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Abstract
This thesis deals with the detection, segmentation and classi�cation of lesions on sonogra-phy. The presence of these lesions is a sign of breast cancer. Hence, the earlier these lesionsare detected, the better and more e�ective the treatment will be. The contribution of thethesis is the development of a new Computer-Aided Diagnosis (CAD) framework capable ofdetecting, segmenting, and classifying breast abnormalities on sonography automatically.Firstly, an adaption of a generic object detection method, Deformable Part Models (DPM),to detect lesions in sonography is proposed. The method uses a machine learning techniqueto learn a model based on Histogram of Oriented Gradients (HOG). This method is alsoused to detect cancer lesions directly in a multi-class detector, simplifying the traditionalcancer detection pipeline (candidate lesion detection, segmentation, feature extraction andclassi�cation between benign and malignant). Secondly, di�erent initialization proposalsby means of reducing the human interaction in a lesion segmentation algorithm basedon Markov Random Field (MRF)-Maximum A Posteriori (MAP) framework is presented.Furthermore, an analysis of the in�uence of lesion type in the segmentation results is per-formed. Finally, the inclusion of elastography information in this segmentation frameworkis proposed, by means of modifying the algorithm to incorporate a bivariant formulation.The proposed methods in the di�erent stages of the CAD framework are assessed using dif-ferent datasets. The evaluation, carried out in a quantitative and qualitative manner, usesseveral metrics for detection and segmentation, is performed for each stage independently,and is compared with the most relevant methods in the state-of-the-art. The analysisof the results points out a better performance relative to state-of-the-art approaches forlesion detection, and a similar performance for cancer detection but with a considerablesimpli�cation of the traditional pipeline. In addition, a reduction of the user interaction ofthe MRF-MAP is achieved, obtaining results in line with the state-of-the-art approachesfor lesion segmentation, and a more robust and accurate performance of the segmentationframework is reported with the inclusion of elastography.xxiii
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Resum
Aquesta tesi es centra en la detecció, segmentació i classi�cació de lesions en imatgesd'ecogra�a. La presència d'aquestes lesions és un indicatiu de càncer de mama, i per tant,com més ràpida sigui la seva detecció, millor i més efectiu serà el tractament proporcionat alpacient. La contribució d'aquesta tesi és el desenvolupament d'una nova eina de DiagnòsticAssistit per Ordinador (DAO) capa�c de detectar, segmentar i classi�car automàticamentlesions en imatges d'ecogra�a de mama. Inicialment, s'ha proposat l'adaptació del mè-tode genèric de detecció d'objectes Deformable Part Models (DPM) per detectar lesionsen imatges d'ecogra�a. Aquest mètode utilitza tècniques d'aprenentatge automàtic pergenerar un model basat en l'Histograma de Gradients Orientats. Aquest mètode tambéés utilitzat per detectar lesions malignes directament, fent servir un detector multi-classe,simpli�cant així l'estratègia tradicional (detecció de lesions candidates, segmentació, ex-tracció de característiques i classi�cació entre benigne i maligne). A continuació, s'hanrealitzat diferents propostes d'inicialització en un mètode de segmentació basat en MarkovRandom Field (MRF)-Maximum A Posteriori (MAP) per tal de reduir la interacció ambl'usuari. Per avaluar aquesta proposta, s'ha realitzat un estudi sobre la in�uència del tipusde lesió en els resultats aconseguits. Finalment, s'ha proposat la inclusió d'elastogra�a enaquesta estratègia de segmentació, modi�cant l'algoritme amb una formulació bi-variant.Els mètodes proposats per a cada etapa de l'eina DAO han estat avaluats fent servir basesde dades diferents. L'avaluació, feta de manera qualitativa i quantitativa fent servir difer-ents mètriques, ha estat realitzada per cada etapa independentment, i ha estat comparadaamb els resultats dels mètodes més importants de l'estat de l'art. En aquesta comparació,la nostra proposta ha obtingut els millors resultats per a detecció de lesions, i uns resultatssimilars per a detecció de lesions malignes tot i que simpli�ca l'estratègia tradicional. Fi-nalment, millora la inicialització del mètode MRF-MAP i ha obtingut resultats més acuratsi robustos incorporant elastogra�a.
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Resumen
Esta tesis se centra en la detección, segmentación y clasi�cación de lesiones en imágenesde ecografía. La presencia de estas lesiones es un indicativo de cáncer de mama, y porconsiguiente, cuanto más rápida sea su detección, mejor y más efectivo será el tratamientoproporcionado al paciente. La contribución de esta tesis es el desarrollo de una nuevaherramienta de Diagnóstico Asistido por Ordenador (DAO) capaz de detectar, segmentary clasi�car automáticamente lesiones en imágenes de ecografía de mama. Inicialmente, seha propuesto la adaptación de un método genérico de detección de objetos DeformablePart Models (DPM) para detectar lesiones en imágenes de ecografía. Este método utilizatécnicas de aprendizaje automático para generar un modelo basado en el Histograma deGradientes Orientados. Este método también es utilizado para detectar lesiones malignasdirectamente, usando un detector multi-clase, simpli�cando así la estrategia tradicional(detección de lesiones candidatas, segmentación, extracción de características y clasi�-cación entre benigno y maligno). A continuación, se han realizado diferentes propuestasde inicialización en un método de segmentación basado en Markov Random Field (MRF)-Maximum A Posteriori (MAP) para reducir la interacción con el usuario. Posteriormente,se ha realizado un estudio sobre la in�uencia del tipo de lesión en los resultados conseguidos.Finalmente, se ha propuesto la inclusión de elastografía en esta estrategia de segmentación,modi�cando el algoritmo con una formulación bi-variante. Los métodos propuestos paracada etapa de la herramienta DAO han sido evaluados usando bases de datos diferentes. Laevaluación, hecha de manera cualitativa y cuantitativa usando diferentes métricas, ha sidorealizada en cada etapa independientemente, y ha sido comparada con los resultados de losmétodos más importantes del estado del arte. En esta comparación, nuestra propuesta haobtenido los mejores resultados para la detección de lesiones, y unos resultados similarespara la detección de lesiones malignas pero simpli�cando la estrategia tradicional. Final-mente, mejora la inicialización del método MRF-MAP y obtiene resultados más precisos yrobustos incorporando elastografía. xxvii
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1Introduction
1.1 Breast cancerBreast cancer is the most common cause of death from cancer in women worldwide. Ac-cording to a study developed in 2012 by the American Cancer Society, the chance of awoman having invasive breast cancer some time during her life is about 1 in 8, and it isestimated that 296,980 new cases of breast cancer will be diagnosed, and approximately39,620 deaths are expected in the United States alone in 2013 [7]. This proportion isreduced in our country, Catalonia, where it is estimated that 1 in 9 women will developbreast cancer during their lifetime [1], and 4,700 new cases will be diagnosed. This quantityrepresents 30% of all cancer diagnoses in women [90].In the European Union, breast cancer is the leading cause of death from cancer amongwomen in most of its regions. The standardized death rate from breast cancer in the EUwas 23.1 deaths per 100,000 female inhabitants during the period 2008-10 [41]. Figure 1.1shows the distribution of deaths from breast cancer in women by EU regions.Breast cancer incidence has increased over the past decade due to the introductionof screening programmes in which more cancers are detected in their early stages [90].1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Map of deaths from breast cancer in women by EU regions (standardized deathrate per 100,000 women) during 2008-10 [41].However, breast cancer mortality has declined among women of all ages thanks to earlydetection [7]. The earlier breast cancer is detected, better and less aggressive therapeuticoptions are available.1.2 Breast cancer diagnostic techniquesSince the causes of breast cancer still remain unknown, early detection is regarded as thebest option to reduce the death rate [27].Breast Self-Examination (BSE) or manual palpation is a very important part of everyadult woman's personal health care. It is recommended that BSE should be performed



1.2. BREAST CANCER DIAGNOSTIC TECHNIQUES 3once each month beginning at age 20 and should continue throughout a woman's lifetime.However there are some limitations to manual palpation. The major drawback is thatthe abnormality can only be felt after it has grown to a certain size (approx. 1.5 to 2 cm indiameter) [10]. Therefore, these techniques are not sensitive enough for early breast cancerdetection.Currently, manual examination is complemented with technology, such as imaging de-vices and signal processing algorithms. The development of these tools/systems improvesthe accuracy of human vision and judgment in the diagnosis. In the following sections,popular techniques for breast cancer diagnosis are introduced.1.2.1 Digital Mammography (DM)Mammograms capture low energy X-rays which pass through a compressed breast. Nor-mally, two di�erent viewpoints of the X-ray projection are obtained: the Cranio-Caudal(CC) view and the Medio-Lateral Oblique (MLO) view. In Figure 1.2, (a) shows the view-points' directions, while (b) and (c) show an example of the two mammogram views of thesame patient.

(a) (b) (c)Figure 1.2: Mammography viewpoints: (a) shows the direction of the two most used views,which produce images like (b) the CC view, and (c) the MLO view. The images illustratingthis �gure are taken from [98]Nowadays, digital mammography is the most widely used and e�ective technique forbreast cancer detection and diagnosis, and is accepted as the �gold standard� for breastimaging [106]. Digital Mammography (DM) can detect small cancers, known as lumps ormasses, as well as calci�cations and micro calci�cations, which can indicate cancers in their



4 CHAPTER 1. INTRODUCTIONinitial development.Digital mammography can either be digitized Screen-Film Mammography (SFM) whenthe image is obtained as the digitization of an analogical �lm or Full-Field Digital Mam-mography (FFDM) when the image is directly generated in a digital sensor instead of asensitive �lm.However, there are limitations to mammography in breast cancer detection. Many un-necessary (65-85%) biopsies are due to the low speci�city of mammography [26]. It isdi�cult for mammography to detect breast cancer in young women with dense breasts,where lesions have a similar attenuation compared to dense tissue [76], hence lesions arehidden by the surrounding tissue. In addition, the radiation of mammography can increasethe health risk for patients and clinical sta�.Therefore, it is advisable to use other image modalities like Magnetic Resonance Image(MRI) and Ultrasound (US) screening as complementary tools since they are more sensitivethan mammography when dealing with dense breasts [16]. These techniques, in somecases, also o�er higher speci�city than mammography, allowing doctors and techniciansto distinguish benignant and malignancy signs, which reduces the number of unnecessarybiopsies [46, 114, 116].Breast tomosynthesisOne of the recent advances in X-ray screening is tomosynthesis, which creates a �pseudo� 3-dimensional picture of the breast. This technique tries to overcome the tissue overlap e�ect,present in regular mammograms. The acquisition technique is similar to mammography:the breast is compressed between two plates and X-ray attenuation is measured. Themain di�erence is that tomosynthesis takes multiple images of the breast from di�erentangles instead of from a single viewpoint. These images are further combined to reconstructthem into cross-sectional slices. Figure 1.3 illustrates the e�ect of taking images at di�erentangles.1.2.2 Magnetic Resonance Imaging (MRI)Magnetic Resonance Image (MRI) is a radiological technique begun in the 1980s. MRIuses magnetic �elds and the magnetic properties of the body to generate detailed imagesof body tissues. MRI acquires 3D data, where cross sections at arbitrary view angles canbe calculated. Figure 1.4 shows the most common views: (a) the axial, (b) the sagittal
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(a) (b)Figure 1.3: Mammography and Tomosynthesis acquisition processes. (a) Mammographysingle image take illustrating the tissue overlap problem. (b) Multiple images take fortomosynthesis showing how the relative position between two targets vary depending onthe X-ray illumination angle. The images illustrating this �gure are taken from Smith etal. [113].and (c) the coronal views.MRI is a widely used method for the detection of breast cancer with sensitivity as oneof its principal strengths [32]. Some other advantages are the noninvasive nature and theability to image in any plane. It is also useful in the detection of recurrences after surgeryhas been performed for mastectomy or lumpectomy cases.The disadvantages of MRI are that it is expensive and time consuming. MRI is an im-practical tool for routine screening, but plays a major role as an adjunct to mammographyand US imaging.1.2.3 Breast ultrasoundBreast ultrasound imaging uses the transmission of high-frequency mechanical waves (soundwaves typically within the 1 ∼ 20Mhz range) through the human body in order to cap-ture the waves partially re�ected at the boundaries between tissues with di�erent acousticproperties [40]. US imaging or sonography is an important modality in the evaluation andtreatment of breast masses. It is used as a complementary modality to answer speci�cquestions raised in the �ndings from mammography or physical examinations [122].B-mode (Brightness-mode) ultrasound is the most common form of ultrasound imagingnowadays. Sweeping an ultrasound beam through the area being examined while transmit-ting pulses and detecting echoes along closely spaced scan lines produces B-scan images.The vertical position of each bright dot is determined by the time delay from pulse trans-
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(a) (b)

(c)Figure 1.4: MRI viewpoints of the same patient: (a) shows axial view, (b) sagittal view,and, (c) coronal view.mission to return of the echo, and the horizontal position is given by the location of thereceiving transducer. To generate a rapid series of individual 2D images that show motion,the ultrasound beam is swept repeatedly. The returning sound pulses in B-mode have dif-ferent shades of darkness depending on their intensities. The varying shades of gray re�ectvariations in the texture of internal organs. Interfaces between tissues with very di�erentimpedances are displayed with high brightness, and, when the impedances are the same ornearly the same, the position appears dark. This form of display is also called gray scale(see Figure 1.5).Nowadays, researchers and practitioners are showing an increasing interest in the useof US images for breast cancer diagnosis [117]. Use of ultrasound can increase over allcancer detection by 17% [35], and reduce the number of unnecessary biopsies by 40% [9].Ultrasound examination is safe for patients and radiologists in daily clinical practice [70]due to the lack of radiation in the acquisition procedure. Since it is a cheap and fast
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Figure 1.5: B-mode ultrasound image of a breast.technique, it is also convenient for low-resource countries [8]. Ultrasound imaging is moresensitive than other techniques, i.e. mammography, for detecting abnormalities in densebreasts (normally the case of women younger than 35 years of age [35]). It is also accurateat detecting some kinds of lesions, such as cysts, reducing the number of unnecessarybiopsies. However, US imaging is operator-dependent compared to other common usedtechniques. Interpreting US images requires experienced and well-trained radiologists dueto its complexity and the existence of artifacts.1.3 Breast US artifactsDue to the ultrasonic image formation process, the �nal visible image presents some ar-tifacts. Some of these are useful in the diagnostic procedure while others degrade thevisualization of the image. In this section, we explain the most in�uential artifacts in USimaging: speckle noise and the shadowing e�ect.1.3.1 Speckle noiseSpeckle is an inherent characteristic of ultrasound imaging. It is generated by scattererslocated throughout the tissue, and appears as a granular structured noise [2, 3]. Speckle is



8 CHAPTER 1. INTRODUCTIONdetrimental because it reduces the distinction between the structures and the backgroundof the image. Although speckle seems to form an acoustic texture pattern, it is intrinsicallydependent on the imaging system, and is not directly linked to any physical characteristicof the tissue. Figure 1.6 shows an example of speckle noise in a synthetic ultrasound image.

Figure 1.6: Example of speckle noise in a synthetic image.1.3.2 Shadowing e�ectThe shadowing e�ect occurs when the ultrasonic beam is attenuated by a structure withinthe B-mode scan range. In B-mode US images, this e�ect can be observed as a dark shadowbelow the structures (see Figure 1.7). Shadowing may indicate the presence of tumors,which attenuate the ultrasonic beam due to their higher tissue density. On the other hand,the absence of shadowing may be a hint to distinguish cystic lesions as cysts are �lled withliquid and do not absorb the ultrasonic beam. Hence, shadowing is an important featurein the diagnosis. Also, note that as long as the ultrasonic beam is propagated through themedia, it becomes inherently attenuated, and therefore, the B-mode image becomes darkerwithout meaning that there is any shadowing presence.1.4 Lesion pathologiesA breast lesion is an area that is an abnormality or an alteration in the breast tissue'sintegrity. Breast lesions are mainly classi�ed in two categories depending on whether theyare composed of cancerous cells or not. We can further categorize lesions within cancerousor non-cancerous, such as cysts, �broadenomas or carcinomas. Each type of lesion has
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Figure 1.7: Shadowing e�ect. Breast B-mode image, where the tumor and the shadowproduced by the beam attenuation are marked with arrows.unique characteristics that are present when visualized in sonography.1.4.1 Benign tumorsThe majority of breast tumors detected by screening are benign [7]. Benign breast tumorsare non-cancerous areas in which breast cells have grown abnormally and rapidly, oftenforming a lump [62].Benign breast tumors are not life-threatening, and do not spread beyond the breast toother organs. Still, some benign breast conditions are important to diagnose as they areregarded as important risk factors in developing breast cancer.In general, benign masses tend to be of low density, and vessels may be seen throughthe mass. Malignant masses, however, are often denser than the adjacent parenchyma,and may appear too dense for their size. The most common types of benign tumors aredescribed below.CystCysts are �uid-�lled, anechoic, well-marginated, round or ovoid structures. The incidenceof cysts is in as many as one third of women between 35 and 50 years old. Cysts cannot re-liably be distinguished from solid masses by clinical breast examination or mammography;in these cases, sonography is used. Figure 1.8 shows examples of Breast Ultrasound (BUS)images with cysts.
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(a) (b)Figure 1.8: Benign tumors: cysts.FibroadenomaFibroadenoma (FA) is the most common lesion in the breast, and it occurs in 25% ofasymptomatic women [39]. It is usually a disease of early reproductive life. The peakincidence is between the ages of 15 and 35 years, but they may be found in women of anyage. Women with �broadenomas have a slightly increased risk of breast cancer (about 1.5to 2 times the risk of women with no breast changes) [7].Figure 1.9 shows examples of �broadenoma tumors. In appearance, these masses are�rm, smooth and oval shaped, with borders that are distinct from the surrounding breasttissue. They grow as spherical nodules that are usually sharply circumscribed, and movablein the surrounding breast tissue. Since they are not �lled with �uid like cysts, the massesappear more heterogeneous.

