value of parameter K. Mean values of consistency
and redundancy in Figure 2.18, corresponding to a K value of 0.05 are
clearly higher to those in Figure 2.19, corresponding to a K value of
0.05. Since parameter K determines the magnitude of the random part
of the error in the ammeter measurements, this confirms the former re-
sult that consistency and redundancy values are inversely proportional
to the magnitude of the random part of the error.

So, we can deduce a very important result concerning FCFs: Local con-
sistency and redundancy values are high in zones of the input space with high
completeness values and constant, non-random error. Those zones tend to
correspond to zones of low error in the oulput space, that is, zones where
the FCF does a good job filtering the ammeter’s output. On the other hand,
local consistency and redundancy values diminish in zones of the input space
with large expected random error (and diminish proportionally to this error).
Those zones tend to correspond to zones of high error in the output space, that
18, zones where the performance of the FCF filtering the ammeter’s output
decreases.

Summarizing, we could compute the confidence we can deposit in the
output given by a FCF (not just in the case of the ammeter, but in general)
using the following fuzzy algorithm (Comp states for completeness, Cons for
consistency and Red for redundancy):

Algorithm 2.1 Confidence computation function

1: function CONFIDENCE(Comp, Cons, Red) : returns confidenceValue;
2 var confidenceFuzzySet : FuzzySet

3 confidenceFuzzySet « ()

4: if Comp is LOW then

5: confidenceFuzzySet « confidenceFuzzySet U LOW;

6 end if

7 if Comp is HIGH and Cons is LOW and Red is LOW then
8 confidenceFuzzySet « confidenceFuzzySet U LOW;

9: end if

10: if Comp is HIGH and Cons is HIGH and Red is HIGH then
11: confidenceFuzzySet « confidenceFuzzySet U HIGH;

12: end if

13: return defuzzify(confidenceFuzzySet);

14: end function

Besides the application of FCFs to real world problems (we will see two such
applications in the second part of this document), several directions towards
further research in the topic can be pointed:
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e First, it would be convenient to devise a method to, given the fuzzy
system associated to a FCF, determinate whose values of the three
criteria, completeness, consistency and redundancy, are considered low
or high. Ideally, given values for those three criteria, we would like to
know a procedure to deduce or approximate a probability distribution
for the expected value of the error committed by the FCF.

e It is not totally clear the relative importance and mutual independence
of the three criteria. It is worth to note that, despite the high correla-
tion between consistency and redundancy values in high completeness
areas that can be observed in Figures 2.14 to 2.19, they are by no
means equivalent. By definition, in areas of low completeness, con-
sistency values will tend to one while redundancy values will tend to
zero®.

e The choice of those three particular criteria obeys to several practical
and theoretical reasons (mainly simplicity and the importance of their
crisp counterparts in classical logic). Additional quality criteria (ie.
generality, lineality, importance ...) are being studied.

e Application of completeness, consistency and redundancy criteria can
be extended to domains other than FCFs. For example, they can be
integrated into the fit function of a genetic algorithm used to evolve
fuzzy systems.

2.6 Conclusions

This chapter introduces the novel (concerning the multiagent systems field)
concept of reliability. It argues that reliability not only extends the concept
of trust, but also beats it in terms of usefulness. Reliability is defined as the
quality of an agent that tends to give the same or a similar response when the
same or a similar question is asked under the same or similar circumstances,
regardless of the erroneous the answer can be. This regularity in the error
committed by the agent in his response can allow us to extract knowledge
from it.

The device presented in order to make possible the computation of the
reliability of a given agent under a given set of circumstances, as well as the

830, redundancy is high only in areas of the input space with high completeness and
more or less constant error, that is, the zones in the input space where the FCF will
perform better. That makes this criteria perhaps the most important of the three.
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Figure 2.14: Top and middle rows: detailed graphs of the local consistency, re-
dundancy and completeness reliability criteria values. Bottom row: graphs of the
errors committed by the ammeter without using the FCF (to the left) and using it
(to the right). Number of rules n = 100, fuzzy number width ¢ = 4, random error
standard deviation K = 0.
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errors committed by the ammeter without using the FCF (to the left) and using it
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correction of the error committed by the agent, is called a Fuzzy Contextual
Filter (FCF). FCFs are composed by two parts: a corrective module, that
given an input value provided by an agens and a set of values for other
variables in the environment, filters the input value {that is, tries to remove
the error from the input value) to obtain a new, filtered value, and a second
module, the reliability computation maodule, which computes the confidence
we can deposit in the filtered value provided by the corrective module.

The corrective module of a FCF consists basically in a set of rules forming
a fuzzy system. Those rules are obtained from experience or common sense
and from past interactions between the agent possessing the FCE and the
agent whose output is to be filtered. While the use of a fuzzy svstemn for
function approximation is by no means new, the corrective module presents
two particular characteristics: In one hand, it incorporates a initial rule base
that can express the a priord assumptions about the behavior of the other
agents in the environment and serve as a departing point in the interpretation
of other agents’s assertions. On the other hand, the overall structure of the
module is fixed, with one main variable (the input variable to be corrected
or filtered) and zero or more context variables measuring characteristics in
the environment that can affeet the error present in the value of the input
variable. The output of the mnmodule, the filtered variable, is a guess about
the actual value of whatever the input variable is meant to measure.

The reliability computation module computes the reliability of the value
of the filtered variable obtained by the corrective module. Reliability is a
function of the main and context variables, that is, given values for the main
and context variables, the reliability calculation module produces a value
representing the confidence we can have in the exacticude of the value of
the filtered variable computed by the corrective module. Reliability depends
upon the number of prior similar interactions between filtering and filtered
agents as well as upon the regularitics obscrved during that interactions. Re-
liability is computed as a combination of three fuszy system’s quality criteria
applicd to the fuzzy rule bases in the corrective module: completeness, re-
dundancy and consistency. This value can be computed exclusively from the
structural characteristics of the system. That is, from the form of its rules
and the fuzzy sets used in their definition. The compuration of chis guality
value, themn, is easily automatable.

Finally we have deseribed an experiment consisting in a simulation of
the behavior of an ammeter under different conditions of input intensity
and temperature. The results of the experiment confirm the validity of the
approach.

It is interesting to remark that the use of a fuzzy system in the imple-
mentation of the corrective module is just a design decision. Given the set
of examples, it could be perfectly possible to implement it using a bunch
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of different methods ranging from neural nets to support vector machines,
passing by wavelets and b-splines. The use of a fuzzy system makes eas-
ier the implementation of the reliability module (by means of the definition
of several reliability criteria, as completeness, consistency and redundancy).
The definition of similar or equivalent criteria in a black box type model, like
ncural nets, would he much more difficult.
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Chapter 3

Using FCFs for Variance
Estimation in the ART Testbed

3.1 TIntroduction

This chapter introduces a first application of Fuzzy Contextual Filters (FCFs)
to agent modeling, concretely to the ART (Agent Reputation and Trust)
Testbed. Tt is based upon previous work that can be found in [22]. First
sections introduce and discuss in some depth the main aspects and singular-
itics of the ART Testbed. The sceond part of the chapter presents several of
the techniques and algorithms behind the appraiser agent SPARTAN, spe-
cially the application of FCFs to the estimation of other agents’s appraisals
variances.  Finally, the chapter includes a discussion of the results of the
SPARTAN agent in several national and international championships and
make several proposals that, in our opinion, could improve the design of the
testbed and its overall use experience.

3.2 The ART Testbed

The Agent Reputation and Trust (ART) testbed [3, 32, 33| is a framework,
based on the art appraisal domain, for experimentation and comparison of
trust modeling techniques. Agents function as painting appraisers with vary-
ing levels of expertise in different artistic eras. There is a set of customers
(evenly distributed amongst the agents in the beginning of the simulation)
who request appraisals for paintings from different eras to the agents, and
they have to provide as accurate cstimated appraisals as possible for cach
painting. The clients share, and thus the profit, for the next iteration of the
algorithm will depend upon the accuracy of the appraisals of each agent in
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Agent Reputation and Trust Testbed

Figure 3.1: ART testbed logo.

the previous iteration. When an appraising agent believes that he does not
have expertise enough to produce a good appraisal for a given painting, he
can request opinions from other, hopefully more experts, appraiser agents.

3.2.1 Client Appraisals

In each timestep, multiple clients present each appraiser (agent) with paint-
ings to be appraised, paying a fixed fee F for each appraisal request. To
increase business, appraisers attempt to valuate paintings as closely to mar-
ket value as possible. A given painting may belong to any of a finite set of
eras (a painting’s era is known by all appraisers), and appraisers have vary-
ing levels of expertise in each era. An appraiser’s expertise, defined as its
ability to generate an opinion about the value of a painting, is described by
a normal distribution of the error between the appraiser’s opinion and the
true painting value. The simulation creates opinions according to this error
distribution, which has a mean of zero and a standard deviation s given by

5= (s* + s;) t (3.1)

where s*, unique for each era, is assigned to an appraiser from a uniform
distribution in [0- - - 1], ¢ is the true value of the painting to be appraised and
« is a parameter, chosen by the experimenter and fixed for all appraisers,
which affects the relationship between opinion-generation cost and resulting
accuracy. Parameter cg4, the cost an appraiser is willing to pay to generate
an opinion, is discussed in more detail below. An appraiser’s expertise for
each era does not change throughout the duration of a game, and appraisers
know their levels of expertise for each era. However, the simulation does not
inform appraisers of other appraisers’s expertise levels. The true values of
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paintings presented by clients are chosen from a uniform distribution known
only to the simulation; likewise, the eras to which paintings belong are also
uniformly distributed among the set of eras. An appraiser chooses a variable
cost ¢4, representing time taken to examine the painting, to pay in generating
its own opinion about a painting’s value. An appraiser is required to pay
a minimum ¢, of one monetary unit. By paying a higher ¢,, analogous
to spending more time studying the painting, an appraiser increases the
accuracy of its opinion. However, an appraiser cannot perfectly judge a
painting by spending an infinite amount of time studying it; the appraiser’s
accuracy is still limited by its expertise. The minimum achievable error
distribution standard deviation is s* 4 ¢. In addition to generating its own
opinion, an appraiser may request opinions from other appraisers to improve
its final appraisal. This is especially important when an appraiser attempts
to valuate paintings from eras for which it has low expertise.

Appraisers may request opinions from as many other appraisers as desired
for each painting, at a fixed cost ¢, for each opinion transaction. In general,
¢p < f (where f is the price a client pays for an appraisal) to encourage
opinion exchange. Appraisers may also provide opinions for as many paint-
ings as desired in a single time step. Appraisers are not required to truthfully
reveal their opinions; they can communicate false opinions if desired, for ex-
ample, in attempting to decrease the requester’s client base and resulting
profit. The simulation oversees each portion of a timestep synchronously,
including client requests, appraiser opinion generation, transactions between
appraisers, and returning final appraisals to clients. Therefore, appraisers
are required to perform required actions for each time step portion within
real-time limitations as monitored by the simulation.

3.2.2 Opinion Transactions

The opinion transaction protocol is shown in Figure 3.2. To initiate an opin-
ion transaction, a requester sends a request message to another appraiser
(potential opinion provider), identifying the painting to be appraised. Upon
receiving an opinion request, if the potential provider is willing to provide
the requested opinion, it responds by sending a certainty assessment about
the opinion it can provide, defined as a real number between zero and one
(one represents complete asserted certainty). The potential provider is not
required to provide a truthful certainty assessment. If the potential provider
does not wish to participate in the requested transaction, it may choose to
decline the request. By sending a certainty assessment, the provider promises
to deliver the requested opinion should the certainty assessment be accepted
by the requester. After receiving the provider’s certainty assessment, the
requester either sends payment to the provider if it chooses to accept the
promised opinion, or sends a ’decline’ message if it chooses not to continue
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Figure 3.2: The opinion transaction protocol (from [32]).

the transaction. The cost of each transaction is the non-negotiable amount
cp. Upon receipt of payment, the provider is not required to send its ac-
tual opinion, neither is the provider forced to send any opinion at all. Upon
paying providers, but before receiving opinions from providers, the request-
ing appraiser is required to submit to the simulation its roster of opinion
providers and a set of corresponding weights. Weights are values between
zero and one, loosely representing the appraiser’s confidence or trust in each
provider’s opinion.

The appraiser’s final appraisal p* is calculated by the simulation as a
weighted average of received opinions:

o= > (wi - pi)
> (wi)

where w; and p; are the appraiser’s weight for, and the received opinion
from each provider i whose opinion was received (possibly including itself).
The true painting value ¢, along with the calculated final appraisal p*, is
then revealed by the simulation to the appraiser. The simulation enforces
this roster submission and final appraisal calculation protocol; requesting
appraisers are not permitted to change their rosters or alter received opin-
ions from providers. The simulation calculates final appraisals to prevent
appraisers from developing non-trust-based appraisal calculation strategies
and allow appraisers to focus on the more important task of assessing and
selecting trustworthy opinion providers. Upon learning its final appraisal
and the painting’s true value, an appraiser may use this feedback to revise
its trust models of other appraisers.

(3.2)
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Each appraiser has a bank account, monitored by the simulator, from
which it pays transaction costs and into which are deposited client appraisal
fees. Bank accounts are initialized with zero and may hold negative balances.
Competing appraisers can not observe each other’s clients or bank account
balances.

3.2.3 Reputation in the ART Testbed

In addition to conducting opinion transactions, and following approximately
the same protocol, appraisers can exchange information about the trustwor-
thiness of other appraisers, that is, their reputation. So, an agent, before
deciding the buying of one appraisal from a given appraiser agent, can ask
other agents their opinion about its honesty and ability.

Unfortunately, reputation consulting has not much interest in the current
(2007) form of competition/simulation in the ART testbed. Due to imple-
mentation limitations, the maximum allowed number of agents per simulation
is very low (five or six, typically). This causes every agent to quite frequently
interact with each other, thus having the opportunity to build accurate mod-
els. In this situation, it does not make much sense to spend money buying
(probably false) opinions from other agents.

This issue is going to be fixed in upcoming versions of the simulator, which
will allow hundreds of agents to participate simmultaneously in the simulations.
In this new scenario, we firmly believe that the interchange of information
about reputation will have the greatest impact in agent’s performance. In
the meanwhile, no reputation interchanges were used in the current imple-
mentation of the SPARTAN agent. That decision has been shared by the
practical totality of other competitors in the ART championships.

3.2.4 Client Share Assignment

Although clients are initially evenly distributed among appraisers, appraisers
whose final appraisals are most accurate are rewarded with a larger share of
the client base in subsequent timesteps. To calculate each appraiser’s share
of the client base for the next simulation, each appraiser a’s average relative
appraisal error for the present iteration, €, is first calculated (adapting the
formula from [32]):

Z |q. AppV al—q. TrueVal|
q€Ty, q.TrueVal

|Tal
where T, is a set of triplets in the form (Painting, AppVal, TrueV al) repre-
senting the set of appraisals made by a. For each appraisal ¢ € Ty, q.AppVal
and q.TrueVal represent respectively the value by which q.Painting was
appraised and its true value.

(3.3)

€q —
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Next, each appraiser a is assigned a preliminary client share for the next
iteration 7, according to its average relative appraisal error:

o = <Zb;5b> |c (3.4)

where A is the set of all appraisers, C is the set of all the clients (or paintings
to be appraised) and

€a
2 beA b

Thus, the appraiser with the least average relative appraisal error achieves
the highest preliminary client share for the next iteration.

ba =1 (3.5)

Finally, each appraiser a’s final client share for the next iteration r, is
computed as:

Ta:q‘r;—i-(l—q)-fa (3.6)

where 7'; has been appraiser a’s final client share in the present iteration. The
parameter ¢, a value between zero and one inclusive, reflects the influence
of previous client share size on next client share size. Thus the volatility in
client share magnitudes due to frequent accuracy oscillations is reduced for
larger values of ¢, which is chosen by the experimenter and is the same for
calculating all appraisers’ client shares.

3.3 Several Considerations on the Client Share As-
signment Function

As we have just seen, ART designers propose, in [32, 33| the following equa-
tion for client share adjustment for agent a after each iteration

ra:q-r;—i—(l—q)-fa (3.7)

where r; is agent a’s client share in the previous timestep, ¢ is a parame-
ter whose value lies in the [0--- 1] interval and 7,, depending on the mean
relative error committed by a (as well as by the other agents), represents
a’s preliminary client share for the current iteration. The formula for the

computation of 7, is:
da >
Ta=|=——)"|C| (3.8)
<ZbeA 5b

where C' is the set of customers or paintings to be assigned in the current
iteration and d, represents the relative quality of a’s appraisals in the previous
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time step. &, is computed as:

€a . ZbeA € — €a

ZbeA € ZbeA €b

representing €, the mean relative error made by agent b during the previous
iteration. Substituting d,’s values in equation 3.8 and simplifying we have:

0g =1

(3.9)

om A Oy Eabin® o ()
a — - .
ZbeA (ZceA €c — 6b) ZbeA ZceA,@éb €c
this can easily be proved equivalent to:
IOl Dbeabrta €
Tq = . (3.11)
|Al -1 D bea Eb

or, alternatively

C by

€] (3.12)

o= ‘A[—l.ea—l—z
where, as stated before and following the notation in [32], €, represent the
mean relative error made by agent b during the previous iteration, A and C
are respectively the sets of agents and clients and 3 is simply the sum of the
mean relative errors made by the agents other than a.

