<table>
<thead>
<tr>
<th>Projecte/Treball Fi de Carrera</th>
</tr>
</thead>
</table>

| Estudi: | Enginyeria Industrial. Pla 2002 |

| Títol: | CARACTERITZACIÓ ENERGÈTICA DEL PARC EDIFICATORI ANTERIOR AL CODI TÈCNIC DE L’EDIFICACIÓ CTE |

| Document: | 1 de 2 - Memòria |

| Alumne: | Marc Serra Barchín |

Director/Tutor:	Alexandre Deltell Carbonell i Eduard Massaguer Colomer
Departament:	Eng. Mecànica i de la Construcció Industrial
Àrea:	Màquines i Motors Tèrmics

| Convocatòria (mes/any): | Juny/2013 |
ÍNDICE

ÍNDICE ... 1

1 INTRODUCCIÓ .. 5
 1.1 ANTECEDENTS ... 5
 1.2 OBJECTE .. 5
 1.3 ESPECIFICACIONS I ABAST ... 5

2 CONSIDERACIONS INICIALS ... 6

3 PROCEDIMENT .. 12
 3.1 DESCRIPIÓ DEL PROCEDIMENT .. 12
 3.2 CARACTERÍTIQUES DE L'EDIFICI ESTUDIAT ... 13
 3.3 SOLUCIONS CONSTRUCTIVES ... 15
 3.3.1 Façana tipus 1 (F_1) .. 17
 3.3.2 Façana tipus 2 (F_2) .. 18
 3.3.3 Façana tipus 3 (F_3) .. 19
 3.3.4 Façana tipus 4 (F_4) .. 20
 3.3.5 Coberta tipus 1 (CO_1) .. 21
 3.3.6 Coberta tipus 2 (CO_2) .. 22
 3.3.7 Solera tipus 1 (SO_1) .. 23
 3.3.8 Solera tipus 2 (SO_2) .. 24
 3.3.9 Forjat (FO_1) .. 25
 3.3.10 Envà (Enva) .. 26
 3.3.11 Porta (Porta) .. 27
 3.3.12 Finestra tipus 1 (V_1) .. 28
 3.3.13 Finestra tipus 2 (V_2) .. 29
 3.4 SELECCIÓ DE LES COMBINACIONS D'ESTUDI ... 30
 3.5 PROGRAMA LIDER .. 30
 3.5.1 Generació de l'edifici en 3D mitjançant el programa LIDER ... 30
 3.5.2 Càlculs amb el programa LIDER ... 34
 3.5.3 Informació important ... 35
 3.6 CÀLCUL DE CÀRREGUES TÈRMiques .. 36
 3.7 CÀLCULS MITJANÇANT CALENER VYP .. 37
 3.7.1 Dimensionament dels equips ... 38
 3.7.2 Tipus d'instal·lacions analitzades ... 40
 3.7.3 Introducció de dades en el CALENER VYP ... 41
 3.8 QUALIFICACIÓ ENERGÈTICA SEGONS CARACTERÍTIQUES DE L'EDIFICI 44

4 CONCLUSIONS ... 50
E.2.4. Combinació 4 .. 79
E.2.5. Combinació 5 .. 79
E.2.6. Combinació 6 .. 80
E.2.7. Combinació 7 .. 80
E.2.8. Combinació 8 .. 81
E.2.9. Combinació 9 .. 81
E.2.10. Combinació 10 ... 82

E.3 INSTAL·LACIÓ 3 .. 82
E.3.1. Combinació 1 .. 82
E.3.2. Combinació 2 .. 83
E.3.3. Combinació 3 .. 83
E.3.4. Combinació 4 .. 84
E.3.5. Combinació 5 .. 84
E.3.6. Combinació 6 .. 85
E.3.7. Combinació 7 .. 85
E.3.8. Combinació 8 .. 86
E.3.9. Combinació 9 .. 86
E.3.10. Combinació 10 ... 87

E.4 INSTAL·LACIÓ 4 .. 87
E.4.1. Combinació 1 .. 87
E.4.2. Combinació 2 .. 88
E.4.3. Combinació 3 .. 88
E.4.4. Combinació 4 .. 89
E.4.5. Combinació 5 .. 89
E.4.6. Combinació 6 .. 90
E.4.7. Combinació 7 .. 90
E.4.8. Combinació 8 .. 91
E.4.9. Combinació 9 .. 91
E.4.10. Combinació 10 ... 92

E.5 INSTAL·LACIÓ 5 .. 92
E.5.1. Combinació 1 .. 92
E.5.2. Combinació 2 .. 93
E.5.3. Combinació 3 .. 93
E.5.4. Combinació 4 .. 94
E.5.5. Combinació 5 .. 94
E.5.6. Combinació 6 .. 95
1 INTRODUCCIÓ

1.1 Antecedents
En l'actualitat, l'eficiència energètica en l'edificació és un dels conceptes més importants, no tan sols per la política energètica Espanyola, sinó també Europea amb un objectiu d'estalvi del 20% el 2020. Dins el sector de l'edificació, les normatives sobre eficiència energètica s'incorporen a partir de la transposició de les directives europees 2002/91 i 2010/31, que obliga, entre d'altres, a la certificació energètica, no només d'edificis nous, sinó també dels edificis antics que es trobin en situació de lloguer o compra/venta.

1.2 Objecte
L'objecte del present projecte és fer un catàleg de solucions constructives típiques, que es donen abans de l'aprovació i entrada en vigor del CTE a partir del RD 314/2006. El catàleg consta de variacions en l'evolvent de l'edifici, variacions en la contribució solar i variacions en les instal·lacions de climatització. Cadascuna d'aquestes combinacions s'analitzarà amb els programaris LIDER i CALENER, de forma que s'obtindran una estimació de les emissions de CO2 per a cada cas, i a partir del projecte de real decret de certificació d'edificis existents (encara en tramitació a data de redacció del full de projecte d'aquest projecte), s'assignarà una qualificació energètica. D'aquesta manera, es podrà tenir una primera aproximació de la qualificació energètica dels edificis existents, a partir de les seves característiques.

1.3 Especificacions i abast
Pel que fa a les especificacions, es definirà un edifici unifamiliar aïllat, s'establiran un conjunt d'evolvents, s'especificaran quins espais de l'edifici són habitables i quins no, i es definiran un conjunt d'instal·lacions.

L'abast de l'estudi comprendrà els edificis situats a la zona climàtica C2 de la província de Girona. Aquesta zona inclou els edificis que es troben a una alçada del nivell del mar de entre 0 m a 342 m (dins la província de Girona).
2 CONSIDERACIONS INICIALS

L'objecte del present projecte és el de generar un catàleg de qualificació energètica, per tal de fer una primera qualificació energètica orientativa, del conjunt d'edificis de la província de Girona.

Per tal d'establir les condicions climàtiques a aplicar alhora d'executar l'estudi, s'ha analitzat quina de les zones climàtiques que contempla el CTE DB HE1, engloba major quantitat de població dins la província de Girona.

A continuació es presenta un mapa amb l'àrea principal d'estudi ressaltada de color blau (província de Girona). Figura 1.

Figura 1: Àrea principal d'estudi del present projecte.

Per saber quanta població s'inclou en l'estudi (entenent que una major densitat de població, va lligada amb una major densitat d'edificacions), s'ha analitzat on es trobava concentrada la població de la província de Girona.

Tot seguit es presenta un mapa de la densitat demogràfica de Catalunya l'any 2007, obtingut a partir dels recursos que proporciona l' Institut Cartogràfic de Catalunya (Figura 2).
La llegenda del mapa (Figura 2), mostra l'interval de habitants/Km² que presenta cada comarca en funció de la coloració que se l'hi ha assignat. Es pot apreciar com dins la província de Girona, les comarques que tenen una densitat de població més alta són les comarques del Gironès, Baix Empordà i la Selva.

Partint de la Taula 1 (zones climàtiques del document HE1 del CTE, de la pàg. 11), s'ha identificat que la zona climàtica de la ciutat de Girona és la C2, per tant, és la primera zona climàtica que s'ha analitzat. Aquesta zona climàtica, engloba la superfície de terra que es troba a una altitud de entre 0 m a 342 m dins la província de Girona. Aleshores, el pròxim pas, és analitzar el relleu de la província de Girona.

A continuació s'adjunta un mapa físic de Catalunya molt orientatiu alhora de saber, amb relativa exactitud, a quina altura es troba una localització concreta de Catalunya (Figura 3).

Per tal d'obtenir uns resultats d'altimetria més ajustats, s'ha recorregut al programari. En aquest cas, el programa seleccionat és el Google earth. Mitjançant aquest programa, s'ha introduït el contorn de la província de Girona i s'ha seleccionat la opció de veure el mapa amb relleu (d'aquesta forma, tots els elements que s'introdueixin, es veuran afectats pel
relleu físic de la zona). Seguidament, s'ha introduït una superfície que engloba tot l'interior del contorn abans generat (província de Girona). S'ha desplegat el menú respecte a la superfície generada i se n'ha modificat la cota original, per una nova cota amb referència absoluta de valor 342 metres (que és el valor límit que engloba la zona climàtica d'estudi C2, a la província de Girona). El resultat obtingut és una superfície (Figura 4, zona de color groc), on tan sols queda visible la superfície real (de la província de Girona) amb cota absoluta superior a 342 metres.

![Figura 3: Mapa físic de Catalunya.](image)

Un cop se sap quina superfície té les condicions climàtiques de C2 (superfície groga de la Figura 4), aquesta s'ha de contrastar amb la densitat de població.
S’ha agafat el mapa de densitat demogràfica de Catalunya de l’any 2007 i s’ha sobreposat a la superfície amb condicions climàtiques C2 (dins el programa Google earth). El resultat obtingut es pot veure a la Figura 5.

Figura 4: Superfície representativa de la zona climàtica C2 a la província de Girona.

Figura 5: Distribució de la densitat de població dins la zona C2 de la província de Girona.
Per tal de veure amb més detall els resultats obtinguts, s'ha fet una ampliació per visualitzar amb més detall la província de Girona. (Figura 6, zona climàtica C2 ara de color verd, per tal de contrastar amb el fons).

Un cop finalitzat l'estudi per la zona climàtica C2, se n'extreu que és la zona climàtica que engloba gran part de les superfícies amb major densitat de població de la província de Girona, per tant, es considera apta la zona C2 per tal de realitzar tots els estudis inclosos en aquest projecte.

La prioritat de l'estudi són els edificis de la província de Girona que es trobin a una alçada del nivell del mar de entre 0 m a 342 m. Degut a la coincidència de paràmetres de Girona amb altres regions (respecta a la similitud de les seves zones climàtiques), es consideren susceptibles de ser aplicables els resultats finals obtinguts en aquest projecte, sempre i quan les característiques de l'edifici siguin similars a l'edifici estudiat en el present projecte, a les regions següents: de 0 m a 200 m a la província de Barcelona, de 218 m a 417 m a la província de Castelló de la Plana, de 513 m a 712 m a la província de Córdoba, de 224 m a 424 m a la província de Múrcia, de 0 m a 526 m a la província d'Ourense, de 409 m a 608 m a la província de Sevilla, de 201 m a 400 m a la província de Tarragona i finalment, de 208 m a 407 m a la província de València. Aquestes dades s'han obtingut a partir de la Taula 1.

La zona climàtica de qualsevol localitat en la que s'ubiquin els edificis, s'obté a partir de la Taula 1 en funció de la diferència d'altura que hi hagi entre la localitat estudiada i l'alçura de
referència de la capital de província. Si la diferència d’altures és menor de 200 m o la localitat es troba a una altura inferior a la de referència, llavors, s’agafa per la localitat estudiada, la mateixa zona climàtica que correspon a la capital de província.

3 PROCEDIMENT

Dins d'aquest apartat es detalla tota la feina realitzada en aquest projecte, per tal de realitzar l'estudi de caracterització energètica d'edificis anteriors al CTE.

3.1 Descripció del Procediment

<table>
<thead>
<tr>
<th>Cronologia</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pas 1: Definició de l'edifici.</td>
<td>• Selecció i justificació de la tipologia d'edifici seleccionat.</td>
</tr>
<tr>
<td></td>
<td>• Definició de la distribució, superfície i orientació de l'edifici.</td>
</tr>
<tr>
<td></td>
<td>• Selecció d'identificadors per a cada sala.</td>
</tr>
<tr>
<td></td>
<td>• Generació de múltiples plànols representatius de l'edifici.</td>
</tr>
<tr>
<td>Pas 2: Selecció de les solucions constructives.</td>
<td>• Recerca d'informació sobre solucions constructives de la localitat i període estudiat.</td>
</tr>
<tr>
<td></td>
<td>• Determinació del nombre de solucions constructives (13) i de quins tipus.</td>
</tr>
<tr>
<td></td>
<td>• Selecció de les solucions constructives més adequades per l'estudi.</td>
</tr>
<tr>
<td></td>
<td>• Descripció individual de cada solució constructiva.</td>
</tr>
<tr>
<td>Pas 3: Selecció de les combinacions d'estudi (evolvents).</td>
<td>• Generació d'una taula amb totes les evolvents possibles (32 combinacions).</td>
</tr>
<tr>
<td></td>
<td>• Acotar el número d'evolvents a estudiar (10 combinacions) en funció del temps disponible.</td>
</tr>
<tr>
<td></td>
<td>• Escollir amb el màxim criteri les evolvents a estudiar.</td>
</tr>
<tr>
<td></td>
<td>• Representar en una taula les evolvents escollides.</td>
</tr>
<tr>
<td>Pas 4: Generar l'edifici en 3D i comprovar si les combinacions compleixen amb el CTE DB HE1.</td>
<td>• Representació geomètrica de l'edifici (Solera, Forjats, Parets interiors i exteriors, Coberta i Obertures exteriors), partint dels plànols i utilitzant el Programa LIDER.</td>
</tr>
<tr>
<td></td>
<td>• Explicació del funcionament del programa LIDER.</td>
</tr>
<tr>
<td></td>
<td>• Introduir les solucions constructives en el programa LIDER.</td>
</tr>
<tr>
<td></td>
<td>• Associar cada solució constructiva amb les combinacions que li pertoquen.</td>
</tr>
<tr>
<td></td>
<td>• Executar el programa LIDER per a cada combinació (10 vegades) i extreure'n els resultats.</td>
</tr>
</tbody>
</table>
Pas 5: Càlcul de càrregues tèrmiques.

- Estudi de càrregues tèrmiques puntuals per a cada sala i combinació, al llarg de l'any (130 estudis).
- Calcular el valor mig de càrrega tèrmica per a cada combinació.
- Calcular el valor mig de càrrega tèrmica global de totes les combinacions.
- Recerca sobre valors típics de càrrega tèrmica utilitzats en enginyeria.
- Valoració sobre quin valor final utilitzar en els càlculs.

Pas 6: Estimació de les emissions de CO2 per a cada cas (KgCO2/m2*any).

- Recerca sobre instal·lacions tèrmiques típiques de la localitat i període estudiat.
- Determinació del nombre d'instal·lacions sotmeses a estudi (6).
- Seleccion de les instal·lacions tèrmiques més adequades.
- Dimensionament dels equips que formen les instal·lacions.
- Descripció individual i detallada de cada instal·lació.
- Introduir les instal·lacions tèrmiques en el programa CALENER VYP.
- Explicació del funcionament del CALENER VYP.
- Associar cada tipus d'instal·lació a la combinació corresponent.
- Executar el programa CALENER VYP (55 vegades) i extreure'n els resultats.

Pas 7: Presentació de resultats.

- Organitzar els resultats i representar-los de manera amigable i entenedor.

3.2 Característiques de l'edifici estudiat

L'edifici estudiat entra dins la classificació d'edifici unifamiliar aïllat. S'ha optat per aquesta tipologia d'edificació (per tal d'elaborar el catàleg de caracteritzacions energètiques d'edificis existents), en base a l'abast del projecte. L'abast principal del projecte, està orientat al parc edificador anterior al codi tècnic de l'edificació CTE, localitzat a la província de Girona. Degut a que l'abast principal és Girona i respecte a la temporalització (uns 10 o 30 anys enrere), s'ha escollit un edifici unifamiliar aïllat, ja que era la tipologia d'edifici típic que es solia construir a la província de Girona durant aquest període, i no altres tipologies d'edificació com poden ser pisos, cases adossades o altres alternatives. Per tal de definir la distribució
de l'edifici, la superfície habitable de cada planta i les corresponents sales, s'ha recorregut a les particularitats edificatòries de la zona, considerant uns valors mitjans entre tots els habitatges d'aquestes característiques de Girona.

Dins el "Document Plànols", s'especifica la distribució de les sales de que consta l'edifici de dues plantes, la seva identificació, orientació, pendents de coberta, múltiples seccions de l'edifici i vistes generals del mateix.

A continuació (a la Taula 2), es presenten els identificadors i superfícies corresponents a cada sala de l'edifici.

<table>
<thead>
<tr>
<th>Identificador</th>
<th>Descripció</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Baixa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Cuina</td>
<td>12,608</td>
</tr>
<tr>
<td>R</td>
<td>Rentador</td>
<td>5,954</td>
</tr>
<tr>
<td>P1</td>
<td>Passadís "Planta Baixa"</td>
<td>6,751</td>
</tr>
<tr>
<td>H</td>
<td>Rebot</td>
<td>2,830</td>
</tr>
<tr>
<td>B1</td>
<td>Bany "Planta Baixa"</td>
<td>3,946</td>
</tr>
<tr>
<td>E1</td>
<td>Escales "Garatge"</td>
<td>4,909</td>
</tr>
<tr>
<td>S</td>
<td>Sala d’estar</td>
<td>25,580</td>
</tr>
<tr>
<td>E2</td>
<td>Escales "Planta Baixa-Planta Primera"</td>
<td>3,828</td>
</tr>
<tr>
<td>M</td>
<td>Menjador</td>
<td>31,671</td>
</tr>
<tr>
<td>Planta Primera:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>Escales "Planta Baixa-Planta Primera"</td>
<td>3,982</td>
</tr>
<tr>
<td>D1</td>
<td>Dormitori de matrimoni</td>
<td>24,525</td>
</tr>
<tr>
<td>P2</td>
<td>Passadís "Planta Primera"</td>
<td>11,454</td>
</tr>
<tr>
<td>B2</td>
<td>Bany "Planta Primera"</td>
<td>6,375</td>
</tr>
<tr>
<td>D4</td>
<td>Dormitori de convidats</td>
<td>8,599</td>
</tr>
<tr>
<td>D3</td>
<td>Dormitori simple1</td>
<td>13,252</td>
</tr>
<tr>
<td>D2</td>
<td>Dormitori simple2</td>
<td>13,187</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td>179,451</td>
</tr>
</tbody>
</table>

Taula 2: Identificador i Superfície de cada sala. Superfície total.