(a) (b)Figure 1.9: Benign tumors: �broadenomas.



1.4. LESION PATHOLOGIES 111.4.2 Malignant tumorsCharacteristics of malignant lesions include a hypo-echoic nature (heterogeneous internalechoes and acoustic shadowing), and irregular margins, as illustrated in Figure 1.10. Ma-lignant tumors or carcinomas are the most common malignancy seen in the female breast.Breast carcinoma can be categorized into two main groups: ductal carcinoma, where themalignancy originates in ductal epithelial cells, and lobular carcinoma, where the malig-nancy originates in the more distal cells of the lobule [116].

(a) (b)Figure 1.10: Malignant tumors: (a) invasive ductal carcinoma and (b) invasive lobularcarcinoma.Each category is often subdivided into `in-situ' (non-invasive) and in�ltrating (invasive)types.Non-invasive breast cancerNon-invasive breast cancer is also known as cancer or carcinoma in situ. This canceris found in the breast ducts, and has not developed the ability to spread outside thebreast. This form of cancer rarely shows as a lump in the breast, and is usually found ina mammogram. The most common type of non-invasive cancer is Ductal Carcinoma InSitu (DCIS).Invasive breast cancerInvasive Carcinoma (IC) has the ability to spread outside the breast, although this doesnot mean it necessarily has spread. The most common form of breast cancer is Invasive



12 CHAPTER 1. INTRODUCTIONDuctal Carcinoma (IDC), which develops in the cells that line the breast ducts. Invasiveductal breast cancer accounts for about 80% of all breast cancer cases [7].1.5 Computer Aided DiagnosisSince the introduction of screening programmes, Computer Aided Diagnosis (CAD) hasbecome a part of the routine clinical work for diagnosis of breast cancer [34], mostly usedin mammography. A CAD system is a set of automatic or semiautomatic tools developedto assist radiologists in the evaluation of medical images [19, 51]. With CAD, radiologistsuse the computer output as a �second opinion�, and make the �nal decisions.Nowadays, with the increasing use of complementary techniques such as sonography, re-searchers have been working on CAD systems capable of dealing with them. Hence, CADsystems are very important in sonography due to the complexity of US images as explainedbefore. Reading and understanding US images requires well-trained and experienced radi-ologists. Furthermore, even well-trained experts may have a high inter-observer variationrate; therefore, CAD has been investigated to help radiologists in making accurate diag-noses. One advantage of a CAD system is that it can use some features which cannot beobtained visually and intuitively by radiologists when performing the diagnosis process.Another advantage is that CAD systems can reproduce the diagnosis process in di�erentimages, eliminating the operator-dependent nature inherent in sonography. Current re-search into the use of CAD systems is being done with an eye toward helping radiologiststo increase diagnosis accuracy, reduce the biopsy rate, and save time and e�ort.Generally, ultrasound CAD systems for breast cancer detection involve four stages, asshown in Figure 1.11.1. Lesion detection: The task of lesion detection is to provide the spatial location ofthe lesion in the image. Usually, a point inside the actual lesion region is reportedas a result.2. Lesion segmentation: Image segmentation divides the image into non-overlappingregions and it separates the objects (lesions) from the background.3. Feature extraction: This step �nds features that can accurately distinguish betweenbenign and malignant lesions.4. Lesion classi�cation: The task of lesion classi�cation is to classify between benign and
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Figure 1.11: A CAD system for breast cancer diagnosis.malignant lesions the suspicious regions found in the previous stages using machinelearning techniques.1.6 Aims and objectivesOne of the main research e�orts in early detection of breast cancer is to include the devel-opment of software tools to assist radiologists in the diagnosis procedure. Along this line,the main objective of this thesis isto provide the basis of a new CAD system capable of automaticallydetecting, segmenting, and classifying breast abnormalities in ultra-sound images.The main objective can be divided as follows:
• Analyze the state-of-the-art sonography CAD methods. This focuses on the critical



14 CHAPTER 1. INTRODUCTIONand technical study of the literature to learn the main solutions previously appliedto solve the detection, segmentation, and classi�cation problem, and highlight ad-vantages and drawbacks.
• Propose a novel methodology for automatic lesion detection in sonography.
• Propose a lesion segmentation algorithm suitable to be implemented in a real clinicalenvironment.
• Study the segmentation results according to the type of lesions.
• Investigate the inclusion of additional diagnostic information (i.e. elastography) intothe CAD proposal.1.7 Thesis outlineThis thesis is organized into three parts. The �rst part, Chapter 1 and 2, provides funda-mental and background knowledge of the subject area and the state-of-the-art in techno-logical development. The second part of the thesis, Chapter 3 to 5, presents the proposedframework. The third part, concludes the thesis with an insight to future directions ofresearch and development, Chapter 6.
• Chapter 1 provides an overview of the thesis. It de�nes the problem domain, pro-vides background knowledge of the subject area, and speci�es the thesis' aims andobjectives. Finally, it outlines the thesis' organization.
• Chapter 2 provides a technical review of state-of-the-art image analysis approachesused in ultrasound breast imaging, including di�erent detection, segmentation, andclassi�cation techniques. It further highlights advantages and limitations of the ex-isting algorithms.
• Chapter 3 proposes a novel automatic lesion detection approach in breast US images.The proposed approach adapts the Deformable Part Models methodology to be usedin sonography. The best con�guration of parameters for lesion detection as wellas cancer detection is studied. Finally, the performance of the proposed method iscompared to the most relevant methods in the literature.
• Chapter 4 presents a lesion segmentation framework whose user interaction processis reduced thus making it suitable for real clinical practise. The initialization of the



1.7. THESIS OUTLINE 15segmentation method is reduced to a seed point that can be marked by the user with a�one-click� interaction, or provided by a lesion detection method. It further analyzesthe results depending on the lesion type. This study allows one to obtain conclusionsregarding the best segmentation approach overall and depending on lesion type, aswell as which pathologies present more complexity for the segmentation process.
• Chapter 5 proposes the inclusion of elastography information in the segmentationframework. This provides the necessary background knowledge of the elastographytechnique, as well as a technical review of state-of-the-art approaches that use elas-tography in CAD.
• Chapter 6 concludes the thesis with a summary of contributions made by the thesis,limitations of the present context of research and an insight into future directions ofresearch.
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2Literature review
2.1 IntroductionWhen analyzing a new image from a patient, any CAD system needs to answer a set ofquestions to help the radiologists in the diagnosis process. These questions are related tothe three main stages of all CAD systems: Detection (Where is the lesion? ), Segmentation(What are the lesion margins? ), and Classi�cation (Is the lesion a cancer? ).In this chapter, the recent state-of-the-art of detection, segmentation and classi�cationin breast sonography is reviewed. Notice that some works may propose one (i.e. onlysegmentation) or more of these stages (i.e. detection + segmentation). In such cases, eachstep is analyzed individually in its corresponding section.2.2 A review of lesion detection methods on breast sonogra-phyDue to the artifacts inherent in sonography, lesion detection is an important procedure forbreast US CAD systems, in which the spatial location of the abnormality is automatically17



18 CHAPTER 2. LITERATURE REVIEWprovided. As a result, this location is commonly labeled with a point inside the actuallesion region or as a Region Of Interest (ROI).The main goal of this section is to review the most important lesion detection algorithmsfound in the state-of-the-art, pointing out their advantages and disadvantages, as well astheir evaluation results. These lesion detection methods can be classi�ed into methodsbased on image processing or machine learning techniques.First, all of the metrics used by the literature methods are commented in the followingsubsection.2.2.1 Lesion detection evaluation criteriaWhen analyzing di�erent detection methods of the state-of-the-art, di�erent measuresare commonly used. A list of the most common criteria for assessing lesion detection ispresented below. Most of the measures take into consideration the elements of the confusionmatrix in Table 2.1. In terms of lesion detection, two play an important role:
• True Positive (TP): the algorithm returns as a detection a region that is actually alesion.
• False Positive (FP): the algorithm returns as a detection a region that is actuallybackground. Table 2.1: Confusion matrix.ReferencePositive NegativePrediction Positive True Positive (TP) False Positive (FP)Negative False Negative (FN) True Negative (TN)The following measures have been proposed in the literature for lesion detection:True Positive Rate (TPR), also called sensitivity [75] or accuracy [130] in other works,determines the relationship between the number of true positive detections and the totalnumber of actual positives.False Positive Rate (FPR), determines the fraction of False Positive (FP) out of thetotal actual negatives. Notice that in [109], False-Positive Rate (FPR) is considered as the



2.2. A REVIEW OF LESION DETECTION METHODS ON BREASTSONOGRAPHY 19fraction of mis-detected images out of the total number of images.Receiver Operating Characteristic (ROC) analysis is a graphic plot that illustratesthe performance of a classi�er system as its discrimination threshold is varied. It is createdby plotting the fraction of true positives out of the total actual positives (TPR) vs. thefraction of false positives out of the total actual negatives (FPR) at various thresholdsettings. For quantitative results, the area under the curve (Az) is used. Figure 2.1 showsan example of di�erent ROC curves and their respective Az value. The ROC analysis hasbeen used to assess the following works: [35, 37, 38, 80, 94].

Figure 2.1: Example of di�erent ROC curves. A perfect test has an area under the ROCcurve Az of 1.0. The chance diagonal has an Az of 0.5. Tests with some discriminatingability have ROC areas between these two extremes.Free-response ROC (FROC) analysis is similar to the ROC analysis, except thatthe false positive rate on the X-axis is replaced by the number of false positives per image.FROC seeks location information from the algorithm, rewarding it when the reported lesionis marked in the appropriate location, and penalizing it when it is not. For quantitativeresults, the sensitivity (or TPR) at a certain number of FP/image is reported. The FROCanalysis has been used to assess the following works: [35, 36, 37, 38].



20 CHAPTER 2. LITERATURE REVIEWAverage Detection Error (ADE) is used in [134] as the average Euclidean distancebetween the corners of the detected box (ROI) and the ground truth box (reference delin-eated for the radiologist).Precision Ratio (PR) is de�ned in [85] as follows:
PR =

NCR

NC
(2.1)When detecting lesions, they divide the image into lattices which are then classi�ed aslesion or normal tissue. Let the number of lattices classi�ed as lesion and normal tissue be

NC , and the number of correctly classi�ed lattices be NCR.Recall Ratio (RR) is de�ned in [85] as follows:
RR =

NCR

NR
(2.2)where NR is the number of lattices in the actual lesion region.2.2.2 Image processing detectionImage processing detection methods involve the use of common image analysis techniquessuch as thresholding, �ltering, or modeling. The lesion detection procedure is performeddirectly to the target image without a previous training process.Examples of these approaches are the work of Drukker et al. [35] who studied the useof Radial Gradient Index (RGI) �ltering. Each point in the image is multiplied with aconstraining function (bivariate Gaussian function). The resulting Gaussian constrainedimage is then thresholded at several levels in order to generate a set of contours. TheRGI [79] is calculated for all the contours in every contour set. The maximum RGI valueof every contour set is used to generate a RGI image, which is thresholded to determinea set of lesion candidates. A dataset of 757 images from 400 di�erent cases was used inorder to evaluate the methodology in terms of ROC and Free-response Receiver OperatingCharacteristic (FROC) analysis. An area under the ROC curve (Az) value of 0.84, anoverall performance by case of 94% sensitivity at 0.48 FP per image, and a sensitivityof 89% by image was reported in the original paper. Later, they tested their proposedmethod with di�erent datasets. First, in [38], with two di�erent datasets, one of 757



2.2. A REVIEW OF LESION DETECTION METHODS ON BREASTSONOGRAPHY 21images from 400 patients, and one of 1740 from 458 patients, obtaining an Az value of0.91, and a sensitivity of 90% at 0.45 FP/image. Notice that these results were reportedby case instead of by image. Further in [37], they also used two di�erent datasets, oneconsisting of 151 images all from di�erent patients, and one with 1740 images from 458patients, obtaining an Az of 0.95, and a sensitivity of 80% with 0.6 FP per image.To improve the detection of malignant tumors, Drukker and Giger [36] developed a non-linear �ltering technique based on the skewness of the gray-level distribution to detectthe posterior acoustic lesion shadowing rather than the lesion itself. They reported asensitivity of 66% per image at a rate of 0.25 FP/image, detecting malignant lesions for adataset consisting of complicated cysts, solid benign lesions, and malignant lesions, and asensitivity of 30% at 0.25 FP/image for the overall dataset (194 images from 94 patients).Kutay et al. [80] applied the Power-Law Shot Noise (PLSN) model for tissue characteri-zation. The PLSN model is generated using features extracted directly from the ultrasoundRadio Frequency (RF) signal. Parameters of their model are estimated from clinical ul-trasound images, and then used in the detector. They obtained an Az of 0.97 detectinglesions, and 0.81 for malignant lesion detection, using a dataset of 100 images from 25cases.Further, Yap et al. [130] proposed the use of hybrid �ltering, multifractal processing, andthresholding segmentation for lesion detection. They �rst pre-processed the US images withhistogram equalization and a speckle noise reduction process that uses a hybrid �lteringapproach that combines the nonlinear di�usion �ltering and linear �ltering (Gaussian blur).Then, multifractals [53] are used to further enhance the partially processed images. Afterpre-processing, the images are thresholded and a rule-based candidate selection (based onthe size of the region and location) is used as a discriminative criterion. They evaluatedthe detection performance in a dataset of 360 images obtaining an accuracy of 86%.Shan et al. [109] proposed a lesion detection methodology that considered both texturefeatures and spatial characteristics. They �rst use the Speckle Reducing Anisotropic Dif-fusion (SRAD) [133] as a de-speckling method. Once the image is de-speckled, an iterativethreshold selection algorithm is applied to segment the image. Only regions that intersectwith an image center region (a window about half the size of the entire image locatedat the image center) are considered as lesion candidates. A True-Positive Rate (TPR) of95.2% and a FPR of 4.76% were reported using a dataset of 105 images.Summarizing, image processing detection methods are fast and avoid any kind of o�inecomputation. In principle. they can also be used in a dataset of any size since they do



22 CHAPTER 2. LITERATURE REVIEWnot need to split the dataset in training and testing. However, most of these methods aredesigned to obtain good results in their own datasets, taking advantage of unique featuresin their images such as lesion location, speckle noise in�uence or intensity appearance.This sometimes leads to a poor generalization capability of the methods, specially withdi�erent datasets.2.2.3 Machine learning-based detectionMachine learning-based methods generate statistic models from a training dataset to detectlesions in a target image using any sort of machine learning techniques and features.One of the �rst works to include a machine learning detection process was Madabhushiand Metaxas [88] in the proposal of a fully-automatic segmentation method. For detectinglesions in sonography, they proposed using the Stavros criteria [116] to determine whichpixels are most likely to be part of a lesion. The Stavros criteria integrates the posteriorprobability of intensity and texture, constraining it with prior knowledge, taking the po-sition of the pixel into account. To generate this posterior probability, a set of trainingimages are needed. Although they performed a detection step for seed placement in asegmentation process, only the segmentation results were presented in the paper.Mogatadakala et al. [94] proposed a nonparametric model based on di�erent order statis-tics estimated from multiresolution decompositions (wavelets) of energy-normalized subre-gions. The features are then classi�ed using a Linear Classi�er (LC). They assessed thedetection method using a dataset of 204 images from 84 cases, achieving an area under theROC curve Az of 0.91.Liu et al. [85] also used texture features in their method, where the image is divided intolattices of the same size. The texture information (entropy, contrast, sum average and sumentropy) of each lattice is extracted and then a well-trained classi�er based on SupportVector Machine (SVM) is employed for classifying the lattices. In the end, the ROI isgenerated according to the classi�cation results and a set of background knowledge-basedrules. They achieved an average PR of 82.33%, and an average RR of 83.81% using adataset of 112 images.Zhang et al. [134] proposed a machine learning framework using a Probabilistic BoostingTree (PBT) classi�er with Haar-like features [123] extracted from the image. They �rstcollect positive patches determined by the bounding boxes of tumors and negative patchesrandomly cropped from background. Then Haar-like features are extracted and a PBT



2.2. A REVIEW OF LESION DETECTION METHODS ON BREASTSONOGRAPHY 23classi�er [121] is trained, which involves the recursive construction of a tree where eachof its nodes is an Adaboost classi�er [52]. When testing, given a new image, tumors aredetected by exhaustively checking all possible bounding boxes within a search range. Theyassessed their method in a large dataset of 347 images from di�erent patients, obtainingan ADE of 15.47 pixels.Jiang et al. [75] also presented a machine learning approach for automatic tumor detec-tion using Haar-like features extracted from the image. In contrast, an Adaboost classi�eris used in their work to locate potential tumor locations. They assessed the detectionperformance in a dataset of 112 images in terms of accuracy (87.5%), sensitivity (88.8%),and speci�city (84.4%).Recently, Massich et al. [93] used a multifeature Bayesian machine learning frameworkto determine whether a particular pixel of the image is a lesion or not. From the learningstep, a Maximum A Posteriori (MAP) probability plane of the target image is obtainedand thresholded with certain con�dence. Then the largest area is selected as the candidateregion for further expansion. Their work evaluated the detection results in relationshipwith the segmentation results: the segmentation results are analyzed depending on theproximity of the seed point detected by the method to the actual lesion center.Finally, Hao et al. [64] proposed a fully-automatic segmentation framework of breast le-sions using an objective function combining Deformable Part Models (DPM) [48] detectionwith intensity histograms, texture descriptors, and position information using a graph-cutminimization tool and normalized cuts [112] as image segments. The deformable part-based detector produces a large number of detections for potential lesion areas. Then,instead of selecting the detection with maximum con�dence and discarding all of the oth-ers, they propagate the con�dence of any detection to the corresponding segment. As inMadabhushi and Metaxas' [88] work, only the segmentation results were reported.In summary, machine learning-based methods are in general robust and adaptable.Since such methods are machine-learning-based, a particular model is constructed for eachdataset used, which makes the method adaptable to the speci�c characteristics of anydataset. However, the extracted features used to train the classi�er need to be su�cientlydistinguishable to discriminate between lesions and non-lesions. Moreover, the size andvariability of the dataset play an important role in the training and testing steps.