It is worth to make a couple of considerations about equations 3.11 and
3.12. Firstly, it is clear from the equations that no agent can manage to
get a preliminary client share greater than |C|/(]A| — 1), never mind the
accurateness of its appraisals. An agent in a seven-agent environment, for
example, can’t aspire to obtain more than one sixth of the total client amount,
even if it guesses exactly all the pictures’ prices and the other agents make
huge errors in their appraisals . On the contrary, a big mean relative error
can dramatically diminish the preliminary client share of an agent to one
single client, in the worst case (not to zero because of ART’s design, see
[32]). This is critical due to the fact that it is possible for an agent to “fool”
another one inducing a huge error in one of its appraisals (by spending a very
little amount of money in its appraisal creation and therefore increasing the
appraisal error of the standard deviation, see Equation 3.1.)'. So, we could

Tt has not been unusual in some simulations to see agents with relative mean errors
of such a magnitude as 10?°. Such a large error will completely dominate Equation 3.1
and will make irrelevant the amount of money spent by the other agents in the creation
of their appraisals and whether their errors are small or big. All of them will receive quite
the same preliminary client share in the next iteration. We can not avoid looking at this
issue as a shortcoming in the design of the platform.
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say that ART’s preliminary client share assignation method penalizes the bad
appraisals much more than it rewards the good ones. It will be important to
take this into account when designing our appraising agent strategy, it seems
to make much more sense to spend money trying to reduce the relative error
in the cases when we suspect it to be large than refining opinions we can
suppose to be quite accurate. On the same line, benefits from deceiving
an agent by selling a deliberately wrong appraisal to it (thus causing it to
loose a big share of its customers for the next iteration) are equally shared
amongst the deceiver agent and all the other agents. This can make deceiving
tactics counterproductive (mainly in populated environments, where there
are more agents to share the customers lost by the deceived agent) due to
the loss of reputation not being compensated by the difference in earnings.
Perhaps it would be interesting to study how robustly current agents would
behave if a more deception-encouraging formula for client assignment was
used (something like the deceiver agent keeping all the customers lost by the
deceived agent, for example).

The second consideration to be made refers to the fact that computation
of the preliminary client share for agent a takes not into account the actual
distribution of the relative error amongst the other agents, but the total
amount of this error. So, an agent can, at the beginning of each iteration,
knowing the mean relative error made by itself in the last iteration and the
client share assigned to it in the current one, use Equations 3.7 and 3.12 to
compute the total mean error made for all the remaining agents in the past
iteration and use this value as a estimator of the total mean error which the
remaining agents will made in the next iteration. This will help the agent to
establish a near-optimal strategy regarding the amount of money it has to
spend refining its own appraisals as well as purchasing appraisals from other
agents in the current iteration. We will come back to this in section 3.9.

3.4 The SPARTAN Algorithm

Algorithm 3.1 describes in general terms the behavior of the SPARTAN agent
every time it has to appraise a painting P. First, the agent asks each other
agent in the simulation the confidence it has in its ability to correctly appraise
painting P. So it ends up this step having a set of values between zero and one
representing different degrees of confidence and having different meanings for
each agent (that is, a confidence value of 0.5 does not means the same thing
for every agent). In order to solve this problem and make possible to use
congistently these values, SPARTAN has to translate them to some common
concept it can use to combine the appraisals effectively. We know that the
expectation of the error for each agent appraisal is zero (by design). This
means that what determines the accuracy of the appraisals is the expectation
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of the error’s variance, so it makes sense, in the step 2 of the algorithm, to try
to translate the confidence values in some way such that we could estimate
that expectation. In order to accomplish this accurately, SPARTAN will
need a set of models of the other agents. Those models (we will use FCFs to
implement them, more on this in section 3.8) will be built iteratively along
the history of successive interactions. Once it has an estimation of the error,
SPARTAN will compute a suitable value for ¢, (the amount of money it
will invest in its own appraisal), depending mainly in the expertise it has in
painting P’s era. Next, SPARTAN decides the set of agents from which it will
purchase appraisals and computes the vector of weights to be transmitted
to the simulator. Finally, when the appraisal is over, SPARTAN asks the
simulator about the true value of the painting P and uses the information to
update the models of the other agents.

Algorithm 3.1 General appraisal algorithm for the SPARTAN agent.

1: procedure APPRAISE(P:Painting)

2 Ask every agent their appraise confidence for P

3 Compute the variance of the relative error for each agent

4: Compute the best value for ¢,

5 Select a set of agents to which purchase appraisals

6 Form the weight vector according to the computed variances and
transmit it to the simulator

T Ask the real price of the painting to the simulator

8: Update the information about the agents

9: end procedure

There are left quite a few important questions to answer and also several
main design issues that have to be solved in the implementation. There are:

1. How to translate accurately the confidence values provided by the
agents to expected relative errors in their appraisals?

2. How to translate, in case another agent asks it, SPARTAN expected
relative error for an appraisal to a confidence value?

3. How to compute a good value for c,?
4. How to select the subset of agents to purchase an appraisal from?

5. How to form the optimal weights vector, given a set of expected vari-
ances for the appraisal error?

6. How to update SPARTAN models of the other agents?

We will discuss them in the following sections (although not in the same
order).
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3.5 The Taxation Vectors

Let’s introduce the main data structures SPARTAN will use and a little bit
of notation. We will have, for each agent a, a taxation vector R, where
it will store information relating to all the taxations it has purchased from
agent a. It will fill up this vector at the end of each iteration. Each element
R, [i] will have three fields:

e R,[i]. TimeStep. The simulation time step in which the taxation took
place.

e R,[i].ConfidenceVal. The confidence manifested by the agent a.

o R,[i].QuadRelError. The square of the relative error done by agent a
in its taxation. We define it as:

(3.13)

taxatedValue; \
R,[i].QuadRelError = 1 — tazatedV alue;
realValue;

The reason to store the square of the relative error instead of the relative error
itself (or even the absolute error) is to ease the calculations of the variance
(and standard deviations) of the relative errors in agents’s appraisals. We
will go again into it in section 3.8.

It can be observed that we don’t store in the taxations vector the epochs
corresponding to the appraised paintings. We will assume that agents “talk”
the same language independently of the epoch the painting belongs to, that
is, we will assume that a given confidence value provided by an appraiser
agent will mean the same thing when referred to whichever epoch. It seems
a sensible assumption which will allow us to quickly recollect information
about appraiser agents’ behavior and, consequently, to build more accurate
models of the agents at the earlier steps of the simulation.

3.6 Translating Standard Deviation of Relative Er-
rors to Confidence Values

When SPARTAN is asked to provide a confidence for the taxation of a paint-
ing of a given era, it has to take into account its expertise in the painting’s
era as well as the amount of money it is willing to spend in the generation of
its appraisal to respond with a value in the [0...1] interval representing its
confidence in the accuracy of its upcoming appraisal. SPARTAN is a honest
agent, so the method we will use will be honest and straightforward. We will
make depend this confidence value lineally upon the standard deviation of
the relative error, that we can compute from Eq. 3.1 by dividing it by the
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Figure 3.3: Plot of the conf function

real price of the painting. The value of the standard deviation of the relative
error, then, will be given by:

5= <s* + O‘) (3.14)

Cq

where, according to ART testbed designers [32], the value of the inherent
standard deviation s* lies in the interval [0.1...1] and the value of the pa-
rameter « is fixed for all the agents and eras. So, (assuming ¢, > 1, that
is, we spend at least one money unit in the taxation-making process) the
value of 5 will range between 0.1 and 1 + o and we can define the confidence
associated to the value 5 of the standard deviation of the relative error by
means of a simple linear function:

. K]WinConf —1
conf(s) = +a cs+1 (3.15)
Figure 3.3 shows a graph of the conf function. We have chosen not to allow
the con f function to take values over the whole [0...1] interval, so a maximal
(1 4+ «) standard deviation of the relative error corresponds to a constant
minimal confidence Ksincons and a minimal (0.1) standard deviation of the
relative error does not correspond to the unity value (which would mean full

confidence, that is, no error).

3.6.1 Translating Confidence Values to Standard Deviations

Alternatively, we don’t know “a priori” the meaning the other agents intend
to give to their statements about the confidence they have in their opinions.
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We need to interpret those statements. Concretely, we need a way to estimate
the (standard deviation of the) relative error which we can expect from the
other agents, departing from the confidence values they have provided. Asthe
number of interactions with those agents increase, we will be able of making
more accurate interpretations, but in the meanwhile, we need a method for
doing those translations from the beginning of the auction process, we will
do it by means of the inverse of the conf function:

1+«

-1
con c)=(c—1) ————
fe) = ) Kyrincony — 1

(3.16)
where ¢ stands for the confidence value provided by the consulted agent.
It is worth to stress the fact that we wont rely too heavily in the anterior
function in order to interpret other agents’ assertions, we will use it mainly as
a sensible starting point for bootstrapping purposes when little o no further
information about the other agents is available. We will see in section 3.8 how
to make use of the information gathered in subsequents interactions with the
agents to translate more accurately the confidence values provided by them.

3.7 Determining the Optimal Set of Weights in Ap-
praisal Combination

Following [32], in the ART testbed the appraisal error is distributed as a
normal aleatory variable with mean 0 and standard deviation:

5= (s*—l—a) -t (3.17)

Cg

where s* is the inherent standard deviation for the epoch to which the paint-
ing belongs, « is a simulation dependent constant and ¢4 is the amount of
money spent in the appraising process. Thus, the standard deviation for the
appraisals will also be s and the standard deviation of the relative errors
defined as “Pr%SC=Lyi]] he:

o= ; - <5* + O‘) (3.18)

Cg

We will now study the following problem: given a set A = {a1,a2...a,}
of appraisals for a painting and given the set V = {0%,0% . ..0,%} of the
corresponding variances of the relative errors (we assume that the means of
the relative errors of the appraisals are all zero), we want to find the set
of weights W = {w;,ws...w,} such that w; > 0 and ), w; = 1 which
minimizes the error of the combined appraisal t = Y, w; - a;. We will do it
by minimizing the variance of the combined appraisal ¢.
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Let’s begin with the case of two appraisals a and b, with known variances
of the relative errors o2 and 02, we can compute the variance of the appraisal
t=p-a+(1—p)-bas follows:

Var(t) = Var(p-a+(1—p)-b) (3.19)

= p* - Var(a) + (1 —p)*- Var(d)
where Var(a) and Var(b) are the variances of the appraisals. From Eqs. 3.17
and 3.18, and taking into account that appraisals have the same variance than

errors, we can express Var(a) and Var(b) in terms of the known variances
of the relative error o2 and ag using the following equivalence:

Var(a) =t*- o2 (3.20)

where ¢ is the real value of the painting. We can then restate equation 3.19
as follows:

Var(t) = t? (p2 o2+ (1—p)?- ag) (3.21)
We can now differentiate:
d(Var(t
(CCZ’J;(w:z-t?(p-ag—(l—p)-ag) (3.22)

Equalling to 0 and solving for p, we have

2
T%

=0 3.23
P 02+ o} (323)
So, the appraisal of minimal variance will be:
2 2
F= b a0 (3.24)
oz + 0o og + oy

Finally, the variance of #’s relative error, o2 can be obtained from equations

f
3.20 and 3.21 as: s
lopaes
of = —5 (3.25)
o; + 0
From this, it is easily proved that, as expected, the optimal combination of
appraisals makes appraisal variance lessen, that is: atg < o2, of
Those previous results can be easily generalized to the case of a greater
number of appraisals. In the case of three appraisals a,b and ¢, the minimal

variance appraisal will be:

2 2 2 2 2 2
7?:crbcrc~a+0'acrc-lH—aao*b-c

3.26
o20% + ofo? + 0202 (326)
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with a variance of #’s relative error

2.2, 2
2 Oq "0y " O¢
9F =53, 335, 22 (3.27)
050y 0402 +050¢
and, in the general case, if we have a set A = {a1,aq,...,a,} of appraisals
and theset V = {03, 03, ...,02} of the corresponding relative error variances:
n 2
_ AP T ., . 0%
f= i1 @i 1ljz:0] (3.28)

> o2
i=1 115 j
with a variance of #’s relative error

2 H?:l 02_2

0f = = —"+— (3.29)
DD Hj;éi ‘732'

3.8 Variance Estimation Using Fuzzy Contextual
Filters

When an agent A does not have expertise enough to guarantee a good ap-
praisal for a given painting, it can buy the opinion of other, more expert,
agents. The process is the following: first, agent a asks all or part of the
other agents to provide a value stating their confidence in the accuracy of
their appraisal of the painting. Then, a decides, upon the received confidence
values, which agents to trust, that is, which opinions to purchase. This is
the main point where the communication of false or misleading information
can happen in the ART testbed. An agent can declare a great confidence in
its appraisal just to fool the requesting agent into purchasing it, and then
produce a very bad appraisal (by spending a very little amount of money in
its appraisal creation and therefore increasing the appraisal error of the stan-
dard deviation, as stated in Section 3.3, see Equation 3.1. This will result in
a big error in the requesting agent’s appraisal and, consequently, a big loss
in its the client share. On the other hand, the requesting agent has no way
to know what the confidence value provided by an agent means. It is a value
over an arbitrary range that has to be interpreted. It is perfectly possible for
a given confidence value to mean completely different confidence levels for
different agents.

Suppose that one agent has decided to buy appraisals from one or more
other agents in order to produce (taking also into account its own opinion) its
final appraisal for a painting. We have just seen in Section 3.7 how to combine
optimally two or more appraisals, given the variances of their relative errors,
in order to obtain the appraisal with the minimal expected relative error.
The drawback is: the agent does not know a priori what the variances of the
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appraisals to be combined are?. The agent needs, therefore, a way to guess
these variances from the confidence values supplied by the appraise-selling
agents regarding to the painting to be appraised. The agent can make his
guess more accurate taking into account the history of past interactions with
them.

The problem can be solved by providing the agent with a set of FCFs, one
for each agent other than itself in the environment. Those FCFs will “trans-
late” confidence values to expected variances of the relative errors for each
agent’s appraisal. The structure of each filter will be very simple. They will
have, as input variable, the confidence value stated by the appraisal-selling
agent, and, as the filtered variable the expected variance of the appraisal-
selling agent’s appraisal relative error. The rule bases of the FCFs will be
populated throughout the simulation from the consecutive interactions be-
tween agent a and the other agents. The FCFs, then, will produce their
output from the confidence value provided by the appraisal-selling agents
and the information collected about them in past interactions.

Let’s see the structure of rule bases in the corrective module of each
FCEF': rules in the initial rule base are predefined by design implementing
Equation 3.16 and serve the purpose of providing a sensible starting point
to the interpretation process. Rules in the dynamic rule base, on the other
hand, will be continuously obtained from interactions between our agent and
the appraisal-selling agent. Each of the rules in the global rule base R (the
union of initial and dynamic rule bases) has the same form:

R; : If ConfidenceVal = C; then QuadRelError = E;

where F; is a singleton fuzzy set over the set of the reals and C; is a fuzzy real
number. So, for instance, if we purchase an appraisal for a cubist painting
for which the appraisal-selling agent declares to have a confidence 0.3, and
the provided appraised value is 30000 but the real price of the painting turns
out to be 20000 (giving a relative error of 0.5), we will add to our dynamic
rule base the following rule (see Figure 3.4):

If ConfidenceVal = 0.3 then QuadRelError = 0.25

We will have, then, a possibly large number of fuzzy rules in this form.
Now suppose that agent a wants to consider the possibility of purchasing
an appraisal for a painting from another agent b which states that it has a
confidence C' in its appraisal. How to estimate the variance of the relative

2That is, the appraisals corresponding to the other agents. The agent knows what the
variance of the error in its own appraisal is.
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ConfidenceVal QuadRelError

0.3 0.25

Figure 3.4: Fuzzy sets corresponding to the rule : If ConfidenceVal = 0.5 then
QuadRelError = 0.25

error of the appraised value?. We know that the variance is defined as the
expectation of the quadratic error, and also that the mean of the relative error
in appraisals is zero by design in the ART testbed. Given the confidence value
C, then, it would be enough for agent a to gather all the interactions in which
agent b has stated the very same confidence C' in its appraisal and estimate
the variance of the relative error in the appraisal given the confidence value
C' as the mean of the squares of the errors made. Unfortunately, confidence
values will be, in general, scattered along a big range of values, so we can
hardly expect to have enough rules with the very same confidence C' to make
the estimation accurate. Agent a can, nevertheless, look at C' as a fuzzy
number and use the rules with a confidence value "close enough" to C' in
order to improve the estimation. This corresponds to use the taxation vector
to compute the output of the fuzzy system (the corrective module) in the
following way (see Figure 3.5):

. i . . (S E
% E i=1 M (C) R[Z] QUCLCZR [Error ( . )

R
S ma(C)
where (see Section3.5) R[i].QuadRel Error is the relative error made by the
appraisal-seller agent in the interaction corresponding to fuzzy rule R[i] and
1i(C) is the degree to which the value C belongs to the fuzzy number f with
center R[i].ConfidenceVal, which we define as:

(3.31)

(C — RJ[i] .C’onfidenceVal)2>
o2

i) eo -

where the parameter « determines the width of the fuzzy number (and, thus,
the strength with which will fire the rules in the rule base). A value a = 0.15
has proved itself adequate.
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ConfidenceVal QuadRelError
1 1
0.2 /
0.3 04 0.25
1 1
0.5
0.4 05 0.09
a)
0.5
0.2
0.09 0.25
b)

Figure 3.5: Ezample of the computation of the output of a FCF for the ART
Testbed. a) The fuzzy sets representing the two rules of the FCF. The input vari-
able’s value is 0.4. b) The fuzzy set resulting from combining the output of the two
rules. The final value for the filtered variable (the estimated variance of the agent
appraisal, in this case) is computed using Equation 3.30 as 0.28.
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Figure 3.5 presents one example of output computation for a FCF with
only two rules. In the upper part of the figure are the fuzzy sets represent-
ing the rules If ConfidenceVal = 0.3 then QuadRelError = 0.25 and If
ConfidenceVal = 0.5 then QuadRelError = 0.09. The value of the input
variable (the confidence stated for one appraisal agent b) is 0.4. It can be
seen the two rules “firing” with different strengths. In the lower part of the
figure is represented the fuzzy set resulting from combining the output of the
rules. The output of the FCF, that is, the expected value for the variance of
the relative error in b’s appraisal is computed as (See Equation 3.30) as

0.09-0.5+ 0.25-0.2
2
oc 0.09 + 0.25

A number of refinements can be done to Equations 3.30 and 3.31. For ex-
ample, we can limit the number of rules that “fire” in the fuzzy system by
taking into account in the summatory in Equation 3.30 only those for which
1i(C) is above some given threshold. Another possibility is to dynamically
shrink, as simulation goes on and the rule bases get populated, the width of
the fuzzy numbers defined in Equation 3.31. Finally, in order to deal with
the dynamical nature of the testbed and the fact that agents’ statements
can change of meaning with time, we can further modify Equation 3.30 by
including the term R[i].TimeStep which represents the iteration in which
the interaction corresponding to rule R[:] happened:

ZLR‘I 14i(C) - R[i].TimeStep™ - R[i].QuadRel Error
ELR|1 wi(C) - R[i].TimeStep’

ot = (3.32)
where we can use the real parameter K to vary the relative influence of the

rules in the computed result, giving more or less importance to more recent
interactions.