En la Figura 7, es mostra una representació en 3D de l'habitatge.
3.3 Solucions constructives

L'evolvent tèrmica és un dels grans pilars per tal de poder estudiar quant eficient tèrmicament és un edifici. Com millor és l'evolvent, menor és la transmitància tèrmica dels elements que la conformen (tancaments i obertures) i menors son les pèrdues tèrmiques que té l'edifici. Al disminuir les aportacions tèrmiques que fa l'edifici a l'ambient exterior, es promou que a l'interior de l'edifici sigui més fàcil d'assolir un benestar tèrmic, és a dir, que les condicions de temperatura interior, generin una sensació de benestar i siguin adequades i suficients pel confort dels seus ocupants.

Per tal d'estudiar la incidència que té l'evolvent tèrmica sobre la qualificació energètica dels edificis, es consideren diferents models de solucions constructives. En concret, quatre models de façana, dos de coberta, dos de solera, un de forjat, un model d'envà i respecte a les obertures, es consideren dos models de vidre per a les finestres. Amb la combinació d'aquests solucions constructives, s'obtenen diferents evolvents tèrmiques.

A la Figura 8, es representen tots els models de solució constructiva estudiats, per tal de poder conformar una evolvent tèrmica. És pot apreciar el tipus d'abreviatura utilitzada per d'identificar cada tipus d'element, abreviatures que s'utilitzen fins al final del projecte.

Figura 8: Solucions constructives.
Respecte a l'origen de les solucions constructives estudiades, esmentar que es va realitzar una recerca de bibliografia de solucions constructives típiques i no es va trobar cap informació transcendent sobre solucions constructives instal·lades 10 o 30 anys enrere. Aquesta informació, es va adquirir gràcies a l'aportació d'arquitectes i enginyers amb una amplia experiència professional en la zona de Girona. Aquests, van fer un gran treball d'assessorament, aportant informació sobre quines solucions constructives van ser les més utilitzades i quines es poden trobar en l'arquitectura catalana i espanyola. També va ser interessant, l'aportació que van fer paletes de la zona, sobre solucions constructives que havien estat instal·lants en la darrera dècada.

Tal com s'ha explicat anteriorment, l'evolvent tèrmica és de gran importància alhora d'obtenir un edifici eficient tèrmicament. Per tal de visualitzar quina incidència pot tenir l'evolvent tèrmica sobre un edifici, s'adjunta la Figura 9, on es pot apreciar a partir de la termografia (imatge tèrmica) d'un edifici, la diferència de pèrdua de calor entre la part de l'edificí amb una bona evolvent tèrmica (la part de l'edifici pintada de blanc), i la part que té unes pèrdues tèrmiques elevades (part de l'edifici amb la façana de pedra).

![Figura 9: Importància d'una bona transmitància tèrmica (font: http://www.thermalcalconline.com).](image)
3.3.1 Façana tipus 1 (F_1)

La façana de tipus 1 és la façana amb millors prestacions, de les considerades en el projecte, és a dir, és la que té menor transmitància tèrmica.

Està composta per doble paret de fàbrica, un aïllament tèrmic de poliestirè expandit de 6 cm de gruix, un acabat interior de guix i un acabat exterior amb morter.

A la Figura 10 es pot apreciar la composició específica de la "F_1".

La transmitància tèrmica de la solució constructiva "F_1" és de 0,45 W/m²*K.

<table>
<thead>
<tr>
<th>Espais</th>
<th>Semihonsponents</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATERIALS I PRODUCTES</td>
<td>Darreres i particions interiors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grupo</th>
<th>Façana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
<td>F_1</td>
</tr>
</tbody>
</table>

Composició del Cementatge:
Verticats [Materials ordenats de exteriore a interior]
Horitzontals [Materials ordenats de dalt a baix]

<table>
<thead>
<tr>
<th>Nº</th>
<th>Material</th>
<th>Espesor</th>
<th>Conductivitat</th>
<th>Densitat</th>
<th>Cp</th>
<th>Res. Tèrmica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Morter de ànides ligeres [vermiculita pura]</td>
<td>0,020</td>
<td>0,410</td>
<td>900</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tabic de Lh triple [100 mm ≤ E ≤ 110 mm]</td>
<td>0,110</td>
<td>0,427</td>
<td>920</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>EPS Poliestire Expansió [0,037 W/(m*K)]</td>
<td>0,060</td>
<td>0,038</td>
<td>30</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tabic de Lh doble [60 mm ≤ E ≤ 90 mm]</td>
<td>0,065</td>
<td>0,432</td>
<td>930</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Elucido de yeso 1000 ≤ d ≤ 1300</td>
<td>0,015</td>
<td>0,570</td>
<td>1150</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº</th>
<th>Material</th>
<th>Espesor</th>
<th>Conductivitat</th>
<th>Densitat</th>
<th>Cp</th>
<th>Res. Tèrmica</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>Espesor (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS Poliestire Expansió (0,037 W/(m*K))</td>
<td>0,030</td>
</tr>
</tbody>
</table>

Figura 10: Composició específica de la Façana de tipus 1.
3.3.2 Façana tipus 2 (F_2)

La façana de tipus 2 és una façana de baixes prestacions amb una alta transmitència tèrmica.

Està composta per una paret de fàbrica amb acabat exterior de morter, una capa interior de morter i un acabat interior de guix. Tal i com es pot apreciar, a aquest tancament l’hi falta una capa d'aïllament, motiu pel qual se'n despren la seva alta transmitència tèrmica i les seves baixes prestacions.

A la Figura 11 es pot apreciar la composició específica de la "F_2".

La transmitència tèrmica de la solució constructiva "F_2" és de 2,17 W/m²*K.

Figura 11: Composició específica de la Façana de tipus 2.
3.3.3 Façana tipus 3 (F_3)

La façana de tipus 3 és la façana amb pitjors prestacions de les que s'han considerat en aquest projecte. Destaca la seva elevada transmitància tèrmica i la simplicitat pel que fa a la construcció del tancament.

Està composta d'una simple paret de totxo de formigó.

A la Figura 12 es pot apreciar la composició específica de la "F_3".

La transmitància tèrmica de la solució constructiva "F_3" és de 3,51 W/m²K.

![Figura 12: Composició específica de la Façana de tipus 3.](image-url)
3.3.4 Façana tipus 4 (F_4)

La façana de tipus 4 és un tancament de paret simple amb aïllament tèrmic. Respecte a les altres façanes considerades en aquest projecte, aquesta té una bona transmitància tèrmica.

Està composta per una paret de fàbrica, una capa d'aïllament de 3 cm de poliestirè expandit, un acabat exterior de morter i un acabat interior de guix.

A la Figura 13 es pot apreciar la composició específica de la "F_4".

La transmitància tèrmica de la solució constructiva "F_4" és de 0,86 W/m2*K.
3.3.5 **Coberta tipus 1 (CO_1)**

La coberta de tipus 1 és una tancament d'altes prestacions al tenir una baixa transmitància tèrmica.

Està composta per un forjat, format per semibiguetes amb revoltons de 25cm, una capa d'aïllament de EPS de 5cm de gruix, una capa exterior de formigó i un acabat exterior de teula.

A la Figura 14 es pot apreciar la composició específica de la "CO_1".

La transmitància tèrmica de la solució constructiva "CO_1" és de **0,58 W/m²*K**.

![Diagrama](image.png)

Figura 14: Composició específica de la Coberta de tipus 1.
3.3.6 Coberta tipus 2 (CO_2)

La coberta de tipus 2 amb comparació amb la coberta de tipus 1, és un tancament molt més simple. Té una transmitància tèrmica molt més elevada i l'absència d'una capa d'aïllament tèrmic. En aquest cas, no s'utilitza una construcció amb revoltons, sinó que la tècnica emprada és la del "tabique conejero".

Està composta per una capa de fàbrica, una capa exterior de formigó i un acabat exterior de teula.

A la Figura 15 es pot apreciar la composició específic de la "CO_2".

La transmitància tèrmica de la solució constructiva "CO_2" és de 3,35 W/m²*K.

<table>
<thead>
<tr>
<th>Ús</th>
<th>Semitransparentes</th>
<th>Ceràniques y pinturas interiores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grup</td>
<td>Cobertes</td>
<td></td>
</tr>
<tr>
<td>Nombre</td>
<td>CO_2</td>
<td></td>
</tr>
<tr>
<td>Composició del Ceramisme:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verticals (Materialis ordenats de exterior a interior).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horitzontals (Materialis ordenats de amba hacia abajo).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº</th>
<th>Material</th>
<th>Espesor</th>
<th>Conductividad</th>
<th>Densidad</th>
<th>Cp</th>
<th>Res. Tèrmica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Top de orillo cocido</td>
<td>0,020</td>
<td>1,000</td>
<td>2000</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hormigón en masa 2000 < d < 2300</td>
<td>0,030</td>
<td>1,650</td>
<td>2150</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tabique de LH sencillo [40 mm < Espesor < 60 mm]</td>
<td>0,040</td>
<td>0,445</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 15: Composició específica de la Coberta de tipus 2.
3.3.7 Solera tipus 1 (SO_1)

La solera de tipus 1 és un tancament que minimitza les pèrdues de calor amb el terreny gràcies al seu aïllament tèrmic.

Està composta per una capa de grava i sorra, una capa superior de formigó, una capa d'aïllament de EPS de 6 cm de gruix, una capa superior de morter i un acabat interior de ceràmica.

A la Figura 16 es pot apreciar la composició específica de "SO_1".

La transmitància tèrmica de la solució constructiva "SO_1" és de 0,47 W/m²*K.

![Diagrama](image)

Figura 16: Composició específica de la Solera de tipus 1.
3.3.8 Solera tipus 2 (SO_2)

La solera de tipus 2 no disposa de tantes bones prestacions com la de tipus 1, la seva transmitància térmica és més elevada, i com a conseqüència, té més pèrdues térmiques en el terreny.

Està composta per una capa de grava i sorra, una capa superior de formigó, una capa superior de morter i un acabat interior de ceràmica.

A la Figura 17 es pot apreciar la composició específica de "SO_2".

La transmitància térmica de la solució constructiva "SO_2" és de 1,78 W/m²*K.

![Figura 17: Composició específica de la Solera de tipus 2.](image-url)
3.3.9 Forjat (FO_1)

S'ha optat per utilitzar un sol tipus de forjat degut a que no està en contacte amb l'exterior (està situat entre dues sales climatitzades), per tant, l'efecte que podria tenir el fet de posar forjat amb més o menys transmitància tèrmica és poc transcendent respecte a la qualificació energètica de l'edifici.

Està compost per un entrebigat de formigó (semibiguetes i revoltons de 25cm), una capa superior de formigó, una capa superior de morter, un acabat superior de ceràmica i un acabat inferior de guix.

A la Figura 18 es pot apreciar la composició específica del "FO_1".

La transmitància tèrmica de la solució constructiva "FO_1" és de 2,19 W/m²K.

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Material</th>
<th>Espesor</th>
<th>Conductividad</th>
<th>Densitat</th>
<th>Cp</th>
<th>Res. Tèrmica</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Grés calcáreo 2000 < d < 2700</td>
<td>0,020</td>
<td>0,180</td>
<td>2350</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Montera de útils ligers [vitriculta perlita]</td>
<td>0,020</td>
<td>0,180</td>
<td>2350</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hormigó armad 2300 < d < 2500</td>
<td>0,020</td>
<td>0,180</td>
<td>2350</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Forjat de hormigó - Centa 250 mm</td>
<td>0,250</td>
<td>1,223</td>
<td>1300</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Infill de yeso 1000 < d < 1300</td>
<td>0,019</td>
<td>0,570</td>
<td>1150</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 18: Composició específica del Forjat de tipus 1.
3.3.10 Envà (Enva)

Aquest element, no té rellevància respecte a l'eficiència tèrmica de l'edifici. És un element que s'ha generat per exigències pròpies del programari per tal de poder executar tots els càlculs.

Està compost per una paret simple de fàbrica i un acabat de guix pels dos costats.

A la Figura 19 es pot apreciar la composició específica de "Enva".

La transmitència tèrmica de la solució constructiva "Enva" és de 3,23 W/m²K.

![Figura 19: Composició específica de l’Envà.](image)
3.3.11 Porta (Porta)

El programari utilitzat considera com a porta, una obertura el marc del qual, ocupa el 100% de la superfície de l'obertura.

Està composta per fusta de densitat mitja-alta.

A la Figura 20 es pot apreciar la composició específica de "Porta".

La transmitància tèrmica de la solució constructiva "Porta" és de 2,2 W/m²*K.

<table>
<thead>
<tr>
<th>Opuscos</th>
<th>Sèmitransparents</th>
<th>Vítics</th>
<th>Marcos</th>
<th>Huesos y Lumbreres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo Obertura</td>
<td>Nombre</td>
<td>Porta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propietats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo Vítics</td>
<td>Monolítico en posició vertical</td>
<td>VCR_M_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo Marco</td>
<td>Madera en posició vertical</td>
<td>VCR_Madera de densitat media alta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿% coberto per el marco</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¿Es una puerta?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeabilitat al aire</td>
<td>60 m³/hm² o 100 Pa</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 20: Composició específica de la Porta.
3.3.12 Finestra tipus 1 (V_1)

La finestra de tipus 1 està composta per un vidre simple de 4 mm on el marc ocupa un 10% de la superfície de l'obertura.

A la Figura 21 es pot apreciar la composició específica de "V_1".

La transmitància térmica de la solució constructiva "V_1" és de 5,35 W/m²*K. Està composta per la transmitància térmica del marc (2,2 W/m²*K) i la del vidre (5,7 W/m²*K).

![Figura 21: Composició específica de la Finestra de tipus 1.](image-url)
3.3.13 Finestra tipus 2 (V_2)

La finestra de tipus 2 té millors prestacions que la de tipus 1 al disposar de doble vidre amb càmera d'aire interior.

Està composta per un doble vidre de 4 mm cadascun i una càmera d'aire de 6 mm. El marc ocupa un 10% de la superfície de l'obertura.

A la Figura 22 es pot apreciar la composició específica de "V_2".

La transmitància tèrmica de la solució constructiva "V_2" és de 3,19 W/m²*K. Està composta per la transmitància tèrmica del marc (2,2 W/m²*K) i la del vidre (3,3 W/m²*K).

<table>
<thead>
<tr>
<th>Opacitat</th>
<th>Somotransparente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vidre</td>
<td>Marcos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Propietats</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_2</td>
<td></td>
</tr>
</tbody>
</table>

| Grupo Vidre | | Tènies en posició vertical |
|-------------|-----------------------------|
| Vídri | VERSIC4D4-4-4 |

| Grupo Marco | | De Madera en posició vertical |
|-------------|-----------------------------|
| Marco | VERI_Madera de densitat mitjana |

% coberta per el marco	70,00
¿És una pesta?	si
Permeabilitat d'aire	25,00 m³/min a 100 Pa

Figura 22: Composició específica de la Finestra de tipus 2.
3.4 Selecció de les combinacions d'estudi

En la Figura 23 es mostren les combinacions que s'han seleccionat, pet tal de realitzar l'estudi d'eficiència energètica de l'edifici. Per a cada fila, les opcions marcades amb un "tick", mostren els tipus de solucions constructives que compren la combinació, és a dir, l'evolvent tèrmica.

![Figura 23: Selecció de les combinacions de solucions constructives a estudiar.](image)

No s'ha optat per estudiar totes les combinacions de solucions constructives possibles, ja que de fer-ho així, s'haurien d'estudiar 32 tipus d'evolvents diferents. Aquesta quantitat d'evolvents, comportaria molt de temps pel que respecte a la manipulació i execució del programari i el posterior tractament de dades per tal de fer-les presentables.

S'ha de considerar que el número d'evolvents triades en aquest punt, s'han de combinar amb el número d'instal·lacions que s'estudiaran en el punt 3.7, per tant, el número d'estudis a realitzar, és el número d'evolvents escollides multiplicades pel número d'instal·lacions. Per aquesta raó, s'ha acotat el numero d'evolvents térmiques a estudiar a 10. Aquestes, han estat triades amb molt de criteri, per tal de poder-ne extreure els resultats el més representatius possibles. S'han considerat combinacions oposades i les que poden anar bé alhora de contrastar resultats.

3.5 Programa LIDER

3.5.1 Generació de l'edifici en 3D mitjançant el programa LIDER

A continuació, es detallen els passos a seguir per tal de generar un habitatge en 3D amb el programa LIDER. S'ha de tenir en compte que el programa LIDER no disposa d'una interfície gaire amigable.
Pas1: Primerament, per acabar generant l'edifici al complet correctament, s'ha de crear la planta baixa amb l'opció de programa "crear planta". Per tal de fer-ho, s'ha d'acotar un espai tancat entrant les coordenades d'una sèrie de punts que et delimiten.

Pas2: Generar les particions interiors amb línies auxilar que delimiten les sales. Per generar cada sala, anar a l'opció "crear espacio". Llavors, el LIDER associa aquest espai amb un identificador propi del programa. Aquest pas, s'ha de repetir per a cada sala que es vulgui generar.

Pas3: A continuació, anant a l'opció "crear muros", el programa genera les parets interiors i exteriors fins l'altura que s'ha definit en les opcions de planta.

Pas4: El següent pas és crear la solera, opció "crear forjados".

Arribats a aquest punt, ja s'ha generat la planta baixa, veure Figura 24.

Figura 24: Representació/distribució de la planta baixa amb el programa LIDER.

A tenir en compte: per tal de generar l'edifici en condicions, el més important és generar correctament el croquis que defineix la planta. Si hi ha tan sols un petit error, portarà problemes en una situació futura de l'estudi de l'edifici.

Pas5: Per tal de generar la planta primera, s'executen els mateixos passos que s'han utilitzat per generar la planta baixa. Considerar que, alhora de generar la nova planta, s'ha d'activar l'opció de programa que et permet generar-la sobre una planta creada anteriorment. En el moment d'executar l'opció "crear forjados", no genera una solera sinó el forjet, ja que la planta actual no està en contacte amb el terreny.
Després d'aquest punt, ja s'ha generat la planta primera, veure la Figura 25.

Pas6: A continuació, es genera l'última planta amb els mateixos passos executats en les plantes anteriors. Un cop generat el forjat, es crea la coberta amb l'opció "crear cerramientos singulares".

![Figura 25: Representació/distribució de la planta primera amb el programa LIDER.](image)

A la Figura 26, es mostra l'edifici un cop generada la coberta.

![Figura 26: Edifici un cop generada la coberta.](image)

Pas7: Finalment, es generen les obertures amb l'opció "crear ventanas".

CARACTERITZACIÓ ENERGÈTICA D’EDIFICIS ANTERIORS AL CTE

Memòria
A la Figura 27, es mostren les diferents vistes de l'edifici un cop generades les obertures.

![Figura 27: Obertures de l'edifici.](image)

A continuació, es mostren les imatges 3D de l'edifici acabat (Figura 28).

![Figura 28: Representació de l'edifici amb el programa LIDER.](image)
Un cop representat geomètricament l'edifici, el pròxim pas, és inserir les solucions constructives en el programa. Anar a la pestanya “BD” i obrir la finestra “Gestión de la Base de Datos”. En aquest punt, es registren totes les solucions constructives que s'utilitzaran en l'estudi de l'edifici. Llavors, tots aquests tancaments, obertures i divisions interiors, es poden associar als diferents elements de l'edifici.