24 CHAPTER 2. LITERATURE REVIEW2.2.4 False-positive reductionLesion detection in breast sonography is a di�cult task because of the nature of the images,which induces, in some cases, the detection of regions without the presence of abnormalities(known as FP). Some of the works reviewed above require an extra procedure to reducethe number of false positive detections and thus improve their results.Drukker et al. [35, 37, 38] proposed the use of machine learning classi�cation to reducethe number of lesion candidates found in the lesion detection procedure. From the roughcontours generated by thresholding the lesion in the detection process, some features suchas lesion shape, margin sharpness, texture, acoustic characteristics and shadowing areextracted. Then, a Bayesian Neural Network (BNN) is trained to discriminate betweenactual lesions and FP results. In [35], results without FP reduction were reported toassess the performance of this process. Speci�cally, they obtained a TPR of 87% with 0.76FP/image before the FP reduction and TPR of 89% with 0.48 FP/image after the process.Another methodology that proposed the use of an additional machine learning step intheir framework to reduce the number of false-positive results was presented by Jianget al. [75]. In their work, a SVM classi�er is trained using quantized intensity featuresextracted from the lesion candidate regions to remove FPs.Finally, Shan et al. [109] proposed a region ranking procedure to assign a value of like-lihood for each lesion candidate taking into account the variance of the intensity values inthe center of the region, the area of the region, and its position in the image.Notice that the results of the methods that include a FP reduction step described insections 2.2.2 and 2.2.3 were obtained after this process. It is also worth commentingthat only Drukker et al. [35] published the intermediate detection results to evaluate theperformance of the FP reduction process.2.2.5 SummaryIn this section, di�erent lesion detection approaches in breast US images have been re-viewed. We have described several algorithms, pointing out their main features. Table2.2 summarizes the analysis done on the principal methods discussed in this section. Themethods are �rst sorted by the detection criteria (image processing or machine learning-based), and then, by year of publication (ascending order). Column FP reduction speci�esthe process followed, if any. Column Classi�er shows the machine learning technique usedby the machine learning-based detection methods, or in the FP reduction process. Note



2.2. A REVIEW OF LESION DETECTION METHODS ON BREASTSONOGRAPHY 25that in Jiang et al. [75], an AdaBoost was used for the initial detection, and a SVM classi�erfor the FP reduction step.Table 2.2: Summary of the results presented in the articles analyzed for lesion detection.Reference Detection Method FP Classi�er Measure Result # casesreduction (# images)Drukker (2002) [35] Image RGI Feature BNN Az 0.84 400(757)processing �ltering extraction TPR 0.89FP/image 0.48Drukker (2003) [36] Image Skewness - - TPR 0.66 94(194)processing �ltering FP/image 0.25Drukker (2004) [38] Image RGI Feature BNN Az 0.91 400(757) &processing �ltering extraction TPR 0.9 458(1740)FP/image 0.45Drukker (2005) [37] Image RGI Feature BNN Az 0.95 400(757) &processing �ltering extraction TPR 0.8 151(151)FP/image 0.6Yap (2008) [130] Image Multifractal - - TPR 86% 360(360)processing �lteringShan (2008) [109] Image Thresholding Region - TPR 95.2% 105(105)processing ranking FPR 4.76%Madabhushi and Database Stavros - - - - -Metaxas (2003) [88] trained criteriaMogatadakala (2006) [94] Database Wavelets - LC Az 0.91 84(204)trainedLiu (2010) [85] Database Feature - SVM PR 82.33% 112(112)trained extraction RR 83.81%Zhang (2010) [134] Database Feature - PBT ADE 15.47 pix. 347(347)trained extractionJiang (2012) [75] Database Feature Feature AdaBoost/ TPR 88.8% 112(112)trained extraction extraction SVMMassich (2012) [93] Database Thresholding - - - - -trainedHao (2012) [64] Database DPM - LSVM - - -trainedThe analysis in Table 2.2 shows a trend for the newest algorithms to use machine learningtechniques. We can see that the most recent work using image processing detection datesfrom �ve years ago. The adaptability of the machine learning-based methods to the speci�ccharacteristics of the target dataset makes them an attractive choice when designing a noveldetection algorithm. They also do not need a false positive reduction step as most of thedetection methods based on image processing, with the exception of the approach presentedby Jiang et al. [75].In addition, two of the traditional problems in machine learning works, computationtime and the dataset size, are no longer a di�culty. Currently, when dealing with machinelearning approaches, the o�ine computation is not an insurmountable problem. There isalso no need of large datasets for training and testing, since training/testing strategies suchas leave-one-out or k-fold cross validation may be used in reduced datasets to simulate theperformance of the approach in large datasets. However, a representative number of casesis needed for a good performance.



26 CHAPTER 2. LITERATURE REVIEW2.3 A review of lesion segmentation methods on breast sonog-raphySegmentation of lesions or abnormalities is a fundamental procedure for breast CAD sys-tems. The aim of segmentation is to divide the image into two di�erent regions: foreground(lesion) and background (other tissues). Subsequently, statistics of the suspicious area canbe computed to assist radiologists in the diagnoses, therefore, it is important to obtainaccurate boundaries of the masses.The main goal of this section is to review the most important mass segmentation algo-rithms found in the current literature, pointing out their advantages and disadvantages.We also describe the evaluation of the methods reported in their papers indicating themeasures, results, and size of dataset used. All of the metrics are described in subsection2.3.1.Classi�cation criteria of the methods is based on the methodology used for segmentingthe lesions, hence, the segmentation techniques are classi�ed into histogram threshold-ing, Active Contour Models (ACM), Markov Random Fields (MRF), machine learning,watersheds, and graph-based methods. Note that some works combine more than onemethodology; in such cases they are assigned to the methodology with the most importantrole in the segmentation process.2.3.1 Lesion segmentation evaluation criteriaMultiple criteria arise in the literature when assessing di�erent segmentation methods.However, this criteria can be grouped into two categories depending if they are area ordistance based metrics as illustrated in Figure 2.2. Area based metrics evaluate the amountof area shared between the segmentation obtained and the ground truth. On the otherhand, distance based metrics quantify the displacement between the obtained and thedesired lesion boundary.Area based metricsWhen analyzing the areas described in Figure 2.2(a), as a result of assessing the segmenta-tion result with the reference delineation, four areas become evident: True Positive (TP),True Negative (TN), False Positive (FP), and False Negative (FN); corresponding to theregions of the confusion matrix in Table 2.1. In terms of object segmentation, these four
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(a) (b)Figure 2.2: Methodology evaluation. Graphic representation of (a) the evaluation in termsof area and (b) boundary distance measures.values mean the following,
• True Positives (TP): the number of pixels segmented as foreground that are actuallyforeground.
• True Negatives (TN): the number of pixels segmented as background that are actuallybackground.
• False Positives (FP): the number of pixels that are incorrectly classi�ed as foreground,when they actually belong to the background.
• False Negatives (FN): the number of pixels that are incorrectly classi�ed as back-ground, when they actually belong to the foreground.Expressing the results in terms of how many pixels belong to each of these classes is notclear enough to determine how good the results are. For that reason, di�erent area metricsrelating the four regions are commonly used. Most of the indexes are de�ned within theinterval [0, 1], where 1 indicates perfect overlap and 0 means no overlap at all, althoughsome works report their results as a percentage.Dice Similarity Coe�cient (DSC) [33] is a well-known measure, and is the mostcommonly used. This measure penalizes the over-segmentation due to the FP being in-cluded in the denominator. However, the TP is multiplied by two to give more relevanceto the well classi�ed pixels. This measure is expressed as

DSC =
2 ∗ TP

2 ∗ TP + FP + FN
(2.3)



28 CHAPTER 2. LITERATURE REVIEWIt is typically considered that DSC values equal to or higher than 0.7 suggest good agree-ment between two segmentations [13]. The DSC metric has been used to assess the follow-ing works: [54, 69, 71, 102].Area Overlap (AO), also known as the Jaccard Similarity Coe�cient (JSC) in [54] orSimilarity Index (SI) in [110], is another common similarity index presented by Jaccard [74].It is de�ned as the ratio of the area of the mass automatically segmented to the area ofthe mass segmented manually by an experienced radiologist (Ground Truth (GT)). Thismeasure is de�ned as
AO =

TP

TP + FP + FN
(2.4)and is related to the DSC as

DSC =
2 ·AO
1 +AO

(2.5)Notice that the DSC is expected to be greater than the AO. The AO metric has been usedto assess the following works: [4, 28, 30, 54, 59, 64, 66, 86, 92, 102, 110, 134].True-Positive Rate (TPR), also known as sensitivity [102] or overlap fraction (OF) [71],measures the number of pixels correctly labeled as lesion with respect to the area of thelesion reference
TPR =

TP

TP + FN
(2.6)The TPR metric has been used to assess the following works: [69, 71, 67, 84, 86, 88, 110,131].False-Positive Rate (FPR) corresponds to the number of pixels wrongly labeled aslesion with respect to the area of the lesion reference as expressed in

FPR =
FP

TP + FN
(2.7)The FPR metric has been used to assess the following works: [67, 84, 86, 88, 110, 131].Notice that the FPR calculated as in equation 2.7 di�ers from the classic FPR obtained in



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 29Table 2.1, which corresponds to the ratio between FP and the total number of negatives(FP + TN).False-Negative Rate (FNR)) is the number of pixels belonging to the actual lesiondelineation wrongly labeled as background as expressed in
FNR =

FN

TP + FN
(2.8)The FNR metric has been used to assess the following works: [67, 84, 88, 131].Speci�city measures the proportion of negatives correctly identi�ed. Speci�city is de-scribed as

SPEC =
TN

TN + FP
(2.9)and is usually given as a complementary information on the sensitivity (TPR). The speci-�city index is also used to assess the work in [102].Positive Predictive Value (PPV) is the probability that the pixel is well classi�edwhen restricted to those pixels that test positive. It is computed as in equation 2.10. ThePPV metric has been used in [102].

PPV =
TP

TP + FP
(2.10)Normalized Residual Value (NRV), also found as the Precision Ratio (PR) [68],corresponds to the residual area between the segmentation (S) and the reference (R) reg-ularized by the size of the reference delineation as described in

NRV =
Area(S ⊕R)

Area(S)
(2.11)where ⊕ represents an exclusive OR operation. The NRV metric has been used to assessthe following works: [59, 68].



30 CHAPTER 2. LITERATURE REVIEWDistance based metricsDistance based metrics assess the displacement between the segmentation and the refer-ence instead of comparing the resulting overlap. As in area metrics, multiple distancecriteria arise in the literature. Most of the boundary metrics are physical quantitativeerror measures that are assumed to be reported in pixels.Most of the works base their similitude indexes on the analysis of the Minimum Distance(MD) coe�cients. The MD corresponds to the minimum distance between a particularpoint si of the segmentation boundary S and any other point rj within the referencedelineation R, and is de�ned asMD(si, R) = min
rj∈R

‖si − rj‖ (2.12)Hausdor� Distance (HD) measures the maximum distance between the two delin-eations S and R as de�ned inHD(S,R) = max

{

max
si∈S

MD(si, R),max
ri∈R

MD(ri, S)} (2.13)This de�nition of HD is used in [54, 55]. However, in other works, such as Madabhushiand Metaxas [88] and Shan et al. [110], only the error between the assessed delineation Sand the reference delineation R is considered. Here it is denoted as HD'.HD'(S,R) = max
si∈S

MD(si, R) (2.14)Average Radial Error (ARE) was proposed by Huang et al. [67], and is de�ned asfollows
ARE =

1

n

n
∑

i=1

|S(i)−R(i)|
|R(i)−R0|

(2.15)A set of n radial rays are generated from the center of the reference delineation R0 in-tersecting both delineations. The ARE index consists of averaging the ratio between thedistance of the two outlines |S(i) − R(i)|, and the distance between the reference outlineand its center |R(i)−R0|.



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 31Average Minimum Euclidian Distance (AMED) is the average MD between thetwo outlines [54, 55], and it is de�ned asAMED(S,R) = 1

2

[

∑

si∈S
MD(si, R)
|S| +

∑

ri∈R
MD(ri, S)
|R|

] (2.16)where |S| and |R| are the number of points in the segmentation and reference bound-ary, repectively. As in the de�nition of Hausdor� Distance (HD), in Madabhushi andMetaxas [88] and Shan et al. [110] only the error between the assessed delineation S andreference delineation R is considered. Here it is denoted as AMED'AMED'(S,R) = ∑

si∈S
MD(siR)
|S| (2.17)The AMED measure also appears in some works under the names of Mean Error [88] andMean absolute Distance [110].Proportional Distance (PD) regularizes the AMED distance with the area of thereference delineation according to equation 2.18. It is used in [4, 59].PD(S,R) = 1

2

√

Area(R)
π

·
[

∑

si∈S
MD(si, R)
|S| +

∑

ri∈R
MD(ri, S)
|R|

]

∗ 100 (2.18)Other metrics. Zhang et al. [134] proposed using average contour-to-contour distance(Ecc) for assessing their work, and Chiang et al. [29] the use of Computer-to-ObserverDistance (COD). However, no de�nition or reference can be found in their work. Chenget al. [28] used a distance metric called the Williams Index to deal with multiple referencesegmentations as de�ned inWI(S,O) =

1
n

n
∑

j=1
1/DS,Oj

2
n(n−2)

n
∑

i=1

n
∑

j=1(j 6=i)

1/DOi,Oj

(2.19)where Oj denotes the jth set of manual delineations, n is the number of manual delin-eations for each lesion, and DA,B is the average distance between the corresponding pairof boundaries in sets A and B.



32 CHAPTER 2. LITERATURE REVIEW2.3.2 Histogram thresholdingHistogram thresholding is one of the most widely used techniques for gray level imagesegmentation. In a histogram thresholding method, an intensity threshold is chosen in thevalley of the image histogram to separate the image into background and foreground.Horsch et al. [66] proposed the use of a segmentation algorithm based on maximizinga Gaussian constraint function over partition margins de�ned through gray-value thresh-olding of a preprocessed image, in which the visualization of the mass structures wereenhanced. The �nal segmentation consists of �nding the margin that maximizes the Aver-age Radial Derivative (ARD) measure. However, the center, width, and height of the lesionneed to be selected manually. The segmentation performance was tested on a 400-imagedataset achieving a mean AO of 0.73, comparing the segmentation results with delineationsof an expert radiologist. Massich et al. [92] proposed a similar methodology, where the�nal margin is chosen using a disparity measure instead of maximizing the ARD function.They evaluated the segmentation performance in a small dataset of 25 images obtaining amean AO of 0.64. However, they reduced the user interaction to a single click.Yeh et al. [131] proposed an iterative disk expansion methodology. The authors showedthat contour extraction of breast lesions in ultrasound images can be achieved by removingthe speckle noise after image thresholding. This methodology can be divided into threemain parts: (1) an adaptive thresholding to convert an ultrasound B-mode image into abinary image, (2) a disk expansion to extract the signi�cant objects, and �nally, (3) are�nement of the the extracted object to obtain the more accurate lesion boundary. Themethod was evaluated on only 4 clinical cases, reporting a mean normalized TPR over90%. However, the method needs human interaction to provide the region of interest.Histogram thresholding methods are fast and easy to implement, but do not perform wellfor very noisy images or images with a high in�uence of inherent artifacts in sonography.However, histogram thresholding methods have been widely used to obtain a rough segmen-tation to initialize more complex techniques such as active contour models or graph-basedmethods [71, 88].2.3.3 Active Contour Models (ACM)Active Contour Models (ACM), also known as snakes, is a framework for delineating anobject boundary from a 2D image, and has been massively used as an edge-based seg-mentation method [4, 30, 54, 69, 71, 84, 86, 88] in BUS B-mode images. This approach