3.8.1 The Reliability Calculation Module

The special features of the ART testbed make difficult the use of several of
the quality criteria introduced in Chapter 23. The current implementation of
the reliability calculation module for the FCFs, thus, will take into account
just the completeness of the rule bases for a given value of the input variable
(very roughly speaking, the number of rules that fire in the calculation of the
variance). The SPARTAN agent uses the reliability value in two ways:

3 In particular, we can expect to find a big deal of inconsistence between rules.
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e To decide whether to buy one appraisal from a given agent a. If the
reliability is high and the expected variance is also high, SPARTAN
will tend not to buy the appraisal.

e To decide whether to use one appraisal bought to a given agent a.
Depending on the reliability value Spartan can decide to make use of
the appraisal to produce its own final appraisal or not. If the reliability
is low, SPARTAN will tend not to use a’s appraisal. That said, even if
the appraisal is not utilized, SPARTAN can use it to refine its model of
agent a, increasing this way the reliability of the corresponding FCF.
This makes the behavior of SPARTAN quite conservative (in the sense
of not being trustful) during the firsts rounds of the simulation, while
trying to build reliable models of the other agents.

3.9 Deciding How Much Spend in Creating each
Appraisal

Let’s suppose that we have a painting to appraise, that we have asked for
confidence values to the other agents and that we have estimated for each
of them, the expected value of the relative error in their taxations. Now we
face two problems:

e How much SPARTAN must spend in the creation of its own opinion?
(that is, what value to give to the parameter ¢4 in equation 3.14).

e Whose agents SPARTAN must buy its opinions to in order to attain a
minimum cost-maximum quality appraisal?

A simple method could be to spend a fixed quantity in the refinement of
SPARTAN opinion and, at the same time, buy the appraisal from the ¢
agents with lesser values for its expected relative error variance. This method
is obviously far from optimal. Why should we spend money in worthless
opinions?. Don’t we have to take into account factors like the accuracy of
our own opinion, the accuracy of other agents’ opinions or the remaining
number of iterations?. On the other hand, this method is too rigid. We
surely would like, for example, to spend more money in the first steps of the
simulation in oder to create as soon as possible an ample base of customers,
despite the possible decrease in profits. In the next sections we present two
simple and sensible (albeit sub-optimal) ways to tackle this.

3.9.1 Finding a Good Value for ¢,

Let’s suppose that no other agents were available to buy appraisals from.
How could we estimate, given a set of paintings to appraise, the optimal
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amount of money SPARTAN has to spend in each of the appraisals (that is,
the ¢4 value in equation 3.14) in order to maximize profit?.

It is an important remark to do before going on with the exposition
of the optimization method. The ART testbed uses standard deviations
(in the appraisal generation process, see equation 3.14) and mean absolute
deviations (in the relative error computation of equation 3.3 and thus in the
client share assignment process of equations 3.11 and 3.12).* We will need
to find a relationship between them. We can do it realizing the fact that if
X is a normal aleatory variable with mean zero and standard deviation o,
then | X| follows a Half-normal distribution with mean /2/7 - o (a proof of
this is given in Appendix C). In our case, if the relative error in a taxation is
given by a normal distribution with mean zero and standard deviation 5 (see
equation 3.14) then the absolute value of the relative error of the appraisal
follows a Half-normal distribution of mean

m=1/—-5 (3.33)

This means that we can express the expected value of the sum of the
absolute values of the relative errors of a set T' of appraisals as a summatory

in the form:
E (m(T)) = \/z z;gq - \/z : E; <s;‘; + %) (3.34)

where §4 is the standard deviation of the relative error for appraisal ¢, sy is
the inherent standard deviation assigned by the system to the agent for the
era the painting to which appraisal ¢ refers belongs and ¢{ is the amount of
money spent by the agent in the appraisal.

Take now a look at equation 3.3. The error value ¢, for the set of ap-
praisals of agent a is a weighted sum of the absolute values of the relative
errors of the set T, of appraisals, so its expected value will be:

1 lg. AppV al — q.TrueVal|
Ele) = E :
() |T%| gq; q.TrueVal
V2/m e
= T > <sq+cq> (3.35)
N geT, g

4 Both of them are currently widely accepted and used as a measure of data dispersion
[36], however, in our opinion, this blend of measures hardens agent modeling.
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Now, we see that there is only one set of magnitudes we can play with in
order to minimize the error expected value E(e,), and they are the amount
of money spent in each appraisal. Developing a little further equation 3.35
we have:

E(e,) = |;/|ﬂ Z sy + Z

q€Ty qETa
_W2/7 Lo 2T 1
= T .qu ‘T‘ qu (3.36)
et €1, 9

Clearly, the only way to minimize E(¢,) is by minimizing the second
summatory in Equation 3.36. On the other hand, it is a well known result
that, fixed a quantity X, the minimum for the expression Zf\il 1/z; subject
to the restrictions x; > 0 Vi , Zfil x; = X is reached for z; = X/N Vi. This
leads, in our case, to an interesting result.’?

Result 3.1 When an agent a acts on its own (that is, when it does not buy
appraisals from other agents), whatever be the total amount of money M it
decides to spend in a series of appraisals, the minimum expected value for
the error is reached when sharing M equally between all the appraisals.

Let’s name this common value ®. Substituting in Equation 3.35 and devel-
oping the expression a little further, we arrive at a nice and handy equality:

Ele)) = @-Z (s*+9)

T e
qeT
= 2/r- 2Ty o
T ¢

= Vo (s+ %) (3.37)

where we introduce the value S as the mean value of the inherent standard
deviations s; associated to the eras corresponding to the whole set of paint-
ings T'. We have then a second result:

Result 3.2 When an agent a acts on its own (that is, when it does not

buy appraisals from other agents) and spends a fivzed amount of money ® in

SWhich seems a bit counterintuitive to us. At a first glance one would expect to be
more sensible to spend more money in appraisals corresponding to eras for which we have
good expertise that in those corresponding to eras we haven’t.
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each one of a series of appraisals, the expected value of the error €, is \/2/7
times the sum of a/® plus the mean inherent standard deviation for the set
of paintings to appraise.

We can at this point reformulate our main problem: we want to find, given a
series of paintings to be appraised, the optimal common amount ® to be spent
in each appraisal in order to maximize the profit in the present iteration.

As everybody knows, profit is incomings minus expenses. The expenses
are easy to calculate: if the agent has |T'| appraisals to do and it spends a
fixed quantity ® in every appraisal, the total expense will be |T'|- ®. Incomes
are a little bit trickier, but supposing that agent a’s appraisals allow it to
achieve a preliminary client share of 7, for the next iteration, and knowing
that every customer will have to pay an appraisal fee F' they will be equal
to F'-Q - 7., where

rem

Q=1-U+q+@+...+7")=1-¢q) ) ¢ (3.38)
=0

being rem the number of remaining iterations, is defined (from Equation 3.7)
to reflect the fact that clients are persistent across consecutive iterations.

On the other hand, we have from Equation 3.12 the following expected
value for next iteration agent a’s client share:

_E(C) B
Al =1 E(e,) + E(X)

where C is the set of all the paintings to be appraised in the next iteration
and A is the set of appraiser agents.

Putting it all together and substituting E(¢,) for the expression found in
Equation 3.37 we have the following expression for E(P(®)), the expected
value of the profit for agent a in the present iteration given the fixed amount
® of money to be spent in the refinement of each of its appraisals and if no
appraisals are bought to other agents:

E(7a)

(3.39)

CEdC]) E(¥)
Al =1 E(E)+2/7(5+ %)

E(P(®)=Q-F —&-|T|  (3.40)

We can now find the derivative with respect to ® and equal it to zero to
obtain the actual value that maximizes a’s earnings for the present iteration,

that ig, the amount of money that SPARTAN will spend in each of its own
appraisals for every painting in the current iteration.

\/R-Q‘F‘E(\CD-E(E)@V “R-a
(b i

(AT-D)-[T]
E(X)+5-R

(3.41)



Deciding How Much Spend in Creating each Appraisal 79

where, to summarize:

e R= \/2/771'

e () is as defined in Equation 3.38.

e [ is the fee clients pay for appraisals.

e (' is the total set of paintings to be appraised in the next iteration.

e E(X) is the expected value of the sum of the mean relative errors that
will be made by the agents other than a during the present iteration.

e « is the constant simulation parameter introduced in Equation 3.1.
o A is the set of agents.

e T is the set of paintings to be appraised by agent a during the present
iteration.

e 5= quT s, is the arithmetic mean of the value of a’s inherent stan-
dard deviations associated to the eras corresponding to the set of paint-
ings T'.

There are two terms in the previous equation whose values are unknown to
the agent in the moment of the optimal appraise calculation, @ and E(X)
6. It is little the agent can do to know or estimate @, other than guessing.
Designers of the ART Testbed decided the number of iterations for each
simulation to be random in prevention of exploitative behaviors in the final
part of the simulations 7. So no agent can have this information, even if it
would use it only for its own guidance during the appraising process. This
is quite inconvenient, given that it is easily shown that @Q’s value diminishes
as iterations go on, from @) & 1 in the first iterations to @ = (1 — ¢) in the
last one. This can considerably influence the result of the computation of
®. However, examining equation 3.38, we realize that, for a large enough
number of iterations in the simulation, the percentage of those for which @Q’s
value is substantively different from one is small enough to allow the agent
to disregard the issue (considering @ to be equal to the unity all along the

5In the current implementation of the simulator |C| is constant for every iteration and,
consequently, so is E(|C|) and there is no problem. In any case we assume that E(|C]) is
known

"And even not to make public the probability distribution it follows
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simulation) without incurring in too much penalties. That said, probably
some good guessing heuristic could give better results.

The situation regarding ¥ is a bit better. The agent can not know, of
course, what total mean error will make the other agents during the current
iteration. It can, however, calculate what the value of this error was in the
last iteration using Equations 3.7 and 3.12 and use this value as an estimator
for the total mean error in the current iteration. From Equation 3.7 we can
express agent a’s preliminary client share for the present iteration as:

- :ra—q-r;
T (1-9)

where 7, and 7, are the final client shares for the current iteration and the
previous one, respectively. We can then use Equation 3.12 to obtain, after
simplifying, the following value for Y, the total mean error committed by
the rest of the agents in the previous iteration:

(3.42)

/ €, Ta- (A — 1)

I 2
IOl = Ta- (|A] = 1)

(3.43)

where e; is the mean relative error made by agent a during the previous
iteration. Finally, we can estimate E (X) as:

E(X)=X-% (3.44)

where 0 < A < 1. X is a learning parameter intended to model the fact
that total error will decrease as simulation runs. It is interesting to remark
that this estimator will perform substantially better in scenarios with a big
number of agents where fluctuations in individual errors will tend to cancel
each other 8.

3.9.2 Deciding Which Appraisals to Buy

Once determined @, the task of deciding which appraisals to buy for each
painting can be overtaken. The method will be quite straightforward. Once
the set of confidence values for one painting has been received from the set
of appraisal agents, we will use the FCF introduced in Section 3.8 in order to
determine a vector of expected variances for each appraiser agent’s appraisal.

8 Another unexplored and straightforward possibility is to heuristically estimate the
expected value of X as

E(E):owe;

where we could make a > 0 depend on the difference between r, and r;
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Then we will arrange this vector in order of increasing expected variances
and, finally, we will start picking appraisals from the beginning of the list,
one by one, as long as the expected value of final profit increases, stopping
at the point the expected value of the final profit starts to decline. Let us
see how this is done.

For the sake of simplicity, let’s study, first, the case in which one agent a
is at the beginning of an iteration. Suppose the agent has asked for appraisal
offers for the first painting p and suppose that b is the agent that can provide
the appraisal with lower expected variance. Let A, be a’s own appraisal and
Ay be the appraisal b can provide. Let Var(A,) denote the variance of A,
and Var (Ap) denote the expected value of the variance of Aj computed by
the corresponding FCF. How to determine the worthiness of buying A,?. If
agent a buys A, the expected value of the mean error made by agent a during
the present iteration, E(e,) will decrease and this will lead to a bigger client
share expectation in the next iteration and, thus, greater expected profit.
On the other hand, the agent has to spend money in the buying of A, and
this means a decrease in the final earnings. Summarizing, in order to decide
whether to buy Ay or not? we have to answer, first, the following questions:

e How the expected value of the mean error made by agent a in the
present iteration, E(e,), will decrease by buying b’s appraisal?

e What impact will this diminution have in the final earnings of the
agent, taking into account the cost of buying A,?

Let us first answer the first question. Once known @, the optimum amount
to be spent by the agent in each appraisal, we can calculate from equation
3.35 the expectation of the mean relative error which will be made by the
agent in the current iteration, provided that no appraisal is bought from any
other agent as:

E(e) = V2T > (si+ %) = V2/m- (S + %) (3.45)

Tl &

where S = 1/[Tq| - >_ e, s; is the mean value of the base expertise of agent
a for each of the eras to which the paintings in Tj, belong.

How will diminish F(e,) with the buying of A7 As we can see in the
second term of Equation 3.45, the contribution of painting p to E(e,) can be
found in the summatory as.

Tt is important to remark that, given that A, is the appraisal with lesser expected
variance, if it is not worthwhile for agent a to purchase A, neither will be none of the
remaining ones
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op = (s; + %) (3.46)
That is, o, (see Equation 3.18) is the standard deviation of the relative error
in A, a’s appraisal for painting p. So, if we purchase b’s appraisal, A and
combine A, and A;, we must replace o, in Equation 3.45 by the value of
the standard deviation of the relative error of the combined appraisal. This
value can be computed using Equation 3.25 in Section 3.7 as follows:

| Var(Aq) - Var'(Ap)
Oab = \/Var(Aa) + Var'(Ap) (3.47)

where Var(4,) = O'g and Var' (4,), an estimator of Var(4y), is the expected

variance for appraisal Ay, computed by the corresponding FCF from the

confidence value stated by agent b respecting its appraisal for painting p.
So, the new expected mean relative error for a’s set of appraisals will be:

/ V2/m a 2/
E - . ( * f> VAT
(€q) ] Z Sq T T + T, Tab
q€Ta,q#p
2/ a
_ \/|T/| o+ > (s;+6) (3.48)
“ q€Tu,q#p

and we can now express the expected decrease in a’s mean relative error in
the present iteration caused by the buy of A as:

E(Aey) = E(en) — E (€)= v‘;a/‘ﬂ . (S; n % _ aab) (3.49)

where s is the base expertise of agent a for the era to which painting p
belongs.

We can now face the second problem, once known what the mean relative
error would be if the agent bought A, a criterion must be found to help the
agent to decide whether actually buy Ap or not. The criterion will be very
simple, a will buy b’s appraisal A, as long as the expected benefit produced
for the decrement in the mean relative error was superior to the expense
caused by the buying of Ap. We have seen how to do something similar in
Section 3.9.1. From Equation 3.12 we can express the difference between
the expected preliminary client share if agent a buys b’s appraisal Ay and
the expected preliminary client share if agent a does not buy it (that is, the
expected value of the increment of a’s preliminary client share for the next
iteration caused by buying A;) as:
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| B(S) Y e

E(ATe) = |Al —1 (E'(ea) +EX)  E(e)+ EX)

where C' is the total set of paintings to be appraised in the next iteration,
A is the set of appraisers and F(X) is the expected value of the sum of the
mean relative errors that will be made by the agents other than a during the
present iteration (which we will estimate as explained in Section 3.9.1).

This expected increment in a’s preliminary client share for the next it-
eration will produce an expected increment in the profit in the subsequent
iterations equal to:

E(AG) = F- Q- E(AF,) — ¢ (3.51)

where F'is the fee paid by costumers to the appraiser agents, () is as defined in
Equation 3.38 and ¢, is the fee agent a has to pay to agent b for its appraisal
(cp is constant and equal for all agents during the simulation). Thus, the
procedure to decide whether to buy A or not is quite straightforward: agent
a computes F(AG) and buys A, only if its value its positive.