3.5.2 Càlculs amb el programa LIDER.

La finalitat del programa LIDER, és comprovar si l'edifici simulat compleix amb el reglament establert pel Codi Tècnic de l'Edificació (CTE), en concret, amb el Document Bàsic HE1.

Un cop realizada la representació en 3D de l'edifici i associades les solucions constructives als elements pertinents per cada combinació, s'executa el programa.

Els resultats obtinguts amb el programari LIDER per les 10 evolvents estudiades, es troben a l'annex Resultats LIDER. Analitzant aquests resultats, es veu que no hi ha cap evolvent tèrmica estudiada que compleixi amb el CTE DB HE1.

Aquest resultat a priori tant negatiu (no hi ha cap combinació de les 10 estudiades que compleixi amb el CTE), s'explica degut que el codi tècnic vigent actualment, és molt estricte en algun tipus específic de tancament i especialment per les obertures. Això implica, que s'ha considerat algun element la transmitància tèrmica del qual, no compleix amb aquest valor mínim de transmitància tèrmica exigí pel CTE, per tant, el resultat és que no compleix amb la normativa.

Un altra aspecte a considerar, és l'efecte que poden tenir les condensacions. En aquest projecte, no s'han considerat alhora de generar els tancaments, per tant, alguns elements no assoleixen el valor mínim en aquest àmbit.

Aquests resultats no impliquen que tota la feina realitzada fins el moment no tingui validesa. L'objecte d'aquest projecte és el de veure quina qualificació energètica obtindrien els edificis construïts un temps enrere (abans de la implantació del CTE), amb els elements constructius de l'època. És normal, que aquestes solucions constructives no compleixin amb certs aspectes, respecte a les limitacions mínimes que exigeix el CTE, ja que en el moment de la seva construcció, la normativa vigent al respecte era menys restrictiva.

El que interessa arribats a aquest punt, són els resultats del compliment tèrmic de l'edifici. Aquests, es troben a l'annex Resultats LIDER. Per tal de veure si compleix, veure els valors de l'edifici objecte estudiat respecte a l'edifici de referència. Entenent com a edifici de referència, a l'edifici que assoleix els valors mínims per tal de complir tèrmicament amb el
CARACTERITZACIÓ ENERGÈTICA D’EDIFICIS ANTERIORS AL CTE

Memòria

DB HE1, és a dir, amb l'evolvent tèrmica mínima. De les 10 combinacions estudiades, les combinacions 1, 2, 3, 9 i 10 compleixen. Aquestes, en el gràfic de resultats, tenen la barra de color verd tant en l'apartat de calefacció com en el de refrigeració.

3.5.3 Informació important

En el moment de generar l'edifici amb el programa LIDER, aquest, associa un identificador a cada sala. Aquests identificadors es troben representats a la Taula 3 com a "Identificadors Lider". Aquests identificadors, seran utilitzats fins al final del present projecte.

El LIDER necessita determinar cada sala, com habitable o no habitable per tal d'executar els càlculs correctament. S'entén com habitable, una superfície climatitzada que comparteix el mateix ús i condicions tèrmiques equivalents a altres superfícies habitables de l'edifici, per tal d'agrupar-les a efecte de càlcul de la demanda energètica. Com a superfície no habitable, s'entén a aquella superfície que té les mateixes característiques que una superfície habitable, però no està climatitzada, per tant, no es té en compte alhora de fer el càlcul de càrrega tèrmica. Es considera que la càrrega tèrmica de les zones no habitables és 0 i per tant, no necessiten climatització.

<table>
<thead>
<tr>
<th>Identificador Lider</th>
<th>Identificador Propi</th>
<th>Descripció</th>
<th>Superfície Habitável (m2)</th>
<th>Superfície No Habitável (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta Baixa:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P01_E01</td>
<td>C</td>
<td>Cuina</td>
<td>12,608</td>
<td></td>
</tr>
<tr>
<td>P01_E02</td>
<td>R</td>
<td>Rentador</td>
<td>5,954</td>
<td></td>
</tr>
<tr>
<td>P01_E03</td>
<td>P1</td>
<td>Passadís "Planta Baixa"</td>
<td>6,751</td>
<td></td>
</tr>
<tr>
<td>P01_E04</td>
<td>H</td>
<td>Rebost</td>
<td>2,830</td>
<td></td>
</tr>
<tr>
<td>P01_E05</td>
<td>B1</td>
<td>Bany "Planta Baixa"</td>
<td>3,946</td>
<td></td>
</tr>
<tr>
<td>P01_E06</td>
<td>E1</td>
<td>Escales "Garatge"</td>
<td>4,909</td>
<td></td>
</tr>
<tr>
<td>P01_E07</td>
<td>S</td>
<td>Sala d'estar</td>
<td>25,580</td>
<td></td>
</tr>
<tr>
<td>P01_E08</td>
<td>E2</td>
<td>Escales "Planta Baixa-Planta Primera"</td>
<td>3,828</td>
<td></td>
</tr>
<tr>
<td>P01_E09</td>
<td>M</td>
<td>Menjador</td>
<td>31,671</td>
<td></td>
</tr>
<tr>
<td>Planta Primera:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P02_E01</td>
<td>E3</td>
<td>Escales "Planta Baixa-Planta Primera"</td>
<td>3,982</td>
<td></td>
</tr>
<tr>
<td>P02_E02</td>
<td>D1</td>
<td>Dormitori de matrimoni</td>
<td>24,525</td>
<td></td>
</tr>
<tr>
<td>P02_E03</td>
<td>P2</td>
<td>Passadís "Planta Primera"</td>
<td>11,454</td>
<td></td>
</tr>
<tr>
<td>P02_E04</td>
<td>B2</td>
<td>Bany "Planta Primera"</td>
<td>6,375</td>
<td></td>
</tr>
<tr>
<td>P02_E05</td>
<td>D4</td>
<td>Dormitori de convidats</td>
<td>8,599</td>
<td></td>
</tr>
<tr>
<td>P02_E06</td>
<td>D3</td>
<td>Dormitori simple1</td>
<td>13,252</td>
<td></td>
</tr>
<tr>
<td>P02_E07</td>
<td>D2</td>
<td>Dormitori simple2</td>
<td>13,187</td>
<td></td>
</tr>
<tr>
<td>Planta Sota Coberta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P03_E01</td>
<td></td>
<td>Golfes</td>
<td>83,245</td>
<td></td>
</tr>
</tbody>
</table>

Taula 3: Identificadors LIDER, superfície habitable i no habitable.
A la Taula 4 es mostren els valors superficials dels diferents tipus de superfície existents en l'edifici. Es separen en habitables, no habitables, per plantes, superfície total habitable, total no habitable i superfície total construïda.

<table>
<thead>
<tr>
<th>Planta Baixa</th>
<th>Habitable</th>
<th>No Habitual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>84,384</td>
<td>13,693</td>
</tr>
<tr>
<td>Planta Primera</td>
<td>81,374</td>
<td>0</td>
</tr>
<tr>
<td>Planta Sota Coberta</td>
<td>0</td>
<td>83,245</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>165,758</td>
<td>96,938</td>
</tr>
</tbody>
</table>

Taula 4: Desglossat de superfícies.

3.6 Càlcul de Càrregues Tèrmiques

Per tal de trobar la demanda energètica de l'edifici (pèrdues de calor que té l'edifici), s'ha de fer un estudi de càrregues tèrmiques. Un cop se sap la demanda energètica, es poden dimensionar correctament les instal·lacions tèrmiques de l'edifici (així no estaran sobre dimensionades o infradimensionades). Els paràmetres que influeixen alhora de calcular les càrregues tèrmiques són: la zona climàtica on es situa l'edifici, és a dir, les condicions exteriors a les que està sotmès. L'evolvent tèrmica, que és la capacit de que té l'edifici d'aisllar els espais interiors de les condicions exteriors. Com més baixa sigui la transmitància tèrmica de l'evolvent, menys pèrdues tindrà i més baixa serà la càrrega tèrmica de l'edifici.

El present projecte al tenir 10 evolvents tèrmiques (combinacions) diferents, el càlcul de càrregues tèrmiques es fa 10 vegades. S'han calculat les pèrdues tèrmiques que té cada sala de l'edifici (130 estudis), en funció de l'evolvent. A partir d'aquests valors donats en "Watts" i la superfície de les sales, s'ha trobat la càrrega tèrmica mitja per a cada evolvent (mirar annexa Càlcul de Càrregues Tèrmiques per veure els càlculs i gràfics detallats).

A continuació, s'ha fet la mitjana dels 10 valors de càrrega tèrmica trobats, i s'ha obtingut un únic valor que fa referència a la càrrega tèrmica mitja global de totes les evolvents estudiades (veure Figura 29). Aquest valor mig global és 112,23 W/m², que és el valor amb el que correspondria fer el dimensionament de les instal·lacions.

Aquest valor mig global, s'ha contrastat amb el valor tòpic que fan servir enginyers en la seva activitat professional, alhora de dimensionar les instal·lacions tèrmiques d'un edifici. El valor proporcionat pels enginyers és de 100 W/m², aquest valor, al ser un valor de referència molt usat en enginyeria, s'ha optat per utilitzar-lo ja que és molt similar a la càrrega tèrmica mitja.
global obtinguda en el present estudi. **Per tant, el valor que s'utilitzarà per tal de dimensionar les instal·lacions tèrmiques és 100 W/m².**

Table: Càrrega Tèrmica Mitja

<table>
<thead>
<tr>
<th>Combinació</th>
<th>Càrrega Tèrmica Mitja</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99,48 W/m²</td>
</tr>
<tr>
<td>2</td>
<td>95,92 W/m²</td>
</tr>
<tr>
<td>3</td>
<td>99,41 W/m²</td>
</tr>
<tr>
<td>4</td>
<td>122,04 W/m²</td>
</tr>
<tr>
<td>5</td>
<td>119,56 W/m²</td>
</tr>
<tr>
<td>6</td>
<td>129,09 W/m²</td>
</tr>
<tr>
<td>7</td>
<td>126,86 W/m²</td>
</tr>
<tr>
<td>8</td>
<td>126,80 W/m²</td>
</tr>
<tr>
<td>9</td>
<td>103,22 W/m²</td>
</tr>
<tr>
<td>10</td>
<td>99,90 W/m²</td>
</tr>
</tbody>
</table>

Si es vol obtenir més precisió en els càlculs, el procés a seguir és el de fer els càlculs amb 112,23 W/m². De igual manera, si es volen un càlculs encara més acotats, es poden fer els càlculs amb el valor de càrrega tèrmica mitja que li pertoca a cada evolvent tèrmica i obtenir unes instal·lacions diferents per a cada combinació. Generar aquests càlculs requereix de molt de temps, per tant, s'ha considerat que podria ser excessiu respecte a les exigències requerides en el present PFC.

3.7 Càlculs mitjançant CALENER VYP

Un cop es té el valor de càrrega tèrmica a utilitzar, s'han d'establir un conjunt d'instal·lacions tèrmiques a estudiar. S'ha recorregut a enginyers i instal·ladors de la zona, per tal d'establir quins tipus d'instal·lacions tèrmiques són les més adequades per l'estudi. Finalment, s'ha considerat de fer l'estudi amb 6 instal·lacions tèrmiques diferents. Aquestes, són les instal·lacions típiques que es podien trobar en els edificis unifamiliars d'abans de la implementació del CTE.

El programari utilitzat per analitzar les instal·lacions tèrmiques per a les diferents combinacions és el CALENER VYP, que és el programa que està reconegut pel "Ministerio de Industria, Energía i Turismo" per a la certificació d'edificis. Aquest programa, obté com a resultat un estudi energètic de l'edifici amb l'estimació d'emissions de CO2 i la lletra de qualificació energètica de l'edifici estudiant.
3.7.1 Dimensionament dels equips

- Calderes i Bomba de calor (a totes les zones):

La càrrega tèrmica multiplicada per la superfície habitable, don com a resultat la potència útil que ha de subministrar el sistema de calefacció.

\[\text{Pot}_{\text{util}} = \frac{100W}{m^2} \times 165,77m^2 = 16.577 \text{ W}\]

Dividint la potència útil pel rendiment que té la caldera i rendiment de la instal·lació, s'obté la potència nominal que ha de tenir la caldera.

\[\text{Pot}_{\text{nominal,caldera}} = \frac{16,577}{0,85 \times 0,9} = 21.666 \text{ W}\]

Es va preguntar a professionals del sector quin tipus d'equipament solien instal·lar en aquestes condicions. Tant enginyers com instal·ladors van comentar, que pel tipus d'edificació estudiada (edifici unifamiliar aïllada), la instal·lació típica era una caldera de 24 kW de potència nominal, i respecte a la bomba de calor, es posava una màquina exterior per planta de entre 8 i 9 kW cadascuna.

Un cop valorades les opcions, s'ha decidit agafar com a equip de calefacció, una caldera de 24 kW i bombes de calor de potència útil de calefacció de 8,6 kW i potència útil de refrigeració de 6,8 kW. Aquests són valors mols estàndards que es poden trobar fàcilment en catàlegs.

- Bomba de calor (menjador):

La càrrega tèrmica multiplicada per la superfície del menjador (ja que es considera de climatitzar amb fred únicament el menjador), don com a resultat la potència útil de fred que ha de subministrar la bomba de calor.

\[\text{Pot}_{\text{util}} = \frac{100W}{m^2} \times 31,67m^2 = 3.167 \text{ W}\]

S'ha instal·lat una bomba de calor amb potència útil de fred de 3,6 kW pel menjador.

- Caldera elèctrica per ACS:

La demanda típica diària d'ACS en l'edifici estudiat, és de 120 litres al dia (segons el DB HE 4). Multiplicant aquesta demanda pel calor específic de l'aigua i la diferència de temperatura (de 12,9 a 60 graus centígrads) que s'ha d'assolir, s'obté l'energia que s'ha de destinar al dia a escalfar aigua.
120 L d’aigua/diaris = 120 Kg/dia.

\[\text{Energia} = 120 \text{Kg} \times \frac{4,18 \text{kJ}}{\text{Kg} \times ^\circ \text{C}} \times (60 - 12,9)^\circ \text{C} = 23.625 \text{kJ} \]

\[\text{Potència} = \frac{23.625 \text{kJ}}{4.000 \text{s}} = 5,9 \text{ kW} \]

La caldera elèctrica instal·lada és de 6 kW. Amb aquesta potència es pot escalfar l’aigua necessària per a un dia en menys de dues hores (més que suficient).

- **Caldera de baixa temperatura amb terra radiant:**

Aquest cas és el més complexa de simular amb el programari. El CALENER VYP permet simular una caldera de baixa temperatura, però la simulació del terra radiant és més complexa i no ho permet.

Per tal de resoldre aquest problema, s'ha considerat una caldera de baixa temperatura, i s'ha buscat una altra tipus d'instal·lació que donés els mateix resultat que si s'hagués realitzat el càlcul amb la instal·lació per terra radiant. Aquesta instal·lació està formada per radiadors per convecció com a unitats terminals. És clara la problemàtica, un radiador per convecció no és el mateix que un terra radiant. S'ha de trobar un valor que relacioni el terra radiant amb els radiadors com a elements terminals. Aquest valor, és la quantitat de potència que necessita una instal·lació amb terra radiant per tal de proporcionar la mateixa sensació calorífica sobre l’ambient interior que una instal·lació per radiadors. S'ha buscat bibliografia al respecte i la informació trobada és molt escassa. Amb aquesta informació i amb l’assessorament d’enginyers experts en la matèria, s’ha conclòs que la relació que hi ha entre els dos tipus d’instal·lació és que el terra radiant, gasta entre un 20 % i un 30 % menys que una instal·lació amb radiadors (veure Taula 5).

![Taula 5: Valors comparatius d’instal·lacions per radiador i per terra radiant (I Congreso Climatización Efiiciente per Santiago Aroca Lastra y Fernando Varela Díez).](image-url)
Una alternativa alhora d'implementar el terra radiant dins l'estudi, és la utilització d'un
programari anomenat UPOSoft. Aquesta alternativa s'ha considerat viable però no massa
atractiva, degut a que es tracta d'una operació post procés, és a dir, primer es realitza
l'estudi de l'edifici amb les instal·lacions pertinents excepte la de terra radiant, i un cop
calculades les emissions de CO2, s'aplica un coeficient de correcció amb el programa
UPOSoft, per tal d'obtenir un resultat final que reflecteixi l'efecte de la instal·lació amb terra
radiant instal·lat.

En aquest punt, s'ha optat per la primera opció (reduir la potència dels elements terminals en
un 20 - 30 %). En aquestes condicions, l'equip que s'ha agafat per tal de fer l'estudi, ha estat
una caldera de baixa temperatura de 18 kW.

\[
\text{Potència} = 24\text{ kW} \times 0,75 = 18\text{ kW}
\]

3.7.2 Tipus d'instal·lacions analitzades

A continuació, es descriuen les instal·lacions seleccionades per l'estudi.

- **Instal·lació 1:**

 En la instal·lació 1 s'ha considerat un sistema mixta amb caldera de gasoil de 24kW i un
 rendiment del 85%, que alimenta la part de calefacció i la part d'ACS de la vivenda
 unifamiliar aïllada. El circuit de calefacció consta d'un circuit d'alta temperatura (80 ºC) amb
 radiadors com elements terminals que són els encarregats d'aportar calor a la vivenda.

 Per altra banda, s'ha considerat un sistema de refrigeració instal·lat en el menjador, la
 finalitat del qual, és la de fer més suportables els dies més calorosos de l'any aportant
 benestar. L'equip de refrigeració esmentat, consta d'un equip d'expansió directa unizona
 aire-aire de 3,6kW de potència nominal.

- **Instal·lació 2:**

 En la instal·lació 2 s'ha considerat un sistema mixta amb caldera de gas natural de 24kW i
 un rendiment del 85%, que alimenta la part de calefacció i la part d'ACS de la vivenda
 unifamiliar aïllada. El circuit de calefacció consta d'un circuit d'alta temperatura (80 ºC) amb
 radiadors com elements terminals que són els encarregats d'aportar calor a la vivenda.

 Per altra banda, s'ha considerat un sistema de refrigeració instal·lat en el menjador, la
 finalitat del qual, és la de fer més suportables els dies més calorosos de l'any aportant
 benestar. L'equip de refrigeració esmentat, consta d'un equip d'expansió directa unizona
 aire-aire de 3,6kW de potència nominal.
• **Instal·lació 3:**

En la instal·lació 3 s'ha considerat la climatització multi zona per expansió directa. Consta d'un sistema a la planta baixa amb bomba de calor, d'una potència útil de calor de 8,6kW i una potència útil de fred de 6,8kW. També disposa d'un altre sistema amb bomba de calor per a la primera planta, on els aparells tenen les mateixes característiques que el sistema de la planta baixa.