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 33attempts to minimize the energy associated with the current contour as the sum of theexternal and internal energies. During the deformation process, the forces are calculatedfrom the internal and external energy. The external energy is used to adapt the contourof the desired object boundary, and the internal energy is used to control the shape andregularity of the contour.Combining intensity, texture, and directional gradient, a deformable shape-based modelwas presented by Madabhushi and Metaxas [88] to �nd lesion boundaries automatically.In their method, a set of empirical rules used by radiologists in ultrasonic breast lesiondetection is employed to determine a seed point in the image automatically, indicating thelesion location. An initial segmentation of the lesion is obtained classifying the image pixelsaccording to the intensity and texture, followed by region growing. Boundary points arefound using the directional gradient of the image. These boundary points are supplied asthe initial shape of a deformable model. This method does not need any manual initializa-tion of the contour. A dataset of 42 images was used in order to evaluate the methodologyin terms of boundary error (6.6 pixels), TPR (75%), FPR (20.9%), and FNR (25%).A watershed transform was used by Huang et al. [69] to generate an over-segmentation ofthe image automatically. The regions are then merged depending on the region intensitiesand texture features to obtain a rough tumor shape and boundary delineation. Next, ACMautomatically determines the contours of the tumor. They evaluated the methodologyusing a dataset of 20 images achieving a SI (called DSC in other works) of 0.88 and a TPRof 81%. Later in [71], they proposed to preprocess the image using a modi�cation of theanisotropic di�usion method. Then, histogram thresholding was used to generate an initialcontour for the level set procedure. A DSC of 0.88 and a TPR of 85.7% were reportedusing a dataset of 118 images.Alemán-Flores et al. [4] used a geodesic active contour method. They �rst preprocessthe image using an anisotropic di�usion method based on a texture description providedby a set of Gabor �lters. Then, a manual seed initializes a snake to produce an initialsegmentation, which is used to initialize a geodesic snake ACM using intensity informationof the inner and outer parts of the lesion. A dataset of 32 images with 4 ground truthdelineations provided by 2 radiologists was used to evaluate their results, achieving anAO of 88.3% and a PD of 4.96 pixels. In a similar way, Cui et al. [30] presented a two-stage active contour method. The initial contour was based on a manually identi�ed pointapproximately at the lesion center. The two-stage active contour method iteratively re�nesthe initial contour and performs a correction on the segmentation result. A mean AO of



34 CHAPTER 2. LITERATURE REVIEW0.74 was reported on a large dataset of 488 images from 250 patients.Liu et al. [84] proposed an automatic lesion segmentation algorithm using a level set-based method, combining both global statistical information and local edge information.The global information is used to model the statistical information of speckle patternsto handle the noise and unde�ned boundaries, while the local information is extractedfrom the edges of the lesion. A dataset of 103 images was used in order to evaluatethe methodology in terms of TPR (91.31%), FPR (7.26%), and FNR (8.69%). Later, in[86], they proposed a level set-based active contour model obtained by �tting a Rayleighdistribution to training lesion samples. The level set evolves then to �t the model into thetarget image. The level set initialization corresponds to a centered rectangle of one thirdthe size of the target image. Despite its naive initialization, the reported average AO usinga dataset of 76 images is 0.88.Recently, Gao et al. [54] combined an edge stopping term taking into account phasecongruency texture and a modi�ed Gradient Vector Flow (GVF) in a level set-based frame-work. They evaluated their proposal in a small dataset of 20 images achieving a mean AOof 0.863.Although accurate segmentation results are reported using ACM, they are largely linkedto the active contour initialization. Some methodologies work directly with ROIs to avoidthis problem, while others use simpler segmentation methods to obtain an initial roughcontour. Furthermore, the snake-deformation procedure is very time-consuming.2.3.4 Markov Random Fields (MRF)The segmentation problem can be seen as a labeling problem consisting of assigning a setof labels to pixels. This is a natural representation for MRF [125]. This methodologyalternatively approximates the maximization of the posterior estimation of the class labelsand estimates the class parameters. A MRF model deals with the spatial relations betweenthe labels obtained in an iterative segmentation process. The process of assigning pixellabels iteratively can be achieved by maximizing either a posteriori estimation or a posteriormarginal estimation.For instance, Xiao et al. [129] de�nes the ultrasound image as a multiplicative model inwhich one of the components is a distortion �eld. It uses a combination of the Maximum APosteriori (MAP) and MRF to estimate that distortion �eld while labeling image regionsbased on the corrected intensity statistics. The MAP is used to estimate the intensity



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 35model parameters while the MRF provides a way of incorporating the distributions oftissue classes with a spatial smoothness constraint. The method is implemented iterativelyin an Expectation-Maximization (EM) approach, and the distributions of tissue classesare de�ned as a Gaussian distributions. The method is only qualitatively evaluated ina reduced set of synthetic and real data, and one of the main drawbacks is the userinteraction. The user is required to determine di�erent ROIs placed inside and outside thelesion in order to extract the intensity distribution in both regions.MRF is also used by Boukerroui et al. [20] to model the segmentation process, and tofocus on the adaptive characteristics of the algorithm. They introduced a new functionto control the properties of the segmentation process, taking local and global statisticsinto account. The performance of the algorithm is demonstrated on synthetic data, aBUS image and on echocardiographic sequences. No quantitative results were reportedregarding breast sonography.The merit of MRF modeling is that it takes advantage of the pixel neighboring corre-lations. However, its iterative process is in general complex (easy to get stuck in localminima states) and time-consuming.2.3.5 Machine learningWhen addressing the lesion segmentation problem, machine learning is also a useful andreliable alternative. Machine learning takes advantage of ground truth data to build up amodel for predicting or inferring the nature of elements with no such GT provided. Thus,these models generated from a training procedure can be used to drive a segmentationprocedure.Zhang et al. [134] proposed using a two-step machine learning procedure. First, a su-pervised machine learning for lesion detection is performed using a PBT. Detected regionswith high con�dence of being lesion or non-lesion are further used to learn the appearancemodel of the lesion within the target image. The second step consists of a supervisedmachine learning segmentation procedure trained on the target image using the previousdetected regions. They evaluated their proposal in a dataset of 347 images, achieving anAO value of 84%, and an average contour-to-contour distance of 3.75 pixels. However,they only used 90% of the segmentations to perform the segmentation assessment, arguingthat the remaining segmentations su�ered poor detection, and that segmentation resultsassessment should not be subject to wrong initializations.



36 CHAPTER 2. LITERATURE REVIEWLater, Shan et al. [110] proposed using the lesion detection to initialize a region growingprocedure to obtain a rough segmentation and, hence, generate a ROI automatically. Thena database driven supervised machine learning segmentation procedure is carried out inthe ROI to determine a lesion/non-lesion label for all the pixels. The segmentation stagetakes advantage of intensity, texture, energy-based phase information, and distance tothe initially detected contour as features for the training process using an arti�cial NeuralNetwork (NN). They assessed the segmentation performance using a dataset of 120 images,obtaining a SI (DSC in other works) of 0.83, a TPR of 92.8% and a FPR of 12%.Hao et al. [64] proposed segmenting automatically breast lesions using an objectivefunction combining a machine learning technique (Deformable Part Models (DPM)) [48]with intensity histograms, texture descriptors derived from grey-level co-occurrence matrixand position information using a graph-cut minimization tool and normalized cuts [112] asimage segments. They evaluated the segmentation performance in a large dataset of 480images achieving, an AO of 75%.For machine learning methods, feature selection and training processes are two importantsteps highly in�uence the segmentation results. If the extracted features are su�cientlydistinguishable and the method is well trained, machine learning methods can generate sat-isfactory lesion segmentations. However, over-training or insu�cient training may severelya�ect the segmentation performance on new data. Note that the training process is usuallytime-consuming, but is often performed o�ine.2.3.6 Watershed transformationThe intuitive idea underlying this technique comes from topography. Any gray-level imagecan be considered as a topographic surface. If we �ood this surface from its minima andprevent the merging of the waters coming from di�erent sources, the image is partitionedinto two di�erent sets: the catchment basins and the watershed lines. If we apply thewatershed transformation to the image gradient, the catchment basins should theoreticallycorrespond to the homogeneous gray level regions of the image.Huang et al. [68] integrates a Self Organizing Map (SOM) NN classi�cation with mor-phological watershed segmentation. Texture features are employed to yield inputs to theSOM NN. Finally, the watershed transformation automatically determines the contours ofthe tumor. The method was evaluated in a dataset of 20 images achieving a PR (NRV inother works) of 0.82 and a match rate (TPR in other works) of 95%.



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 37Another work based on watershed is the work proposed by Gómez et al. [59] wherea watershed transform is used to condition a Gaussian constraining function. As in theHorsch et al. [66] proposal, ARD maximization is used in order to �nd the adequatethreshold that leads to the �nal segmentation. The method deals with ROIs instead of theentire image. A mean AO of 0.85 is reported using a 50 image dataset.Recently, Cheng et al. [28] presented a two-step perceptual organization process to seg-ment a breast lesion in sonography. Initially, a two-pass watershed transformation is per-formed to tessellate a ROI into a cell structure. Then, a cell competition process is carriedout by allowing merge and split operations of cells. The method then performs a contourgrouping to organize the edge entities found in the �rst step. Their method was evaluatedin a 324 image dataset obtaining an AO of 92.4%.In general, watershed-based methodologies are used for fast segmentation, but they facethe problem of oversegmentation, and are sensitive to the initialization of the method.2.3.7 Graph-based methodsGraph partitioning methods can e�ectively be used for image segmentation. In thesemethods, the image is modeled as a weighted, undirected graph. Usually a pixel or a groupof pixels are associated with nodes, and edge weights de�ne the (dis)similarity betweenthe neighborhood pixels. The graph (image) is then partitioned according to a criteriondesigned to model �good� clusters. Each partition of the nodes (pixels) output from thesealgorithms are considered to be an object segment in the image.Chiang et al. [29] proposed a graph-cut segmentation method that transforms prominentregions within a given ROI into graph nodes instead of pixels. These prominent regionsare obtained by using a two-pass watershed transformation. The method was evaluated ina small dataset of 16 images obtaining a value of COD of 2.71 pixels.Later, Jiang et al. [75] proposed the use of a graph-based segmentation algorithm (ran-dom walks) [61] to retrieve the boundaries of previously detected tumor regions. Thedetection process is performed in a two-stage classi�cation. First, the method uses an Ad-aBoost classi�er on Haar-like features to detect a preliminary set of tumor regions. Theseregions are further classi�ed with a SVM using quantized intensity features. However, thesegmentation step of their proposed method was not evaluated quantitatively.Huang et al. [67] presented a segmentation algorithm that constructs a graph using im-proved neighborhood models. They also proposed a pairwise region comparison predicate



38 CHAPTER 2. LITERATURE REVIEWto determine the mergence of adjacent subregions. This predicate takes into account thelocal statistics and the measures of Signal to Noise Ratio (SNR) in US images to make thesegmentation insensitive to noise. They evaluated the method in a dataset of 10 benignand 10 cancerous images. For the benign lesions, they achieved a TPR of 87.4%, a FPRof 1.6%, and an ARE of 9.2 pixels. For the cancerous lesions, a TPR of 87.6%, a FPR of1.8%, and an ARE of 8.1 pixels.Contemporarily, Gao et al. [55] proposed the use of a normalized cuts framework [112]with textural features extracted from homogeneous patches of the image. The algorithmwas evaluated in a dataset of 100 breast US images (50 benign and 50 malignant). Themean HD measure, the AMED measure and the AO measure achieved 7.1 pixels, 1.58pixels, and 86.67%, respectively, for benign tumors whereas 10.57 pixels, 1.98 pixels, and84.41%, respectively was achieved, for malignant tumors. Their algorithm requires manualspeci�cation of a ROI.The use of graph-based methodologies has increased over the last few years. By analyzingthe graph-based current methodologies we can see that it obtains good results, althoughsome kind of user interaction is needed in most of the algorithms.2.3.8 The role of user interaction in lesion segmentation methodsSince segmentation algorithms are designed to be integrated with a CAD system, the degreeof user interaction involved in the segmentation procedure is an important factor to takeinto consideration. Here, we analyze the segmentation methods regarding their degree ofautomatization: semi-automatic or fully-automatic.Semi-automatic segmentationSemi-automatic segmentation methods require some degree of user interaction. Commonly,the user constrains or initializes the segmentation procedure by indicating parts or elementsbelonging to each object to be segmented (i.e. foreground/background). This is the caseof Xiao et al. [129], where the user de�nes two windows (one for the lesion, one for thebackground) to analyze the histograms of these regions. Other works such as [28, 29, 54,55, 59, 68, 131], require the speci�cation of a ROI that envelops the lesion. Finally, thesemi-automatic methodologies which need less interaction are those that only require aseed point inside the lesion [4, 30, 66, 92, 102]. Finally, other works such as Huang etal. [67] proposed a segmentation method that needs the user to tune some parameters to



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 39achieve a good �nal result.Nowadays, semi-automatic methods play an important role in CAD systems since thefully-automatic segmentation problem needs to achieve a better performance. It is clearthat manual delineations are unacceptable in a clinical environment due to the amount oftime and e�ort needed, as well as the huge inter- and intra-user variability. Hence, semi-automatic methods have become a trade-o� that reduces the inherent problems in manualsegmentation by taking advantage of the user to assist the segmentation procedure.Fully-automatic segmentationFully-automatic segmentation methods perform the segmentation procedure without anyuser interaction. In this category, two distinct strategies have been adopted. First, thereare methodologies that automatize semi-automatic procedures so that no user interactionis required, commonly including a lesion detection procedure [71, 75, 88, 110, 134]. Andsecond, there are ad-hoc methodologies designed in a manner that can not be supplied byuser information [20, 64, 68, 69, 67, 84, 86, 131].Although automatic segmentation of breast lesions in sonography needs to achieve abetter performance, huge e�orts to obtain lesion delineations with no user interaction havebeen made in the last few years.2.3.9 SummaryWe have presented and reviewed di�erent approaches to the automatic and semi-automaticsegmentation of lesions in ultrasound images. We have described several algorithms, point-ing out their main features. Special emphasis has been put on the di�erent strategies and aclassi�cation of these techniques has been proposed. In each method description, we haveoutlined the main advantages and disadvantages.Table 2.3 summarizes the analysis of the principal methods discussed in this section.The methods are �rst sorted by the method used (histogram thresholding, active contours,MRF, machine learning, watersheds, and graph-based), and then by the year of publication(ascending order).In order to compare the di�erent segmentation methods more clearly, Table 2.4 providesdescriptions, advantages and disadvantages of the di�erent methods at a glance.Analyzing Table 2.3, we notice that, as in lesion detection, the introduction of the
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Table 2.3: Summary of the results presented in the articles analyzed for lesion segmenta-tion. Reference Method User interaction Measure Result # cases (# images)Horsch (2001) [66] Histogram thresh. Seed point AO 94% 400(757)Yeh (2009) [131] Histogram thresh. ROI speci�ed TPR 90% 4(4)FNR 15%FPR 16%Massich (2010) [92] Histogram thresh. Seed point AO 64% 25(25)Madabhushi and Active contours - TPR 75.1% 42(42)Metaxas (2003) [88] FNR 25%FPR 20%HD 19.72 pix.AMED 6.6 pix.Huang (2005) [69] Active contours - DSC 0.88 20(20)TPR 81%Huang (2007) [71] Active contours - DSC 0.87 118(118)TPR 85.7%Alemán Flores (2007) [4] Active contours Seed point AO 88.3% 32(32)PD 4.96 pix.Cui (2009) [30] Active contours Seed point AO 74.5% 250(488)Liu (2009) [84] Active contours - TPR 91.3% 103(103)FNR 8.7%FPR 7.3%Liu (2010) [86] Active contours - DSC 0.88 46(46)TPR 93.9%FPR 6.9%Gao (2012) [54] Active contours ROI speci�ed DSC 0.93 20(20)OA 86%HD 7 pix.AMED 2 pix.Xiao (2002) [129] MRF Histogram analysis - - -Boukerroui (2006) [20] MRF - - - -Zhang (2010) [134] Machine learning - AO 84% 347(347)Ecc 3.75 pix.Hao (2012) [64] Machine learning - AO 75% 480(480)Shan (2012) [110] Machine learning - DSC 0.83 120(120)TPR 92.8%FPR 12%Huang (2004) [68] Watersheds ROI speci�ed TPR 94.6% 20(20)NRV 81.7%Gómez (2010) [59] Watersheds ROI speci�ed AO 86% 50(50)NRV 16%PD 6.58 pix.Cheng (2010) [28] Watersheds ROI speci�ed AO 92.4% 324(324)WI 1.07 pix.Chiang (2010) [29] Graph-based ROI speci�ed COD 2.71 16(16)Jiang (2012) [75] Graph-based - - - -Huang (2012) [67] Graph-based Parameter select. TPR 87% 10(10) benignFPR 2%FNR 13%ARE 9.2 pix.TPR 88% 10(10) cancerousFPR 2%FNR 13%ARE 8.1 pix.Gao (2012) [55] Graph-based ROI speci�ed AO 86.6% 50(50) benignHD 7.1 pix.AMED 1.58 pix.AO 84.4% 50(50) cancerousHD 10.57 pix.AMED 1.98 pix.



2.3. A REVIEW OF LESION SEGMENTATION METHODS ON BREASTSONOGRAPHY 41
Table 2.4: Advantages and disadvantages of the segmentation techniques reviewed.Method Description Advantages DisadvantagesHistogramthresholding Threshold value isselected to segmentthe image. Simple and fast. No good results forimages withnon-bimodalhistograms.Active contourmodel Snake-deformationmodel is utilized. It ensures closedregion boundaries. Slow in the iterationprocess. Pre-labeledROI or initialcontour is required.Complex de�nitionof internal andexternal energies.Markov random�elds Probabilistic modelwhich captures pixelneighborhoodconstraints. Smooth and accuratesegmentation. Complex (easy toget stuck in localminima states) andtime-consuming formany iterations.Machine learning Segmentation isregarded as aclassi�cation task. Di�erent lesioncharacteristics canbe incorporated byfeature extraction.