And what about buying a third appraisal A.7. Actually the procedure
above can be generalized to any number of appraisals. It can be easily proved
that buying n appraisals to n appraiser agents is equivalent to buying the
optimal combination of the n appraisals (as explained in Section 3.7) to one
agent for n times the fee c,. Suppose, for example, that agent a has to
decide whether it is worth to buy appraisals A, A. and A4 to the agents a,
b and c. The only thing it has to do is compute the variance of the optimal
combination of its own appraisal A, with A4, A. and Ay using Equation 3.29
and take its square root to obtain the standard deviation of the combined
appraisal ogpeq. Then it can use Equation 3.48 to determine the expected
error E' (€q) (changing o4 for ogpeq) and Equation 3.50 to obtain the expected
increment in the preliminary client share. Finally, the expected increase in
the profit due to the decrement in the mean relative error will be:

E(AG)=F-Q-E(AF,) — 3¢,

Note the main difference with respect to Equation 3.51: ¢, is multiplied by
3, the number of purchased appraisals. The way SPARTAN will decide the
actual set of appraisals to buy is the following: it will pick, in order and one
by one, the appraisals with smaller expected variances and will calculate the
expected error and expected increase in profit for each of the combinations
(for example, first just A,, then A, and Ay, then A, and A, and A, and so
on) as long as the expected value of final profit increases, and will stop at
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the point the expected value of the final profit starts to decline!®.

Finally, until now, we have only studied the case where painting p is
the first one in the iteration. What about the paintings other than the
first?. The answer is simple: after processing the first painting, the expected
mean error for the current iteration E(e) will decrease in value to E (e).
Every subsequent painting can be processed in the same way than the first
one, when it arrives its turn to be appraised, provided that the value of
the expected mean error for the current iteration E(e) is updated to the
value E' () obtained in the processing of the previous painting. The whole
process is summarized in Algorithm 3.2. The algorithm is pretty well auto-
explicative. The only new point is the new error variable € , necessary to
retrieve, after the processing of each painting, the value of € in the last but
one iteration of the loop'!.

3.10 Results

The global behavior of agents in ART testbed experiments is very sensitive to
even small changes in the environment or in the particular behavior of single
agents. In order to try to overcome this problem, two series of simulations
have been carried out, using two sets of agents, a first one (Set A) with
several of the best competitors in the 2006 International ART Competition
(i.e. TAM, Frost, Neil, and Sabatini), and a second one (Set B) with new
agents synthesized to be more trusty. Ten simulations have been done in
each series. In five of them our agent, SPARTAN, uses FCFs in order to
translate the certainty values provided by the other agents to variances, in the
remaining five simulations SPARTAN don’t uses FCFs, that is, he assumes
the other agents to be trustworthy and to talk the same language than itself.
A representative set of results is shown in Figure 3.6.

As a consequence of ART Testbed sensitivity to initial conditions, the in-
herent random nature of the simulations makes the amount of money earned
by the agents in every run to be very variable. Therefore one cannot simply
take money as an absolute performance measure. Though other methods

0This method can be non optimal depending on the values of F' and c¢,. We have
adopted it for the sake of simplicity.

"The algorithm exits the loop when the combination of the N best appraisals is worse
than the combination of the N — 1 best appraisals. In this point, after buying those N — 1
appraisals and in order to update €, the expected mean error for the current iteration,
correctly for the processing of the next painting, the algorithm needs to remember what
the value of ¢ was in the previous iteration of the loop, when only the N —1 best appraisals
were combined.
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Algorithm 3.2 One iteration of SPARTAN in the ART testbed.

1. procedure ONEARTITERATION(T, X, o, @, {s*}, F', ¢})

\/2/7" * «
€ — Y Lger (571 §)

2:
3: for each painting p € T' do
4: ask all other agents for appraisals for p
5: L « List, in increasing order, of the expected variances output
by the FCFs of the relative errors in other agents’ appraisals
6: L<—(s;+%)2—|—L
7 N 1
8: AG 0
9: €, —¢
10: loop
11: N—N+1
12: if N > length(L) then
13: € —¢€
14: Break
15: end if
N
16: ON — \/2/7'r ) 725\13:?[1:7 o
17: € —¢€
18: €l<—6—@'(82+%—0‘]\7)
19: AF — o (% - efz)
20: AG' =F-Q-AF— (N —1)-¢,
21: if AG' > AG then
22: AG — AG'
23: else
24: Break
25: end if
26: end loop
27: buy appraisals corresponding to the N — 1 first entries in L
28: compute weights, if necessary, according to equation 3.28
29: send weights vector to the simulator
30: e—¢€
31: end for

32: end procedure
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0.999 for Set A and greater than 0.95 for Set B).

FCF (along with the other tricks and technigues introduced in this chap-
ter) allowed SPARTAN, to win the 4th position out of 18 participants in
the 2nd international ART competition in AAMAS 2007, May 14-18, 2007
in Hawail. A summary of the competition results and competitor teams can
be found in Appendix E. It would be interesting to analize the differences in
the strategies of the SPARTAN agent and the other agents involved in the
competition in order to discover the respective strengths and weaknesses.
Unfortunately, competing teams are generally not too keen to disclose their
tactics, but it scems that the main reason of the relative stronger perfor-
mance of other agents has to be found in strategies directed to the formation
of strong coalitions of cooperating agents. This is an aspect to wich SPAR-
TAN did not pay attention cnough. Perhaps in the future we will be able to
integrate those kind of strategies into it. Althougt it was not in the original
plan, it would be interesting to see if the use of FCF’s can give the agent a
more competitive edge.

3.11 Conclusions and Proposals to the ART Testbed
Designers

In this chapter, we have discussed several aspects of the ART Testbed and
presented the techniques and algorithms behind the appraiser agent SPAR-
TAN, specially the application of FCFEs to the estimation of other agents’s
appraisals variances. We have also presented the promising results of our
approximation to the problem. As a finish, and ever congratulating the ART
testbed designers and team in general for a well-done job, we would like to
make several proposals that, in our opinion, could improve the design of the
testbed and its overall use experience:

1. The simulator lacks a mechanism allowing the agents to be aware of the
reputation values other agents are assigning to them. That mechanism
often exist in real-life scenarios and could be easily incorporated to the
testbed.

2. Five agents are definitely too few to make reputation requests useful.
After all, every agent has its own experience which allows it to evalu-
ate as accurately as any other agent the reliability of the other agents
without having to ask for it and then translate the answer. Reputa-
tion requests would be useful in scenarios with too many agents as to
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possibly know all of them 2.

3. As stated in Section 3.3 the system does not really encourage deceit.
The benefits of deceit (that is, selling an appraisal with a big error)
are shared equally amongst all the agents (except the deceived agent,
of course). Perhaps the capacity to deceive other agents ought to be
rewarded.

4. Finally, and perhaps most important, the formula used for the compu-
tation of the standard deviation of the relative error in one appraisal:

.«
s:<s +>
Cg

allows one agent to produce appraisals with arbitrarily large error ex-
pectation (by assigning a near-zero value to ¢g4). One agent fooled to
buy one of such appraisals will probably not have any new customer in
the next iteration and, worse yet, will cause the rest of agents to share
almost evenly the customer pool, independently of its performance in
the current iteration. That seems a bit drastic and unfair'®. In order
to fix the problem, a new formula for the standard deviation of the
relative error is proposed:

s=(s;+ K- e H2eo) (3.52)

This new formula nicely bounds the standard deviation of the relative
error s between s*+ K and s*, decreasing when ¢, increases, as desired
(See Figure 3.7). The parameter K5 can be used to adjust the steepness
of the curve.

12This issue has been addressed to in the last competitions, with the new versions of the
simulator

3Moreover, if it’s two or more agents that buy one of these huge variance appraisals,
the result will tend to be the same, because, with high probability, one of the errors is
bound to be much higher than the others
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Figure 3.7: A new formula for the computation of the standard deviation of the

relative error in appraisals.






Chapter 4

From Swarm Intelligence to
Crew Intelligence: Bar Systems

4.1 Introduction

This chapter presents Bar Systems: a family of very simple algorithms for
different. classes of complex optimization problems in static and dynamic en-
vironments by means of reactive multiagent systems. Bar Systems belong to
the family of Crew Intelligence algorithms, a extension of Swarm Intelligence
algorithims also introduced in this chapter, that endows individual agents
with additional communicative and local planning abilities. Bar Systems are
looscly inspired in the behavior that a crew of bartenders can show while
serving drinks to a crowd of custorners in a bar or pub. We will see how Bar
Systems can be applied to CONTS, a NP-hard scheduling problem, and how
they achicve much bester results than other greedy algorithms in the “nearest
neighbor” style. We will also prove this framework to be general enough to be
applicd to other interesting optimization problems like gencralized versions
of the flexible Open-shop, Job-shop and Flow-shop problems.

The chapter is organized as follows: in the next section we will make a
short introduction to the main Swarm Intelligence concepts and techniques.
In section 4.3 we will introduce the novel concept of Crew Intelligence and
compare it to Swarm Intelligence. In section 4.4 we will present and formalize
the concept of Bar System, in section 4.5 we present the CONTS problem, a
NTP-hard scheduling problemn for multi agent systems which will serve us to
test the performance of Bar Systems. In sections 4.6 and 4.7 we will see how
to solve the CONTS problem using a Bar System and we will comment the
results. Finally, in section 4.8, we will draw some conclusions and we will
discuss some directions towards which future work can be directed.
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4.2 Swarm Intelligence

A commonly accepted and used definition of the term Swarmn Intelligence is:
“the property of a system whereby the collective behaviors of (unsophisti-
cated)} agents interacting locally with their environment cause coherent func-
tional global patterns to emerge”. The origin of the term is to be found in
the observation of social insect colonies and its paradigm is an ant colony. In
it, individual ants’ behavior is controlled by a small set of very simple rules,
but their interactions (also very simple} with the environment allow them to
solve complex problems {such as finding the shortest path from one point to
another one}. Ant colonies (and the same could be said about human be-
ings) arc intelligent systems with great problem solving capabilities, formed
by a quantity of relatively independent and very simple subsvstems which do
not show individual intelligence. It is the “many nitwits make a witty one”
phenomenon of emergent intelligence.

A bunch of Swarm Intelligence-inspired problem solving technigues have
appeared over the last few vears. Three of the most successful such tech-
nicues currently in use are Ant Colony Optimization |24], Particle Swarm
Optimization |47| and Stochastic Diffusion Scarch [6]. Ant Colony Opti-
mization techniques, also known as Ant Systems, are based in ants’ foraging
behavior, and have been applied to problems ranging from determination
of minimal paths in TSP-like problems to network traffic rerouting in busy
telecormmunications syvsterms. Particle Swarm Optimization techniques, in-
spired in the way a flock of birds or a school of fish moves, are general global
minimization techniques which deal with problems in which a best solution
can be represented as a point or surface in an n-dimensional space. Stochas-
tic Diffusion Scarch is another generic population-based scarch method in
which agents perform cheap, partial evaluations of a hypothesis (a candidate
solution to the search problem) and then share information about hypothe-
ses (diffusion of information) through direct one-to-one communication. As
a result of the diffusion mechanism, high-quality solutions can be identified
from clusters of agents with the same hypothesis.

Swarm Intelligence techniques present several advantages over more tra-
ditional ones. On one hand, they are cheap, simple and robust; on the other
hand, they provide a basis with which it is possible to explore collective {or
distributed) problem solving without centralized control or the provision of a
global model. Over the last years they have found application in a wide va-
riety of domains: collective robotics, vehicle navigation, planetary mapping,
streamlining of assembly lines in factories, coordinated robotic transport,
banking data analysis and much more. The interested reader can find a lot
of useful references about self-organization and Swarm Intelligence theory
and applications in [4, 8, 7, 28, 43, 50].
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4.3 Swarm Intelligence vs. Crew Intelligence

No doubt, Swarm Intelligence techniques have proved its usefulness over the
last years. Nevertheless, in our opinion, their applicability and effectiveness
is somewhat limited by the simplicity of the individual agents in the swarm.
In the typical Ant Colony Optimization systems, for example, ants behavior
is purely reactive and communication between ants is only allowed through
the environment, in the form of a pheromone trail. One can’t help but won-
der whether it would be possible to increase the individual communication
and problem solving capabilities of the agents in a Swarm Intelligence sys-
tem, while at the same time maintaining the desirable features of cheapness,
locality, decentralization, simplicity and robustness and what impact would
it have in the overall behavior of the system.

It turns out to be that it is possible to find such systems in the real world,
specially in those situations where people have to coordinate themselves in
a highly dynamic environment in order to solve some kind of scheduling
process. Examples are a vessel crew, a staff of bartenders serving pints in
a pub or a soccer team. These kind of systems are characterized by highly
dynamic environments where tasks of different classes quickly appear and
disappear and have to be carried out in a timely fashion. Coordination
between people in this kind of systems is very important, but is not attained,
typically, by means of some centralized global procedure. The behavior of
the individual agents is mainly reactive (they react to the appearance and
disappearance of tasks) but, at the same time, and this differentiate them
from classical Swarm Intelligence systems, they make a limited! use of their
“human” abilities (complex communication, reasoning, local planning ...)
to coordinate themselves and increase the problem solving effectiveness of
the system. We have chosen to christianize those kind of empowered Swarm
Intelligence Systems with the name of Crew Intelligence Systems?.

The class of systems we present in this chapter, Bar Systems [20, 21],
belonging to the broader class of Crew Intelligence systems, are reactive
multi agent systems whose behavior is loosely inspired in that of a crew of
bartenders. Three traits distinguish them:

e They are well suited for finding approximate solutions for large and
complex scheduling real-time problems in highly dynamic environments.

!Limited mainly by time constraints.

2Crew: a group of people associated together in a common activity or by common traits
or interests. (From the Merriam- Webster Online Dictionary [45])
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e The behaviors of individual agents are directed towards the maximiza-
tion of a local affinity function. This individual behavior results in the
whole system tending to the minimization of a global cost function.

e Individual agents are endowed with more or less complex communi-
cation and local planning abilities which increase the problem solving
capabilities of the system.

4.4 Bar Systems

Anybody who has tried to get served a pint in a bar crowded with customers
will have had more than enough time to wonder with boredom about the
method used by waiters, if there is any, to decide which customer to pay
attention to at each time. Sometimes there is not much point, to be served
before, in having been waiting for a long time or in yelling at the waiter. De-
tails like the bar area where the customer is, his/her sex, whether the waiter
knows him/her or whether the waiter likes the customer’s face determine to
a high extent the way in which orders are served.

Let us examine the situation from the bartenders’ point of view: a heap
of customers are ordering drinks at once, new ones arrive all the time, and
the bartenders have to do all their best to serve them. Of course, they cannot
do it in an random way; they have to try to maximize some kind of utility
function which will typically take into account aspects such as average serving
time, average serving cost or average customer (and boss) satisfaction. They
will have to pay attention, then, to facts such as that some of them can
prepare certain drinks more quickly or better than others, that the order in
which the drinks are served influences the time or the total cost of serving
them, and that also moving from one place in the bar to another costs time.
All of this without forgetting, on one hand, that the order in which orders
were taken has to be respected as much as possible and, on the other hand,
that they have to try to favor the best customers by giving them special
preferential attention and best service and keeping them waiting for a shorter
time.

The problem is not at all trivial, (actually we will see that it can be proved
to be NP-hard), bartenders have to act in a highly dynamic, asynchronous
and time-critical environment, and no obvious greedy strategy (such as serv-
ing first the best customer, serving first the nearest customer or serving first
the customer who has arrived first) gives good results. Nevertheless, a staff
of good bartenders usually can manage to serve a lot of customers in such
a way that the vast majority of them were, more or less, satisfied. The way
they accomplish the task seems to have little to do with any global planning
or explicit coordination mechanisms but, arguably, with trying to maximize,
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every time they choose a customer to serve, some local utility function which
takes into account aspects like the importance of the customer, the cost for
the waiter of serving her/him and the time that he/she has been waiting
for service. On the other hand, nevertheless, waiters use to communicate
with each other in order to do their job more efficiently (asking other waiters
for something or deciding which waiter serves to each customer, for exam-
ple), and it is undeniable that they employ often some kind of local planning
method (even if it consists simply in serving two customers at once when
they ask for the same or a similar beverage).

In the next section, we will try to give a general formalization of this type
of problem solving behaviors, which we call Bar Systems.

4.4.1 Definition
We will define a Bar System as a quintuple (E, A, T, F, C) where:

1. Eis a (physical or virtual) environment. The state of the environment
at each moment is determined by a set of state variables Vg. One
of those variables is usually the time. We define S as the set of all
possible states of the environment F, that is, the set of all the possible
simultaneous instantiations of the set of state variables V.

2. A = {a1,az,...,an} is a set of agents situated into the environment
E. Each agent a; can have different problem-dependent properties (i.e.
weight, speed, location, response time, maximum load...).

3. T = {t1,ta,...,tpr} is a set of tasks to be accomplished by the agents
within the environment E. Each task has its own conditions of appear-
ance and disappearance which are not know by the agents. Each task
t; has associated:

o imp(t;). A real function of S that reflects the importance of the
task t; in the current state of the environment.

e urg(t;). A positive real function of S which represents the urgency
of task ¢; in the current state of the environment. It will be usually
a nondecreasing function of time.

Additionally, for each agent a; and each task ¢;, we have:
e pre(ai, t;). A set of preconditions over Vi which determine whether

the task t; can be done by agent a;.

e post(a;,tj). A set of postconditions over Vg which describes the
resulting state of the environment after task ¢; has been done by
agent a;.
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e cost(a;, t;) A function of Vg that reflects the cost for agent a; to
execute the task ¢; in the current state of the environment. We
will come back to this function in section 4.4.1.1.

4. F: S x AxT — R is the function which reflects the degree to which
agents are "attracted" by tasks. Given a state s of the environment, an
agent a; and a task t; F'(s,a;,t;) must be defined in a way such that
it increases with imp(t;) and urg(t;) and it decreases with cost(a;, t;).