Al ser sistemes de bomba de calor, aquests són els encarregats de proveir a la vivenda tant de calor com de "fred", al llarg de l'any segons la demanda.

Per tal de produir la demanda d' ACS esperada, es disposa d'una caldera elèctrica de 6kW amb un rendiment del 90% que subministra aigua a 60ºC.

• **Instal·lació 4:**

En la instal·lació 4 s'ha considerat una instal·lació similar a la instal·lació 3, però aquesta, disposa de contribució solar. Les plaques solars tèrmiques subministren el 50% de la demanda d' ACS.

• **Instal·lació 5:**

En la instal·lació 5 s'ha considerat un sistema mixta amb caldera de gas natural de baixa temperatura de 18 kW i un rendiment del 95%, que alimenta la part de calefacció i la part d'ACS de la vivenda unifamiliar aïllada. El circuit de calefacció consta d'un circuit de terra radiant per tal de climatitzar la vivenda.

Per altra banda, s'ha considerat un sistema de refrigeració instal·lat en el menjador, la finalitat del qual, és la de fer més suportables els dies més calorosos de l'any aportant benestar. L'equip de refrigeració esmentat, consta d'un equip d'expansió directa unizona aire-aire de 3,6kW de potència nominal.

• **Instal·lació 6:**

En la instal·lació 6 s'ha considerat una instal·lació similar a la instal·lació 5, però aquesta, disposa de contribució solar. Les plaques solars tèrmiques subministren el 50% de la demanda d' ACS.

3.7.3 Introducció de dades en el CALENER VYP.

Per realitzar els càlculs amb CALENER VYP correctament, s'ha de verificar que l'arxiu de LIDER és correcte (per tal que més tard no provoqui algun problema).
CALENER VYP executa directament l'arxiu de LIDER i el sobrescriu amb les seves pròpies dades. Per tant, s'aconsella sempre fer una còpia de seguretat de l'arxiu original de LIDER (si es tracta d'un procés iteratiu en el qual s'ha d'utilitzar varies vegades l'arxiu original de LIDER per tal d'avaluar diferent tipus d'instal·lacions sobre el mateix habitatge, el procés de realitzar còpies de seguretat és obligatori si no es vol perdre la informació original de l'arxiu de LIDER).

La interfície d'usuari del CALENER VYP és molt similar a la de LIDER. Per entrar les dades s'ha de situar a la pestanya "Sistema".

El primer pas és la Demanda d'ACS. Segons el DB HE4, la demanda de referència d'ACS a 60ºC per persona en edificis unifamiliars és de 30 litres per persona i dia. Suposant que en una edificació unifamiliar aïllada tèmpica hi viuen 4 persones, es trop que el consum diari d'ACS és de 120 litres al dia.

El següent pas és la selecció dels equips. Boto dret a "Equipos/ Importar equipo" permet seleccionar l'equip que més s'adequï a la instal·lació d'estudi. Polsant sobre l'equip importat, permet introduir propietats bàsiques (propietats característiques d'aquell equip en concret).

A continuació, a "Unidades Terminales". Boto dret a "Unidades Terminales/ Añadir unidad terminal" permet afegir la unitat terminal que més s'adequa segons el tipus d'instal·lació. En funció de quina unitat terminar es seleccioni, el programa requereix d'uns valors o una altres.

Per últim, apartat "Sistemas". Aquesta secció permet vincular els enllaços entre els equips i les unitats terminals.

Per tal d'executar el programa, polars "C.Calif" i el programari executarà els càlculs. Si tot és correcte, genera un informe amb els resultats de l'estudi de la instal·lació.

Interpretació de resultats del CALENER VYP

Al requadre de l'última pàgina dels informes de resultats, hi ha la secció més transcendent, on el programa fa una estimació de les emissions de CO2 per m2. Aquest valor, és el que s'utilitza per tal de classificar un edifici com més o menys eficient energèticament. També és segons aquest valor que se l'hi adjudica una lletra de certificació energètica.

Tenir present que la lletra més dolenta de qualificació energètica que adjudica el CALENER VYP és la lletra E. Per tant, aquesta lletra no és 100% representativa (un edifici per més dolent que sigui des del punt de vista de l'eficiència energètica, no obtindrà mai una lletra inferior a la lletra E amb el programari CALENER VYP), però si que ho és el valor de kgCO2/m2.
El CALENERG VYP és un programari que es va crear per tal de certificar que els edificis de nova construcció complien amb el CTE des del punt de vista d'eficiència energètica. Tot edifici que compleixi mínimament amb el CTE DB HE (és a dir, que se li adjudiqui una certificació d'eficiència energètica) té coma mínim una qualificació energètica de E (no pot esser més baixa que la E, ja que sinó no compliria amb el CTE). Per tant, mirat des del punt de vista al qual va ser creat el programa, CALENER VYP no té motius pels quals donar lletres inferiors a la lletra E.

Dins l'àmbit de l'eficiència energètica, s'està parland que ha de sortir una nova versió del CALENER VYP (la nova versió ja ha sortit a data d'April de 2013) que pugui avaluar el tipus d'edifici que s'està avaluant en el present projecte, és a dir, edificis del parc edificador anterior al CTE.

S'ha buscat el nou barem de qualificació energètica que inclourà el futur CALENER VYP. A diferència de l'anterior, aquest si que incorpora els valors de tall per a qualificacions inferiors a la lletra E.

S'ha considerat oportú utilitzar aquesta nova taula com a referència per donar els resultats (ja que l'abast del projecte inclou el parc edificador anterior al CTE, per tant, s'ha de poder posar una nota inferior a la E si es donés el cas).

A continuació es presenta la nou barem (Figura 30).

![Figura 30: Nova barem de qualificació energètica.](image)

Dins l'annex Resultats CALENER VYP, es mostren els resultats finals obtinguts amb el programa CALENER VYP, per a cada combinació en concret.
3.8 Qualificació energètica segons característiques de l'edifici

Un cop s'han obtingut els resultats de cada assaig amb el programa CALENER VYP, es té com a resultat, les emissions de CO2/m² per cada situació estudiada. Amb aquests valors, s'ha assignat la lletra de qualificació energètica per a cada combinació a partir de la Figura 30. A continuació, s'ha generat un quadre resum per tal de veure, molt intuitivament, quina qualificació energètica correspon a cada combinació (Taula 6).

Utilitats de la Taula 6: al tenir un taula amb tanta informació conjunta, és molt fàcil de comparar les diferents instal·lacions, les diferents possibilitats d'evolvent, o si és atractiva la instal·lació d'energia solar tèrmica. És molt útil per tal de fer una primera aproximació sobre quina qualificació energètica pot tenir un edifici contant simplement amb unes poques variables bàsiques. Pot ser molt útil com a guia en un despàtx d'enginyers ahora de saber què fer per tal d'obtenir una qualificació energètica determinada (escollir un tipus d'instal·lació o una altra). Un altre sector que també hi podría estar interessat és el de l'arquitectura ja que aquesta taula et dona una idea ràpida de quina evolvent et don una qualificació específica.

A continuació, es mostra una representació dels valors de càrrega tèrmica en funció de l'evolvent estudiada (Figura 31), per tal de veure més clarament quina evolvent és més bona tèrmicament. Aquesta gràfica serveix per complementar la Taula 6 en el cas que sorgeixin dubtes, sobre quina evolvent té una càrrega tèrmica millor dins la representació per colors de la columna de càrrega tèrmica mitja.
Qualificació Energètica d’Edificis Existents

<table>
<thead>
<tr>
<th>Solucions Constructives</th>
<th>Instal·lacions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Façana</td>
<td>Radiador “Gasoil”</td>
</tr>
<tr>
<td>F₁ F₂ F₃ F₄</td>
<td>Sense contribució solar</td>
</tr>
<tr>
<td>Coberta</td>
<td>Emissions de CO₂ **</td>
</tr>
<tr>
<td>C₀₁ C₀₂</td>
<td>Ullera assignada</td>
</tr>
<tr>
<td>Solera</td>
<td>Sense contribució solar</td>
</tr>
<tr>
<td>S₀₁ S₀₂</td>
<td>Emissions de CO₂ **</td>
</tr>
<tr>
<td>Vidre</td>
<td>Ullera assignada</td>
</tr>
<tr>
<td>V₁ V₂</td>
<td>Sense contribució solar</td>
</tr>
<tr>
<td>Càrrega Tèrmica mitja</td>
<td>Emissions de CO₂ **</td>
</tr>
<tr>
<td>(W/m²K)</td>
<td>Ullera assignada</td>
</tr>
</tbody>
</table>

- ** Transmitència Tèrmica (W/m²K)
- ** El requadre de la càrrega tèrmica mitja per a cada evolvent té un color més verd com més bona és l’evolvent i més vermell com més dolenta.
- ** Les emissions de CO₂ estan donades en KgCO₂/m² any.

Taula 6: Quadre resum de tot l’estudi de caracterització energètica d’edificis anteriors al CTE.
Edifici Objecte i edifici de Referència: per tal de poder entendre bé els resultats, es procedeix a definir els conceptes d'edifici objecte i edifici de referència. L'edifici objecte és l'edifici que es defineix amb el programa (definit per l'usuari), es trien les solucions constructives que conformen la seva evolvent i les instal·lacions. Per altra banda, l'edifici de referència del LIDER, és un edifici que agafa gran part de les característiques de l'edifici objecte (zona climàtica, forma, dimensions, altura de planta, superfícies, distribució, orientació, ús de cada sala, obertures, ...) però canvia les solucions constructives, per una evolvent que compleixi amb els valors mínims establerts pel CTE DB HE1. Per altra banda, l'edifici de referència del CALENER VYP és un edifici que parteix de l'edifici de referència del LIDER, i el programa hi aplica les instal·lacions tèrmiques més adequades (en funció de l'ús i el servei que se l'hi doni a l'edifici), que compleixin amb els valors mínims d'eficiència energètica del CTE DB HE2 i CTE DB HE4. El tipus d'instal·lació de l'edifici de referència és independent de les instal·lacions introdopts per l'usuari en el mateix arxiu de CALENER VYP. Per aquesta raó, tots els edificis de referència de CALENER VYP de tots els assajos realitzats amb les diferents evolvents i diferents instal·lacions, són el mateix edifici de referència (ja que sempre es parteix de la mateixa zona climàtica i definició geomètrica de l'edifici). Al ser sempre el mateix edifici de referència, les emissions de CO2 donen sempre igual per a tots els estudis (39,9 KgCO2/m2).

En tots els casos en que l'edifici objecte té unes emissions de CO2/m2 superiors a les de l'edifici de referència, implica que aquest edifici objecte introduït per l'usuari no compleix tèrmicament amb CTE DB HE. Es pot donar el cas que no compleixi amb CTE DB HE2 i CTE DB HE4 (si els resultats amb el LIDER, l'edifici objecte té una càrrega tèrmica inferior al de referència i en els resultats del CALENER VYP l'edifici objecte tingui unes emissions més grans que el de referència), que no compleixi amb CTE DB HE1 (si els resultats amb el LIDER, l'edifici objecte una càrrega tèrmica més gran al de referència) o que no compleixi amb CTE DB HE1, CTE DB HE2 i CTE DB HE4 (si els resultats amb el LIDER, l'edifici objecte té una càrrega tèrmica més gran al de referència i en els resultats del CALENER VYP l'edifici objecte tingui unes emissions més grans que el de referència).

A continuació, es presenten de manera gràfica els resultats. D'aquesta manera es pot veure més intuitivament quina evolvent és millor per a cada tipus d'instal·lació (com més avall estigui el punt de l'edifici objecte, millor és l'evolvent per aquesta instal·lació). També mostra les combinacions que compleixen tèrmicament amb el CTE DB HE1, CTE DB HE2 i CTE DB HE4, que són les combinacions que queden per sota la línia de 39,9 KgCO2/m2. (Figures 32-35)
Figura 32: Emissions de CO2 resultants de l’edifici objecte i el de referència per les evolvents combinades amb la instal·lació 1.

Figura 33: Emissions de CO2 resultants de l’edifici objecte i el de referència per les evolvents combinades amb la instal·lació 2.
Figura 34: Emissions de CO2 resultants de l’edifici objecte i el de referència per les evolvents combinades amb les instal·lacions 3 i 4.

Figura 35: Emissions de CO2 resultants de l’edifici objecte i el de referència per les evolvents combinades amb les instal·lacions 5 i 6.
Tot seguit, es mostra una gràfica on es veu de manera molt intuitiva quina instal·lació i evolvent és més eficient energèticament (Figura 36).

Figura 36: Comparativa d'emissions de CO2 per a totes les instal·lacions i evolvents analitzades.
4 CONCLUSIONS

Com a conclusió remarcar que s'ha arribat a l'objectiu proposat (Taula 6). S'ha generat un catàleg de solucions constructives típiques anteriors a l'aprovació i entrada en vigor del CTE a partir del RD 314/2006 i s'ha obtingut una estimació de les emissions de CO2 per a cada combinació establerta, assignant-li posteriorment una lletra de certificació energètica. El catàleg obtingut, segueix la mateixa filosofia que el mètode simplificat del Calener (eina reconegut per a l'estudi i assignació de la certificació energètica).

Observant la Taula 6, es pot apreciar que en funció de l'energia primària utilitzada per la climatització de l'edifici, les combinacions amb gas natural i electricitat són les més eficients, per contra, les combinacions amb instal·lació de gasoil tenen una qualificació energètica més dolenta. En el cas de l'electricitat en comparació amb el gasoil, les instal·lacions que incorporen electricitat tenen unes emissions de CO2 més baixes degut a la tecnologia actual aplicada alhora d'obtenir climatització a partir de bomba de calor (si es considera que l'electricitat pot ser generada per gasoil, i llavors, a partir d'aquesta electricitat s'obté climatització, és un procés molt menys eficient que el d'obtenir climatització directament a partir de gasoil. Tot i que les emissions de CO2 en l'elaboració d'electricitat han baixat notablement en els darrers anys gràcies a l'aportació d'energies renovables com poden ser l'energia eòlica, sinó fos per l'eficiència de la tecnologia aplicada actualment per generar climatització a partir d'electricitat (bombes de calor), seria impensable obtenir un rendiment més elevat d'aquesta forma que directament obtenint climatització a partir del gasoil). S'especifica la generació de climatització a partir de bombes de calor ja que hi ha altres tipus d'instal·lacions de climatització elèctriques que són molt deficients pel que respecte a l'eficiència energètica. Respecte a la comparativa entre gas natural i gasoil, les instal·lacions amb gas natural obtenen una millor qualificació energètica ja que el gas natural contamina menys (emet menys CO2) que el gasoil. El gasoil és el que té les emissions de CO2 més grans i amb diferència en comparació a les altres energies primàries estudiades.

Respecte a la contribució solar, a la Taula 6 es pot veure que és un factor a tenir en compte, ja que té una marcada incidència pel que fa a la qualificació energètica. En els casos estudiats, instal·lacions elèctriques per bomba de calor i instal·lacions de gas natural per terra radiant, en els dos casos, es pot apreciar que al afegir a la instal·lació el factor de contribució solar, les emissions de CO2 de l'edifici baixen notablement i en molt casos, permet que l'edifici millori la seva lletra de qualificació energètica (en els casos estudiats, passa de la lletra D a la C o de la E a la D).

Pel que fa a les evolvents, observant la Taula 6, es pot veure a partir de la columna de càrrega tèrmica mitja, quina de les evolvents és més bona tèrmicament (com més verda és
CARACTERITZACIÓ ENERGÈTICA D'EDIFICIS ANTERIORS AL CTE

Memòria

la casella). Observant els valors i el color, la pitjor evolvent és l'evolvent 6, mentre que la millor evolvent és l'evolvent 2. Llavors, hi ha les evolvents 1, 3, 9 i 10 que són prou bones, mentre que la resta d'evolvents són molt pitjors tèrmicament.

Mirant la Taula 6, se'n pot extreure que la millor combinació és la de la instal·lació 6 (gas natural amb terra radiant) en combinació amb l'evolvent 2 amb unes emissions de CO2 de 20,5 Kg/CO2*any i una lletra C de qualificació energètica. Per contra, la pitjor combinació està composta per la instal·lació 1 (gasoil amb radiadors) en combinació amb l'evolvent 6 amb unes emissions de CO2 de 71,2 Kg/CO2*any i una lletra F de qualificació energètica i apunt d'assolir la qualificació amb la lletra G (a partir de 72,8 Kg/CO2*any).

El programari LIDER i CALENER VYP ha estat essencial per tal d'arribar als resultats finals obtinguts.

Es creu que els resultats obtinguts en el present projecte poden ser de gran ajuda a enginyers, arquitectes i instal·ladors, com a guia orientativa alhora de complementar un edifici unifamiliar aïllat pel que fa a l'eficiència energètica. Són útils tant des del punt de vista de posar una etiqueta de qualificació energètica a un edifici mirant uns paràmetres mínims, com per tal de recomanar quin canvi s'hauria de dur a terme en l'edifici existent, ja sigui en forma de modificació de l'evolvent o de les instal·lacions tèrmiques, per tal de millorar la qualificació energètica.

Vistes al futur, fora bo dur a terme un anàlisis que valorés els costos per tal de millorar la nota de qualificació energètica. També seria molt interessant ampliar el nombre de solucions constructives estudiades, incloent solucions constructives actuals (a partir del 2006) i d'aquesta manera, poder ampliar la taula resum i obtenir un ventall de solucions més ampli i adequat al present.

Data i signatura de l'autor.
5 RESUM ECONÒMIC

<table>
<thead>
<tr>
<th>Capítol 1:</th>
<th>Preu Total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Càlcul del projecte</td>
<td>8560,00</td>
</tr>
<tr>
<td>Partida 1.1: Definició de l'edifici</td>
<td>640,00</td>
</tr>
<tr>
<td>Partida 1.2: Selecció de les solucions constructives</td>
<td>760,00</td>
</tr>
<tr>
<td>Partida 1.3: Selecció de les evolvents d'estudi</td>
<td>260,00</td>
</tr>
<tr>
<td>Partida 1.4: Generació de l'edifici en 3D i comprovació compliment CTE DB HE1</td>
<td>1360,00</td>
</tr>
<tr>
<td>Partida 1.5: Càlcul de càrregues tèrmiques</td>
<td>1420,00</td>
</tr>
<tr>
<td>Partida 1.6: Estimació de les emissions de CO2</td>
<td>2680,00</td>
</tr>
<tr>
<td>Partida 1.7: Presentació de resultats</td>
<td>1440,00</td>
</tr>
<tr>
<td>Capítol 2: Amortització de material informàtic</td>
<td>84,00</td>
</tr>
<tr>
<td>Capítol 3: Costos indirectes</td>
<td>1383,04</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>10027,04</td>
</tr>
<tr>
<td>IVA (21%)</td>
<td>2105,68</td>
</tr>
<tr>
<td>Preu Final:</td>
<td>12132,72 €</td>
</tr>
</tbody>
</table>

Puja el Pressupost de càlcul del projecte a la quantitat de: dotze mil cent trenta-dos amb setanta-dos euros (12.132,72 €)
6 DOCUMENTS DEL PROJECTE

El present projecte consta de dos documents. EL document 1 anomenat Memòria, el document 2 anomenat Plànols i d’un conjunt d’arxius que només es troben en el CD adjunt amb el projecte.
7 BIBLIOGRAFIA

Normativa:
[2] Real Decreto 235/2013, de 5 de abril, por el que se aprueba el procedimiento básico para la certificación de la eficiencia energética de los edificios.