How to select thetraining set isproblematic, andtraining istime-consuming anddepends on theimage database.Watershed Considers image as atopographic surfacewhere the grey levelof a pixel isinterpreted as itsaltitude. It ensures closedregion boundaries. Over-segmentationproblem is notcompletely solved.Sensitive to theinitialization.
Graph-based The image ismodeled as aweighted, undirectedgraph and is thenpartitionedaccording to acriterion designed tomodel good clusters.

Good approximationof the optimalsegmentation can becomputed verye�ciently. Requires userinteraction.
machine learning segmentation in the state-of-the-art has been done in the last few years.The same trend can be observed with the graph-based methods, in which the oldest method



42 CHAPTER 2. LITERATURE REVIEWanalyzed dates from 2010. Also, recent works using watershed-based segmentation methodswere found in the literature, but only the work of Chen et al. [28] assessed the methodin a large dataset. Active contour based methods have been widely used for the past tenyears, and still are. They reported good results, although most have been tested in smalldatasets, and the correctness of the results are highly subject to the initialization of thecontour. Histogram thresholding is not a feasible option nowadays due to the complexity ofcurrent US images, in which the tissue structures are displayed with higher de�nition anddetail. Finally, it is not possible to extract any trend from MRF segmentation methodsdue to the fact that any of these methods presented quantitative results.We have also analyzed the segmentation methods regarding the user interaction involved.We consider this as a complementary information that needs to be taken into account inthe comparison. For example, it is clear that a method that segments a given speci�ed ROIwould have to obtain a better performance than methods dealing with the entire imagebecause in a ROI most of the artifacts are avoided. Analysis of Table 2.3 shows that, amongthe most contemporary works, machine learning-based methods are fully automatic andobtained good results, while graph-based methods require user interaction.2.4 A review of lesion classi�cation methods on breast sonog-raphyFinally, an important stage in a CAD system is the classi�cation of the detected lesions.Needless to say, the relevance in any diagnosis to determine if a located lesion is benignor malignant is uppermost. Hence, the CAD system extracts features from the previouslysegmented region to train a classi�er to distinguish between cancerous and non-cancerousabnormalities with a certain likelihood and, thus, helps radiologists in their diagnosis.The main goal of this section is to review the most relevant works in lesion classi�cationfound in the literature. These lesion classi�cation methods can be grouped regarding theclassi�er used to distinguish between cancerous and benign lesions.2.4.1 Linear classi�ers (LC)Linear Classi�er (LC) are easy and fast to implement due to the use of a discriminativelineal function. Horsch et al. [65] used the segmentation results [66] to extract featuressuch as lesion shape, margin sharpness, echogenic texture, posterior acoustic enhancement,



2.4. A REVIEW OF LESION CLASSIFICATION METHODS ON BREASTSONOGRAPHY 43and shadowing, and then trained a LC to distinguish cancerous lesions from benign ones.They achieved an Az value of 0.87 using a dataset of 757 images from 400 di�erent cases,in which 94 were malignant.Some works do not specify the segmentation method used, and focus the work on thefeatures used to classify the lesions. This is the case of Seghal et al. [107], who usedthe margin sharpness, margin echogenicity, and angular variation in the margin to classifylesions in a dataset of 56 images, in which 36 were benign and 20 were malignant, obtainingan Az value of 0.87.Shen et al. [111] also focused on the extracted features. The segmentation of the lesionswas performed consensually by two expert radiologists. Subsequently, shape, orientation,margin, lesion boundary, echo pattern, and posterior acoustic features are used to discrim-inate between malignant and benign lesions. They achieved an Az value of 0.97 with adataset of 265 images, including 180 benign and 85 malignant masses.Finally, within the methods that used a LC, the recent work by Alvarenga et al. [6]should be mentioned. They investigated the combination of morphological and textureparameters to distinguish between malignant and benign breast tumors. First, radiologistsdetermine the ROI in the image, and then segmentation is achieved [115]. An exhaustiveanalysis for 27 di�erent features and their combinations is then performed. The best-performance was obtained with the combination of two morphological and three texturefeatures, resulting in an Az value of 0.87 in a dataset of 246 images from 197 patients,containing 177 malignant and 69 benign tumors.2.4.2 Neural networks (NN)Neural Network (NN) are inspired by the way biological nervous systems process informa-tion. They are usually presented as systems of interconnected neurons that can computevalues from inputs by feeding information through the network. Chen, D.R. et al. [25] pre-sented a lesion classi�cation algorithm where initially an expert radiologist locates the ROIin the image, and then, a naive segmentation algorithm is performed. Cooperating with thesegmentation algorithm, three feasible features, including variance contrast, autocorrela-tion contrast, and the distribution distortion of wavelet coe�cients are extracted from theROI images for further classi�cation. A multilayered perceptron NN trained using an errorback-propagation algorithm with momentum is then used for the classi�cation of breastlesion. In the experiment, 242 cases including benign breast tumors from 161 patients andcarcinomas from 82 patients were sampled to evaluate the performance, resulting in an Az



44 CHAPTER 2. LITERATURE REVIEWvalue of 0.93.Further, Chen, C.M. et al. [24] proposed a classi�cation work using a multilayer feed-forward NN on the basis of novel morphologic features such as the number of substantialprotuberances and depressions, lobulation index, elliptic-normalized circumference, elliptic-normalized skeleton, and long axis to short axis ratio. In order to obtain these features, thedelineation of the tumors was performed by expert radiologists. The results were assessedin a dataset of 271 images (140 with malignant lesions) reaching an Az value of 0.96.Joo et al. [77] determined whether a breast mass is benign or malignant by extractingfeatures with a naive segmentation algorithm applied to a manually preselected ROI. A NNthen distinguished malignant lesions based on �ve morphological features representing theshape, edge characteristics, and darkness of the mass. They assessed the classi�cation ina dataset of 584 images containing 300 benign and 284 malignant breast lesions, obtainingan Az value of 0.95.Finally, the work by Drukker et al. [37], which has already been presented in section 2.2.2,proposed the classi�cation of the segmented regions using a Bayesian Neural Network(BNN) on the basis of the extracted image features. The features used in their work are thesame as those used in Horsch et al. [65]. They used two di�erent datasets, one for trainingand one for testing. The �rst dataset was composed of 1740 images from 458 patients (23with cancerous lesions, 204 benign ones and 231 patients without abnormalities), and thesecond by 151 images, all from di�erent patients (45 with cancerous lesions, 100 benignones and 6 patients without abnormalities). They reported Az values of 0.81 and 0.86,distinguishing between benign and malign lesions for the two datasets.2.4.3 Support vector machines (SVM)Support Vector Machine (SVM) is a discriminative classi�er formally de�ned by a sepa-rating hyperplane in a multidimensional space. Given labeled training data (supervisedlearning), the algorithm outputs an optimal hyperplane that categorizes new examples.Huang et al. [69] proposed the use of a SVM to classify features extracted from a ROIspeci�ed by an expert radiologist. They used the correlation between neighboring pixelsin the images as features to classify breast tumors. Two di�erent datasets were used toassess the proposal. First, a dataset of 140 images (88 with benign and 52 with malignanttumors) achieved an Az value of 0.96. Second, a dataset of 250 images (215 with benignand 35 with malignant tumors) achieved an Az value of 0.95.



2.4. A REVIEW OF LESION CLASSIFICATION METHODS ON BREASTSONOGRAPHY 45Later in [72], they outperformed the results using di�erent texture features, such as blockdi�erence of inverse probabilities, block variation of local correlation coe�cients, and auto-covariance matrix, to train the SVM classi�er. They obtained an Az value of 0.96 using adataset of 250 images.2.4.4 SummaryA summary of the results reported by the principal methods discussed in this section ispresented in Table 2.5. The methods are �rst sorted by the classi�er used (linear classi�er,neural networks, or support vector machines), and then by year of publication (in ascendingorder).Table 2.5: Summary of the results presented in the articles analyzed for lesion classi�cation.Reference Classi�er Training User interaction Features Measure Result # cases(cancer/benign)Horsch (2002) [65] LC Split dataset - Morphologic/ Az 0.87 400texture (94/306)Seghal (2004) [107] LC Leave-one-out N/A Morphologic/ Az 0.87 56texture (20/36)Shen (2007) [111] LC 10-fold cross Manual Morphologic/ Az 0.97 265validation delineation texture (85/180)Alvarenga (2012) [6] LC Split dataset ROI speci�ed Morphologic/ Az 0.87 197texture (177/69)Chen, D.R. (2002) [25] NN 10-fold cross ROI speci�ed Texture Az 0.93 242validation (82/161)Chen, C.M. (2003) [24] NN Split dataset Manual Morphologic Az 0.96 271delineation (140/131)Joo (2004) [77] NN 10-fold cross ROI speci�ed Morphologic Az 0.95 584validation (284/300)Drukker (2005) [37] NN Leave-one-out - Morphologic/ Az 0.81 458texture (23/204)0.86 151(45/100)Huang (2005) [69] SVM 10-fold cross ROI speci�ed Texture Az 0.96 140validation (52/88)0.95 250(35/215)Huang (2006) [72] SVM 10-fold cross ROI speci�ed Texture Az 0.96 250validation (35/215)Regarding the classi�cation methods reviewed, it is not possible to conclude which clas-si�ers work better than others as well as which are the best features to distinguish betweenmalignant and benign tumors. However, both play a key role in the classi�cation results.Analysis of Table 2.5 shows that half of the methods (5 out of 10) chose the use of com-bined texture and morphological features, while 3 used texture information alone, andonly 2 proposals chose the use of morphological features alone. In most of the works, thesefeatures are extracted after a segmentation process requiring user interaction (de�nition ofa ROI or manual delineation of the lesion).



46 CHAPTER 2. LITERATURE REVIEWIn regard to the training and testing process, only 3 methods divide their dataset intotraining and evaluation subsets. The k-fold cross validation is the most used procedure(understanding the leave-one-out as a speci�c case where k is the number of images).Analyzing the composition of the datasets used, only 3 works trained and assessed theirclassi�cation methods using a balanced dataset (in which the number of malignant andbenign cases are approximately the same). Hence, we notice a trend to use datasets inrelationship to the screening population (the number of benign �ndings is higher thanmalignant ones), except in the case of Alvarenga et al. [6], who used a dataset with moremalignant than benign lesions.Although the results are easily comparable due to the majority use of ROC analysisin the assessment, the lack of a common dataset makes the comparison impossible. Forexample, a dataset formed only of carcinomas and cysts would obtain better results (bothtype of lesions are highly distinguishable) than a dataset formed of carcinomas and solidbenign masses (the lesions may look similar in some cases).2.5 ConclusionsIn this chapter we have performed a survey of the most important works in CAD sonogra-phy. However, an accurate and fair comparison of these works is not feasible. The majorinconveniences are the lack of common assessing datasets and the inhomogeneity of theassessing criteria. Despite these inconveniences, some trends can be extracted from thissurvey.In regard to the lesion detection methods listed in Table 2.2, a trend for the newestalgorithms to use machine learning techniques should be noticed. One can justify thistrend because of the adaptability of the machine learning-based methods to the speci�ccharacteristics of the target dataset, as well as their avoidance of the use of an extra falsepositive reduction step (necessary in most detection methods based on image processing).In Table 2.3 we have reviewed the most relevant works in lesion segmentation. Thenewest algorithms tends to use machine learning or graph-based techniques. Machinelearning methods obtained good results in large datasets and are fully automatic. Onthe other hand, all the graph-based methods studied were tested in small datasets andrequire user interaction. Watershed methods obtained good results, but they also requireuser interaction. We consider the intervention of a user in the method as complementaryinformation that needs to be taken into account. For example, it is clear that a method that



2.5. CONCLUSIONS 47segments a given speci�ed ROI would have to obtain a better performance than methodsdealing with the entire image because, in a ROI, most of the artifacts are avoided. Activecontour based methods have been widely used for ten years, and still are because theyreport accurate results, even though their correctness is highly subject to the initializationprocess. Nowadays, histogram thresholding is mostly used for initial rough segmentationgeneration. The complexity of the current sonography, in which the tissue structures aredisplayed with higher de�nition and detail, makes it infeasible for an accurate segmentation.Finally, it is not possible to extract any trend from MRF segmentation methods due tothe fact that any of these methods presented quantitative results.Regarding the classi�cation methods studied in this chapter (see Table 2.5), some factorsplay an important role in obtaining a better classi�cation: the features, the classi�er,the train/test procedure and the dataset. In terms of features, we can observe a trendfor the classi�cation methods to use combined texture and morphological features. Inmost of the works, these features are extracted after a segmentation process that requiresuser interaction (de�nition of a ROI or manual delineation of the lesion). In regard tothe training and testing process, most of the methods used the k-fold cross validation(understanding the leave-one-out as a speci�c case where k is the number of images).Finally, analyzing the composition of the datasets, a trend can be noticed in the use ofdatasets in relationship with the screening population (the number of benign �ndings ishigher than malignant ones).
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3Automatic breast lesion detection
3.1 IntroductionDetection of lesions in their early stages is a key factor in reducing the death rate. Theearlier the disease is detected, a better and more e�ective treatment can be provided.Thus, one of the most important steps in CAD systems is the detection of the lesion. Thisprocess should ideally be unsupervised to help the radiologist make a diagnosis e�ciently.For this reason, high sensitivity and speci�city are required.After the analysis performed in Chapter 2, we noticed a trend for the newest algorithmsto use machine learning techniques due to the proved adaptability to the speci�c charac-teristics of a target dataset, as well as the good results obtained. Therefore, in this chapterwe propose the use of a machine learning technique to detect lesions in sonography.Lesion detection can be seen as a speci�cation of the well-known object detection problemin computer vision. Thus, we propose to adapt a generic object detection technique tolocate lesions in breast US images. Speci�cally, we propose the use of Deformable PartModels (DPM) presented by Felzenszwalb et al. [48], which was awarded the PASCALVOC �Lifetime Achievement� Prize in 2010 [45]. The aim of the work presented in this49



50 CHAPTER 3. AUTOMATIC BREAST LESION DETECTIONchapter is to adapt and evaluate the DPM approach to detect breast abnormalities inBUS B-mode images and compare the performance of this method with the most relevantproposals in the literature.3.2 Deformable Part Models overviewThe DPM approach [48] models the appearance of objects in terms of a root �lter thatapproximately envelops the whole object, a set of part �lters that cover smaller and repre-sentative parts of the object and deformation parameters penalizing the deviation of theparts from their default locations relative to the root using a latent SVM classi�er.The method uses a scanning window approach that searches a model over a Histogramof Oriented Gradients (HOG) pyramid [31] to detect objects in di�erent scales. HOG arefeature descriptors used in image processing for the purpose of object detection. The imageis divided into small spatial rectangular regions (cells) and, in each cell, a weighted local1-D histogram of gradient directions over the pixels of the cell is computed. Figure 3.1shows an example of generating a HOG feature vector.
(a) (b) (c)Figure 3.1: Example of generating a Histogram of Oriented Gradients (HOG) featurevector. (a) Original image of a breast lesion in a US image, (b) image divided into cells(c) resulting HOG descriptor for the image showing the gradient orientation histograms ineach cell.The HOG pyramid is de�ned by computing the HOG features at each level of an imagepyramid. Hence, features at the top level capture coarse gradients, while at the bottomlevel, �ner gradients are captured. The scale sampling in a feature pyramid is determinedby a parameter λ de�ning the number of levels we need to go down in the pyramid toget a feature map computed at twice the resolution of another one. Figure 3.2 shows arepresentation of the feature pyramid detecting lesions in a breast US image. The featurepyramid is built via repeated smoothing and subsampling, and then computing a feature
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Figure 3.2: Representation of a feature pyramid detecting a lesion in a breast US image.The root �lter is located at the top of the pyramid while the part �lters are located attwice resolution of the placement of the root, with λ = 2.map from each level of the image pyramid. In this example, the �lters are displayed aswhite rectangles. Note that the part �lters are placed at twice the spatial resolution of theplacement of the root, with λ = 2.A model is de�ned by a root �lter that approximately envelops the whole object and part�lters at twice the resolution of the root �lter that cover smaller and more representativeparts of the object. For instance, when creating a model for a bicycle detection, the root�lter could capture coarse edges of the entire bicycle, while the part �lters could capturedetails such as the wheels. Similarly, in breast US images, the root �lter could capturecoarse boundaries while part �lters could be identi�ed as salient regions of the lesion andinternal structures. Figure 3.3 shows an example of root and part �lters applied to a breastUS lesion.3.2.1 Formal de�nition of DPMBoth root and part �lters are rectangular templates F of size w×h specifying weights1 forsubwindows of a HOG pyramid. Let H be a HOG pyramid and p = (x, y, l) a location inthe l-th level of that pyramid. The vector obtained by concatenating the HOG features inthe w × h subwindow of H in p is de�ned as φ(H, p) and the score of F in this detection1The �lter weights are part of the model and will be obtained after a learning process.
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Figure 3.3: Example of DPM applied to a breast lesion. The white box represents thelocation of the root �lter and the red boxes the location of the part �lters.window is F · φ(H, p).The model for an object with n parts is de�ned by a root �lter F0 and a set of parts
Pi = (Fi, vi, di), where Fi is a �lter for the i-th part, vi is a two-dimensional vector speci-fying possible locations relative to the root, and di is a four-dimensional vector specifyingcoe�cients of a quadratic function that de�nes a deformation cost for each possible place-ment of the part. A graphical representation of a lesion model is shown in Figure 3.4.