5. C is the global cost function to be minimized by the Bar System. C
can have different forms. It can be, for example, the total time needed
to finish all the tasks, the mean time, the total cost, etc.

4.4.1.1 The cost(a;,t;) function

As stated in the preceding section the function cost(a;,t;) reflects the cost
for agent a; to execute the task ¢; in the current state of the environment.
This cost can be divided in three parts:

cost(a;, tj) = costpre(ai, tj) + costigs(ai, tj) + costpost(ai, t;) (4.1)
where:

o costpre(ai, tj) reflects the cost for a; to make the environment fulfill
the preconditions of task ¢; (this can include the cost of stop doing his
current task). If agent a; is unable to adapt the environment to the
preconditions of task ¢; then we can define it as infinite.

o costiqsk(as,t;) is the cost for a; to actually execute ¢; once preconditions
are fulfilled and costpost(ai, tj). If agent a; is unable to carry out task
t; by itself then we can define it as infinite.

® costpost(ai, tj) has to reflect the fact that different agents modify the
environment differently as a result of the actions they undertake in
order to carry out the same task, thus hindering or facilitating to a
greater or lesser extent the execution of other pending tasks (that is, the
resulting state of the environment after an agent a; has performed some
task ¢;, given by post(a;,t;), can modify costp,e(ap,t,) for one or more
agents a, and tasks t;). Think, for example, about two bartenders.
Both of them can prepare a given cocktail, say a Dry Martini, but
one of them makes use of the cocktail shaker to do it, while the other
one does not. Which one of the bartenders prepares the Martini has
great influence over the cost of preparing, say, a Mojito at a later
time. Mojito preparation requires a cocktail shaker that will have to
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be cleaned if it has been used to prepare the Dry Martini. A suitable
definition of costpost(ai,t;) would be:

COStpost(aia tj) =K- Z d(S,pT@(t)) - d(s',p?“e(t)) (42)
tET t#t,

for a suitable value of the parameter K, where s and s’ are, respectively,
the state of the environment before and after agent a; performs task
t; and d(a,b) is some distance that estimates the cost of making the
environment change from state a to state b.

4.4.2 Specialization in Bar Systems

The cost of carrying out a given task is variable over the set of agents, that
is, different agents will incur in different costs carrying out the same task.
Agents, then, will tend to prefer those tasks that are easier for them (have
a lesser cost), which will have a greater value for the affinity function F.
This provides for specialization. Nevertheless, if no specialist is available for
a given task, another less suitable agent will eventually carry it out at the
moment the urgency of the task causes the value of the affinity function rise
enough.

4.4.3 Bar System’s Dynamics

In Bar Systems, agents operate concurrently into the environment in a asyn-
chronous manner, thus eliminating the typical operation cycles of other
Swarm Intelligence systems (e.g., Ant Systems, Particle Swarm Optimiza-
tion Systems, Cellular Automata, etc.). The general individual behavior of
agents is given by Algorithm 4.1.

The crucial step in the algorithm above is the choice of the task which
the agent has to execute for the next time step. In its simplest form, it can
consist in choosing the one which maximizes the attraction function F' . We
will see in the next sections that it can also involve some kind of negotiation
between agents and even some kind of local planning.

It is worth to stress the fact that the algorithm allows the agents to
respond in real time to changes in the environment like the appearance of new
urgent tasks or the temporal impossibility of fulfilling the set of preconditions
of a given task.

4.4.4 Inter-agent communication in Bar Systems

Even if Bar Systems don’t require from the agents any communicative skills,
they are indispensable in order for the system to attain the coordinated and
self organized behavior typical of Swarm Intelligence Systems. It is worth
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Algorithm 4.1 Individual agents’ behavior algorithm in Bar Systems

1: procedure BARSYSTEMAGENT

2 repeat

3 Find the most attractive free task M

4 if the agent is doing M OR trying to fulfill pre(M) then
5: Keep doing it

6 else

7 Stop doing the current task, if any

8 if pre(M) holds then

9: Start doing M

10: else

11: Do some action in order to fulfill pre(M)
12: end if

13: end if

14: until no tasks left

15: end procedure

to differentiate two main classes of inter-agent communicative processes: di-
rect, where agents establish direct communication with each other via some
channel and following some kind of protocol and indirect, where agents com-
municate with each other through their actions, which cause changes in the
environment?.

We can identify three main purposes to which communication can serve

in order to increase Bar Systems problem solving capabilities:

o Conflict resolution and negotiation. The way we defined Bar Systems

makes unavoidable the occurrence of conflicting situations in which two
or more agents choose the same task to carry out. Lack of communi-
cation will lead to a waste of resources because of several agents trying
to fulfill the preconditions of the same task, even if only one of them
will finally carry it out. In such situations it would be convenient to
have some kind of negotiation method which can be as simple as "the
first one which saw it goes for it". In section 4.4.4.1, we will discuss a
couple of more elaborated negotiation strategies.

Perception augmentation. In the case that agents have limited percep-
tion capabilities (we refer to capability to perceive the tasks), commu-
nication can allow an agent to transmit to the others information about

3 In the Bar Systems framework, it can be seen as agents generating “communicative

tasks” which, when carried out by other agents, increase the information they possess
(about the environment, the task set ...)
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pending tasks they are not aware of. Let’s suppose we want to do some
kind of exploratory task in a vast terrain where points of interest must
be identified and explored by means of a Bar System. It would be use-
ful that agents had the ability to share information about the points
of interest which they have located during their exploratory activity,
this way agents would have access to information about the location of
points of interest which lie beyond their perceptual capabilities.

e Learning. The attraction function F' defined in Section 4.4.1 does not
need to be fixed in advance. Agents can learn it through their own
activity and their communicative interactions with other agents. For
example, an agent can find out that a certain kind of task has a high
cost and communicate this fact to the other agents. Not only that,
agents can even learn from other agents the way of carrying out new
tasks.

4.4.4.1 Negotiation in Bar Systems

As stated before, negotiation plays a key role in Bar Systems performance.
Negotiation allow agents to avoid conflicts when two of them share the same
most attractive task, helping to decide which agent will take care of it. Sev-
eral negotiation strategies can be devised when several agents want to do the
same task ¢, amongst them (from more simple to more complex):

e FTI. First Take It. The first agent to choice a given task as its more
attractive task carries it out.

e HP. Highest Preference. The agent with the greatest affinity (value of
the F' function) to task t carries it out.

e HPD. Highest Preference Difference. The agent with the greatest dif-
ference between its affinity to ¢ and its affinity to its second preferred
task carries ¢ out.

In lack of further experimentation, we have the opinion that some kind of
combination of the three criteria would be a good option for a wide range of
problems.

4.4.5 Local planning in Bar Systems

Although there is nothing like global planning in the way a set of bartenders
work, they have tricks that allow them to spare time and effort. For example
if two customers are asking for a pint and they are close enough to each other
in the bar, the bartender will usually serve them at once. In a similar way, a
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taxi driver who is going to pick up a passenger will surely take advantage of
the opportunity if he finds in his way a new passenger and he can transport
him without deviating too much from his original route. The inclusion of
this sort of very simple, problem-dependent, local planning techniques in the
choice of the tasks is not difficult and can be done through different methods
ranging from local search to the use of expert rules.

4.5 The CONTS Problem

A class of problems frequently found in "real life" involves some kind of
scheduling in the transport of goods or people from one place to another.
The problem which we present as a framework for the study of Bar Systems
applicability and efficiency is inspired in the problem which has to be solved
by a group of loading robots in a commercial harbor. The task of these robots
is to transport the containers from their storage place to the docks where the
corresponding ships have to be loaded. Of course, this transport has to be
done in such a way that the containers arrive in time to be loaded and with
the lowest possible cost. Next we state a formalization (and simplification) of
the problem, which we will call CONTS. Afterwards we are going to study its
complexity and we will see how we can use a Bar System to solve it efficiently.

4.5.1 Definition of the problem

Let C = {c1,ca,...,cn} be a set of containers, let L = {l1,ls,...,I;n} be a set
of loading robots and let P = {(z,y) € {0..MaxX} x {0..MazY}} be a set
of positions. Each container ¢; has the following associated properties:

e p(c;) € P. The position where the container lies.
e dest(c;) € P. The position to which the container has to be carried to.
e weight(c;) € RT. The weight of the container.

e dline(c;) € RT. The latest instant of time in which the container can
arrive to the dock in order to be loaded in time into the ship.

In order not to complicate the problem too much, we will assume that all
the containers have the same importance. There are also several properties
associated to each loading robot li:

e p(l;) € P. The place where the robot is at each instant.
e mazload(l;) € RT. The maximum weight the robot is able to carry.

e maxdist(l;) € RT. The distance beyond which the robot can’t "hear".
It allows us to model the perceptual limitations of the robot.
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e speed(l;) € RT. The speed at which the agent can move.

Robots can perform different actions, they can move towards any position,
load (if container and robot are in the same position) containers which weigh
less or the same as its maxload value and download containers.

The problem consists in finding, if it exists, a sequence of actions that
allows the robots, departing from their initial positions, to transport every
container to its destination point, in such a way that no container arrives
after its deadline. In order to simplify the problem, we will assume that
the robots always move at the same speed, that uploading and downloading
operations are instantaneous and that robots can only carry one container
at a time.

4.5.2 Complexity of the CONTS problem

Of course, before trying to solve the problem we have to get an idea of its
complexity. Using an heuristic method might not make much sense if there
was some exact method of polynomial complexity. On the contrary, if the
problem was very complex, using heuristic methods which gave approximate
solutions, like Bar Systems, would be justified. The fact is that the problem
is not at all trivial. The associated state space is enormous (it is not only
necessary to take into account which containers each robot will move and in
which order; the solution of some instances of the problem implies moving
some containers to a different position from the one of delivery and leave
them there to return to take them later) and it is also extremely sensitive
to initial conditions, as most of NP-hard problems usually are. In [18] an
in-depth study of the problem can be found with a proof of it to be at
least as complex as a NP-hard problem. In general terms, the proof reduces
the Traveling Salesman Problem (TSP) to CONTS by showing that every
instance of the TSP problem is equivalent to an instance of CONTS where
there is a single robot and all the containers have the same deadline and have
to be delivered in the same position where they lie (please, refer to Appendix
D for further information). An exhaustive search method that finds optimal
solutions has also been programmed but, as expected, it can only deal with
extremely simple instances of the problem.

4.6 A Bar System for Solving the CONTS Problem

Once the option of solving the problem in an exact way in the general case has
been discarded, we now look at the possibility of using an heuristic method
like a Bar System. The idea on which we are going to base it is very simple:
to simulate an environment where the containers "shout" to the agents asking
for somebody to take them to their destination. The intensity of the shout
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of each container depends on the remaining time before its deadline and the
distance between its position and the delivery position (it could also depend
on the importance of each container, but we must remember that the way
we defined the problem, they are all equally important). The robots hear
the calls of the containers diminished by the distance, so they go and take
the ones they hear better. In order to achieve this behavior in the robots
we will use a linear attraction function. Following the notation introduced
in section 2, we define, for all container ¢ and for all robot [, the attraction
function F' in the following way:

—o00, if ¢ has been delivered.

—00, if ¢ is being delivered for a
robot other than I.

K -urg(c) — Ky - cost(c,l), ow.

Fle,l) = (4.3)

where K; and Ky are adjustable parameters. The urgency function urg(c)
is defined as inversely proportional to the time which remains to ¢’s deadline
and takes into account the time required for transporting the container to
its destination point:

d(p(c),dest(c))

meanspeed

urg(c) = curtime + — dline(c) (4.4)
where d is the Euclidean distance, curtime is the current time and meanspeed
is an environmental constant which averages agents’ speeds. The cost func-
tion is defined as follows:

oo, if weight(c) > mazxload(l).
cost(c,1) = oo, if d(p(l),p(c)) > maxdist(l).
d(p(l), p(c)) + d(p(c), dest(c))
speed(l) ’
The election of this attraction function F' is quite arbitrary. A non-lineal
function would probably better reflect the "hearing" metaphor introduced
before. In the same way, we could also have defined a more sophisticated
urgency function, non-linearly increasing depending on the time to the con-
tainers’ deadline, for example. Bar Systems are general enough to use any
attraction, cost or urgency functions. The question is finding, for each prob-
lem, the function which will give the best results. Our choice of the attraction
function F' is based in its simplicity, in spite of which, it has allowed us to
obtain very good results.

The behavior of the robots will be very simple and it will obey the algo-
rithm described in Section 4.4.3. Each robot will choose a container to go
for and will go towards its position, will load it (if not any other robot has
arrived first) and will take it to the delivery point. After that, it will repeat
the cycle until no containers left to transport.

(4.5)
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4.6.1 Inter-agent communication and local planning for the
CONTS problem

Aiming to the study of the utility of inter-agent communication, we will in-
vestigate two different methods for the choice of the next container to go
for. If no communication between agents is allowed, each agent will simply
choose the one which maximizes the attraction function. On the other hand,
if the possibility of communication between agents is activated, each robot
will ask to the others (perhaps not all of them but only those which com-
munication is feasible) which containers they prefer and, in case of conflict
(that is, another robot preferring the same container), a small negotiation
process will start, the goal of which is to give preference to the agent who
will be able to carry faster the container to its delivery position. The agent
which finds itself in the situation where other agents have priority over it
to transport its favorite container will try with the next best container, in
order of preference according to its point of view, until if finds one for which
it will have more priority than any other agent. It would be easy to devise
more sophisticated negotiation processes taking into account the second-best
options of the agents in conflict in such a way that one agent could resign
carrying its preferred container, even if it has the higher preference over it,
whenever the preference difference between the best and the second- best
containers was small enough.

We have also implemented a very straightforward planning-like strategy
in our Bar System. Whenever a robot has a container to go for, it looks
if there exists another one such that it is possible to transport it without
deviating too much from its original way to the first container position. If so,
the agent transports it before resuming its original way to the first container
position.

4.7 Results

In order to analyze the efficiency of our method and experiment with different
settings and parameter values, we have programmed a graphical simulator for
the problem (see Figure 4.1). We have chosen an instance of the problem with
eighty containers randomly scattered on a 300 x 300 rectangular area with
random delivery points and deadlines and four carrier robots, all of them
with the same value for the parameter maxdist and different speeds. We
have done two main sets of simulations experimenting with different values
of the parameters K1 and K2. In the first set (figure 4.2) we don’t allow
agents to communicate or perform any local planning, whereas in the second
set (figure 4.3) communication and local planning are permitted.

We can see in figures 4.2 and 4.3 the results of the two sets of simulations.
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Figure 4.1: Screen capture of the simulation program in action. Lines indicate
the destination point of each robot. Red lines correspond to carried robots heading
towards the container’s delivery point. Green lines correspond to free robots making
their way towards their preferred containers. Big dots indicate timed-out containers.

Each row represents a series of 121 simulations (for values of the K1 and K2
parameters ranging from 0 to 10 in increases of 1). The charts in the left
columns show the time used to deliver all the containers and the charts in the
right columns show the number of containers delivered before their deadlines.
The two rows correspond to different values (300 and 100) of the maxzdist
parameter.

We can draw several conclusions. On one hand, it is clear that, for some
values of the parameters K1 and K2, the system finds much better solutions
than those which can be obtained by using nearest neighbor-like methods.
We can observe the performance of those methods in the top row of figure 4.2,
when K1 = 0 the preference function F' depends only on the cost function
and the systems behaves in the “nearest container” way. The results are a
low total delivery time and a considerable number of containers delivered
after its deadline. The case K2 = 0 is even worse. The system follows the
“most urgent container” behavior, resulting in very long displacements which
cause a big total delivery time and ,consequently, a big number of containers
delivered with retard. It is worth to remark that the improvement over
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Figure 4.2: Left: Total time needed by the system to deliver all the containers
for different values of the parameters K1 and K2 and for different values of the
parameter maxdist (top row maxdist = 300, bottom row mazxdist = 100). Right:
Number of containers delivered before their deadlines. Communication and local
planning are deactivated.

Figure 4.3: Left: Total time needed by the system to deliver all the containers
for different values of the parameters K1 and K2 and for different values of the
parameter maxdist (top row maxdist = 300, bottom row maxdist = 100). Right:
Number of containers delivered before their deadlines. Communication and local
planning are permitted.
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those greedy methods achieved by our Bar System for some values of the
parameters K1 and K2 is not attained in exchange of a greater complexity;
in fact, the complexity of the system, understood as the amount of work
which each agent has to do in order to decide the next container to go for,
increases lineally with the number of containers.

We can also observe how the quality of the solutions found depends on
the perceptual capabilities of the agents. When this capability is very limited
(not shown in the figures), robots’ behavior is too local, resembling some-
what like a mixture of“nearest container” and random walk. On the other
side, very good solutions are found for certain values of the parameters K1
and K2 when the agents are able to perceive the environment almost entirely
(maxdist = 300). This augmented perceptual ability implies, nevertheless,
the possibility of appearance of several phenomena which can affect system’s
efficiency, like, for instance, that it will be necessary to evaluate more alter-
natives, that the probability of conflicts will increase and that, depending on
the values of the parameters, the system can arrive to very bad solutions if
the agents must perform long displacements. Thus, a bit paradoxically, more
perception power can yield poorer results. The most interesting case, from
our point of view, is when the agents have a perceptual capability between
the two extreme points. We have tested the case maxdist = 100 and we
can see in the bottom row of figure 4.2 how the system finds good solutions
for most values of the parameters K1 and K2. There are particularly, two
big zones in the parameters space where the solutions found are as good as
the ones obtained by the agents of the first row of the figure, which have a
perceptual power nine times greater.