Manuals:

Material obtingut a la xarxa:
ANNEXOS A LA MEMÒRIA
A. Actualitat sobre la certificació energètica

A data d'aviu 6 de Maig de 2013, se sap que el 5 d’abril de 2013 el Govern central va publicar el “Plan Estatal de Fomento del Alquiler de Viviendas, Rehabilitación, Regeneración y Renovación Urbana (2013-2016)”. Així mateix, el 13 d’abril de 2013 s’ha publicat al BOE el Reial Decret 235/2013 pel qual s’aprova el procediment bàsic per a la certificació de l’eficiència energètica dels edificis.

El Reial Decret fixa l'1 de juny de 2013 com a data a partir de la qual serà obligatori disposar del certificat energètic per a edificis o vivendes que es venguin o es lloguin, i per a edificis públics de més de 500 m².

Els edificis que tenen l'obligació de tenir un certificat d'eficiència energètica són:

- Els edificis de nova construcció.
- Els edificis o parts d’edificis existents que es venguin o lloguin a un nou arrendatari. S’entén per part d’un edifici la unitat, planta, vivenda o apartament en un edifici o locals destinats a ús independent o de titularitat jurídica diferent, dissenyats o modificats per a la seva utilització independent.
- Els edificis o parts d’edificis existents en els què una entitat pública ocopi una superfície útil total superior a 250 m² i que siguin freqüentats habitualment pel públic.

Queden exclosos:

- Edificis i monuments protegits oficialment per formar part d’un entorn declarat o pel seu particular valor arquitectònic o històric, quan el compliment de les exigències del Decret pogués alterar de forma inacceptable el seu caràcter o aspecte.
- Edificis o unitats d’edificis utilitzats exclusivament com a llocs de culte i per a activitats religioses.
- Construccions provisionals amb un termini previst d’utilització igual o inferior a dos anys.
- Edificis industrials i agrícoles, a la part destinada a tallers, processos industrials i agrícoles no residencials.
- Edificis o unitats d’edificis aïllats amb una superfície útil total inferior a 50 m².
- Edificis que es comprin per a reformes importants o per al seu enderroc.
- Edificis o parts d’edificis existents d’habitatges amb un ús inferior a quatre mesos en un any, o bé durant un temps limitat a l’any i amb un consum previst d’energia inferior al 25% del que resultaria de la seva utilització durant tot l’any.
Dates d'obligatorietat de tenir el certificat d'eficiència energètica:

Àmbit
Nova construcció 1 de novembre de 2007
Grans Rehabilitacions 1 de novembre de 2007
Vendes i lloguers 1 de juny de 2013
Edificis públics > 500 m² 1 de juny de 2013
Edificis públics entre 500 i 250 m² 9 de juliol de 2015
Edificis públics llogats >250 m² 31 de desembre de 2015

L’etiqueta de certificació energètica s’inclourà en tota oferta, promoció i publicitat dirigida a la venda o lloguer de l’edifici o part d’aquest. És necessari també transferir el certificat original en el cas de venda o càpia en el cas de lloguer, amb la resta de documentació del pis al nou propietari o llogater.

Sempre que sigui exigible l’etiqueta energètica (venda, lloguer, edificis nous i rehabilitacions), els edificis de titularitat privada o parts d’aquests que siguin freqüentats habitualment pel públic, amb una superfície útil de més de 500 m² exhibiran l’etiqueta energètica de forma obligatòria en un lloc destacat i visible.

Tots els edificis o unitats d’edificis ocupats per les autoritats públiques i que siguin freqüentats habitualment pel públic, amb una superfície útil total superior a 250 m², exhibiran l’etiqueta d’eficiència energètica de forma obligatòRIA, en un lloc destacat i ben visible.

En la resta de casos l’exhibició de l’etiqueta serà voluntària.

Hi ha diverses opcions i eines reconegudes que es poden fer servir per tal de calcular la certificació energètica:

- Edificis nous:

<table>
<thead>
<tr>
<th>OPCIÓ DE QUALIFICACIÓ</th>
<th>DIFICULTAT DE L’EINA</th>
<th>USOS</th>
<th>QUALIFICACIÓ POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPLIFICADES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ministerio-IDAE*</td>
<td>Baixa</td>
<td>Habitatges amb menys 60% de vidre a l’envelopant.</td>
<td>D i E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ce2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CES</td>
<td>Mitjana</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CERMA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>Alta</td>
<td>Habitatges Petit terciari</td>
<td>Totes (A-E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calener VYP</td>
<td>Alta</td>
<td>Habitatges Petit terciari (instal·lacions complexes)</td>
<td>Totes (A-E)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calener GT</td>
<td>Molt alta</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Edificis existents:

<table>
<thead>
<tr>
<th>OPCIÓ DE QUALIFICACIÓ</th>
<th>DIFICULTAT DE L'EINA</th>
<th>USOS</th>
<th>QUALIFICACIÓ POSSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMPLIFICADES</td>
<td>CE3</td>
<td>Mitjana</td>
<td>Tots</td>
</tr>
<tr>
<td></td>
<td>CE3x</td>
<td>Mitjana</td>
<td></td>
</tr>
<tr>
<td>GENERAL</td>
<td>Calener VYP</td>
<td>Alta</td>
<td>Habitatge Petit terciari</td>
</tr>
<tr>
<td></td>
<td>Calener GT</td>
<td>Molt alta</td>
<td>Petit terciari (instal·lacions complexes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gran terciari</td>
</tr>
</tbody>
</table>

Per qualificar edificis amb equips, sistemes i components singulars que no estan contemplats en els programes habituals, s’ha de fer servir un procediment alternatiu. En aquests casos es recomana posar-se en contacte amb l’ICAEN per sol·licitar assessorament.
B. Observacions

Respecte als informes de resultats obtinguts amb el programari LIDER i CALENER VYP (10 estudis amb el LIDER i 55 estudis amb el CALENER VYP), s'ha abstingut d'ajuntar-los com annexes en el PFC ja que el seu contingut total rebassa les 1.000 pàgines. Aquests documents, s'han adjuntat en el cd que s'entrega amb el PFC.

Respecte a les càrregues tèrmiques, els 130 estudis realitzats també es troben adjunts com a documentació en el cd (document "CarreguesTermiques.pdf").

S'ha recorregut a aquesta alternativa, per tal de no malbaratar recursos en forma de cel·lulosa.
C. Resultats LIDER

A continuació, es presenta un resum dels resultats obtinguts amb el programari LIDER per a cadascuna de les evolvents estudiades (Figures 37 - 46).

Dins el cd adjunt amb el PFC (carpeta Lider_pdfs), es troben els informes detallats de l'estudi de cada evolvent en concret i els seus resultats. També es troben detallats els resultats sobre perquè, cada combinació estudiada no compleix amb el CTE DB HE1.

Els següents resultats (Figures 37 - 46), mostren si l'edifici amb l'evolvent estudiada, compleix o no respecte a la demanda energètica. La demanda de referència, és un valor de càrrega tèrmica màxima per tal de complir amb el document HE1. Si l'edifici estudiat obté com a resultat un "% de la demanda de Referencia" inferior al 100 pel que respecte a calefacció i refrigeració, implica que l'evolvent tèrmica aplicada a l'edifici, és a dir, la seva transmitància tèrmica és més baixa del límit exigit per normativa (CTE DB HE1), per tant, respecte a la demanda energètica compleix. Visualment, es pot veure si compleix mirant el gràfic, si la barra és verda i no vermella, implica que compleix pel valor que té a sota, ja sigui per calefacció o refrigeració.

Respecte a la "Proporción relativa calefacción refrigeración" (a la taula de resultats), és el balanç d'energia exigit a la calefacció i a la refrigeració al llarg de l'any. En els casos estudiats, per efecte de la zona climàtica, la proporció exigida per la refrigeració és molt menor a la exigida per la calefacció de l'edifici.

7.1.1 Combinació 1

Figura 37: Resum dels resultats del LIDER per l'evolvent 1.
7.1.2 **Combinació 2**

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>74,3</td>
<td>56,5</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>97,6</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Figura 38: Resum dels resultats del LIDER per l’evolvent 2.

7.1.3 **Combinació 3**

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>82,5</td>
<td>63,1</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>97,6</td>
<td>2,4</td>
</tr>
</tbody>
</table>

Figura 39: Resum dels resultats del LIDER per l’evolvent 3.
7.1.4 Combinació 4

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>142,3</td>
<td>95,9</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>97,8</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Figura 40: Resum dels resultats del LIDER per l’evolvent 4.

7.1.5 Combinació 5

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>135,4</td>
<td>93,4</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>97,8</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Figura 41: Resum dels resultats del LIDER per l’evolvent 5.
7.1.6 Combinació 6

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edifici descrit en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referència</td>
<td>172,7</td>
<td>62,7</td>
</tr>
<tr>
<td>Proporción relativa calefacció refrigeració</td>
<td>98,8</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Figura 42: Resum dels resultats del LIDER per l’evolvent 6.

7.1.7 Combinació 7

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edifici descrit en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacció</th>
<th>Refrigeració</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referència</td>
<td>167,0</td>
<td>63,1</td>
</tr>
<tr>
<td>Proporción relativa calefacció refrigeració</td>
<td>99,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Figura 43: Resum dels resultats del LIDER per l’evolvent 7.
7.1.8 Combinació 8

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>157,7</td>
<td>52,5</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>99,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Figura 44: Resum dels resultats del LIDER per l'evolvent 8.

7.1.9 Combinació 9

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>97,8</td>
<td>52,3</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>98,3</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Figura 45: Resum dels resultats del LIDER per l'evolvent 9.
7.1.10 Combinació 10

2. CONFORMIDAD CON LA REGLAMENTACIÓN

El edificio descrito en este informe NO CUMPLE con la reglamentación establecida por el código técnico de la edificación, en su documento básico HE1.

<table>
<thead>
<tr>
<th></th>
<th>Calefacción</th>
<th>Refrigeración</th>
</tr>
</thead>
<tbody>
<tr>
<td>% de la demanda de Referencia</td>
<td>88,9</td>
<td>50,8</td>
</tr>
<tr>
<td>Proporción relativa calefacción refrigeración</td>
<td>69,2</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Figura 46: Resum dels resultats del LIDER per l’evolvent 10.
D. Càlcul de Càrregues Tèrmiques

D.1 Càrrega Tèrmica mitja per a cada combinació

A continuació, es presenten les dades per tal de realitzar els càlculs de la càrrega tèrmica mitja corresponent a cada evolvent tèrmica. Per tal de trobar aquest valor, es recorre als gràfics corresponents a les càrregues puntuals de cada sala, obtinguts a partir de l’estudi de les evolvents (mirar el document CarreguesTermiques_pdf.pdf del contingut del cd adjunt al PFC). S’analitza cada gràfic independentment, i s’agaфа el valor de càrrega puntual màxima, que en aquests casos (en motiu de la zona climàtica), sempre és un valor que fa referència a la calefacció. Aquest valor màxim, és el valor màxim al qual haurà de fer front la instal·lació al llarg de l’any. S’ha d’associar aquest valor de potència màxima amb el valor de la superfície de la sala, d’aquesta manera, es pot trobar un valor de càrrega tèrmica per aquesta sala en concret. Procedint de la mateixa manera per a totes les sales, i fent una mitjana de totes les càrregues tèrmiques de les sales que componen l’edifici, s’obté un valor de càrrega tèrmica mitja corresponent a l’edifici amb l’evolvent estudiada (Taules 7-16).

- Combinació 1

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1660,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>730,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>540,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>2460,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>390,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>2950,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>430,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2130,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>990,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>750,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>840,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1240,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1380,00</td>
<td>13,19</td>
</tr>
<tr>
<td>Total</td>
<td>16490,00</td>
<td>165,77</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: **99,48 W/m²**

Taula 7: Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 1.
Combinació 2

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1620,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>710,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>500,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>2370,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>390,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>2800,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>430,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2070,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>950,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>730,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>790,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1200,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1340,00</td>
<td>13,19</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: 95,92 W/m²

Taula 8 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 2.

Combinació 3

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1620,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>710,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>500,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>2370,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>390,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>2800,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>430,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2070,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>950,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>730,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>790,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1200,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1630,00</td>
<td>13,19</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: 99,41 W/m²

Taula 9 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 3.
• Combinació 4

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1910,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>780,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>640,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>3010,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>570,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>3250,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>680,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2550,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>1090,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>1230,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>990,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1590,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1940,00</td>
<td>13,19</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: 122,04 W/m²

Taula 10 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 4.

• Combinació 5

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1880,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>770,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>610,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>2950,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>570,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>3130,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>680,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2510,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>1060,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>1220,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>960,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1560,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1920,00</td>
<td>13,19</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: 119,56 W/m²

Taula 11 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 5.
• Combinació 6

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>2010,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>800,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>680,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>3230,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>640,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>3400,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>750,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2690,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>1130,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>1280,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>1060,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1710,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>2020,00</td>
<td>13,19</td>
</tr>
<tr>
<td></td>
<td>21400,00</td>
<td>165,77</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: **129,09 W/m2**

Taula 12 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 6.

• Combinació 7

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1980,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>790,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>650,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>3180,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>640,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>3300,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>750,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2660,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>1100,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>1270,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>1030,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1680,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>2000,00</td>
<td>13,19</td>
</tr>
<tr>
<td></td>
<td>21030,00</td>
<td>165,77</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: **126,86 W/m2**

Taula 13 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l’evolvent 7.
• Combinació 8

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>2010,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>800,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>680,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>3230,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>640,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>3400,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>750,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2690,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>1130,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>1090,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>1060,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1710,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1830,00</td>
<td>13,19</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: **126,80 W/m²**

Taula 14 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l'evolvent 8.

• Combinació 9

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1710,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>750,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>560,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>2580,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>430,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>3010,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>470,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2200,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>1000,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>800,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>860,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1300,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1440,00</td>
<td>13,19</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: **103,22 W/m²**

Taula 15 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l'evolvent 9.
- Combinació 10

<table>
<thead>
<tr>
<th>Estança</th>
<th>Potència (W)</th>
<th>Superfície (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01_E01</td>
<td>1670,00</td>
<td>12,61</td>
</tr>
<tr>
<td>P01_E03</td>
<td>730,00</td>
<td>6,75</td>
</tr>
<tr>
<td>P01_E05</td>
<td>520,00</td>
<td>3,95</td>
</tr>
<tr>
<td>P01_E07</td>
<td>2490,00</td>
<td>25,58</td>
</tr>
<tr>
<td>P01_E08</td>
<td>430,00</td>
<td>3,83</td>
</tr>
<tr>
<td>P01_E09</td>
<td>2870,00</td>
<td>31,67</td>
</tr>
<tr>
<td>P02_E01</td>
<td>470,00</td>
<td>3,98</td>
</tr>
<tr>
<td>P02_E02</td>
<td>2150,00</td>
<td>24,53</td>
</tr>
<tr>
<td>P02_E03</td>
<td>970,00</td>
<td>11,45</td>
</tr>
<tr>
<td>P02_E04</td>
<td>780,00</td>
<td>6,38</td>
</tr>
<tr>
<td>P02_E05</td>
<td>820,00</td>
<td>8,60</td>
</tr>
<tr>
<td>P02_E06</td>
<td>1260,00</td>
<td>13,25</td>
</tr>
<tr>
<td>P02_E07</td>
<td>1400,00</td>
<td>13,19</td>
</tr>
<tr>
<td></td>
<td>16560,00</td>
<td>165,77</td>
</tr>
</tbody>
</table>

Càrrega tèrmica mitja: 99,90 W/m²

Taula 16 Valors de càrregues puntuals màximes, superfícies associades a cada estança i càrrega tèrmica mitja per a l'evolvent 10.

D.2 Càrrega Tèrmica mitja Total

Un cop trobada la càrrega tèrmica mitja per a cada evolvent, es fa la mitjana d'aquest valors per tal de trobar la càrrega tèrmica mitja de totes les evolvents (Taula 17).

<table>
<thead>
<tr>
<th>Càrrega tèrmica mitja:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinació 1</td>
<td>99,48 W/m²</td>
</tr>
<tr>
<td>Combinació 2</td>
<td>95,92 W/m²</td>
</tr>
<tr>
<td>Combinació 3</td>
<td>99,41 W/m²</td>
</tr>
<tr>
<td>Combinació 4</td>
<td>122,04 W/m²</td>
</tr>
<tr>
<td>Combinació 5</td>
<td>119,56 W/m²</td>
</tr>
<tr>
<td>Combinació 6</td>
<td>129,09 W/m²</td>
</tr>
<tr>
<td>Combinació 7</td>
<td>126,86 W/m²</td>
</tr>
<tr>
<td>Combinació 8</td>
<td>126,80 W/m²</td>
</tr>
<tr>
<td>Combinació 9</td>
<td>103,22 W/m²</td>
</tr>
<tr>
<td>Combinació 10</td>
<td>99,90 W/m²</td>
</tr>
</tbody>
</table>

Càrrega Tèrmica Mitja de totes les Combinacions: 112,23 W/m²

Taula 17: Càrrega tèrmica mitja per a totes les evolvents i càrrega tèrmica mitja de totes les evolvents.
E. Resultats CALENER VYP

A continuació, es presenta un resum dels resultats obtinguts amb el programari CALENER VYP per totes les combinacions (Figures 47 - 101).

Dins el contingut del cd adjunt amb el PFC (carpeta Calener_pdfs), es troben els informes detallats de l’anàlisi de cada combinació en concret.

E.1 Instal·lació 1

E.1.1. Combinació 1

<table>
<thead>
<tr>
<th>Certif. Energètica de Edificis Indicator kgCO2/m²</th>
<th>Edifici Obj.</th>
<th>Edifici Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td><9.6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9.6-15.7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>15.7-24.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24.5-37.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37.6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

E.1.1. Combinació 1

Dins el contingut del cd adjunt amb el PFC (carpeta Calener_pdfs), es troben els informes detallats de l’anàlisi de cada combinació en concret.