(a) (b) (c)Figure 3.4: Lesion model. (a) is the root �lter, (b) the part �lters with twice the resolutionand (c) shows the spatial deformation model. The �lters visualization shows the positiveweights at di�erent orientations for the histogram of oriented gradients features in (a) and(b). The visualization of the spatial deformation model re�ects the cost of placing thecenter of a part �lter at di�erent locations relative to the root �lter in (c), where brighterareas represent high penalized placements.The placement of the model is given by z = (p0, ..., pn), where pi = (xi, yi, li) speci�esthe level and the position of the i-th �lter. Note that the location of the root �lter isde�ned when i = 0. The �nal score of a detection is the score of the root �lter plus the



3.2. DEFORMABLE PART MODELS OVERVIEW 53score of the best location of the parts, placed at twice the resolution in the pyramid, minusa deformation cost that penalizes undesired placements of the parts,
score(p0, ..., pn) =

n
∑

i=0

Fi · φ(H, pi)−
n
∑

i=1

di · φd(dxi, dyi) + b (3.1)where
(dxi, dyi) = (xi, yi)− (2(x0, y0) + vi (3.2)gives the displacement of the i-th part relative to the root location and
φd(dxi, dyi) = (dx, dy, dx2, dy2) (3.3)are the deformation costs. Note that when di = (0, 0, 1, 1) the deformation cost for the i-thpart is the squared distance between its actual position and its anchor position relative tothe root. The term b is the bias that makes the scores comparable in models with di�erentcomponents as we will further explain.The score of a placement z can be expressed in terms of the dot product β · ψ(H, z),between a vector of model parameters β and a vector ψ(H, z):

β = (F0, ..., Fn, d1, ..., dn, b)

ψ(H, z) = (φ(H, p0), ..., φ(H, pn),

−φd(dx1, dy1), ...,−φd(dxn, dyn), 1)
(3.4)Thus, each image example x is scored by a function of the form

fβ(x) = max
z∈Z(x)

β · Φ(x, z) (3.5)where Z(x) is a range of valid placements for the root and part �lters and Φ(x, z) =

ψ(H, p0). This representation is used for learning the model parameters using a latentSVM classi�er. Formally, the classi�er is trained by minimizing the following objectivefunction [48],
β∗(D) =

1

2
||β||2 + C

n
∑

i=1

max(0, 1 − yifβ(xi)) (3.6)



54 CHAPTER 3. AUTOMATIC BREAST LESION DETECTIONwhere D is a set of labeled examples D = (〈x1, y1〉, ..., 〈xn, yn〉), where yi ∈ {−1, 1} and
xi speci�es a HOG pyramid H(xi) together with a range Z(xi) of valid placements forthe root and part �lters. Z(xi) is de�ned so the root �lter must be placed to overlap thebounding box by at least a speci�ed threshold t. The term max(0, 1 − yifβ(xi)) is thestandard hinge loss and C a constant that controls the relative weight of the regularizationterm.By restricting the latent domains Z(xi) to a single choice, fβ is linear in β, and a linearSVM classi�er can be used. In practice, classical SVM training is applied iteratively totriples (〈x1, z1, y1〉, ..., 〈xn, zn, yn〉), where zi is selected to be the best scoring latent labelfor xi under the model trained in the previous iteration.An object can be represented by a mixture model with m components de�ned by a m-tuple M = (M1, ...,Mm), where Mi is the model for the i-th component. A component isde�ned by a (n+ 2) tuple (F0, P1, ..., Pn, b) where F0 is a root �lter, Pi the i-th part �lterand b a bias term to make the scores of the di�erent components comparable. A mixturemodel can capture di�erent points of view of the same object making the detection processmore robust. This is clear in regular object detection processes such as a bicycle, whereone component could be a lateral view and another the front view. In the case of lesiondetection, the angle of the transducer during acquisition could be perceived as the sameproblem. In addition, since masses have no standard shapes, the mixture of models willhelp the detector to model the most common shapes.3.2.2 Implementation detailsAs stated above, in practice, when training a latent SVM, a classical SVM is appliediteratively training triples (〈x1, z1, y1〉, ..., 〈xn, zn, yn〉), where zi is the best scoring latentlabel for the example xi under the model trained in the previous iteration. Each of thesetriples leads to an example 〈Φ(xi, zi), yi〉 for training a linear SVM classi�er.Root �lter initialization: The dimensions of the root �lter are automatically selectedby looking at the statistics of the bounding boxes in the training data. An initial root �lter
F0 is trained with no latent variables. The positive examples are scaled to size and aspectratio of the �lter. Negative examples are generated from random subwindows in negativeimages.



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 55Root �lter update: Given the initial trained �lter, the best-scoring placement for the�lter (that overlaps with the bounding box more than a given threshold t) is found foreach bounding box in the training set. Then, F0 is retrained with the new positive set,iterating twice.Part initialization: First, the area a of the part is de�ned so that 6a = 80% of the
F0 area. Then, the rectangular region of area a of F0 with the highest positive energy isselected, and the part is initialized from the subwindow values, but �lled to handle thehigher spatial resolution of the part. The initial deformation cost measures the squarednorm of a displacement with di = (0, 0, 1, 1). This procedure is repeated until the N partsare initialized.Model update: To update the model, new training data triples are constructed. Foreach positive bounding box in the training data, the existing detector is applied at allpositions and scales with an overlap of at least t with the given bounding box. Amongthese, the placements with the highest score are selected as positive examples. Negativeexamples are selected by �nding high scoring detections in images not containing the targetobject. These negative examples are added to a cache of a limited size for computationalreasons. A new model is then trained by running SVM with the new set of positive andnegative examples. The model is iteratively updated, where in each iteration the correctlyclassi�ed negative examples are removed from the cache and new negative examples areadded. Towards the �nal iteration, the cache contains a set of hard negatives. Thisprocedure is performed to deal with the vast number of negative examples in a trainingset.3.3 Experimental results in BUS lesion detectionVarious experiments were performed to evaluate the DPM approach for lesion detection.First, a default con�guration of the DPM method was de�ned and evaluated. Posteriorly,this default con�guration was changed to tune the parameters involved. The results of theseparameters were analyzed to determine the best con�guration of the DPM to detect lesionsin breast US images. Subsequently, a post-processing step of false-positive reduction wasanalyzed using the best parameter con�guration. In addition, an experiment to analyzethe ability of the DPM to distinguish cancerous from benign lesions was also performed.Finally, the DPM was compared with the most relevant state-of-the-art methods using the



56 CHAPTER 3. AUTOMATIC BREAST LESION DETECTIONsame dataset.All the tests were performed on a PC (IntelR© CoreTM 2 Quad 2.83GHz 8GB RAM) usingthe implementation voc-release5 [57] of the DPM algorithm. All the experiments werere�ned using a non-maximum suppression post-processing to remove similar detections ina local area. Subsequently, the maximum number of detections per image was limited tothe ten best detections in terms of score to avoid a large number of FPs per image but alsoto ensure that all the lesions could be detected. Only in Section 3.3.3, a di�erent numberof detections is chosen.For the number of available images, we have con�gured the training and testing processesas a k-fold cross validation with k = 10. This methodology increases the computation costsheavily, but allows a more accurate assessment of the method.3.3.1 Image acquisitionTwo di�erent datasets of BUS images, namely Dataset D1 and Dataset D2, were collectedin this study. Both datasets were obtained from di�erent US system speci�cations andtime periods.Dataset D1 was collected in 2001 from a professionally didactic media �le for breastimaging specialists [103]. The images were obtained with B&K Medical Panther 2002 andB&K Medical Hawk 2102 US systems with an 8-12 MHz linear array transducer. Thedataset consists of 406 images from di�erent cases. From the 406 images, 306 imagescontain one or more lesions and 100 were acquired from healthy breasts. Within thelesion images, 60 images presented malignant masses and 246 were benign lesions. Fromthe malignant images, 27 were diagnosed as Invasive Ductal Carcinoma (IDC), 4 wereDuctal Carcinoma In Situ (DCIS), 6 were malignant phyllodes tumors and 23 were otherunspeci�ed malignant lesions. Of the benign images, 74 were complex cysts, 89 were simplecysts, 55 were Fibroadenoma (FA) and 28 were other benign lesions. The average size ofthe images is 377x396 pixels with a nominal pixel size of 0.098 mm.Dataset D2 was collected more recently (2012/13) from the UDIAT Diagnostic Centreof the Parc Taulí Corporation, Sabadell (Spain) with a Siemens ACUSON Sequoia C512system and a 17L5 HD linear array transducer (8.5 MHz). The dataset consists of 326images from di�erent patients, where 163 images present one or more lesions and 163 wereacquired from normal breasts. In the 163 lesion images, 53 were images with cancerousmasses and 110 with benign lesions. Of the malignant images, 40 were IDC, 4 were DCIS,



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 572 were Invasive Lobular Carcinoma (ILC) and 7 were other unspeci�ed malignant lesions.Of the benign images, 65 were unspeci�ed cysts, 39 were FA and 6 were other types ofbenign lesions. The average size of the images is 760x570 pixels with a nominal pixel sizeof 0.084 mm.In both datasets the diagnoses were supported by a posterior biopsy/pathological ex-amination after the acquisition. In all the images containing lesions, the lesions weredelineated by an experienced radiologist. All of the images involved in this work werepreviously made anonymous to accomplish the rules issued by the Ethical Committee ofboth hospitals concerning the data con�dentiality.Figure 3.5 displays three images from the two datasets to represent the di�erences inthree aspects: speckle noise, image quality and lesion appearance. In terms of speckle noise,images in Dataset D1 show a signi�cant presence of this artefact but it is less obvious inimages in Dataset D2, where the speckle noise was partly reduced by the US acquisitionsystem. The image quality also varies in both datasets due to di�erent resolutions. Notethat the resolution for the recent US device used to produce Dataset D2 is better than inthe old US device (Dataset D1). Consequently, the de�ned structures, such as ribs, pectoralmuscle or parenchymal tissue, are more visible in Dataset D2. The lesion appearance alsodi�ers in the two datasets. In Dataset D2, the appearance of the tissues is better de�nedthan in Dataset D1, as illustrated in Figure 3.5(b) where even the inner structures of the�broadenoma lesion are visible.3.3.2 Parameter analysis of DPMLesion detection and classi�cation in breast B-mode US images is still a challenging problemin medical imaging due to the high variability of shapes among lesions of the same type(i.e. cysts, �broadenomas, etc.). One could argue that the use of DPM does not properly�t the lesion detection problem due to the fact that breast lesion shapes present a largevariability in comparison with detecting more structured objects such as bicycles or horses.In this work, we argue the opposite, that the deformability of the part �lters in DPM andthe possibility of de�ning a mixture of models allows us to cope with this variability ofshapes.Detecting objects with DPM involves di�erent parameters which need to be set upempirically to improve the detection results. In this work, an exhaustive test of the mainparameters of the DPM method has been performed in order to successfully detect lesionson BUS images. Speci�cally, the following parameters have been tested: the number of
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(a) (b) (c)Figure 3.5: Examples of images in Dataset D1 (�rst row) and Dataset D2 (second row). (a)shows an example of cyst images, (b) images with a �broadenoma lesion and (c) examplesof invasive ductal carcinoma.components in a mixture model, the number of part �lters, the size of the part �lters, theoverlap threshold for detecting positive examples in the learning stage, the cell size whencomputing the HOG features and the size of the HOG pyramid. Due to the vast numberof possible combinations of these parameters, we have de�ned a default con�guration, andonly the value of one parameter at the time has been changed. The default con�gurationhas been set up with: 3-component mixture model with 8 parts of 6 × 6 pixels, with atraining threshold t = 0.7, a cell size of 8 × 8 pixels and a parameter λ = 5 that de�nesthe size of the HOG pyramid. Due to computational reasons, only Dataset D2 has beenused for assessment of the parameter estimation.Evaluation criteriaThe performance of each con�guration was assessed using the ROC analysis [47]. For thelesion detection process, actual lesions correctly detected were counted as TP results whileall the detections that did not locate an actual lesion were counted as FP results, andsimilarly for cancerous and non-cancerous lesions. The ROC analysis was performed on a�by region� basis [37], where each ROI is considered as an entity instead of the whole image,



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 59as in a typical ROC analysis. ROC analysis deals only with the classi�cation process (i.e.how well the classi�er is able to categorize a given detection) and we also want to analyzethe performance of the detection process. For that reason, we also performed a FROCanalysis in terms of Lesion Location Fraction (LLF) (also de�ned as sensitivity or TPRin other works) and Non-lesion Location Fraction (NLF) (number of FP detections perimage) which assesses the overall process, including the detection of lesion candidates [22].In the FROC analysis, a detection is considered as a TP result if the center of the resultingbounding box of the detection process is located within the delineation performed by aradiologist. Other detections are considered as a FP result. Note that in both analyses,only one TP per image is counted, while FP results are accumulative. ROC and FROCanalysis were performed for each fold in the cross-validation procedure and mean valueswere computed. When analyzing FROC curves, the maximum number of sensitivity andthe number of FPs per image at that point were reported.To determine if there are signi�cant di�erences in the performance between the di�erentvalues of the parameters in comparison with the default con�guration, a hypothesis testusing the Az, LLF and NLF values obtained for each con�guration was performed. Initially,the Kolmogorov-Smirnov test [91] was used to con�rm that the values we compared werenormally distributed. Subsequently, a paired two-sample Student's t test [99] was thenapplied. The null hypothesis speci�es that there are no signi�cant di�erences between themean values: H0 : µ1 6= µ2. Test results were provided in terms of p values, where a pvalue smaller than 0.05 indicates that the null hypothesis would be rejected.Figure 3.6 shows a qualitative example of the results obtained. In Figure 3.6,(a) showsan image where the lesion was detected correctly, while an example of unsuccessful lesionidenti�cation is shown in (b). These FP detections generally occur when the lesion regionis small. Finally, (c) shows a lesion that is successfully detected but the size of boundingbox is not correctly estimated. We noticed that these partial detections occur when dealingwith large lesions.Model componentsThe �rst parameter we have evaluated is the number of components in the mixture model.Since mixture models deal with di�erent views of the modeled object, it is necessary toset up the best number of components to obtain the best results. For instance, it is fairto assume that when detecting cars, the best number of con�gurations should be a modelof two components: one for the lateral view and one for the frontal view. In the speci�c
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(a) (b) (c)Figure 3.6: Examples of qualitative results: (a) correct lesion detection, (b) mis-detectionand (c) partial detection where the lesion is detected but the estimation of the boundingbox size is not correct. The root detections are depicted with a white rectangle, while partsare in red. The location of the lesions are depicted with yellow arrows.case of lesions in BUS images, this assumption can not be made. Hence, we have testedmodels with di�erent con�gurations. Speci�cally, we have tested models composed of 1,2, 3 and 4 components. Figure 3.7 and Table 3.1 show the ROC and FROC analysis forthese components. Note that in Figure 3.7 the LLF value at a given NLF point (in thiscase NLF=0.5) is depicted in the chart legend, while in Table 3.1, the maximum LLF valueand its corresponding NLF value are reported. In terms of Az, the models composed of1, 3 and 4 components obtained similar results while the model of 2 components obtainedthe worst results. Of FROC analysis, the models composed of 1, 3 and 4 componentsobtained similar results in terms of LLF but the 3-components model obtained fewer FPsper image. However, there are no signi�cant di�erences between the performance of thedi�erent number of components, as shown in Table 3.2.Number of partsIn Felzenszwalb et al. [48], the behavior of the model was tested using di�erent numbers ofcomponents with and without part �lters, concluding that the use of part �lters improvedobject detection accuracy. However, all the experiments were performed using the samenumber of part �lters. In this study, we followed a similar experiment but changed thenumber of parts in each model to analyze the e�ect of this parameter in detection accuracy.Analyzing both ROC and FROC curves in Figure 3.8 and results in Table 3.1, we canassume that in this case, the ROC analysis does not provide essential information. Asigni�cance test, where any p value was higher than 0.05, con�rmed this assumption (see
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1 root  LLF=0.814 NLF=0.5
2 roots LLF=0.786 NLF=0.5
3 roots LLF=0.843 NLF=0.5
4 roots LLF=0.829 NLF=0.5(b)Figure 3.7: (a) ROC and (b) FROC curves for di�erent numbers of model components.
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0 parts  LLF=0.786 NLF=0.5
2 parts LLF=0.814 NLF=0.5
4 parts LLF=0.814 NLF=0.5
8 parts LLF=0.843 NLF=0.5
10 parts LLF=0.829 NLF=0.5(b)Figure 3.8: (a) ROC and (b) FROC curves for di�erent numbers of part �lters.

Table 3.2). However, in the FROC analysis, we can see that models using parts obtainedslightly better results. A model without parts obtained a LLF value of 0.82 with 0.60 FPsper image, while the best performance is obtained by the default con�guration (with eightparts), giving a LLF value of 0.86 with 0.28 FPs per image.