In figure 4.3, we can see how the inter-agent communication or negoti-
ation and local planning can improve greatly, depending on the values of
the parameters, the quality of the solutions found. Clearly, the importance
of communication between agents increases with the possibility of conflict,
which is proportional to the agents’ perception power and decreases with the
relative magnitude of the parameter K2 regarding K'1. The more K2 grows
regarding K1, the more importance is given to the distance to the container
in the calculation of the preference function, the robots tend to prefer the
nearest containers and the number of conflicts decrease, as well as the utility
of communication.

It is interesting to note that for some values of the parameters K1 and
K2, communication and local planning capabilities doesn’t improve system’s
results. This is probably due to the fact that the results for those parameter
values in the Bar System without communicative or planning capabilities are
near-optimal (all the containers delivered in time). Nevertheless, it is clear
that more work in this direction is needed in order to clarify communication
and local planning effects.
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4.8 Conclusions and Future Work

We have presented Bar Systems, a new class of reactive multi-agent systems
for distributed problem solving. They are loosely inspired in the way a group
of waiters work behind a bar. We have formalized the definition and we have
given the general algorithm which rules the behavior of the individual agents.
Several of the characteristics of Bar Systems are:

e Simplicity. Agents in Bar Systems are simple. They share a similar
structure and operate in a decentralized manner in a similar way opti-
mizing a local function. Interactions between agents are simple, too.

e Efficiency. Bar Systems have lineal complexity with respect to the
number of tasks.

e Robustness. Faults in individual agents do not decrease dramatically
the efficiency of the system. Moreover, Bar Systems’ problem solving
capabilities increase steadily with the addition of new agents.

e Responsiveness. Bar Systems respond easily to the occurrence of un-
foreseen events as the appearance of new high priority tasks.

All those characteristics, jointly with the capability to seamless integrate dif-
ferent more or less sophisticated negotiation and local planning techniques,
make Bar Systems very suitable to solve problems in asynchronous, dynam-
ical, partial information and time-critical environments.

To check the efficiency and applicability of Bar Systems, we have defined
a NP-Hard problem called CONTS, based on the work which a set of robots
has to perform to transport a set of containers in time to their destination.
The Bar System used to solve it has proved to give much better results than
other greedy algorithms of the nearest neighbor type and has established,
in our opinion, the usefulness of Bar Systems as a general framework for
solving this type of real time problems. We have also seen that communica-
tion amongst agents and local planning allows improving the results greatly
without increasing the complexity of the system significantly.

Our work in Bar Systems is just starting and we are aware that there are
many aspects that require more study and testing. Some of the directions
in which it would doubtless be worth working and which essentially refer to
the nature of the attraction function F' are:

e Study of Bar Systems’ performance in highly dynamical, time-critical
environments. We are currently considering its use in the ROBOCUP
and RESCUE environments.

e Study of the applicability of Bar Systems to other kinds of problems At
a first glance it could seem Bar Systems to be a bit too restrictive with
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respect to the kind of problems which they can tackle, We must remark,
nevertheless, that its application is not limited to problems involving
the transportation of goods or people (and we don’t mean it to be a
narrow application field, it is wide enough to contain problems ranging
from service assignation in cab companies to multiagent autonomous
terrain exploration), they can also be useful in other problems which
do not necessarily involve physical movement of the agents (actually,
there is a considerable amount of work in progress [17]| concerning the
applicability of Bar Systems to digital document preservation, for ex-
ample). They are also applicable to resource allocation problems in
the style of flexible Open-Shop problems where the order in which a
set of machines, in a factory, for instance, has to perform a set of oper-
ations has to be decided. Moreover, with an appropriate definition of
the attraction function F', a Bar System can be used for solving flexi-
ble Job-Shop problems, where there is a set of independent jobs, each
formed by a series of tasks which have to be done in a specific order.
In this kind of problems, for each job there is at all times, at the most,
just one feasible task, and it would be sufficient to define the attraction
functions in such a way that all job’s not done tasks “transmit” their
urgency to the feasible one. The same idea could be used in a more
general setting, where there would simply be any type of non-cyclical
precedence relations over the set of tasks. It can also be worth to study
the applicability of Bar Systems in competitive environments.



Chapter 5

Using FCFs to Filter
Inter-Agent Communication in
Bar Systems

5.1 Introduction

We have seen in Chapter 4 how Bar Systems can show remarkable perfor-
manee in the resolution of difficult problems like CONT and how this good
performarnce relies heavily upon the communication abilities of the individual
agents. The importance of the inter-agent communication makes possible,
therefore, that the failure of one or more agents to provide true and accurate
information to the other agents in the system could result in a substantive
deterioration of the problem solving capability of the Bar System.

Main causes for the communication of false or unaccurate information
were exposed in Section 1.2. They can be divided in two classes: intentional
and unintentional. Intentional false communication may occur typically in
competitive scenarios where an agent tries to gain a competitive advantage
by fooling their more collaborative mates. Unintentional communication
of false information, on the other hand, can be due to several reasons. For
example, the agent that cmits the information can speak a different language
that the agents that receive it (perhaps because they are using different
measurement systems). It is also possible for an agent to be not aware of some
digfunctionality in its behaviour wich makes it to communicate inaccurate
information (a defective sensor, for example). Whichever the case, it is clear
that a mechanism able to deal with those problems is needed.

We saw in the ammeter case study in Chapter 2 how FCFs can deal
effectively with the problem of unintentional false information, the kind of
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false information expected to appear in collaborative environments. In this
chapter we will show how FCFs can also deal with the problem of the commu-
nication of intentionally false information in a competitive environment. We
will define a scenario where several taxi driver agents will compete for cus-
tomers and we will show how FCFs can be used to decide whether to compete
or not against the other agents for a customer. A quite simple evolutionary
method will show how individual agents can improve their performance by
refining its internal models (the FCFs) of the competitor agents.

The structure of the paper is as follows: Section 5.2 formalizes the prob-
lem and briefly describe the simulator and the evolutionary algorithm used to
obtain the results, which are commented in Section 5.3. Section 5.4, finally,
presents the conclusions and enumerates several possible directions for the
future work.

5.2 Case Study. Competitive taxi driver agents

This section defines and formalizes the competitive taxi driver agents problem
and describes the implementation of a simulation that uses it as a workbench
for FCF testing.

5.2.1 The problem

The problem can be summarized as follows: the job of a set of taxi driver
agents involves the transport of passengers, in exchange of money, between
different points in a territory. Passengers can appear at random positions
and times and have an associated profit, the amount of money paid to the
agent that transports him to its destination point. The agents must compete
between them in order to achieve the maximum total profit. Let’s formalize
it a bit more:

Let P = {(z,y)|lz € [1... MaxX],y € [1... MazY]} be a set of positions
and let A = {a;...an} be a set of taxi driver agents. We define, for each
taxi driver a; the following quantities:

o Position p; = (pix, piy) € P. The current position of taxi driver a;.

o Speed s; € RT. The displacement speed of taxi driver a;. We assume
it constant, in order to simplify the problem.

On the other hand, let C' = {c1...¢,} be a set of customers. Each customer
¢; has the associated quantities:

e Position p; = (pl-z,piy) € P. The current (origin) position of passenger
C;.
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e Destination d; = (diz, diy) € P. The position passenger c¢; wants to go.
e Profit QQ; € R. The amount passenger c¢; is willing to pay for the trip.

Taxi driver agents can perform two main actions: The first is to go to any
place in the territory (usually to load a passenger, although random moves
are allowed when no passenger is in sight). The second action is to transport
passengers to their destination points. Passengers pay to the taxi driver in
the moment of the arrival. For the sake of simplicity, we will suppose that:

e Passenger loading and unloading are instantaneous processes.
o All taxi driver agents can carry any passenger, but only one at once.

e Taxi driver agents can calculate and express the interest they have in
each individual passenger. This number somehow reflects the extent
to what they are eager to compete for it. Agents know the interest the
other agents have in each passenger and can use this information to
decide whether to compete for them or not. However, agents can lie
about the interest they have in order to discourage competitors.

Individual agents face then with the problem of finding the strategy that
maximizes their profit in this competitive environment.

5.2.2 The simulation

Algorithm 5.1 Main procedure of the simulator

1: function SIM.RUNSIM : returns results;
2 Sim.Initialize;

3 repeat

4 Sim.lookForNewPassengers(NewPProb);
5: for all agent a in Sim.agents do

6 a.chooseDirection;

7 a.updatePosition;

8 a.doThings;

9 end for

10: Sim.paint;

11: until sim . finished;

12: return Sim.statistics;

13: end function

A simulator has been developed several series of experiments have been
done. Algorithm 5.1 shows a pseudo-code representation of the main pro-
cedure. After a first initialization part used to load the input files and pa-
rameters, the program enters in the main loop. Each iteration has three
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Figure 5.1: The graphical intevface to the simulotion. Agents (hig dots) go for
passengers (small dots) and then transport themn. In the figure, we can see four
agents competing for the same passenger.

parts. First part randomly generates, according to a fixed prohability distri-
bution, new passengers with their associated profit. The second part calls, for
cach agent, the three subroutines that define its behavior: chooseDirection
chooses a direction to go hased on the available passengers and the informa-
tion provided by other agents about their preferences, updalePosilion simply
calculates the position of cach agent at cach simulation cyele. Finally, the
procedure doThings performs, if necessary, the load and unload actions. The
third part of the main procedure of the simulator actualizes the graphic out-
put (Figurc 5.1}. Finally, when the simulation is finished, {usually aftor a
prelixed number of iterations) the program calls a procedure thal computes
some statistics and results about the agents’ behavior and performance.

5.2.3 The fit function. Computing the preferred customer

The precedent seetion showed how, at cach iteration of the main loop of
the simulator, agents must decide the best divection to go. That decigicn
is quite simple to take: if the agent is currently carrving a passenger, he
keeps his current direction towards the passenger’s destination point. lf the
agenl carries nothing, a [il [unclion is evalualed [or each available passenger
and the agent choose as current direetion the position of the passenger that
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Figure 5.2: Fuzzy sets corresponding to the linguistic labels associated to (a) the
input variable distance and (b) the input variable profit and the output variable
interest.

maximizes it. After that, the agent will decide whether to compete or not
against the other agents that prefer the same passenger.

The fit function takes two parameters: the distance from the agent to
the current position of the passenger and the profit associated to him. The
returned value must represent the preference degree or interest that the agent
has for this individual passenger. Each agent can have a different fit function,
and therefore two different agents can prefer different passengers even if the
distance to the passengers is the same for both.

Fit function computation has been chosen to be implemented by means
of fuzzy systems. There will be three fuzzy variables: distance, profit (as
input variables) and interest (as output variable), each of them taking values
over the fuzzy power set of {0...100}. Also, for each variable, a set of
linguistic labels D = {VeryLow, Low, Medium, High, VeryHigh} is defined
(their meaning can be seen in Figure 5.2). The fuzzy rules forming the fuzzy
systems have then a form similar to this one:

If distance is High and profit is Low then interest is Low

The application of the reasoning procedure to the inputs and the rule
base gives as a result a fuzzy set as the value of the output variable, interest.
A defuzzyfication procedure will then be applied to this resulting fuzzy set
in order to obtain a crisp value between 0 and 100. This value is used to
establish preferences upon the set of available passengers.

This formalism is quite declarative and easy to understand, and that is
powerful enough to allow the definition of a broad range of different behaviors
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in the agents.

5.2.4 Filtering the fit values provided by the agents

Once agent A has chosen the passenger he prefers to go for (let’s name it
(), it must look if there are other agents interested in the same passenger.
The other agents interested in C' are currently going towards it and it’s not
possible for A to know things like the distance from the other agents to
the passenger or the speed of the other agents. However, A has to take the
decision of whether to compete or not fior C'. That decision must be based in
the only piece of information provided by the other agents, their interest for
C (a number between 0 and 100). It’s clear that, if some other agent shows
an interest much higher than that of A, then the better strategy for A is to
renounce to C' and to choose another less popular passenger. However, it’s
very possible that a simple comparison between the interest values provided
by the other agents and its own interest would not be the best choice for
A. Other agents can, consciously or not, provide false information (from the
point of view of A). For example, greedy agents can express their interest
depending almost only on the profit associated to the passengers, that is,
they can manifest a high interest for profitable passengers even if they are
very far from them. It is also possible for the two agents not to speak the
same language, so giving different meanings to the same interest values. In
any case, it seems a sensible strategy for A to somehow filter the interest
values provided by the other agents agents, diminishing or augmenting them
depending on whether they refer to more or less profitable passengers, before
comparing them with his own interest in order to decide for competition.

In our system, that task is accomplished by means of FCFs that filter the
interest manifested by the other agents before comparing with A’s own. The
posterior decision mechanism is very simple: if A’s interest is greater than
the filtered interest values of all the other agents interested in C' then A will
compete for C, else A will look for another passenger. Each taxi driver agent
will have, thus, a FCF for each of their competitors (In fact, there is a set of
classes of taxi driver agents, so that each agent only has to maintain a FCF
for each class).

Let A and B be agents and let C be a passenger. Let i(B,C) € {0...100}
be the interest in passenger C' manifested by B. A’s very simple FCF for B
will have only one input fuzzy variable, called interest (the main variable),
and an output fuzzy variable, called finterest (the filtered variable), taking
both of them values over the fuzzy power set of the set {0...100}. No
side variables are included in the filters (although the use of the profit as
the fuzzy side variable could probably lead to better results) for the sake of
performance of the evolutionary algorithm used in the experiments.

Values for the fuzzy input variable are obtained by means of a fuzzy-
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fication process consisting in considering as a singleton fuzzy set the crisp
value i(B,C). There are also defined, for each variable, a set of linguistic
labels D = {VeryLow, Low, Medium, High, VeryHigh} (the forms of the
corresponding fuzzy sets are the same that the ones found on the right part
of Figure 5.2. So, the five rules in each fuzzy filter have a form similar to
this one:

If interest is VeryHigh then finterest is High

As it was in the case of the fuzzy systems used to compute the interest
that each agent has for a passenger, the application of the fuzzy reasoning
procedure results in a fuzzy set as the value of the output variable, finterest.
We can again apply a defuzzyfication procedure to obtain a crisp value be-
tween 0 and 100. That’s the value that A will compare with his own interest
for the passenger C to decide whether to compete or not for him with B.

5.2.5 A simple evolutionary algorithm

It is very easy to use the simulator to experiment with different agent types.
For example, more or less greedy or lazy agents (depending on if its main
motivation is profit or distance) can be defined, as well as more or less quick
ones. It is important to remark that agents can differ in two main ways.
On one hand, they may differ in the rules used to assign interest to the
passengers; some agents can prefer the nearer ones, some the more profitable.
On the other hand, it can exist a deeper difference in the way in which the
agent view the world. For example, the meaning of the label Low can be
different for different agents if so are the fuzzy sets defining it. That means
that agents with the same set of rules can behave quite differently.

In order to carry out our experiments, a simple evolutionary algorithm
has been used (see Algorithm 5.2) in which a single agent among a multiagent
community is allowed to evolve, adapting its FCFs to improve its performance
(the total profit per simulation run) It is important to note that the fuzzy
systems that compute interests remain constant along the simulation cycles,
only FCFs evolve. The operation of the algorithm is as follows: after a first
step of initialization in which the agents (several of each type usually) are
created and positioned, a first run of the simulation is carried out and a
first result is obtained, (simply the total profit obtained by the only evolving
agent). After that, the program enters the main loop, which is executed a
prefixed number of iterations. Each iteration has three main parts. First,
the fuzzy filters of the evolving agent are mutated randomly. Second, a new
simulation is run and a new result is obtained. Finally, this new result is
compared with the old one. If the new result better, then the value of the
result variable is actualized, else the mutations are undone before proceeding
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with the next iteration. The hope is the evolving agent to gradually increase
its performance by adapting itself to the other agents.

Algorithm 5.2 Simple evolutionary algorithm

1: function SiM.SIMPLEEVOL : returns results;

2 Sim.Initialize;

3 Result « Sim.runSim;

4 Iteration « 1;

5: repeat

6: inc(Iterations);

7 Sim.makeMutation;

8 NewResult < Sim.runSim;

9: if NewResult is better than Result then
10: Result «+ NewResult;

11: else Sim.undoMutation;

12: end if

13: until Iterations=MAXITERATIONS;
14: return Result;

15: end function

5.3 Results

Four main types of agents were used in the experiments:

1. Lazy. The preference of this type of agents for the passengers is almost
exclusively calculated from the distance to them. They tend to prefer
nearer passengers even if there are much more profitable passengers a
little bit far away.

2. Greedy. This type of agents assign preference to the passengers de-
pending mainly on its associated profit. They prefer more profitable
passengers even if there is a large distance to them.

3. Smart. This type of agents compute their interest for the passengers
attaching similar significance to profit and distance.

4. Fast. The set of rules for those is the same than that of smart ones.
The difference between the two types is that fast agents have a speed
of 15 while smart agents (as lazy and greedy agents) have a speed of
10.