<table>
<thead>
<tr>
<th></th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>91.8</td>
<td>10216.7</td>
<td>E</td>
<td>109.6</td>
<td>11815.6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>2.0</td>
<td>331.5</td>
<td>A</td>
<td>3.6</td>
<td>596.7</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>E</td>
<td>33.4</td>
<td>5636.3</td>
<td>E</td>
<td>35.1</td>
<td>5818.1</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>A</td>
<td>0.8</td>
<td>132.6</td>
<td>B</td>
<td>1.4</td>
<td>232.1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>E</td>
<td>4.9</td>
<td>812.2</td>
<td>D</td>
<td>3.4</td>
<td>560.6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>6481.2</td>
<td></td>
<td></td>
<td>6613.8</td>
<td></td>
</tr>
</tbody>
</table>

Figura 47: Resum dels resultats del CALENER VYP per la combinació 1 de la instal·lació 1.
E.1.2. Combinació 2

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacción</td>
<td>D</td>
<td>81,4</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeración</td>
<td>A</td>
<td>2,0</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/año</th>
<th>Clase</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones CO₂ calefacción</td>
<td>E</td>
<td>29,8</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO₂ refrigeración</td>
<td>A</td>
<td>0,7</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisiones CO₂ ACS</td>
<td>E</td>
<td>4,9</td>
<td>D</td>
<td>3,4</td>
<td>662,6</td>
</tr>
<tr>
<td>Emisiones CO₂ totales</td>
<td>5867,9</td>
<td>6612,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo energía final (kWh)</td>
<td>122,1</td>
</tr>
<tr>
<td>Consumo energía primaria (kWh)</td>
<td>133,7</td>
</tr>
<tr>
<td>Emisiones CO₂ (kgCO₂)</td>
<td>35,4</td>
</tr>
</tbody>
</table>

Figura 48: Resum dels resultats del CALENER VYP per la combinació 2 de la instal·lació 1.

E.1.3. Combinació 3

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacción</td>
<td>D</td>
<td>90,4</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeración</td>
<td>A</td>
<td>2,2</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/año</th>
<th>Clase</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones CO₂ calefacción</td>
<td>E</td>
<td>32,8</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO₂ refrigeración</td>
<td>A</td>
<td>0,8</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisiones CO₂ ACS</td>
<td>E</td>
<td>4,9</td>
<td>D</td>
<td>3,4</td>
<td>662,6</td>
</tr>
<tr>
<td>Emisiones CO₂ totales</td>
<td>5381,7</td>
<td>6613,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo energía final (kWh)</td>
<td>132,6</td>
</tr>
<tr>
<td>Consumo energía primaria (kWh)</td>
<td>145,4</td>
</tr>
<tr>
<td>Emisiones CO₂ (kgCO₂)</td>
<td>38,5</td>
</tr>
</tbody>
</table>

Figura 49: Resum dels resultats del CALENER VYP per la combinació 3 de la instal·lació 1.
E.1.4. Combinació 4

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis Indicador kgCO2/m²</th>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificació</td>
<td>kWh/m²</td>
<td>kWh/any</td>
</tr>
<tr>
<td>Demanda calefacció</td>
<td>E 155,9</td>
<td>26841,8</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A 3,4</td>
<td>568,6</td>
</tr>
<tr>
<td>Emisions CO2 calefacció</td>
<td>E 54,7</td>
<td>9067,0</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>B 1,3</td>
<td>215,5</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>E 4,9</td>
<td>812,2</td>
</tr>
<tr>
<td>Emisions CO2 totales</td>
<td>10904,7</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo energia final (kWh)</td>
<td>209,5</td>
</tr>
<tr>
<td>Consumo energia primària (kWh)</td>
<td>229,5</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>60,9</td>
</tr>
</tbody>
</table>

Figura 50: Resum dels resultats del CALENER VYP per la combinació 4 de la instal·lació 1.

E.1.5. Combinació 5

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis Indicador kgCO2/m²</th>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificació</td>
<td>kWh/m²</td>
<td>kWh/any</td>
</tr>
<tr>
<td>Demanda calefacció</td>
<td>E 148,4</td>
<td>24698,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A 3,8</td>
<td>547,6</td>
</tr>
<tr>
<td>Emisions CO2 calefacció</td>
<td>E 52,2</td>
<td>8682,8</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>B 1,3</td>
<td>215,5</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>E 4,9</td>
<td>812,2</td>
</tr>
<tr>
<td>Emisions CO2 totales</td>
<td>9580,3</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo energia final (kWh)</td>
<td>200,8</td>
</tr>
<tr>
<td>Consumo energia primària (kWh)</td>
<td>220,0</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>58,4</td>
</tr>
</tbody>
</table>

Figura 51: Resum dels resultats del CALENER VYP per la combinació 5 de la instal·lació 1.
E.1.6. Combinació 6

Certificació Energetica de Edificis

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referéncia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
</tr>
<tr>
<td>Emisions CO2 calefacció</td>
<td>E</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>A</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>E</td>
</tr>
<tr>
<td>Emisions CO2 totales</td>
<td>11902,0</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referéncia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo energia final (kWh/Pa)</td>
<td>246,4</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>268,3</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>71,2</td>
</tr>
</tbody>
</table>

E.1.7. Combinació 7

Certificació Energetica de Edificis

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referéncia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
</tr>
<tr>
<td>Emisions CO2 calefacció</td>
<td>E</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>A</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>E</td>
</tr>
<tr>
<td>Emisions CO2 totales</td>
<td>11437,4</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referéncia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo energia final (kWh/Pa)</td>
<td>239,1</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>260,1</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>69,0</td>
</tr>
</tbody>
</table>

Figura 52: Resum dels resultats del CALENER VYP per la combinació 6 de la instal·lació 1.

Figura 53: Resum dels resultats del CALENER VYP per la combinació 7 de la instal·lació 1.
E.1.8. Combinació 8

Figura 54: Resum dels resultats del CALENER VYP per la combinació 8 de la instal·lació 1.

E.1.9. Combinació 9

Figura 55: Resum dels resultats del CALENER VYP per la combinació 9 de la instal·lació 1.
CARACTERITZACIÓ ENERGÈTICA D'EDIFICIS ANTERIORS AL CTE

Annexos

E.1.10. Combinació 10

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kWh/m² a</th>
<th>kWh/m² a</th>
<th>Clasi</th>
<th>kWh/m² a</th>
<th>kWh/m² a</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>97,4</td>
<td>16104,9</td>
<td>E</td>
<td>199,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>1,8</td>
<td>298,4</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio</th>
<th>Edificio</th>
<th>Edificio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objeto</td>
<td>Referència</td>
<td>Objeto</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>por metro cuadrado anual</td>
<td>por metro cuadrado anual</td>
<td></td>
</tr>
<tr>
<td>Consumo energètica final (kWh)</td>
<td>141,2</td>
<td>23407,1</td>
</tr>
<tr>
<td>Consumo energètica primària (kWh)</td>
<td>154,2</td>
<td>25567,2</td>
</tr>
<tr>
<td>Emisiones CO2 (kgCO2)</td>
<td>40,9</td>
<td>6778,5</td>
</tr>
</tbody>
</table>

Figura 56: Resum dels resultats del CALENER VYP per la combinació 10 de la instal·lació 1.

E.2 Instal·lació 2

E.2.1. Combinació 1

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kWh/m² a</th>
<th>kWh/m² a</th>
<th>Clasi</th>
<th>kWh/m² a</th>
<th>kWh/m² a</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>91,8</td>
<td>15216,7</td>
<td>E</td>
<td>199,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>2,6</td>
<td>331,5</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio</th>
<th>Edificio</th>
<th>Edificio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objeto</td>
<td>Referència</td>
<td>Objeto</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>por metro cuadrado anual</td>
<td>por metro cuadrado anual</td>
<td></td>
</tr>
<tr>
<td>Consumo energètica final (kWh)</td>
<td>134,6</td>
<td>22317,1</td>
</tr>
<tr>
<td>Consumo energètica primària (kWh)</td>
<td>138,0</td>
<td>22870,3</td>
</tr>
<tr>
<td>Emisiones CO2 (kgCO2)</td>
<td>28,1</td>
<td>4657,8</td>
</tr>
</tbody>
</table>

Figura 57: Resum dels resultats del CALENER VYP per la combinació 1 de la instal·lació 2.
E.2.2. Combinació 2

Figura 58: Resum dels resultats del CALENER VYP per la combinació 2 de la instal·lació 2.

E.2.3. Combinació 3

Figura 59: Resum dels resultats del CALENER VYP per la combinació 3 de la instal·lació 2.
E.2.4. Combinación 4

Certificación Energética de Edificios

<table>
<thead>
<tr>
<th>Indicador kgCO2/m²</th>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td><9.6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6-15.7 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.7-24.5 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.5-37.6 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>37.6 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>155,9</td>
<td>25641,8</td>
</tr>
<tr>
<td>A</td>
<td>3,4</td>
<td>568,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>38,9</td>
<td>5448,0</td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>216,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>156,9</td>
<td>25641,8</td>
</tr>
<tr>
<td>A</td>
<td>3,4</td>
<td>568,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>38,9</td>
<td>5448,0</td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>216,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>156,9</td>
<td>25641,8</td>
</tr>
<tr>
<td>A</td>
<td>3,4</td>
<td>568,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>38,9</td>
<td>5448,0</td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>216,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

Figura 60: Resumen de los resultados del CALENER VYP para la combinación 4 de la instalación 2.

E.2.5. Combinación 5

Certificación Energética de Edificios

<table>
<thead>
<tr>
<th>Indicador kgCO2/m²</th>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td><9.6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6-15.7 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.7-24.5 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.5-37.6 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>37.6 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>148,4</td>
<td>24568,6</td>
</tr>
<tr>
<td>A</td>
<td>3,3</td>
<td>547,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>37,1</td>
<td>6149,7</td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>216,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,5</td>
<td>580,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>580,2</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>148,4</td>
<td>24568,6</td>
</tr>
<tr>
<td>A</td>
<td>3,3</td>
<td>547,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>37,1</td>
<td>6149,7</td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>216,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,5</td>
<td>580,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>580,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>148,4</td>
<td>24568,6</td>
</tr>
<tr>
<td>A</td>
<td>3,3</td>
<td>547,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>37,1</td>
<td>6149,7</td>
</tr>
<tr>
<td>A</td>
<td>1,3</td>
<td>216,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,5</td>
<td>580,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>580,2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>A</td>
<td>1,4</td>
<td>232,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
</tbody>
</table>

Figura 61: Resumen de los resultados del CALENER VYP para la combinación 5 de la instalación 2.
E.2.6. Combinació 6

<table>
<thead>
<tr>
<th>Certificació Energetica de Edificios</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9,6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9,6-16,7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>16,7-24,5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24,5-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>189,2</td>
<td>E</td>
<td>109,5</td>
<td>18150,8</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>2,2</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>E</td>
<td>46,5</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>A</td>
<td>0,8</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>D</td>
<td>3,5</td>
<td>D</td>
<td>3,4</td>
<td>563,6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>8420,9</td>
<td></td>
<td></td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 62: Resum dels resultats del CALENER VYP per la combinació 6 de la instal·lació 2.

E.2.7. Combinació 7

<table>
<thead>
<tr>
<th>Certificació Energetica de Edificios</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9,6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9,6-16,7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>16,7-24,5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24,5-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>182,9</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1,9</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>E</td>
<td>45,1</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>A</td>
<td>0,7</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>D</td>
<td>3,5</td>
<td>D</td>
<td>3,4</td>
<td>563,6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>8171,9</td>
<td></td>
<td></td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 63: Resum dels resultats del CALENER VYP per la combinació 7 de la instal·lació 2.
CARACTERITZACIÓ ENERGÈTICA D'EDIFICIS ANTERIORS AL CTE

Annexos

E.2.8. Combinació 8

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><6.6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>6.6-16.7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>16.7-24.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24.5-37.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37.6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demanda calentura</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>183.7</td>
<td>30449.9</td>
<td>E</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1.9</td>
<td>314.9</td>
</tr>
<tr>
<td>Emissions CO2 calentura</td>
<td>E</td>
<td>45.4</td>
<td>7625.5</td>
</tr>
<tr>
<td>Emissions CO2 refrigeració</td>
<td>A</td>
<td>0.7</td>
<td>116.0</td>
</tr>
<tr>
<td>Emissions CO2 ACS</td>
<td>D</td>
<td>3.5</td>
<td>586.2</td>
</tr>
<tr>
<td>Emissions CO2 totales</td>
<td></td>
<td>8221.9</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th></th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>240.7</td>
<td>39900.3</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>245.1</td>
<td>40620.8</td>
</tr>
<tr>
<td>Emissions CO2 (kgCO2)</td>
<td>49.6</td>
<td>8221.6</td>
</tr>
</tbody>
</table>

Figura 64: Resum dels resultats del CALENER VYP per la combinació 8 de la instal·lació 2.

E.2.9. Combinació 9

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><6.6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>6.6-11.7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>11.7-24.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24.5-37.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37.6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demanda calentura</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>107.1</td>
<td>17628.8</td>
<td>E</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1.9</td>
<td>314.9</td>
</tr>
<tr>
<td>Emissions CO2 calentura</td>
<td>D</td>
<td>27.4</td>
<td>4541.8</td>
</tr>
<tr>
<td>Emissions CO2 refrigeració</td>
<td>A</td>
<td>0.7</td>
<td>116.0</td>
</tr>
<tr>
<td>Emissions CO2 ACS</td>
<td>D</td>
<td>3.6</td>
<td>586.2</td>
</tr>
<tr>
<td>Emissions CO2 totales</td>
<td></td>
<td>5238.9</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th></th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>152.5</td>
<td>25200.6</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>155.9</td>
<td>25840.6</td>
</tr>
<tr>
<td>Emissions CO2 (kgCO2)</td>
<td>31.6</td>
<td>5238.0</td>
</tr>
</tbody>
</table>

Figura 65: Resum dels resultats del CALENER VYP per la combinació 9 de la instal·lació 2.
E.2.10. Combinació 10

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9.6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9.6-15.7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>15.7-24.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24.5-37.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37.6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Demanda calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>97.4</td>
<td>16144.9</td>
<td>E</td>
<td>109.5</td>
<td>18150.6</td>
</tr>
</tbody>
</table>

Demanda refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.8</td>
<td>296.4</td>
<td>A</td>
<td>3.6</td>
<td>596.7</td>
</tr>
</tbody>
</table>

Emissions CO2 calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ano</th>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>25.1</td>
<td>4160.5</td>
<td>E</td>
<td>35.1</td>
<td>5818.1</td>
</tr>
</tbody>
</table>

Emissions CO2 refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.7</td>
<td>116.0</td>
<td>B</td>
<td>1.4</td>
<td>232.1</td>
</tr>
</tbody>
</table>

Emissions CO2 ACS

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3.5</td>
<td>580.2</td>
<td>D</td>
<td>3.4</td>
<td>586.8</td>
</tr>
</tbody>
</table>

Emissions CO2 totals

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4886.7</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

E.3 Instal·lació 3

E.3.1. Combinació 1

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9.6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9.6-15.7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>15.7-24.5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24.5-37.6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37.6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

Demanda calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>91.8</td>
<td>18216.7</td>
<td>E</td>
<td>109.5</td>
<td>18150.6</td>
</tr>
</tbody>
</table>

Demanda refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2.0</td>
<td>331.5</td>
<td>A</td>
<td>3.6</td>
<td>596.7</td>
</tr>
</tbody>
</table>

Emissions CO2 calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ano</th>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>18.0</td>
<td>2983.7</td>
<td>E</td>
<td>35.1</td>
<td>5818.1</td>
</tr>
</tbody>
</table>

Emissions CO2 refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.8</td>
<td>132.6</td>
<td>B</td>
<td>1.4</td>
<td>232.1</td>
</tr>
</tbody>
</table>

Emissions CO2 ACS

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>10.4</td>
<td>1723.9</td>
<td>D</td>
<td>3.4</td>
<td>565.6</td>
</tr>
</tbody>
</table>

Emissions CO2 totals

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4840.2</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 66: Resum dels resultats del CALENER VYP per la combinació 10 de la instal·lació 2.

Figura 67: Resum dels resultats del CALENER VYP per la combinació 1 de la instal·lació 3.

82
Annexos

E.3.2. Combinació 2

<table>
<thead>
<tr>
<th>Certificació Energetica de Edificis Indicador kgCO2/m²</th>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase</td>
<td>kWh/m²</td>
<td>kWh/año</td>
</tr>
<tr>
<td>Demandà calentació</td>
<td>D</td>
<td>81,4</td>
</tr>
<tr>
<td>Demandà refrigeració</td>
<td>A</td>
<td>2,0</td>
</tr>
<tr>
<td>Emisió CO2 calentació</td>
<td>C</td>
<td>16,6</td>
</tr>
<tr>
<td>Emisió CO2 refrigeració</td>
<td>A</td>
<td>0,8</td>
</tr>
<tr>
<td>Emisió CO2 ACS</td>
<td>E</td>
<td>10,4</td>
</tr>
<tr>
<td>Emisió CO2 total</td>
<td>4608,1</td>
<td>6813,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrad</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energi final (kWh)</td>
<td>43,0</td>
</tr>
<tr>
<td>Consumo energi primària (kWh)</td>
<td>111,8</td>
</tr>
<tr>
<td>Emisió CO2 (kgCO2)</td>
<td>27,8</td>
</tr>
</tbody>
</table>

Figura 68: Resum dels resultats del CALENER VYP per la combinació 2 de la instal·lació 3.

E.3.3. Combinació 3

<table>
<thead>
<tr>
<th>Certificació Energetica de Edificis Indicador kgCO2/m²</th>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clase</td>
<td>kWh/m²</td>
<td>kWh/año</td>
</tr>
<tr>
<td>Demandà calentació</td>
<td>D</td>
<td>90,4</td>
</tr>
<tr>
<td>Demandà refrigeració</td>
<td>A</td>
<td>2,2</td>
</tr>
<tr>
<td>Emisió CO2 calentació</td>
<td>C</td>
<td>18,0</td>
</tr>
<tr>
<td>Emisió CO2 refrigeració</td>
<td>B</td>
<td>0,9</td>
</tr>
<tr>
<td>Emisió CO2 ACS</td>
<td>E</td>
<td>10,4</td>
</tr>
<tr>
<td>Emisió CO2 total</td>
<td>4856,7</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrad</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energi final (kWh)</td>
<td>45,3</td>
</tr>
<tr>
<td>Consumo energi primària (kWh)</td>
<td>117,8</td>
</tr>
<tr>
<td>Emisió CO2 (kgCO2)</td>
<td>29,3</td>
</tr>
</tbody>
</table>

Figura 69: Resum dels resultats del CALENER VYP per la combinació 3 de la instal·lació 3.
E.3.4. Combinació 4

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9,6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,6-15,7 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,7-24,5 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24,5-37,6 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>37,6 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/any</th>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció E</td>
<td>155,9</td>
<td>25841,8</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeració A</td>
<td>3,4</td>
<td>588,6</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kgCO2/m²</th>
<th>kgCO2/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissoes CO2 calefacció D</td>
<td>26,2</td>
<td>4342,9</td>
</tr>
<tr>
<td>Emissoes CO2 refrigeració B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emissoes CO2 ACS E</td>
<td>10,4</td>
<td>1723,9</td>
</tr>
<tr>
<td>Emissoes CO2 totales E</td>
<td>6290,8</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datas per la etiqueta de eficiencia energètica

<table>
<thead>
<tr>
<th></th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per metro quadrat</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>58,6</td>
<td>97202</td>
</tr>
<tr>
<td>Consumo energia primària (kWh)</td>
<td>152,6</td>
<td>25301,7</td>
</tr>
<tr>
<td>Emissoes CO2 (kgCO2)</td>
<td>38,0</td>
<td>6290,8</td>
</tr>
</tbody>
</table>

Figura 70: Resum dels resultats del CALENER VYP per la combinació 4 de la instal·lació 3.