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 63Size of partsRegarding part �lters, it is also important to de�ne the size of these parts in order toproperly detect the �ner structures of the lesions. Figure 3.9 depicts the ROC and FROCcurves analyzing this parameter, and Table 3.1 shows the quantitative results of theseanalyses. The 6x6 and 10x10 part �lters obtained the best results with Az values of 0.975and LLF values of 0.86 and 0.83 respectively. However, 10x10 part �lters obtained thebest results in terms of NLF, 0.23 compared with 0.28 using the 6x6 part �lters. FromTable 3.2, we can conclude that the size of the part �lters does not have a signi�cantin�uence in the performance of the DPM in breast US images.Training thresholdDuring the training step, a detection process is performed to obtain latent positive results.This parameter de�nes the minimum area overlap needed to consider a detection as a posi-tive result. If the training threshold is too high, the resulting detector is too restrictive andit does not detect all the lesions in the evaluation process. If the threshold is too low, thereare too many latent positive detections and the detector will not be able to distinguish be-tween lesions and normal tissue while evaluating a new image. Our experiments show thatall thresholds lower than 0.5 and higher than 0.8 dramatically decrease the performanceof the detector. In the speci�c case of thresholds higher than 0.8, the training process failsbecause it does not detect any positive regions.The ROC and FROC analysis for di�erent training thresholds for lesion detection inthe 0.5-0.8 range are shown in Figure 3.10 and Table 3.1. Analyzing both curves andTables 3.1 and 3.2, we can assume that, in this case, the ROC and FROC analysis doesnot provide conclusive di�erences. The performance of the system with the di�erent chosenthresholds is almost the same, reaching an Az value of 0.975. In terms of LLF values, thetraining threshold selection is not a signi�cant step while the threshold is between therange 0.5 − 0.8, but threshold 0.7 obtained fewer FPs per image. From Table 3.2, we canconclude that there are no signi�cant di�erences between the di�erent threshold values.Cell sizeIn the DPM approach, the image features are computed by dividing the image into smallcells. In each cell, the histogram of gradient orientations is computed. Hence, the size ofthe cell de�nes the features involved in the whole detection process. In this experiment, we
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3x3 pixels  LLF=0.814 NLF=0.5
6x6 pixels LLF=0.843 NLF=0.5
8x8 pixels LLF=0.807 NLF=0.5
10x10 pixels LLF=0.821 NLF=0.5(b)Figure 3.9: (a) ROC and (b) FROC curves for di�erent sizes of part �lters.
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t=0.5  LLF=0.829 NLF=0.5
t=0.6 LLF=0.807 NLF=0.5
t=0.7 LLF=0.843 NLF=0.5
t=0.8 LLF=0.829 NLF=0.5(b)Figure 3.10: (a) ROC and (b) FROC curves for di�erent training thresholds.
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4x4 pixels  LLF=0.814 NLF=0.5
8x8 pixels LLF=0.843 NLF=0.5
10x10 pixels LLF=0.793 NLF=0.5
12x12 pixels LLF=0.829 NLF=0.5
16x16 pixels LLF=0.829 NLF=0.5(b)Figure 3.11: (a) ROC and (b) FROC curves for di�erent cell size.have evaluated di�erent cell sizes to analyze the e�ect of this parameter in the detectionprocess. Speci�cally, we have evaluated cells of 4x4, 8x8, 10x10, 12x12 and 16x16 pixels.Figure 3.11 and Table 3.1 show the ROC and FROC analysis where an 8x8 cell size obtainedthe best results in terms of Az, while cells of 10x10, 12x12 and 16x16 pixels reached a LLFvalue higher than 0.87. However, Table 3.2 shows that 10x10 and 16x16 cell sizes aresigni�cantly worse in terms of NLF. Hence, bigger cells do not capture the features of theimage properly, considerably increasing the number of false-positives per image.



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 67HOG pyramid sizeThe last parameter to analyze is the size of the HOG pyramid. Speci�cally, parameter λde�nes the number of levels necessary to go down in the pyramid to get a feature mapcomputed at twice the resolution. Thus, the higher its value, the more levels of the pyramidin the root and part �lters.The ROC and FROC analysis in Figure 3.12 and Table 3.1 show that the model createdwith λ = 10 obtained the worst results. Hence, if the number of levels in the pyramidbetween the root and the part �lters is too high, the method decreases its sensitivity whendetecting lesions due to the low resolution of the root �lter. Nevertheless, Table 3.2 statesthat these di�erences are not signi�cant.
Summary of the parameter analysisThe results obtained in all the previously described experiments concerning the parameteranalysis are summarized in Table 3.1. Table 3.2 summarizes the statistical signi�canceresults for parameter analysis. From all the experiments, only the cell size parameter hasa signi�cant in�uence on the DPM's performance.In the selection of the number of components, it is also necessary to consider the compu-tational cost of the method. Table 3.7 summarizes the computation times of the methodfor training and testing. Note that all training times are the average time for one fold andtesting times are for a single image.The training times vary greatly between 1, 2, 3 or 4 components and the di�erent numberof parts. Note that using 8 parts in the 3 component case increases the computation time12-fold. It is worth recalling that this procedure is performed o�ine, thus the selection ofthe component number relies on the computational possibilities and the time available forthis computation. In terms of detection, the time also increases with the number of partsand components (from 1.89 to 8.53 seconds for 3 components without parts and 10 parts,respectively). Hence, if the o�ine computation time is not an issue, we would recommendusing a 3-component mixture model with 8 parts of 6× 6 pixels, with a training threshold
t = 0.7, a cell size of 8 × 8 pixels and a parameter λ = 5, since results indicate that thiscon�guration obtained the highest sensitivity detecting lesions with fewer FP results perimage.
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λ=3  LLF=0.814 NLF=0.5
λ=5 LLF=0.843 NLF=0.5
λ=10 LLF=0.807 NLF=0.5(b)Figure 3.12: (a) ROC and (b) FROC curves for di�erent HOG pyramid sizes.
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Table 3.1: Summary results for parameter analysis. Default con�guration is a 3-componentmixture model with 8 parts of 6× 6 pixels, with a training threshold t = 0.7, a cell size of
8× 8 pixels and a parameter λ = 5.Parameter Az (95% CI) LLF (95% CI) NLF (95% CI)Default 0.975 (0.958-0.989) 0.860 (0.794-0.919) 0.282 (0.107-0.457)Components 1 root 0.962 (0.944-0.981) 0.878 (0.806-0.951) 0.346 (0.188-0.504)2 root 0.971 (0.958-0.983) 0.835 (0.749-0.921) 0.292 (0.179-0.406)4 root 0.950 (0.920-0.980) 0.885 (0.822-0.949) 0.675 (0.153-1.196)Number parts 0 parts 0.957 (0.930-0.983) 0.821 (0.734-0.908) 0.603 (0.226-0.980)2 parts 0.955 (0.926-0.983) 0.857 (0.791-0.923) 0.646 (0.095-1.197)4 parts 0.953 (0.925-0.981) 0.843 (0.784-0.901) 0.550 (0.177-0.922)10 parts 0.957 (0.936-0.979) 0.850 (0.748-0.951) 0.675 (0.149-1.200)Size parts 3x3 pixels 0.948 (0.916-0.980) 0.879 (0.815-0.941) 0.743 (0.232-1.253)8x8 pixels 0.951 (0.921-0.980) 0.850 (0.782-0.917) 0.614 (0.230-0.998)10x10 pixels 0.975 (0.963-0.987) 0.830 (0.742-0.917) 0.232 (0.103-0.361)Threshold 0.5 0.964 (0.946-0.983) 0.843 (0.762-0.923) 0.446 (0.104-0.788)0.6 0.967 (0.948-0.986) 0.829 (0.747-0.909) 0.410 (0.075-0.746)0.8 0.959 (0.936-0.983) 0.864 (0.796-0.931) 0.457 (0.152-0.761)Cell size 4x4 pixels 0.959 (0.942-0.977) 0.829 (0.747-0.909) 0.321 (0.162-0.480)10x10 pixels 0.945 (0.918-0.971) 0.879 (0.823-0.933) 0.667 (0.365-0.969)12x12 pixels 0.964 (0.951-0.978) 0.871 (0.799-0.943) 0.450 (0.319-0.580)16x16 pixels 0.956 (0.935-0.976) 0.893 (0.836-0.949) 0.775 (0.443-1.106)Pyramid size λ = 3 0.967 (0.952-0.983) 0.883 (0.796-0.971) 0.383 (0.184-0.583)

λ = 10 0.967 (0.949-0.986) 0.821 (0.733-0.909) 0.303 (0.147-0.459)3.3.3 False-positive reductionIn the previous experiments, results were reported selecting a maximum number of tendetections per image. In terms of the FROC analysis, the mean sensitivity reaches 0.86with 0.28 FP detections per image in the best performance. To reduce this number ofFP detections, we performed an experiment where only the best detection per image isselected. Table 3.4 presents the quantitative results from which we can notice the factthat the reduction in terms of sensitivity and false-positives per image is not signi�cant.This indicates that the result with the highest score successfully detects the lesion in mostcases.In Figure 3.13,(a) shows the ROC analysis and (b) the FROC analysis for a model withthe default con�guration.
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Original  LLF=0.793 NLF=0.2
FP reduction LLF=0.779 NLF=0.2(b)Figure 3.13: (a) ROC and (b) FROC curves for false-positive reduction comparison.
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Table 3.2: Statistical signi�cance for parameter analysis (p value)Parameter Az LLF NLFComponents 1 vs. 3 comp. 0.37 0.66 0.592 vs. 3 comp. 0.77 0.69 0.924 vs. 3 comp. 0.18 0.53 0.17Number parts 0 vs. 8 parts 0.28 0.52 0.142 vs. 8 parts 0.26 1 0.234 vs. 8 parts 0.22 0.74 0.2110 vs. 8 parts 0.24 0.90 0.18Size parts 3x3 vs. 6x6 0.17 0.64 0.118x8 vs. 6x6 0.19 0.88 0.1410x10 vs. 6x6 0.92 0.62 0.67Threshold 0.5 vs. 0.7 0.46 0.78 0.410.6 vs. 0.7 0.59 0.59 0.330.8 vs. 0.7 0.33 0.88 0.34Cell size 4x4 vs. 8x8 0.24 0.59 0.7410x10 vs. 8x8 0.08 0.62 0.0412x12 vs. 8x8 0.38 0.77 0.1416x16 vs. 8x8 0.19 0.41 0.02Pyramid size λ = 3 vs. λ = 5 0.56 0.62 0.46

λ = 10 vs. λ = 5 0.61 0.51 0.863.3.4 Bounding box estimationAll the experiments in this paper were assessed by determining if the center of the detectedbounding box lies within the delineation of an expert. In the experiments performed withthe default con�guration, the mean area overlap between the TP detections and the actuallesions is 63%, which indicates that detections considered as TP results properly overlapthe actual lesion. However, a complementary experiment was performed to evaluate theestimation of the bounding box using the DPM methodology. Figure 3.14 depicts thepercentage of correctly segmented lesions as a function of the threshold overlap value. Theoverlap value between the detected bounding box and the bounding box of the actual lesionis computed using the AO [74].Analysis of Figure 3.14 shows that restricting the TP detections to those with an overlaphigher to 0.4 the method achieve a sensitivity close to 0.8. This indicates that most of thedetections also estimates correctly the bounding box.
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Table 3.3: Computation times for model component selectionComponents Training Time (min) Testing Time (s)1 root + 8 parts 52.44 2.812 root + 8 parts 94.81 3.933 root + 8 parts 196.71 6.254 root + 8 parts 540.05 7.623 root 17.4 1.893 root + 2 parts 56.2 3.163 root + 4 parts 74.3 4.233 root + 10 parts 208.36 8.53Table 3.4: Comparison using false-positive reduction

Az (95% CI) LLF (95% CI) NLF (95% CI)Original 0.975 (0.958-0.989) 0.860 (0.794-0.919) 0.282 (0.107-0.457)FP reduction 0.956 (0.927-0.986) 0.785 (0.687-0.883) 0.114 (0.034-0.193)
p value 0.32 0.24 0.11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Overlap

D
et

ec
tio

n 
ac

cu
ra

cy
 %

Figure 3.14: Percentage of correctly detected lesions as a function of the threshold overlapvalue.3.3.5 Cancer vs benign lesions resultsAs previously stated, the traditional framework for cancer detection consists of (I) de-tecting the suspicious lesion, (II) segmenting the lesion, (III) extracting features and (IV)determining if the lesion is malignant with a trained classi�er. However, since DPM is a
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Table 3.5: Comparison cancer detection

Az (95% CI) LLF (95% CI) NLF (95% CI)1 root+parts 0.926 (0.914-0.938) 0.71 (0.647-0.772) 1.54 (1.23-1.84)2 roots+parts 0.929 (0.907-0.951) 0.78 (0.714-0.845) 1.15 (0.77-1.52)3 roots+parts 0.953 (0.935-0.971) 0.71 (0.651-0.768) 0.79 (0.27-1.31)4 roots+parts 0.866 (0.843-0.889) 0.70 (0.618-0.781) 1.23 (1.11-1.34)multiclass detector, we can build models directly to detect cancerous lesions, simplifyingthe framework for cancer detection considerably.In this subsection, we assess the behavior of DPM for cancer detection. Since DPM is amulticlass detector, we trained the system with 3 di�erent classes: cancerous lesions, benignlesions and normal tissue. Due to the large variability of the shapes of cancerous lesions,the number of components becomes a relevant parameter in terms of cancer detection.Hence, in this experiment, we compare di�erent con�gurations of components.Figure 3.15 shows the ROC and FROC results and Table 3.5 summarizes all the results.When detecting cancerous lesions, the di�erence in performance between the di�erentnumber of components is higher than when detecting lesions. In this case, although Azvalues were similar for 1, 2 and 3 components in the ROC analysis, the performance of tworoots with parts in the FROC analysis obtained a better sensitivity (or LLF) but the three-component con�guration obtained lower FP detections per image (or NLF) than the otheroptions. This can be explained by the fact that cancer detection is a more complex processcompared to lesion detection, hence the classi�er needs more information to distinguishmalignant from benign lesions than when detecting lesions from normal tissue.3.3.6 Comparison with the most representative methodsIn this subsection, the best con�guration of the DPM algorithm for lesion detection iscompared with some of the more important works in the current literature. One of themain drawbacks when comparing di�erent methods is the heterogeneity in the datasetsused. Thus, in this section, the RGI �ltering proposed by Drukker et al. [35], the Multi-fractal �ltering proposed by Yap et al. [130] and the Rule-based region ranking presentedby Shan et al. [109] have been implemented to compare the results obtained by the pro-posed approach using the same images. Speci�cally, both dataset D1 and D2 have beenused for assessment of these methods. For a better comparison, all the methods in thissubsection have been assessed in terms of TPR and FP/image. The methods involved in
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3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 75this comparison are outlined next.RGI �ltering techniqueDrukker et al. [35] proposed a lesion detection and classi�cation method as a two-stageprocess. The �rst stage is the detection of lesion candidates using a RGI �ltering technique.The second stage is the classi�cation of these candidates, segmenting them by maximizingan average radial gradient ARD index for regions grown from the detected points andclassifying them with a Bayesian NN into false positive results and actual lesions. Thiswork focuses on the performance evaluation of the initial lesion detection stage, thus onlythe location of lesion candidates is evaluated.Lesion candidates are identi�ed using a �ltering technique based on the calculation ofthe RGI of contours throughout the image [79]. Lesion like shapes for a given point
(x, y) in the image are obtained by multiplying the image with a 2D isotropic Gaussianfunction centered at (x, y) to construct a constrained image. Contour candidates for agiven point are obtained by gray-level thresholding on the constrained image. All possiblelesion contours within a speci�ed size range are determined, and the RGI value is calculatedfor each contour as a measure of the likelihood that a given contour represents a lesion.