Figure 5.3 shows the matrices representing the fuzzy systems used for
interest calculation associated with each agent type. On the other hand, we
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have to define the sets of fuzzy sets that give meaning to the linguistic labels
for each of the fuzzy variables: distance, profit, interest and finterest. For
the sake of simplicity, we have decided to have two common sets of fuzzy sets
for all four agent types. That corresponds to a MAS system in which all the
individual agents share a similar vision of the world. That is, all them mean
the same thing when they say, for example, that the distance to a passenger
is very high or that the profit associated with a passenger is medium. The
definition of the labels can be seen in Figure 5.2. In the experiments, a total
of five simulations were carried out, cach of them consissing of 200 iterations
of 12000 cycles. In all the simulations, a single evolving smart-tvpe agent
competes against six other agents, In the first four simulations, competitors
are all of the same type (smart, greedy, lazy and fast, respectively). In the
fifth simulation, competitors are one of each type. The results of the five
serics arce quite similar. Figure 3.4 shows a summary of the results of two
of the simulations. In both parts of the figure, a graph of the performance
of the agent without the use of FCFs, as well as several graphs of its perfor-
mance using specifie, constane FCFs are shown for reference purpoeses. From
the comparison between the performances of agents using FCFs and that of
those that do not use them, it is evident that FCFs have the capability of
significantly increase the performance of the agenes. On the other hand, it i
also evident that FCF learning is perfectly possible (even with an algorithm
as simple as the one used). This feature of FCEs, along with their simplicity
and generality, make themn an excellent framework for the modeling of some
social aspects, like trust and confidence, of MAS.

5.4 Conclusions and Future Work

In this chapter we have discussed the role that information filtering plays
in hoth collaborative and competitive multiagent systems. We have reached
the conclusion that it is necessary for an agent in a MAS, in order to increase
its performance, to have mechanisms allowing it to model the other agents
from the peint of view of the confidence they deserve. We have presented a
method based on fuzzy set theory that allows the filtering of the information
provided by other agents through the use of FCFs. This method is simple,
general and suitable to the application of a wide varicty of learning tech-
nicues. We have presented, too, a simulation in which a community of taxi
driver agents compete against each other for transporting passengers and we
have, finally, seen how social knowledge, understood as knowledge abourt the
rules that determine the behavior of other agents in the community, can be
learnt by individual agents, in the form of fuzzy rules in FCFs, through cvo-
lution. There are several directions in which this research can be extended.
In particular, the following subjects can be object of further study:
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The performance of FCFs as modelling tools when there is a whole
population using them.

How evolution of the sets defining the linguistic labels of a FCF affect
its performance.

The application of different learning techniques to the social learn-
ing process. Reinforcement learning techniques and genetic algorithms
seem to be valid options.

The identification of new fields suitable to the application of FCFs.



Chapter 6

Conclusions

Thig thesis introduces the novel (concerning the multiagent systemns field)
concept of reliability. 1t argues that reliability not only extends the concept
of trust, but also beats it in terms of uscfulness. Reliability is defined as the
quality of an agent that tends to give the saine or a similar response when the
same or a similar question 18 asked under the same or similar circumstances,
regardless of the erroncous the answer can he. This regularity in the crror
committed by the agent in his response can allow us to extract knowledge
from it.

The device presented in order to make possible the computation of the
reliability of a given agent under a given set of circumstances, as well as the
correction of the error committed by the agent, is called a Fuzzy Contex-
tual Filter (FCF). FCFs are composed by two parts: a corrective module,
that given an input value provided by an agent and a set of values for other
variables in the environment, filters the input value {that is, tries to remove
the crror from the input value) to obtain a new, filtered value, and a sccond
maodule, the reliability computation module, which computes the confidence
we can deposit in the filtered value provided by the corrective module. The
corrective module of a FCT consists basically in a sct of rules forming a fuzzy
system. Those rules are obtained from experience or common sense and from
past interactions between the agent possessing the FCF and the agent whose
output is to be filtered. Reliability is computed as a combination of three
fuzzy svstem’s quality criteria applied to the fuzzy rule hages in the correc-
tive module: completeness, redundancy and consistency. This value can be
computed exclusively from the structural characteristics of the svstem. That
is, from the form of its rules and the fuzzy sets used in their definition. The
computation of this quality value, then, is casily automatable. A experiment
consisting in a simulation of the behavior of an ammeter under different con-
ditions of input intensity and temperature has been carried out. The results
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of the experiment confirm the applicability of FCFs to this type of problems.

Chapter 3 has presented several aspects of the ART Testbed and intro-
duced the techniques and algorithms behind the appraiser agent SPARTAN,
specially the application of FCFs to the estimation of other agents’s ap-
praisals variances.

Chapter 4 has introducd Bar Systems, a new class of reactive multi-agent
systems for distributed problem solving. They are loosely inspired in the way
a group of waiters work behind a bar. Several of the characteristics of Bar
Systems are:

e Simplicity. Agents in Bar Systems are simple. They share a similar
structure and operate in a decentralized manner in a similar way opti-
mizing a local function. Interactions between agents are simple, too.

e Ffficiency. Bar Systems have lineal complexity with respect to the
number of tasks.

e Robustness. Faults in individual agents do not decrease dramatically
the efficiency of the system. Moreover, Bar Systems’ problem solving
capabilities increase steadily with the addition of new agents.

e Responsiveness. Bar Systems respond easily to the occurrence of un-
foreseen events as the appearance of new high priority tasks.

All those characteristics, jointly with the capability to seamless integrate dif-
ferent more or less sophisticated negotiation and local planning techniques,
make Bar Systems very suitable to solve problems in asynchronous, dynam-
ical, partial information and time-critical environments.

To check the efficiency and applicability of Bar Systems, a NP-Hard prob-
lem called CONTS has been defined, based on the work which a set of robots
has to perform to transport a set of containers in time to their destination.
The Bar System used to solve it has proved to give much better results than
other greedy algorithms of the nearest neighbor type and has established,
in our opinion, the usefulness of Bar Systems as a general framework for
solving this type of real time problems. We have also seen that communica-
tion amongst agents and local planning allows improving the results greatly
without increasing the complexity of the system significantly.

Finally, Chapter 5 has discussed the application of FCFs to multiagent
competitive environments by means of a Bar Systems simulation in which a
community of taxi driver agents compete against each other for transporting
passengers. The simulation has shown how social knowledge, understood as
knowledge about the rules that determine the behavior of other agents in the
community, can be learnt by individual agents, in the form of fuzzy rules in
FCFs, through evolution.
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Appendix A

Fuzzy Sets and Fuzzy Systems

This appendix gives several definitions on Fuzzy Sets and Fuzzy Systems
theory. It by no means pretends to be exact or complete, but only to serve
as a quick and basic reference to the reader. A detailed explanation of fuzzy
sets, fuzzy logic and fuzzy inference systems theories is beyond the scope of
this appendix, we refer the interested reader to [56, 61| and specially to [38],
where several excellent introductory chapters can be found.

A.1 Definitions on Fuzzy Sets

Definition A.1 Let X = {x1..x,} be an universal set. Every function mp :
X — [0..1] defines a fuzzy set F over the universal set X. Function mp is
called the membership function of the fuzzy set F'. For all element x € X,
mp (z) expresses the degree to wich x belongs to F.

Definition A.2 Given two fuzzy sets F' and G over two universal sets Up
and Ug defined by the membership functions mp and mqg, we define the
membership functions corresponding to the intersection, union and comple-
mentation of F and G as follows :

mpnc () = min(mp (z),mg (z))
mruc () = max (mp (z), mg (z)) (A.1)
mpe () = 1—mp(x)

!Those are the so-called classical fuzzy set operators, there are other ways to define
reasonable and consistent operations on fuzzy sets. See [38] for an in-depth treatment
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Definition A.3 Let X be some universal sel, we will call the complete
fuzzy subset of X to the fuzzy set Cx given by the function mcy (z) = 1
forall x € X. Similarly, we define the empty fuzzy subset of X as the fuzzy
set Ox given by the function my, (x) =0 forall x € X.

Definition A.4 Let X be some universal set. Let F and G be two fuzzy
subsets of X. We will say that F' is contained in G or that F is a subset of
G (F C G) if and only if mp(x) < ma(x) forall x € X.

Definition A.5 Let X be some universal set, we define 2%, the fuzzy power
set of X | as the set of all the fuzzy subsets of X.

Definition A.6 Let X = {zi..z,} be an universal set. Let F be a fuzzy
subset of X. We define the cardinality of F' as :

M(F) =Y mp (2;) (A.2)
=1

so, M (Cx) =n, M (0x) =0 and, in general 0 < M (F) < n for all fuzzy
subset F' of X.

A.2 Fuzzy Systems

The fuzzy inference system (fuzzy system for short) is a popular computing
framework based on the concepts of fuzzy set theory, fuzzy if-then rules
and fuzzy reasoning. It has found successful applications in a wide rank
of fields, such as automatic control, data classification, decision analysis,
expert systems, time series prediction, robotics, and pattern recognition. A
collection of papers covering a broad range of applications of fuzzy inference
systems can be found in [4]. The basic structure of a fuzzy system consists
of three conceptual components:?

e A rule base, which contains a set of fuzzy rules of the form:

if A1is S;and Ay is Sy and ... and A, is S,, then Bis T

2There are other several different types of fuzzy systems, attending mainly to the form
of the rules and the reasoning mechanism. The definition stated above stands for the
so-called Mamdani fuzzy inference systems. However, it is possible to define fuzzy filters
based on other types of fuzzy inference systems.
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where S1,59,...,5, and T are linguistic values, defined by fuzzy sets
on universes of discourse Xi,Xo,...,X,, and Xp respectively, and
Ay, As, ..., A, and B are fuzzy variables taking values over the fuzzy
power sets of the same universes. The A;’s are the input fuzzy variables
and B is the output fuzzy variable. An example of such a rule could
be:

if flow is High and level is High then wvalve is VeryOpen

e A database which defines the meanings, in the form of membership
functions, of the fuzzy sets used in the fuzzy rules.

¢ A reasoning mechanism or fuzzy inference engine which performs
the inference procedure upon the rules and given facts (values of the
input uzzy variables) to derive a reasonable output or conclusion. That
conclusion will take the form of a fuzzy set over Xr

It’s worth to note that, although the inputs and outputs of a fuzzy system
are, by the above definition, fuzzy sets, it is possible for a fuzzy system
to operate with crisp inputs values by applying a fuzzyfication procedure
(consisting, for example, in considering crisp inputs as singleton fuzzy sets).
In a similar way, several different defuzzyfication mechanisms can be applied
to the fuzzy set obtained as conclusion by the fuzzy system in order to obtain
a crisp output value.






Appendix B

Ammeter Calibration Case
Example Results

B.1 Ammeter Calibration Case Example Results

This appendix contains the results regarding local reliability criteria for the
ammeter calibration case example. They complete the results given in Fig-
ures to in Chapter 2. Each figure shows detailed graphs of the local con-
sistence, redundancy and completeness reliability criteria values jointly with
graphs of the errors committed by the ammeter without using the FCF and
using it for different values of the parameters n (number of rules), ¢ (fuzzy
number width) and K (random error standard deviation). Figures corre-
spond to the following set of values for n and ¢: {(n = 100,¢ = 2),(n =
100, ¢ =4), (n = 1000,c = 1), (n = 1000, ¢ = 2))}. For every pair, each value
of K in {0,0.01,0.05,0.1,0.2,0.5} is analyzed.
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Figure B.1: Top and middle rows: detailed graphs of the local consistence, redun-
dancy and completeness reliability criteria values. Bottom row: graphs of the errors
committed by the ammeter without using the FCF (to the left) and using it (to the
right). Number of rules n = 100, fuzzy number width ¢ = 4, random error standard
deviation K = 0.
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Figure B.2: Top and middle rows: detailed graphs of the local consistence, redun-
dancy and completeness reliability criteria values. Bottom row: graphs of the errors
committed by the ammeter without using the FCF (to the left) and using it (to the
right). Number of rules n = 100, fuzzy number width ¢ = 4, random error standard
deviation K = 0.05.
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Figure B.3: Top and middle rows: detailed graphs of the local consistence, redun-
dancy and completeness reliability criteria values. Bottom row: graphs of the errors
committed by the ammeter without using the FCF (to the left) and using it (to the
right). Number of rules n = 100, fuzzy number width ¢ = 4, random error standard
deviation K = 0.1.
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Figure B.5: Top and middle rows: detailed graphs of the local consistence, redun-
dancy and completeness reliability criteria values. Bottom row: graphs of the errors
committed by the ammeter without using the FCF (to the left) and using it (to the
right). Number of rules n = 100, fuzzy number width ¢ = 4, random error standard
deviation K = 0.5.
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Figure B.7: Top and middle rows: detailed graphs of the local consistence, redun-
dancy and completeness reliability criteria values. Bottom row: graphs of the errors
committed by the ammeter without using the FCF (to the left) and using it (to the
right). Number of rules n = 1000, fuzzy number width ¢ = 1, random error standard
deviation K = 0.01.
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Figure B.8: Top and middle rows: detailed graphs of the local consistence, redun-
dancy and completeness reliability criteria values. Bottom row: graphs of the errors
committed by the ammeter without using the FCF (to the left) and using it (to the
right). Number of rules n = 1000, fuzzy number width ¢ = 1, random error standard
deviation K = 0.05.
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Figure B.10: Top and middle rows: detailed graphs of the local consistence, re-
dundancy and completeness reliability criteria values. Bottom row: graphs of the
errors committed by the ammeter without using the FCF (to the left) and using it
(to the right). Number of rules n = 1000, fuzzy number width ¢ = 1, random error
standard deviation K = 0.2.
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Figure B.13: Top and middle rows: detailed graphs of the local consistence, re-
dundancy and completeness reliability criteria values. Bottom row: graphs of the
errors committed by the ammeter without using the FCF (to the left) and using it
(to the right). Number of rules n = 1000, fuzzy number width ¢ = 2, random error
standard deviation K = 0.01.
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Figure B.15: Top and middle rows: detailed graphs of the local consistence, re-
dundancy and completeness reliability criteria values. Bottom row: graphs of the
errors committed by the ammeter without using the FCF (to the left) and using it
(to the right). Number of rules n = 1000, fuzzy number width ¢ = 2, random error
standard deviation K = 0.1.
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Appendix C

The Half Normal Distribution

C.1 The Half Normal Distribution

The Half-normal distribution (see Figure C.1), a particular case of the Folded
Normal distribution, is the probability distribution of the absolute value of
a random variable normally distributed with expected value 0. That is, if
X is a random variable normally distributed with mean 0, then Y = |X| is
half-normally distributed.

The probability distribution function for a Half-normal distribution is:

2 x?
P(z) = Um-exp<—w>,if$20

= 0, ifz<0

and its expected value is given by

2

B(z) = Jjﬂ/ooox exp (-2";2> de (C.1)

This is easy to integrate. We have that

d 22 T 22
dx *P 202 o2 P 202

So
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Figure C.1: Probability distribution functions of the Normal distribution with
mean zero and the associated Half-Normal distribution.
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We have, then, the following result: If X is a random variable normally
distributed with mean 0 and standard deviation o, then Y = | X| follows a

Half-normal distribution with mean \/g 0.

In the ART testbed [32], an appraiser’s expertise, defined as its ability to
generate an opinion about the value of a painting, is described by a normal
distribution of the error between the appraiser’s opinion and the true painting
value. The simulation creates opinions according to this error distribution,
which has a mean of zero and a standard deviation s given by

5= <s* + O‘) t (C.3)

Cg
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where s*, unique for each era, is assigned to an appraiser from a uniform
distribution in [0---1], ¢ is the true value of the painting to be appraised,
« is a parameter, chosen by the experimenter and fixed for all appraisers,
which affects the relationship between opinion-generation cost and resulting
accuracy and ¢, is the cost the appraiser is willing to pay to generate an
opinion.

So, what is the expected error in absolute value in a single appraisal?. The
appraisal error is normally distributed with mean 0 and standard deviation
given by Equation C.3. So, by the result obtained in Equation C.2, the
expected value of the absolute value of the error will in a single appraisal

will be \/% (s* + %) t. Conversely, the relative error (that is, the appraisal
error divided by the true value of the painting) is also a normal variable

with mean 0 and standard deviation <s* + %), so the expected value of the

absolute value of the relative error will be \/% . (s* + %)

Appraisers whose final appraisals are most accurate are rewarded with a
larger share of the client base in subsequent timesteps. To calculate a’s share
of the client base for the next simulation, the average relative appraisal error
for the present iteration, €, is first calculated:

Z |q. AppV al—q.TrueVal|
q€T, q.TrueVal (04)

|Tal

€q —

where T, is a set of triplets in the form (Painting, AppVal, TrueV al) repre-
senting the set of appraisals made by a. For each appraisal ¢ € T,, q.AppV al
and q.TrueVal represent respectively the value by which ¢q.Painting was
appraised and its true value.
We can express the expected value of ¢, as:
> (C.5)
’ is the absolute value of the rel-

q-AppVal — q. TrueVal
q. TrueVal

E(ea):|T1a|-ZE

q€T,

q.AppVal—q.TrueVal
q.TrueVal

ative error in the appraisal of painting ¢, a half-normally distributed variable

But, as we have just seen, ‘

with expected value \/g (52 + %), where s; is the base expertise of agent a
g

for the era to which painting ¢ belongs and ¢f is the amount of money spent
by agent a in the appraisal of the painting.. We can substitute those values
in Equation C.5 to obtain the expected value of ¢, as

E(ea) = v2m 3 <s; + 2;}) (C.6)







Appendix D

The Complexity of the CONTS
Problem

A les planes segiients podem veure diferents instancies del problema junta-
ment amb les seves solucions. A la figura D.1 vegem com una petita variacié a
les condicions inicials fa que la solucid sigui completament diferent. El prob-
lemna és encara més dificil del que sembla a primera vista; per tal d’aconseguir
portar tots els contenidors a temps, de vegades és necessari carregar un con-
tenidor durant un temps i desar-lo temporalment a algun punt diferent del de
llinrament per anar després a portar altres contenidors i, finalment, tornar a
recollir- lo. (figura D.2, a dalt). Més encara, la figura D.2, a baix, mostra un
problema pel qual la tinica solucid passa per transportar temporalment un
contenidor a un punt que ni tan sols es troba a la recta que uneix la pogicio
inicial del contenidor amb el seu Hoc de lliurament.