E.3.5. Combinació 5

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9,6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,6-15,7 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,7-24,5 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24,5-37,6 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>37,6 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/any</th>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció E</td>
<td>148,4</td>
<td>24598,6</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeració A</td>
<td>3,3</td>
<td>547,6</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kgCO2/m²</th>
<th>kgCO2/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissoes CO2 calefacció D</td>
<td>25,8</td>
<td>4193,7</td>
</tr>
<tr>
<td>Emissoes CO2 refrigeració B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emissoes CO2 ACS E</td>
<td>10,4</td>
<td>1723,9</td>
</tr>
<tr>
<td>Emissoes CO2 totales E</td>
<td>6149,7</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos per la etiqueta de eficiencia energètica

<table>
<thead>
<tr>
<th></th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>per metro quadrat</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>57,2</td>
<td>9479,8</td>
</tr>
<tr>
<td>Consumo energia primària (kWh)</td>
<td>148,9</td>
<td>24675,5</td>
</tr>
<tr>
<td>Emissoes CO2 (kgCO2)</td>
<td>37,1</td>
<td>6149,7</td>
</tr>
</tbody>
</table>

Figura 71: Resum dels resultats del CALENER VYP per la combinació 5 de la instal·lació 3.
E.3.6. Combinació 6

Figura 72: Resum dels resultats del CALENER VYP per la combinació 6 de la instal·lació 3.

E.3.7. Combinació 7

Figura 73: Resum dels resultats del CALENER VYP per la combinació 7 de la instal·lació 3.
E.3.8. Combinació 8

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9.6 A</td>
<td>E</td>
<td>183.7</td>
</tr>
<tr>
<td>6.6-16.7 B</td>
<td>A</td>
<td>914.9</td>
</tr>
<tr>
<td>16.7-24.5 C</td>
<td>A</td>
<td>109.5</td>
</tr>
<tr>
<td>24.5-37.6 D</td>
<td>E</td>
<td>18150.6</td>
</tr>
<tr>
<td>>37.6 E</td>
<td>F</td>
<td>556.7</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calentació</td>
<td>E</td>
<td>183.7</td>
<td>E</td>
<td>109.5</td>
<td>18150.6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1.9</td>
<td>A</td>
<td>3.6</td>
<td>556.7</td>
</tr>
</tbody>
</table>

Emisiones CO2 calentació

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>29.4</td>
<td>4873.3</td>
</tr>
</tbody>
</table>

Emisiones CO2 refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.8</td>
<td>132.6</td>
</tr>
</tbody>
</table>

Emisiones CO2 ACS

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>10.4</td>
<td>1723.9</td>
</tr>
</tbody>
</table>

Emisiones CO2 totales

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>40.6</td>
<td>6720.8</td>
</tr>
</tbody>
</table>

Figura 74: Resum dels resultats del CALENER VYP per la combinació 8 de la instal·lació 3.

E.3.9. Combinació 9

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9.6 A</td>
<td>E</td>
<td>107.1</td>
</tr>
<tr>
<td>6.6-16.7 B</td>
<td>E</td>
<td>17762.8</td>
</tr>
<tr>
<td>16.7-24.5 C</td>
<td>E</td>
<td>109.5</td>
</tr>
<tr>
<td>24.5-37.6 D</td>
<td>E</td>
<td>18150.6</td>
</tr>
<tr>
<td>>37.6 E</td>
<td>F</td>
<td>556.7</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calentació</td>
<td>E</td>
<td>107.1</td>
<td>E</td>
<td>109.5</td>
<td>18150.6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1.9</td>
<td>A</td>
<td>3.6</td>
<td>556.7</td>
</tr>
</tbody>
</table>

Emisiones CO2 calentació

<table>
<thead>
<tr>
<th>Clase</th>
<th>kgCO2/m²</th>
<th>kgCO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>20.1</td>
<td>3331.8</td>
</tr>
</tbody>
</table>

Emisiones CO2 refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9.6</td>
<td>132.6</td>
</tr>
</tbody>
</table>

Emisiones CO2 ACS

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>10.4</td>
<td>1723.9</td>
</tr>
</tbody>
</table>

Emisiones CO2 totales

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>40.6</td>
<td>6720.8</td>
</tr>
</tbody>
</table>

Figura 75: Resum dels resultats del CALENER VYP per la combinació 9 de la instal·lació 3.
E.3.10. Combinació 10

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>39.9</td>
<td></td>
<td>D</td>
<td>30.0</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 76: Resum dels resultats del CALENER VYP per la combinació 10 de la instal·lació 3.

E.4 Instal·lació 4

E.4.1. Combinació 1

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>39.9</td>
<td></td>
<td>E</td>
<td>30.9</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 77: Resum dels resultats del CALENER VYP per la combinació 1 de la instal·lació 4.
Annexos

E.4.2. Combinació 2

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9,6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9,6-15,7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>15,8-24,5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24,6-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22,6 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demanda calentura</td>
<td>D</td>
<td>81,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13482,8</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>2,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>381,5</td>
</tr>
<tr>
<td>Emisiones CO2 calentura</td>
<td>C</td>
<td>16,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2751,6</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>A</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132,6</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>E</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>561,9</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>3746,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6613,8</td>
</tr>
</tbody>
</table>

E.4.3. Combinació 3

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td><9,6</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9,6-15,7</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>15,8-24,5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24,6-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24,1 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demanda calentura</td>
<td>D</td>
<td>90,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14984,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>2,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>381,2</td>
</tr>
<tr>
<td>Emisiones CO2 calentura</td>
<td>C</td>
<td>18,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2983,7</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>B</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>149,2</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>E</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>561,9</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>3994,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Figura 78: Resum dels resultats del CALENER VYP per la combinació 2 de la instal·lació 4.

Figura 79: Resum dels resultats del CALENER VYP per la combinació 3 de la instal·lació 4.
E.4.4. Combinació 4

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis Indicador kgCO2/m²</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td><9,6</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>9,6-15,7</td>
<td>B</td>
<td>32,8 D</td>
</tr>
<tr>
<td>15,7-24,5</td>
<td>C</td>
<td>39,9 E</td>
</tr>
<tr>
<td>24,5-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calentació</td>
<td>E</td>
<td>155,9</td>
<td>26841,8</td>
<td>E</td>
<td>109,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>3,4</td>
<td>565,6</td>
<td>A</td>
<td>3,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisions CO2 calentació</td>
<td>D</td>
<td>26,2</td>
<td>4342,9</td>
<td>E</td>
<td>35,1</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
<td>B</td>
<td>1,4</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>E</td>
<td>5,2</td>
<td>861,9</td>
<td>D</td>
<td>3,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisions CO2 totales</td>
<td></td>
<td>5436,3</td>
<td></td>
<td>6613,8</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>50,6</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>131,7</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>32,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>49,2</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>127,9</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>31,9</td>
</tr>
</tbody>
</table>

Figura 80: Resum dels resultats del CALENER VYP per la combinació 4 de la instal·lació 4.

E.4.5. Combinació 5

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis Indicador kgCO2/m²</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td><9,6</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>9,6-15,7</td>
<td>B</td>
<td>31,9 D</td>
</tr>
<tr>
<td>15,7-24,5</td>
<td>C</td>
<td>39,9 E</td>
</tr>
<tr>
<td>24,5-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calentació</td>
<td>E</td>
<td>148,4</td>
<td>24698,6</td>
<td>E</td>
<td>109,5</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>3,3</td>
<td>547,6</td>
<td>A</td>
<td>3,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisions CO2 calentació</td>
<td>D</td>
<td>25,8</td>
<td>4118,7</td>
<td>E</td>
<td>35,1</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
<td>B</td>
<td>1,4</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>E</td>
<td>5,2</td>
<td>861,9</td>
<td>D</td>
<td>3,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisions CO2 totales</td>
<td></td>
<td>5287,7</td>
<td></td>
<td>6613,8</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>49,2</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>127,9</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>31,9</td>
</tr>
</tbody>
</table>

Figura 81: Resum dels resultats del CALENER VYP per la combinació 5 de la instal·lació 4.
E.4.6. Combinació 6

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador: kgCO₂/m²²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edificio</th>
<th>Objet</th>
<th>Edificio</th>
<th>Referència</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>189,2</td>
<td>3186,1</td>
<td>E</td>
<td>109,5</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>2,2</td>
<td>364,7</td>
<td>A</td>
<td>3,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisions CO₂ calefacció</td>
<td>E</td>
<td>30,9</td>
</tr>
<tr>
<td>Emisions CO₂ refrigeració</td>
<td>B</td>
<td>9,9</td>
</tr>
<tr>
<td>Emisions CO₂ ACS</td>
<td>E</td>
<td>5,2</td>
</tr>
</tbody>
</table>

| Emisions CO₂ totals | 5993,9 | 6613,8 |

E.4.7. Combinació 7

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador: kgCO₂/m²²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Edificio</th>
<th>Objet</th>
<th>Edificio</th>
<th>Referència</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clasi</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>182,9</td>
<td>3037,3</td>
<td>E</td>
<td>109,5</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1,9</td>
<td>314,9</td>
<td>A</td>
<td>3,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasi</th>
<th>kgCO₂/m²</th>
<th>kgCO₂/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisions CO₂ calefacció</td>
<td>D</td>
<td>29,2</td>
</tr>
<tr>
<td>Emisions CO₂ refrigeració</td>
<td>A</td>
<td>0,7</td>
</tr>
<tr>
<td>Emisions CO₂ ACS</td>
<td>E</td>
<td>5,2</td>
</tr>
</tbody>
</table>

| Emisions CO₂ totals | 5818,1 | 6613,8 |

Datos para la etiqueta de eficiencia energètica

<table>
<thead>
<tr>
<th>Edificio</th>
<th>Objet</th>
<th>Edificio</th>
<th>Referència</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Consumo energia final (kWh)</th>
<th>por metro cuadrado</th>
<th>anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55,6</td>
<td>9219,1</td>
</tr>
<tr>
<td></td>
<td>164,6</td>
<td>27279,0</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>144,8</td>
<td>23997,2</td>
</tr>
<tr>
<td></td>
<td>178,5</td>
<td>29585,6</td>
</tr>
<tr>
<td>Emisions CO₂ (kgCO₂)</td>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>36,1</td>
<td>5963,9</td>
</tr>
<tr>
<td></td>
<td>39,9</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Figura 82: Resum dels resultats del CALENER VYP per la combinació 6 de la instal·lació 4.

Figura 83: Resum dels resultats del CALENER VYP per la combinació 7 de la instal·lació 4.
E.4.8. Combinació 8

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>183,7</td>
<td>E</td>
<td>109,5</td>
<td>18115,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1,9</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>E</td>
<td>29,4</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>A</td>
<td>0,8</td>
<td>B</td>
<td>1,4</td>
<td>282,1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>E</td>
<td>5,2</td>
<td>D</td>
<td>3,4</td>
<td>665,6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td>5867,9</td>
<td>6613,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E.4.9. Combinació 9

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>107,7</td>
<td>E</td>
<td>109,5</td>
<td>18115,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1,9</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>D</td>
<td>20,1</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>A</td>
<td>0,8</td>
<td>B</td>
<td>1,4</td>
<td>282,1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>E</td>
<td>5,2</td>
<td>D</td>
<td>3,4</td>
<td>665,6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td>4326,3</td>
<td>6613,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m²</td>
<td>kWh/año</td>
</tr>
<tr>
<td>Consumo energía final</td>
<td>54,5</td>
</tr>
<tr>
<td>Consumo energía primaria</td>
<td>141,8</td>
</tr>
<tr>
<td>Emisiones CO2 (kgCO2)</td>
<td>35,4</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m²</td>
<td>kWh/año</td>
</tr>
<tr>
<td>Consumo energía final</td>
<td>40,2</td>
</tr>
<tr>
<td>Consumo energía primaria</td>
<td>104,5</td>
</tr>
<tr>
<td>Emisiones CO2 (kgCO2)</td>
<td>26,1</td>
</tr>
</tbody>
</table>

Figura 84: Resum dels resultats del CALENER VYP per la combinació 8 de la instal·lació 4.

Figura 85: Resum dels resultats del CALENER VYP per la combinació 9 de la instal·lació 4.
CARACTERITZACIÓ ENERGÈTICA D'EDIFICIS ANTERIORS AL CTE

Annexos

E.4.10. Combinació 10

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td>Objecte</td>
<td>Referència</td>
</tr>
<tr>
<td><9,6</td>
<td>A</td>
<td>24,8 D</td>
</tr>
<tr>
<td>9,6-15,7</td>
<td>B</td>
<td>39,9 E</td>
</tr>
<tr>
<td>15,7-24,5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24,5-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/any</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calentació</td>
<td>E</td>
<td>97,4</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>1,8</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emissions CO2 calentació</td>
<td>C</td>
<td>18,8</td>
<td>3116,3</td>
<td>E</td>
<td>35,1</td>
</tr>
<tr>
<td>Emissions CO2 refrigeració</td>
<td>A</td>
<td>9,8</td>
<td>132,6</td>
<td>B</td>
<td>1,4</td>
</tr>
<tr>
<td>Emissions CO2 ACS</td>
<td>E</td>
<td>5,2</td>
<td>861,9</td>
<td>D</td>
<td>3,4</td>
</tr>
<tr>
<td>Emissions CO2 totales</td>
<td>4110,8</td>
<td>6613,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Object</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m²</td>
<td>kWh/any</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>36,1</td>
</tr>
<tr>
<td>Consumo energia primària (kWh)</td>
<td>99,3</td>
</tr>
<tr>
<td>Emissions CO2 (kgCO2)</td>
<td>24,8</td>
</tr>
</tbody>
</table>

Figura 86: Resum dels resultats del CALENER VYP per la combinació 10 de la instal·lació 4.

E.5 Instal·lació 5

E.5.1. Combinació 1

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td>Objecte</td>
<td>Referència</td>
</tr>
<tr>
<td><9,6</td>
<td>A</td>
<td>24,4 C</td>
</tr>
<tr>
<td>9,6-15,7</td>
<td>B</td>
<td>39,9 E</td>
</tr>
<tr>
<td>15,7-24,5</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>24,5-37,6</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>>37,6</td>
<td>E</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/any</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/any</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calentació</td>
<td>E</td>
<td>91,8</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>2,6</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emissions CO2 calentació</td>
<td>C</td>
<td>18,8</td>
<td>3116,3</td>
<td>E</td>
<td>35,1</td>
</tr>
<tr>
<td>Emissions CO2 refrigeració</td>
<td>A</td>
<td>9,8</td>
<td>132,6</td>
<td>B</td>
<td>1,4</td>
</tr>
<tr>
<td>Emissions CO2 ACS</td>
<td>E</td>
<td>5,2</td>
<td>861,9</td>
<td>D</td>
<td>3,4</td>
</tr>
<tr>
<td>Emissions CO2 totales</td>
<td>4044,5</td>
<td>6613,8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Object</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m²</td>
<td>kWh/any</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>116,7</td>
</tr>
<tr>
<td>Consumo energia primària (kWh)</td>
<td>119,8</td>
</tr>
<tr>
<td>Emissions CO2 (kgCO2)</td>
<td>24,4</td>
</tr>
</tbody>
</table>

Figura 87: Resum dels resultats del CALENER VYP per la combinació 1 de la instal·lació 5.
E.5.2. Combinació 2

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacción</td>
<td>D</td>
<td>81,4</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeración</td>
<td>A</td>
<td>2,9</td>
<td>A</td>
<td>3,6</td>
<td>586,7</td>
</tr>
<tr>
<td>Emisiones CO₂ calefacción</td>
<td>C</td>
<td>18,2</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO₂ refrigeración</td>
<td>A</td>
<td>0,7</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisiones CO₂ ACS</td>
<td>C</td>
<td>3,1</td>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
<tr>
<td>Emisiones CO₂ totales</td>
<td>3646,7</td>
<td></td>
<td></td>
<td>8813,8</td>
<td></td>
</tr>
</tbody>
</table>

E.5.3. Combinació 3

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacción</td>
<td>D</td>
<td>90,4</td>
<td>E</td>
<td>109,5</td>
<td>18150,6</td>
</tr>
<tr>
<td>Demanda refrigeración</td>
<td>A</td>
<td>2,2</td>
<td>A</td>
<td>3,6</td>
<td>586,7</td>
</tr>
<tr>
<td>Emisiones CO₂ calefacción</td>
<td>D</td>
<td>20,0</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisiones CO₂ refrigeración</td>
<td>A</td>
<td>0,8</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisiones CO₂ ACS</td>
<td>C</td>
<td>3,1</td>
<td>D</td>
<td>3,4</td>
<td>562,6</td>
</tr>
<tr>
<td>Emisiones CO₂ totales</td>
<td>3961,5</td>
<td></td>
<td></td>
<td>8813,8</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energía final (kWh)</td>
<td>105,7</td>
</tr>
<tr>
<td>Consumo energía primaria (kWh)</td>
<td>109,7</td>
</tr>
<tr>
<td>Emisiones CO₂ (kgCO₂)</td>
<td>22,0</td>
</tr>
</tbody>
</table>

Figura 88: Resum dels resultats del CALENER VYP per la combinació 2 de la instal·lació 5.

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edificio Objeto</th>
<th>Edificio Referencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energía final (kWh)</td>
<td>114,5</td>
</tr>
<tr>
<td>Consumo energía primaria (kWh)</td>
<td>117,9</td>
</tr>
<tr>
<td>Emisiones CO₂ (kgCO₂)</td>
<td>23,9</td>
</tr>
</tbody>
</table>

Figura 89: Resum dels resultats del CALENER VYP per la combinació 3 de la instal·lació 5.
E.5.4. Combinació 4

<table>
<thead>
<tr>
<th>Clase</th>
<th>Edificio</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh/m²</td>
<td>kWh/año</td>
</tr>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>156,9</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>3,4</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>E</td>
<td>33,1</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>B</td>
<td>1,3</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>C</td>
<td>3,1</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>5216,0</td>
</tr>
</tbody>
</table>

E.5.5. Combinació 5

<table>
<thead>
<tr>
<th>Clase</th>
<th>Edificio</th>
<th>Edificio Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kWh/m²</td>
<td>kWh/año</td>
</tr>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>148,4</td>
</tr>
<tr>
<td>Demanda refrigeració</td>
<td>A</td>
<td>3,8</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció</td>
<td>E</td>
<td>31,6</td>
</tr>
<tr>
<td>Emisiones CO2 refrigeració</td>
<td>B</td>
<td>1,3</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>C</td>
<td>3,1</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td></td>
<td>5967,3</td>
</tr>
</tbody>
</table>

Figura 90: Resum dels resultats del CALENER VYP per la combinació 4 de la instal·lació 5.