Aquestes soluciens $’han trobat mitjancant un algorisme de cerca exhaus-
tiva. implementat en Prolog [18]. El temps de calcul necessari per a trobar
les solucions és de lordre de deu segons, perd ereix molt rapidament amb ¢l
nombre de contenidors i robots.

D.1 CONTS és NP-Hard

Es clar que, abans d’intentar trobar meétodes per a solucions el problema.
ens hem de fer una idea de la seva complexitat. Un meétode heuristic per
a trobar solucions aproximades mitjancant agents reactius no tindria sen-
tit si existissin métodes directes de complexitat polindmica. De la mateixa
mancra, si ¢l problema és de complexitat no deterministicament polinomica
(NP), el mes probable é3 que no podrem fer servir métodes exhaustius i
ens haurem de centrar en meétodes que proporcionin solucions aproximades.
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Ja hem comentat en 'apartat anterior com el temps necessari per a fer la
cerca exhaustiva dintre de l’espai de solucions del problema augmenta molt
rapidament amb el nombre de contenidors i robots. El proposit d’aquesta
secci6 és demostrar que el problema és prou complex com per que cap algo-
risme exhaustiu sigui viable, de manera que quedara justificada la utilitzacié
d’heurfstiques per a tractar de trobar solucions prou bones. Demostrarem
que el problema és, al menys, tant complex com el famés problema N P-hard
del viatjant de comer¢ (més conegut com el travelling salesman problem o
TSP). Per tal de fer-ho, necessitem algunes definicions preliminars.

D.1.1 Problemes de Decisi6 i Classes de Complexitat

Un problema de decisio es formalitza usualment com el problema de decidir
si una cadena de caracters pertany a un llenguatge formal especific. El llen-
guatge conté el conjunt de cadenes pel les que la resposta és “SI”. Per exemple,
el problema de decidir si un nombre és 0 no primer es pot formalitzar com
el de decidir la pertinéncia de cadenes de bits al llenguatge format per les
paraules sobre ’alfabet binari que representen un nombre primer en base dos.
Si existeix un algorisme capag de decidir correctament per a cada possible
cadena d’entrada si pertany o no al llenguatge, llavors el problema es diu que
és decidible; en cas contrari es diu que és indecidible. Si existeix un algorisine
que sempre respon “SI” quan la cadena d’entrada pertany al llenguatge, pero
que s’executa indefinidament sense donar cap resposta quan la cadena no
pertany al llenguatge, llavors el llenguatge es diu que és parcialment decidi-
ble. Alguns exemples de problemes de decisio expressats com a llenguatges
son:

e Les cadenes sobre a,b formades per as i bes alternades.
e Les cadenes sobre a,b amb el mateix nombre d’as i bes.
e Les cadenes sobre 0,1, ..., 9 que representen un nombre primer.

e Les cadenes que descriuen un conjunt de sencers tals que algun sub-
conjunt d’ells suma 0.

e Les cadenes que descriuen una maquina de Turing i una cinta d’entrada
tal que la maquina de Turing s’atura amb aquesta cinta.

FEls problemes de decisié sén importants perqué qualsevol problema més gen-
eral, amb resposta d’n bits, es pot transformar en, com a molt, n problemes
de decisio. Segons la Teoria de la Complexitat, la classe P consisteix en tots
aquells problemes de decisi6 que es poden resoldre en un maquina seqiien-
cial determinista - com per exemple un ordinador programable amb memoria
no limitada o una maquina de Turing- en una quantitat de temps que creix
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polindmicament amb la longitud de la cadena d’entrada. La classe NP con-
sisteix en aquells problemes de decisi6 tals que les seves solucions positives po-
den ser verificades, donada la informacié necessaria, en temps polindmic amb
la longitud de l'entrada. Equivalentment, la classe NP també es pot definir
com la d’aquells problemes que es poden solucionar en temps polindmic amb
Pentrada fent servir una maquina no determinista (per tant, NP prové de
Non-deterministic Polinomial-time, i no de Non-Polinomial time).

Com tothom sap, l'interrogant no resolt més important que actualment
es planteja la Informatica Teorica és si ambdues classes son la mateixa.
En esséncia, la pregunta que la coneguda equacié P = NP planteja és la
seglient: si les solucions a un problema de decisié poden ser verificades rap-
idament.(en temps polinomic), aixo implica que puguin ser calculades rapi-
dament?. Pensem en el problema de determinar si un nombre (per exemple
el 69779) és primer. Resulta que el 69779 és un nombre compost, encara
que és forca costds esbrinar-ho. Per altra part, si algi ens diu que el 69779
no és primer perqueé és divisible per 223, només necessitem fer una divisié
per verificar-ho. En el nostre problema, donada la informaci6 correcta (223
divideix a 69779), verificar la resposta (69779 no és primer) és rapid, ja que
es pot fer en temps polinomic amb la longitud de 'entrada. Per tant el prob-
lema és a NP. La qliesti¢ de si el problema pertany a P no ha estat clara
durant segles, fins que s’ha resolt definitivament fa poc temps [2]|. en que
s’ha trobat un algorisme de complexitat O(n'?) que el soluciona, on n és la
longitud del nombre. (que no és el mateix que la seva magnitud).

No tots els problemes sén a NP. De fet hi ha problemes que sén més
dificils que qualsevol problema a P o a NP (per exemple problemes rela-
cionats amb trobar estratégies guanyadores a jocs com els escacs o el go
[30, 5]. No obstant, dintre de N P hi ha una subclasse de problemes, els N P-
complerts, interessants per diferents conceptes. Per una part perqué no s ha
trobat cap algorisme de temps polindmic que els resolgui, i per ’altra perque
s ’ha demostrat que tot problema a NP es pot reduir a un d’ells, de manera
que un algorisme que permetés resoldre qualsevol problema N P-complert en
temps polindmic es podria fer servir per a solucionar- los tots també en temps
polinomic. Hi ha molts de problemes N P-complerts molt coneguts i de gran
rellevancia practica, com sén, per exemple, el problema de la satisfacibilitat
booleana, el problema de la motxilla, el problema del viatjant de comerg, el
15-puzzle i, fins i tot, el popular buscamines.

Una altra classe de complexitat molt relacionada amb les anteriors és
la dels problemes N P-hard. Una definicié intuitiva seria “tant complex o
més que un problema N P-complert”. La classe N P-hard no es limita als
problemes de decisi6, sin6 que també inclou altres tipus de problemes. Per
exemple, el problema N P-complert “donat un conjunt de sencers, dir si conté
cap subconjunt que sumi zero” té el problema N P-hard associat “donat un
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conjunt de sencers, retornar un subconjunt que sumi zero, si existeix, i el
conjunt buit en cas contrari”. En general tots els problemes N P-complerts
tenen el seu problema N P-hard associat, i es demostra facilment que la
complexitat de tots dos problemes és la mateixa. Es a dir, donada una caixa
negra (també anomenada oracle) que resolgui un d’ells en una unitat de
temps, és possible trobar un algorisme que resolgui ’altre en temps polindmic
amb la longitud de ’entrada. També existeixen problemes de decisi6 N P-
hard que no son N P-complerts (de fet NP-complert és la interseccié de
NP i NP-hard), com el problema de 'aturada. Per als lectors interessats en
aprofundir en matéries com les diferents classes de complexitat i els problemes
que pertanyen a elles, [34] és la referéncia classica a consultar. El fet que no
es conegui cap algorisme eficient per als problemes N P-complerts i els seus
problemes N P-hard associats fa que de vegades per s resoldre’ls calgui fer
servir métodes heuristics. (és a dir, métodes de complexitat polinomica que
no garanteixen trobar solucions exactes). En el nostre cas, per tal de justificar
plenament 1'as d’un sistema d’agents reactius per a resoldre el problema
CONTS dels contenidor i els robots, hem de demostrar que el problema és
prou dificil com per a que, versemblantment, no existeixi cap soluci6 exacta
de complexitat polinomica. Aixd ho farem demostrant que el problema és,
al menys, tant complex com un problema N P-hard.

D.1.2 El Problema del Viatjant de Comerg (TSP)

Es potser el problema N P-hard més famés. L’enunciat és molt simple: donat
un conjunt de ciutats i cone ixent la distancia que separa cada parell de
ciutats, s’ha de trobar el circuit que minimitza la distancia total recorreguda
per un viatjant de comerc que ha de visitar totes i cadascuna de les ciutats
abans de tornar a la ciutat d’origen El problema sovint es formalitza fent
servir teoria de grafs de la segiient manera: Sigui G(V,A) un graf dirigit
amb un conjunt V' = {v;...v,} de vértex que representen les ciutats i un
conjunt A = {aj...an} d’arestes de la forma a = (v;, v;) que representen les
carreteres que uneixen les ciutats. Sigui ¢(v;, v;) el cost (és a dir, la distancia)
associat a l'aresta (v;,v;) . El problema TSP consisteix en trobar el circuit
hamiltonid de cost minim a G.

Diguem DTSP al problema de decisié associat al TSP, és a dir, donats el
graf G(V, A) i un cost maxim C, determinar si existeix cap circuit hamiltonia
de cost més petit o igual a C; A [34] és demostra que DTSP és N P-complert.

Per altra part, definim un nou problema de decisid, relacionat amb el
DTSP, perd una mica diferent. Suposem que el viatjant no ha de tornar a
casa per dormir, siné que es queda a dormir a I'iltima ciutat visitada. Llavors
el problema es pot reformular aixi: donat el graf G definit anteriorment, un
cost C' i un vértex inicial v;, determinar si existeix un cami a G (és a dir,
una seqiiéncia de vértex connectats per arestes) amb cost més petit o igual
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que C' que, comencant a v;, passi per tots els vértex del graf G. Diguem-li a
aquests nou problema DTSP*.

A partir d’aqui farem el segiient: demostrarem que, per una banda, és
possible reduir el DTSP al DTSP*. i que, per l'altra, el DTSP* es pot
reduir al DCONTS (el problema de decisié associat a CONTS). D’aquesta
manera demostrarem que DCONTS és N P-complert i, com a conseqiiéncia
immediata, que CONTS és N P-hard.

D.1.3 DTSP* és NP-complert

Demostrarem que DTSP* és N P-complert trobant una manera de reduir
el DTSP al DTSP*. Recordem que per a reduir un cert problema A a un
altre problema B assumim l'existéncia d’una caixa negra o oracle que resol
el problema B en una unitat de temps. Si podem trobar un algorisme que
resolgui el problema A, fent servir ’oracle per a B, en temps polindmic amb
la longitud de I'entrada llavors direm que hem reduit el problema A al B.
Llavors, per definicio, si el problema A era INP-complert i el problema B era
NP haurem demostrat que B també és N P-complert.

La reducci6 és forca senzilla. Suposem que tenim un oracle per a resoldre
el DTSP*, és a dir, una funcio dtsp x (G(V, A),v;, C) que, donat un graf G
(amb un conjunt de vértex V i un conjunt d’arestes amb costos associats
A), un cost maxim C' i un vértex inicial v; ens diu en una unitat de temps si
existeix cap cami que comenci a v; i visiti tots els vértex amb un cost total més
petit o igual que C. Llavors, podem definir una funcio dtsp(G(V, A), C) que
donat un graf G i un cost maxim C' ens digui si hi ha cap circuit hamiltonia
a G de cost menor o igual a C de la manera que s’exposa a I’Algorisme D.1:

La idea basica que fa servir aquesta funcié és la segiient: si modifiquem el
graf afegint un nou vértex p que estigui a distancia infinita de tots els altres a
excepcio d'un vertex w (que no sigui l'inicial), del qual esta a distancia zero,
llavors és segur que al graf modificat, el cami més curt que comenga al vértex
inicial i visita tots els vértex acaba amb ’arc (w, p) i que la part d’aquest cami
que porta del vertex inicial a w és el cami més curt que uneix aquests dos
vértex visitant tots els altes. Per altra part, és segur que al circuit hamiltonia
de cost minim a G(V, A), el cami que porta del veértex inicial al veértex final
(la darrera ciutat visitada abans de tornar a la ciutat d’origen) és el cami
de cost minim que uneix els dos vértex i que visita totes les ciutats, i aquest
cami el podem obtenir iterant la w del procediment explicat anteriorment
sobre el conjunt de vértex V.

Esta clar que la funcié dtsp crida a la funci6 dtsp* un maxim de |V| —1
cops i, per altra part, sabem que |V| és de 'ordre de l'arrel quadrada de la
longitud de l'entrada (que és basicament la descripcié d’un graf). Per tant,
segons el que hem exposat abans, DTSP* és N P-complert.
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Algorithm D.1 La funci6 dtsp(G(V, A),C) diu si hi ha cap circuit hamil-
tonia al graf G(V, A) amb un cost menor o igual a C

1: function pTSP(G(V, A): graf, C: real) : boolean
2 Sigui v un vértex qualsevol de V'

3 for all weV ,w+#vdo

4 newC «— C — cost(w, v)

5: Creem un nou vértex p

6 newV «— V U{p}

7 newA — AU{(q,p)Vq € V}

8 cost(w,p) 0

9: cost(q,p) — oo Vg eV, q#w

10: if dtsp* (G(newV,newA), v, newC) then

11: return CERT
12: end if
13: end for

14: return FALS
15: end function

D.1.4 DCONTS és NP-complert

Sigui DCONTS el problema de decisié associat a CONTS: donats un conjunt
de contenidors amb deadlines associats a cadascun d’ells i un conjunt de
robots dir si existeix alguna manera de poder lliurar tots els contenidors a
temps. Es clar que DCONTS és a NP. Demostrarem que és N P-complert
reduint el DTSP* a ell.

En efecte, qualsevol instancia del problema DTSP* amb un graf G(V, A),
un vertex inicial v i un cost maxim C' es pot transformar immediatament en
un problema DCONTS al qual les ciutats soén representades per contenidors,
només hi ha un robot, amb velocitat unitat, situat a la mateixa posicié que
el contenidor que representa la ciutat inicial i on tots els contenidors han de
ser lliurats a la mateixa posicié on son i tenen el mateix deadline C.

Per tant no només podem reduir DTSP* a DCONTS, sin6 que hem de-
mostrat que, en realitat DTSP* és un cas particular de DCONTS. DCONTS
és, llavors, N P-complert, i el seu problema d’optimitzaci6é associat, CONTS,
és N P-hard.



Appendix E

SPARTAN in the Second ART
Testbed Competition

E.1 SPARTAN in the Second ART Testbed Com-
petition

SPARTAN participated in the Second International ART competition, held
in Hawaii, Honolulu, from May, 14 to May, 18 of 2007 in conjunction with the
Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2007). It qualified fifth in the preliminary round and then
won a position in the final round to finish in fourth place’.

Table E.1 presents the list of the contestant teams in the championship.
There is a total of cighteen teams coming from universitics and rescarch cen-
ters all over the world. Tables E.2 and E.3 show the results of the preliminary
and the final round of the championship, respectively.

LSPARTAN did not compete in the First International Competition. SPARTAN also
managed to attain, without major modifications and despite major changes in the testhed
{mainly relative to the number of agents in each simulation}, the sixth place in the third
international ART competition, held in Estoril, Portugal, in conjunction with the Seventh
International Joint Conference on Autonomous Agents and Multiagent Systerns (AAMAS
2008).
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Table E.1: List of competitors in the Second International ART Testbed Championship.
Agent Name Team Representative Team Affiliation
ZeCariocales Andrew Diniz Pontificia Universidade Catdlica do Rio de Janciro
Rex Kunyuan Goh Department of Computer Science, University of Warwick
Novel Alberte Caballero Martinez  Dpto de Ingenicria de la Informacién vy las Comunica-
ciones, Univ de Murcia
Blizzard Ozgur Kafali Department of Computer Engineering, Bogazici University
Xerxes Jamic Lawton Information Dircctorate, U.S. Air Force Rescarch Labora-
tory
Candela Edwin Boaz Soenaryo Nanyang Technological University
Uno Victor Mufioz Sola University of Girona
Marmota Javier Murillo Espinar University of Girona
SPARTAN Esteve del Acebo Agents Research Lab, University of Girona
[TAM2 W. T. Luke Teacy Elcctronies and Computer Scicnce, Universicy of Southamp-
ton
Alatriste Mario Gomer Carlos IIT Univ. of Madrid and Univ. of Aberdeen
LesMes Francisco Paris Soriano Carlos I11. University of Madrid (GTAAA)
IMM Javier Carbo Univ. Carlos I de Madrid
Jam Anil Gursel Deparsment of Math and Computer Science, The University

AgenteVicente
Reneil
TDP
aGente

Maria Teresa Vicente
Jianshu Woeng
Doran Chakraborty
Mikalai Sabel

of Tulsa

Universidad Carlos III de Madrid
Nanyang Technological University
University Of Tulsa

University of Trento
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Table E.2: Results of the preliminary round of the Second Internationel ART
Testhed Championship.

Rank Agent Name Avg. Bank Balance

1 TAM2 339377
2 Jam 333700
3 Blizzard 335933
4 ZeCariocal.es 319564
5] Spartan 311777
6 ArtGente 208897
7 Cno 293324
8 Reneil 269905
9 Marmota 264356
10 Novel 229501
11 Alatriste 225276
12 Rex 211467
13 IMM 200440
14 LoesMes 183655
15 AgenteVicente 181932
16 Xorxes 148610

Table E.3: Results of the final round of the Second Internetional ART Testhed

Championship.

Rank Agent Name Avg. Bank Balance

1 TAM2 1107270
2 Jam 743077
3 Blizzard 723971
4 Spartan 674723

ZeCariocaLes 278524

(&1}
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