Figura 91: Resum dels resultats del CALENER VYP per la combinació 5 de la instal·lació 5.
E.5.6. Combinació 6

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe kgCO2/m²</td>
<td>kWh/m²</td>
<td>kWh/anyo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>189,2</td>
<td>3186,1</td>
</tr>
<tr>
<td>A</td>
<td>2,2</td>
<td>364,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe kgCO2/m²</th>
<th>Classe kgCO2/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>39,5</td>
</tr>
<tr>
<td>A</td>
<td>0,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>31,9</td>
<td>513,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>48,4</td>
<td>7193,3</td>
</tr>
<tr>
<td>A</td>
<td>39,9</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m²</td>
<td>kWh/anyo</td>
</tr>
<tr>
<td>164,6</td>
<td>27279,0</td>
</tr>
<tr>
<td>178,5</td>
<td>29585,6</td>
</tr>
</tbody>
</table>

Emisiones CO2 totales

<table>
<thead>
<tr>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>164,6</td>
<td>27279,0</td>
</tr>
</tbody>
</table>

Emisiones CO2 (kgCO2)

<table>
<thead>
<tr>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>178,5</td>
<td>29585,6</td>
</tr>
</tbody>
</table>

Figura 92: Resum dels resultats del CALENER VYP per la combinació 6 de la instal·lació 5.

E.5.7. Combinació 7

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classe kgCO2/m²</td>
<td>kWh/m²</td>
<td>kWh/anyo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>182,9</td>
<td>3031,3</td>
</tr>
<tr>
<td>A</td>
<td>1,9</td>
<td>314,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe kgCO2/m²</th>
<th>Classe kgCO2/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>38,3</td>
</tr>
<tr>
<td>A</td>
<td>0,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>351,9</td>
<td>563,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3,4</td>
<td>563,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classe</th>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>42,1</td>
<td>6613,8</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh/m²</td>
<td>kWh/anyo</td>
</tr>
<tr>
<td>164,6</td>
<td>27279,0</td>
</tr>
<tr>
<td>178,5</td>
<td>29585,6</td>
</tr>
</tbody>
</table>

Emisiones CO2 totales

<table>
<thead>
<tr>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>164,6</td>
<td>27279,0</td>
</tr>
</tbody>
</table>

Emisiones CO2 (kgCO2)

<table>
<thead>
<tr>
<th>kWh/m²</th>
<th>kWh/anyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>178,5</td>
<td>29585,6</td>
</tr>
</tbody>
</table>

Figura 93: Resum dels resultats del CALENER VYP per la combinació 7 de la instal·lació 5.
E.5.8. Combinació 8

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9,6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,6-15,7 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,7-24,5 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24,5-37,6 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>37,6 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>183,7</td>
<td>E</td>
<td>109,5</td>
<td>18156,6</td>
</tr>
<tr>
<td>Demand a refrigeració</td>
<td>A</td>
<td>1,9</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emisions CO2 calefacció</td>
<td>E</td>
<td>38,8</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>A</td>
<td>9,7</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>C</td>
<td>3,1</td>
<td>D</td>
<td>3,4</td>
<td>565,6</td>
</tr>
<tr>
<td>Emisions CO2 totals</td>
<td></td>
<td>7681,3</td>
<td></td>
<td>6613,8</td>
<td></td>
</tr>
</tbody>
</table>

E.5.9. Combinació 9

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9,6 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,6-15,7 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15,7-24,5 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24,5-37,6 D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>37,6 E</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda calefacció</td>
<td>E</td>
<td>107,1</td>
<td>E</td>
<td>109,5</td>
<td>18156,6</td>
</tr>
<tr>
<td>Demand a refrigeració</td>
<td>A</td>
<td>1,9</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>Emisions CO2 calefacció</td>
<td>D</td>
<td>25,6</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>Emisions CO2 refrigeració</td>
<td>A</td>
<td>0,7</td>
<td>B</td>
<td>1,4</td>
<td>232,1</td>
</tr>
<tr>
<td>Emisions CO2 ACS</td>
<td>C</td>
<td>3,1</td>
<td>D</td>
<td>3,4</td>
<td>565,6</td>
</tr>
<tr>
<td>Emisions CO2 totals</td>
<td></td>
<td>4541,9</td>
<td></td>
<td>6613,8</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>209,4</td>
</tr>
<tr>
<td></td>
<td>164,6</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>210,3</td>
</tr>
<tr>
<td></td>
<td>178,5</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>39,9</td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objecte</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>por metro cuadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energia final (kWh)</td>
<td>132,2</td>
</tr>
<tr>
<td></td>
<td>164,6</td>
</tr>
<tr>
<td>Consumo energia primaria (kWh)</td>
<td>135,3</td>
</tr>
<tr>
<td></td>
<td>178,5</td>
</tr>
<tr>
<td>Emisions CO2 (kgCO2)</td>
<td>27,4</td>
</tr>
<tr>
<td></td>
<td>39,9</td>
</tr>
</tbody>
</table>

Figura 94: Resum dels resultats del CALENER VYP per la combinació 8 de la instal·lació 5.

Figura 95: Resum dels resultats del CALENER VYP per la combinació 9 de la instal·lació 5.
E.5.10. Combinació 10

Certificació Energètica de Edificis

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator kgCO2/m²</td>
<td>Indicator kgCO2/m²</td>
</tr>
<tr>
<td><9.6 A</td>
<td><9.6 A</td>
</tr>
<tr>
<td>6.6-15.7 B</td>
<td>6.6-15.7 B</td>
</tr>
<tr>
<td>15.7-24.5 C</td>
<td>15.7-24.5 C</td>
</tr>
<tr>
<td>24.5-37.6 D</td>
<td>24.5-37.6 D</td>
</tr>
<tr>
<td>>37.6 E</td>
<td>>37.6 E</td>
</tr>
<tr>
<td>Clase</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>E</td>
<td>97.4</td>
</tr>
<tr>
<td>A</td>
<td>1,8</td>
</tr>
</tbody>
</table>

Demanda calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>21.6</td>
<td>3580.4</td>
</tr>
<tr>
<td>A</td>
<td>9,7</td>
<td>116.0</td>
</tr>
<tr>
<td>C</td>
<td>3,1</td>
<td>513.9</td>
</tr>
</tbody>
</table>

Emisio CO2 calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>35,1</td>
<td>5818.1</td>
</tr>
</tbody>
</table>

Emisio CO2 refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1,4</td>
<td>232.1</td>
</tr>
</tbody>
</table>

Emisio CO2 ACS

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>565.6</td>
</tr>
</tbody>
</table>

Emisio CO2 totales

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>39,9</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

Figura 96: Resum dels resultats del CALENER VYP per la combinació 10 de la instal·lació 5.

E.6 Instal·lació 6

E.6.1. Combinació 1

Certificació Energètica de Edificis

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator kgCO2/m²</td>
<td>Indicator kgCO2/m²</td>
</tr>
<tr>
<td><9.6 A</td>
<td><9.6 A</td>
</tr>
<tr>
<td>6.6-15.7 B</td>
<td>6.6-15.7 B</td>
</tr>
<tr>
<td>15.7-24.5 C</td>
<td>15.7-24.5 C</td>
</tr>
<tr>
<td>24.5-37.6 D</td>
<td>24.5-37.6 D</td>
</tr>
<tr>
<td>>37.6 E</td>
<td>>37.6 E</td>
</tr>
<tr>
<td>Clase</td>
<td>kWh/m²</td>
</tr>
<tr>
<td>E</td>
<td>91.8</td>
</tr>
<tr>
<td>A</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Demanda calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>20,5</td>
<td>3398.1</td>
</tr>
<tr>
<td>A</td>
<td>9,6</td>
<td>132.6</td>
</tr>
<tr>
<td>C</td>
<td>1,6</td>
<td>265.2</td>
</tr>
</tbody>
</table>

Emisio CO2 calefacció

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>39,9</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

Emisio CO2 refrigeració

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1,4</td>
<td>232.1</td>
</tr>
</tbody>
</table>

Emisio CO2 ACS

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>3,4</td>
<td>565.6</td>
</tr>
</tbody>
</table>

Emisio CO2 totales

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>39,9</td>
<td>6613.8</td>
</tr>
</tbody>
</table>

Figura 97: Resum dels resultats del CALENER VYP per la combinació 1 de la instal·lació 6.
E.6.2. Combinació 2

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²^2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clasificació:
- 8.6 - A
- 6.6 - 15.7 - B
- 15.7 - 24.5 - C
- 24.5 - 37.6 - D
- 37.6 - E
- 47.6 - F

<table>
<thead>
<tr>
<th>Demanda calefacció</th>
<th>kWh/m² a.</th>
<th>kWh/año</th>
<th>Clasificació</th>
<th>kWh/m² a.</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand calefacció D</td>
<td>81.4</td>
<td>13492.8</td>
<td>E</td>
<td>109.5</td>
<td>18110.6</td>
</tr>
<tr>
<td>Demand calefacció A</td>
<td>2.9</td>
<td>331.5</td>
<td>A</td>
<td>3.6</td>
<td>596.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emisiones CO2 calefacció</th>
<th>kgCO2/m² a.</th>
<th>kgCO2/año</th>
<th>Clasificació</th>
<th>kgCO2/m² a.</th>
<th>kgCO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones CO2 calefacció C</td>
<td>18.2</td>
<td>3016.8</td>
<td>E</td>
<td>36.1</td>
<td>5818.1</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció A</td>
<td>9.7</td>
<td>116.0</td>
<td>B</td>
<td>1.4</td>
<td>232.1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>1.6</td>
<td>296.2</td>
<td>D</td>
<td>3.4</td>
<td>565.6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td>3396.1</td>
<td></td>
<td></td>
<td>6613.8</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro quadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energí final (kWh)</td>
<td>96.1</td>
</tr>
<tr>
<td>Consumo energí primària (kWh)</td>
<td>101.0</td>
</tr>
<tr>
<td>Emisiones CO2 (kgCO2)</td>
<td>20.5</td>
</tr>
</tbody>
</table>

E.6.3. Combinació 3

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicador kgCO2/m²^2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clasificació:
- 8.6 - A
- 6.6 - 15.7 - B
- 15.7 - 24.5 - C
- 24.5 - 37.6 - D
- 37.6 - E
- 47.6 - F

<table>
<thead>
<tr>
<th>Demanda calefacció</th>
<th>kWh/m² a.</th>
<th>kWh/año</th>
<th>Clasificació</th>
<th>kWh/m² a.</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand calefacció D</td>
<td>90.4</td>
<td>14984.6</td>
<td>E</td>
<td>109.5</td>
<td>18110.6</td>
</tr>
<tr>
<td>Demand calefacció A</td>
<td>2.2</td>
<td>331.2</td>
<td>A</td>
<td>3.6</td>
<td>596.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emisiones CO2 calefacció</th>
<th>kgCO2/m² a.</th>
<th>kgCO2/año</th>
<th>Clasificació</th>
<th>kgCO2/m² a.</th>
<th>kgCO2/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emisiones CO2 calefacció D</td>
<td>20.0</td>
<td>3315.2</td>
<td>E</td>
<td>35.1</td>
<td>5818.1</td>
</tr>
<tr>
<td>Emisiones CO2 calefacció A</td>
<td>0.8</td>
<td>132.6</td>
<td>B</td>
<td>1.4</td>
<td>232.1</td>
</tr>
<tr>
<td>Emisiones CO2 ACS</td>
<td>1.6</td>
<td>296.2</td>
<td>D</td>
<td>3.4</td>
<td>565.6</td>
</tr>
<tr>
<td>Emisiones CO2 totales</td>
<td>3713.3</td>
<td></td>
<td></td>
<td>6613.8</td>
<td></td>
</tr>
</tbody>
</table>

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>por metro quadrado</td>
<td>anual</td>
</tr>
<tr>
<td>Consumo energí final (kWh)</td>
<td>106.9</td>
</tr>
<tr>
<td>Consumo energí primària (kWh)</td>
<td>110.2</td>
</tr>
<tr>
<td>Emisiones CO2 (kgCO2)</td>
<td>22.4</td>
</tr>
</tbody>
</table>

Figura 98: Resum dels resultats del CALENER VYP per la combinació 2 de la instal·lació 6.

Figura 99: Resum dels resultats del CALENER VYP per la combinació 3 de la instal·lació 6.
E.6.4. Combinació 9

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6 - A</td>
<td>25,9 D</td>
<td>39,9 E</td>
</tr>
<tr>
<td>6,6 - 16,7 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,7 - 24,5 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>24,5 C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>A</td>
<td>107,1</td>
<td>E</td>
<td>109,6</td>
<td>11150,6</td>
</tr>
<tr>
<td>6,6 - 16,7</td>
<td>A</td>
<td>314,9</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>16,7 - 24,5</td>
<td>D</td>
<td>256,2</td>
<td>B</td>
<td>2,4</td>
<td>663,6</td>
</tr>
<tr>
<td>>24,5</td>
<td>E</td>
<td>4293,2</td>
<td>D</td>
<td>32,4</td>
<td>6813,8</td>
</tr>
</tbody>
</table>

Emissions CO2 calentura: D 23,6 3911,9 E 35,1 5818,1
Emissions CO2 refrigeració: A 0,7 116,0 B 1,4 232,1
Emissions CO2 ACS: A 1,6 265,2 D 2,4 663,6
Emissions CO2 totals: 4293,2 6813,8

E.6.5. Combinació 10

<table>
<thead>
<tr>
<th>Certificació Energètica de Edificis</th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6 - A</td>
<td>25,9 D</td>
<td>39,9 E</td>
</tr>
<tr>
<td>6,6 - 16,7 C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16,7 - 24,5 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>24,5 C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
<th>Clase</th>
<th>kWh/m²</th>
<th>kWh/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,6</td>
<td>A</td>
<td>97,4</td>
<td>E</td>
<td>109,6</td>
<td>11150,6</td>
</tr>
<tr>
<td>6,6 - 16,7</td>
<td>A</td>
<td>298,4</td>
<td>A</td>
<td>3,6</td>
<td>596,7</td>
</tr>
<tr>
<td>16,7 - 24,5</td>
<td>D</td>
<td>3580,4</td>
<td>E</td>
<td>35,1</td>
<td>5818,1</td>
</tr>
<tr>
<td>>24,5</td>
<td>E</td>
<td>3961,5</td>
<td>D</td>
<td>3,4</td>
<td>663,6</td>
</tr>
</tbody>
</table>

Emissions CO2 calentura: D 21,6 3580,4 E 35,1 5818,1
Emissions CO2 refrigeració: A 0,7 116,0 B 1,4 232,1
Emissions CO2 ACS: A 1,6 265,2 D 2,4 663,6
Emissions CO2 totals: 3981,5 6613,8

Datos para la etiqueta de eficiencia energética

<table>
<thead>
<tr>
<th></th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Edifici Objet</td>
<td>Edifici Referència</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Edifici Objet</th>
<th>Edifici Referència</th>
</tr>
</thead>
</table>

Consumo energia final (kWh): 114,7 19014,2
Consumo energia primaria (kWh): 117,0 19499,6
Emisions CO2 (kgCO2): 23,9 3961,6

Figura 100: Resum dels resultats del CALENER VYP per la combinació 9 de la instal·lació 6.

Figura 101: Resum dels resultats del CALENER VYP per la combinació 10 de la instal·lació 6.
F. Pressupost

<table>
<thead>
<tr>
<th>Capítol 1: Càlcul del projecte</th>
<th>Unitat</th>
<th>Amidament</th>
<th>Preu Unitari (€)</th>
<th>Preu Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partida 1.1: Definició de l’edifici</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.1.1: Enginyer responsable</td>
<td>Hora</td>
<td>4</td>
<td>640,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.1.2: Enginyer tècnic</td>
<td>Hora</td>
<td>16</td>
<td>480,00</td>
<td></td>
</tr>
<tr>
<td>Partida 1.2: Selecció de les solucions constructives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.2.1: Enginyer responsable</td>
<td>Hora</td>
<td>4</td>
<td>160,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.2.2: Enginyer tècnic</td>
<td>Hora</td>
<td>16</td>
<td>480,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.2.3: Assessorament tècnic</td>
<td>Hora</td>
<td>2</td>
<td>120,00</td>
<td></td>
</tr>
<tr>
<td>Partida 1.3: Selecció de les evolvents d’estudi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.3.1: Enginyer responsable</td>
<td>Hora</td>
<td>2</td>
<td>80,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.3.2: Enginyer tècnic</td>
<td>Hora</td>
<td>6</td>
<td>180,00</td>
<td></td>
</tr>
<tr>
<td>Partida 1.4: Generació de l’edifici en 3D i comprovació compliment CTE DB HE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.4.1: Enginyer responsable</td>
<td>Hora</td>
<td>4</td>
<td>160,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.4.2: Enginyer tècnic</td>
<td>Hora</td>
<td>40</td>
<td>1200,00</td>
<td></td>
</tr>
<tr>
<td>Partida 1.5: Càlcul de càrregues tèrmiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.5.1: Enginyer responsable</td>
<td>Hora</td>
<td>4</td>
<td>160,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.5.2: Enginyer tècnic</td>
<td>Hora</td>
<td>40</td>
<td>1200,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.5.3: Assessorament tècnic</td>
<td>Hora</td>
<td>1</td>
<td>60,00</td>
<td></td>
</tr>
<tr>
<td>Partida 1.6: Estimació de les emissions de CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.6.1: Enginyer responsable</td>
<td>Hora</td>
<td>4</td>
<td>160,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.6.2: Enginyer tècnic</td>
<td>Hora</td>
<td>80</td>
<td>2400,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.6.3: Assessorament tècnic</td>
<td>Hora</td>
<td>2</td>
<td>120,00</td>
<td></td>
</tr>
<tr>
<td>Partida 1.7: Presentació de resultats</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.7.1: Enginyer responsable</td>
<td>Hora</td>
<td>6</td>
<td>240,00</td>
<td></td>
</tr>
<tr>
<td>Unitat d’obra 1.7.2: Enginyer tècnic</td>
<td>Hora</td>
<td>40</td>
<td>1200,00</td>
<td></td>
</tr>
<tr>
<td>Capítol 2: Amortització de material informàtic</td>
<td></td>
<td></td>
<td></td>
<td>84,00</td>
</tr>
<tr>
<td>Capítol 3: Costos indirectes</td>
<td></td>
<td></td>
<td></td>
<td>1383,04</td>
</tr>
</tbody>
</table>

TOTAL: 10027,04

IVA (21%) 2105,68

Preu Final: 12132,72 €
Projecte: CARACTERITZACIÓ ENERGÈTICA DEL PARC EDIFICATORI ANTERIOR AL Codi Tècnic de l’Edificació CTE

Autor: Marc Serra Barchín