RGIi(x, y) =
1

∑

(x′,y′)∈Ci
|~g(x′, y′)|

∑

(x′,y′)∈Ci

~g(x′, y′) · r̂(x′, y′) (3.7)where Ci is the i-th possible lesion contour, ~g(x′, y′) is the maximum gray-value gradientvector of length |~g(x′, y′)| and r̂(x′, y′) the unit radial vector pointing from (x, y) to (x′, y′).By de�nition, due to normalization, the RGI values are between 1 and -1, which indicatethat, along the contour, all gradients point radially outwards and inwards respectively. Fora given image point (x, y), the contour with the maximum absolute RGI value is selected,and this value is assigned to the (x,y) coordinate in the RGI-�ltered image. The RGI-�ltered image subsequently undergoes thresholding to determine lesion candidates. Thethreshold is varied iteratively until either at least one area of interest is detected, indicatinga lesion candidate, or the a minimum speci�ed RGI threshold value is reached.Multifractal �ltering techniqueThe main contribution of the multifractal �ltering technique lays in the implementationof multifractal analysis in breast US. In 2008, Yap et al. [130] presented a novel lesion



76 CHAPTER 3. AUTOMATIC BREAST LESION DETECTIONdetection method based on a set of image processing operations, namely histogram equal-isation, hybrid �ltering, multifractal �ltering, thresholding segmentation, and rule-basedROI selection. To ensure the homogeneity of the US images, histogram equalization is�rst implemented. Then the speckle noise is reduced using a hybrid �ltering approachto combine the strength of the nonlinear di�usion �ltering [127] to produce edge-sensitivespeckle reduction, followed by linear �ltering (Gaussian blur) to smooth the edges and toeliminate over-segmentation. Subsequent to hybrid �ltering, multifractals [53] are used tofurther enhance the partially processed images. Multifractal analysis refers to the analysisof an image using multiple fractals (i.e. not just one as in fractal analysis). The generalizedformulation for Multifractal Dimensions (D) of order q can be represented as:
Dq =











1
q−1 limε→0

log(xq(ε))
log(ε) for q ∈ R and q 6= 1

lim
ε→0

∑

i

µi log µi

log(ε) for q = 1
(3.8)where ε is the linear size of the cells, q is the order for cell size ε and µ is the measurede�ned as the probability of the grayscale level in the images, where all the gray levels fallin the range of [0, 1]. From Yap et al.'s experiment, multifractal analysis enables improvedseparability of tumour regions from normal regions. Further discussion on multifractalanalysis can be found in Yap et al. [130].After pre-processing, images were segmented by using a gray-value thresholding segmen-tation method [101]. This thresholding segmentation often leads to the identi�cation ofmultiple regions of interest, of which, generally only one or two would be of diagnosticimportance. To identify these important regions, a rule-based ROI selection based on thesize of the region and location is used as a discriminative criterion. Based on the knowledgeprovided by expert radiologists [103], it is assumed that most of the lesions are located inthe upper part of the images. Hence, a reference point (x, y) where

x =
image height

3
, and y =

image width
2

(3.9)is chosen. Thus, the suspicious lesion is selected as the largest segment is closest to the
(x, y) location.Rule-based region rankingShan et al. [109] proposed a lesion detection methodology that considered both texture andspatial features. They �rst used the Speckle Reducing Anisotropic Di�usion (SRAD) [133]



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 77as a de-speckling method. The SRAD method iteratively processes the image with adaptiveweighted �lters to reduce noise and preserve edges. The di�usion coe�cient is determinedby
c(q) =

1

1 + [q2(x, y; t)− q20(t)]/[q
2
0(t)(1 + q20(t))]

(3.10)where q(x, y; t) is the instantaneous coe�cient of variation depending on the gradient ∇Iand the Laplacian ∇2I and determined by
q(x, y; t) =

√

(1/2)(|∇I|/I)2 − (1/4)(∇2I/I)2

[1 + (1/4)(∇2I/I)]2
(3.11)The initialized q0(t) is given by

q0(t) =

√

var[z(t)]

z(t)
(3.12)where t is the iteration time and z(t) is the most homogeneous area in the image at iteration

t and var[z(t)] is its variance.Once the image is de-speckled, an iterative threshold selection algorithm is applied tosegment the image. First, all local minima of the image histogram are calculated and thede-speckled image is binarized using the smallest local minimum as a threshold. Then, ifthe ratio between the number of foreground pixels and the number of background pixelsis less than 0.1, the next local minimum value is set as a threshold. The process continuesiteratively until the ratio is larger than 0.1, which is chosen experimentally in the originalpaper. After that, morphological operators (dilate and erode) are performed to removenoisy regions. Subsequently, if none of the regions intersect with an image center region (awindow about half the size of the entire image located on the image center) the thresholdbecomes the next local minimum and the process is repeated. Once a region intersectswith the central window, regions connected with the boundary that do not intersect withthe central window are removed. Then, the remaining lesion region candidates are rankedfollowing the scoring formula
Sn =

√
Arean

dis(Cn, C0) · var(Cn)
, n = 1, ..., k (3.13)where k is the number of candidate regions, Arean is the number of pixels in the region,

Cn is the center of the region, C0 is the center of the image, dis(a, b) is the Euclidean



78 CHAPTER 3. AUTOMATIC BREAST LESION DETECTIONdistance between points a and b and var(Cn) is the variance of a small region (5×5 pixels)centered on Cn.Finally, the seed point is located in the center of the winning region. Thus, ((xmin +

xmax)/2, (ymin + ymax)/2) is considered as a seed point, where [xmin, ymin, xmax, ymax]de�nes the minimum rectangle that contains the lesion.Comparison resultsSince we used the best con�guration for DPM, we have also tuned several parametersinvolved in the other methods to obtain the best results in our datasets. In Shan etal. [109], since most of the lesions appear in the top region of the image, the centralwindow was initialized in the center-top part of the image. In addition, the iteration time
t was set to 50 in the SRAD process. For the Yap et al. [130] approach, in the Multifractalanalysis the fractal order was set to q = 1 for the cell size ε = 3.Example results from both datasets D1 and D2 are presented in Figures 3.16, 3.17and 3.18. Figure 3.16 shows two examples from di�erent datasets where all the detectionmethods detected the lesion correctly. Both examples present lesions with well de�nedboundaries and with di�erent appearances from the normal tissue (intensity values andtexture).Figure 3.17 depicts di�cult examples in which none of the methodologies compared wereable to detect the lesion. The example from Dataset D1 presents a complex shadow thatinduces all the methods to a wrong result. In the example from Dataset D2, there is alarge area of the image corresponding to lung air with a similar intensity appearance tothe lesion. In addition, the lesion's size is small which also made the detection di�cult.Finally, Figure 3.18 shows di�cult examples in which only the DPM approach detectedthe lesion correctly. The example from Dataset D1 presents a complex shadow with similarintensity to the lesion region, which made all the methods except DPM fail in detectingthe actual lesion. The same methods fail in the example from Dataset D2 that presents alesion with a similar appearance to normal tissue. Furthermore, the lesion is located nearthe top border of the image and therefore missed by all the methodologies that assumed agiven lesion location.Quantitative results are presented in Table 3.6. They are provided in terms of TPRand FPs per image. Overall, the DPM approach out-performed the other methods for thelesion detection in both datasets, with 0.8 TPR and 0.28 FP/image in Dataset D1, and
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Dataset D1 Dataset D2

RGI
Multifractal
Rule-based

DPM
Figure 3.16: Examples from datasets D1 and D2 in which all the methodologies correctlydetect the lesion. The ground truth is marked with a square, while the detection is markedwith an X. In the �rst column are the results with an image from Dataset D1, and inthe second column from Dataset D2. The �rst row shows the results of the RGI �lteringtechnique [35], the second row shows the results of the Multifractal �ltering technique [130],the third row shows the result of the Rule-based region ranking approach [109] and thelast row shows the results of the proposed method.
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Dataset D1 Dataset D2

RGI
Multifractal
Rule-based

DPM
Figure 3.17: Examples from datasets D1 and D2 where all the methodologies miss thedetection of the lesion. The ground truth is marked with a square, while the detection ismarked with an X. In the �rst column are the results with an image from Dataset D1, andin the second column from Dataset D2. The �rst row shows the results of the RGI �lteringtechnique [35], the second row shows the results of the Multifractal �ltering technique [130],the third row shows the result of the Rule-based region ranking approach [109] and thelast row shows the results of the proposed method.
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Dataset D1 Dataset D2

RGI
Multifractal
Rule-based

DPM
Figure 3.18: Examples from datasets D1 and D2 in which only the DPM approach correctlydetects the lesion. The ground truth is marked with a square, while the detection is markedwith an X. In the �rst column are the results with an image from Dataset D1, and inthe second column from Dataset D2. The �rst row shows the results of the RGI �lteringtechnique [35], the second row shows the results of the Multifractal �ltering technique [130],the third row shows the result of the Rule-based region ranking approach [109] and thelast row shows the results of the proposed method.
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Table 3.6: Comparison of performance for di�erent proposals.Method Dataset TPR FPs per imageDrukker et al. (2002) [35] D1 0.76 1.57D2 0.72 2.47Yap et al. (2008) [130] D1 0.76 0.31D2 0.59 0.51Shan et al. (2008) [109] D1 0.75 0.50D2 0.60 0.54Proposed method D1 0.80 0.28D2 0.79 0.21

0.79 TPR and 0.21 FP/image in Dataset D2. The multifractal �ltering technique [130]and rule-based region ranking [109] obtained good results for the images in Dataset D1,
0.76 and 0.75 TPR with 0.31 and 0.50 FP/image respectively, but not for the images inDataset D2, 0.59 and 0.60 TPR with 0.51 and 0.54 FP/image respectively. Finally, theRGI �ltering technique [35] showed a good performance in terms of TPR in both datasets(0.76 and 0.72 TPR) but with a large number of false-positive detections per image (1.57and 2.47 respectively).Comparing the performance of the methodologies according to which dataset is used,only the DPM provided similar results for both datasets. The rest of the methods wereinconsistent and provided poor results when tested on Dataset D2 compared to DatasetD1. For that reason we made a further evaluation to see if there are signi�cant di�erencesbetween both datasets. Speci�cally, we compared the lesion size, the ratio between the areaof the lesion and the area of the image, and the distance from the image center and the lesioncentroid. Figure 3.19 shows the box plot charts for these comparisons where di�erencesbetween both datasets are appreciable: the average size of the lesions in Dataset D1 issmaller than in Dataset D2 but the ratio between lesion pixels and total image pixels ishigher. Regarding the spatial distribution of the lesions in the image, lesions in Dataset D1are more centered than in Dataset D2. However, none of these di�erences are signi�cant,hence, other characteristics such as the quality of the image may a�ect the behavior of themethodologies. The images in Dataset D2 present more de�ned structures such as ribs,muscles or parenchymal tissue that may lead some methodologies to err when detectinglesions.Finally, the average computational time of each methods is compared, as shown inTable 3.7. Note that in most of the cases, average detection time for dataset D2 is higher
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(a) (b)

(c)Figure 3.19: Dataset features comparison. Box plot chart comparing (a) the lesion size,(b) the ratio between the area of the lesion and the area of the image, and (c) the distancefrom the image center and the lesion centroid.than D1 due to the resolution of these images. The Drukker et al. [35] approach is theslowest approach in detecting lesions, taking an approximate time of 45 seconds per image.This is caused by the fact that Drukker computes the RGI value for each point in theimage, which is a time-consuming task. Shan et al. [109] is notably faster than the restof the methodologies. The training time is also included for the DPM technique for bothdatasets. Each fold in the training process in the DPM takes 211.67 minutes for DatasetD1 and 196.71 minutes for Dataset D2.3.3.7 Comparison of the reported results in other literature methodsIn this subsection we compare the obtained results with the results reported in otherimportant works in the literature but have not been implemented. Tables 3.8 and 3.9summarize the results for lesion and cancer detection respectively.
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Table 3.7: Comparison of computation time for di�erent proposals.Method Dataset Avg. detection Avg. trainingtime/image (s) time/fold (min)Drukker et al. (2002) [35] D1 45.56 -D2 44.42 -Yap et al. (2008) [130] D1 3.29 -D2 5.91 -Shan et al. (2008) [109] D1 0.42 -D2 0.68 -Proposed method D1 4.14 211.67D2 6.25 196.71Table 3.8: Comparison of performance for other lesion detection methodsMethod Az LLF NLFKutay et al. (2003) [80] 0.970 - -Drukker et al. (2005) [37] 0.950 0.80 0.60Mogatadakala et al. (2006) [94] 0.910 - -Proposed method 0.975 0.86 0.28Table 3.9: Comparison of performance for other cancer detection methods.Method Az LLF NLFHorsch et al. (2002) [65] 0.870 - -Drukker et al. (2003) [36] - 0.660 0.25Kutay et al. (2003) [80] 0.810 - -Drukker et al. (2005) [37] 0.860 0.80 0.83Alvarenga et al. (2012) [6] 0.870 - -Proposed method 0.929 0.78 1.15Analyzing the results of Table 3.8, in terms of lesion detection, our approach has obtainedthe best performance in the ROC analysis (Az = 0.975), while in the FROC analysis ithas obtained a sensitivity of 0.86 with 0.28 FP detections per image. These results slightlyoutperformed the results reported by Drukker et al. [35], who obtained a sensitivity of 0.87with 0.76 FP detections per image. Hence, our proposal obtained a similar sensitivity withless FP detections per image.In the task of cancer detection (see Table 3.9), our approach has also obtained the bestperformance in terms of the ROC analysis (Az = 0.929), while in the FROC analysis it hasobtained a sensitivity (0.78) close to Drukker et al. [37] (0.8) but with a higher number of



3.3. EXPERIMENTAL RESULTS IN BUS LESION DETECTION 85FP detections per image (1.15 compared to 0.83).As mentioned before, the lack of standard datasets of US images makes the comparisonbetween the ROC and the FROC results reported by the methods in the literature verydi�cult due to the high variability in image quality between US systems, the heterogeneityof lesion type, the size of the lesions and number of images. However, our proposal obtainedthe best results for lesion detection, and seems to be in line with the best approach fordetecting cancerous lesions.3.3.8 DiscussionAfter the extensive analysis of the di�erent parameters involved in the DPM methodology,we have found that most of the parameters do not signi�cantly in�uence the results ofthe DPM detecting lesions in breast US images. Although not signi�cant, results indicatethat the con�guration that obtained the highest sensitivity detecting lesions with fewerFP results per image is a 3-component mixture model with 8 parts of 6× 6 pixels, with atraining threshold t = 0.7, a cell size of 8× 8 pixels and a parameter λ = 5.In terms of the training threshold value, we have found that thresholds lower than 0.5and higher than 0.8 decrease the performance of the detector signi�cantly. The selection ofa threshold within this range is not critical for the method's performance according to theexperimental results. We have also noticed a large di�erence of computation time betweendi�erent numbers of components and parts. In this case, the selection of the numberof components clearly depends on the speci�c problem and the available computationalresources. In cases where computation time is not an issue, a three component model with8 parts, which obtained slightly better results, is the recommended con�guration.An experiment for reducing the FP results was analyzed. The reduction in terms ofsensitivity was not signi�cant, which makes the results very attractive in case we wantto adapt this methodology to 3D images where the number of FP detections needs tobe strictly low without decreasing the sensitivity. Later, a bounding box estimation testwas performed to evaluate the estimation of the detected bounding box as a function ofdi�erent overlap thresholds. Comparing this with other methods in the literature, only [35]performed a similar experiment obtaining an accuracy close to 70% for an overlap value of
0.5. These results are similar to those presented in Figure 3.14.Regarding the comparison made with the implementation of di�erent methods with acommon dataset, the methods based on image processing (RGI �ltering [35], multifrac-



86 CHAPTER 3. AUTOMATIC BREAST LESION DETECTIONtal �ltering [130] and rule-based region ranking [109]) obtained poor results when dealingwith images acquired from two di�erent US systems. One explanation is that most of theapproaches take into consideration the characteristics of their datasets such as the lesionlocation, the in�uence of the speckle noise or the appearance of the lesions. These charac-teristics may not be the same in other datasets, reducing the accuracy of the algorithms.We can also detect di�erences in performance regarding the dataset used. Dataset D2 wasacquired using a modern US system, which introduces new challenges for the existing tech-niques in lesion detection. These US systems acquire high-resolution images which mayinclude other structures such as ribs, pectoral muscle or air in the lungs making the lesiondetection more di�cult. Dataset D1 was obtained from an older US system. The nature ofthe images is normally of a lower resolution and noisier. Hence, for a better visualization,the radiologist tends to locate the suspected lesion in the center of the image. Nowadays,with high quality US systems this is no longer necessary due to the fact that one imagecan capture larger regions of the breast. Hence, methodologies that made any kind ofassumption about the lesion's location fail in most cases using modern US systems.The proposed technique obtained the best results for both datasets. This is due tothe fact that this approach adopts a training process that helps the method to build aparticular characteristics model of each dataset. Thus, it is not as dataset dependent asthe other methodologies.For an exhaustive assessment, we have also compared the proposed methodology resultswith those published in some of the most important works for lesion detection. Ourproposal slightly outperformed the other works in terms of both the ROC and FROCanalysis, although di�erent datasets were used.Related to cancer detection, the performance of our approach in terms of the ROCand FROC analysis obtained worse results compared to lesion detection. This could beexplained by the fact that cancerous lesions have a large variability in terms of shape,texture and intensity, making the process more complex. However, when comparing ourresults with others reported in the literature, our proposal obtained the best performancein terms of the ROC analysis. In terms of FROC analysis we obtained results similar to thebest work [37], but considerably reducing the typical framework (detection, segmentation,feature extraction and classi�cation).



3.4. CONCLUSIONS 873.4 ConclusionsIn this chapter we have presented a computerized lesion detection system for breast USimages using Deformable Part Models that has been evaluated in a large dataset. Di�erentcon�gurations of parameters have been tested to improve the results of the DPM in breastimages. We have also performed a comparison with several of the most important methodsin the literature, using the same datasets. Amongst the di�erent methodologies compared,the proposed method obtained the best results for both datasets. This method is adaptableto the speci�c characteristics of any dataset, since it is machine-learning-based where aparticular model is constructed for each dataset. In addition, we have compared theresults obtained with the results published by other relevant methodologies in the literature,obtaining the best results in the ROC analysis for lesion detection. In the FROC analysis,our method outperformed the best state-of-the-art approach in detecting lesions but wereported a slightly higher number of false-positive detections per image when detectingmalignant lesions. We also proved that by building a model to directly detect malignantlesions, we can considerably reduce the traditional CAD pipeline (detection, segmentation,feature extraction, lesion classi�cation) obtaining results similar to those reported in thestate-of-the-art.In conclusion, we have shown that DPM can be used for lesion detection in breastUS images and has the potential of being implemented in a clinical environment. Thislesion detection approach can also be used to solve the initialization step of some lesionsegmentation algorithms, which will be dealt with in the next chapter. Furthermore, themethodology does not make any assumption on the dimensionality of the data, henceit is our assertion that it can be adapted to a 3D volume such as Automated BreastUltrasound (ABUS), which is currently being adopted in clinical practice and becoming arelevant topic of interest in medical imaging research.



88 CHAPTER 3. AUTOMATIC BREAST LESION DETECTION



4Breast lesion segmentation
4.1 IntroductionImage segmentation plays an important role in the analysis of US images and is a relevantstep in a CAD system. The aim of the lesion segmentation algorithms in medical imagingis to accurately describe the boundary of the lesion regions. This allows the radiologist tocompare the same abnormality over time and extract conclusions about its behavior (if thelesion size grows or decreases) or extract discriminative features for a further classi�cationstage. In addition, an accurate segmentation can provide the radiologists with a realisticmeasure of the lesion size before they start a biopsy procedure.Lesion segmentation in breast sonography is an important topic of interest, as shownin Chapter 2. Reviewing the state-of-the-art, one's attention is drawn to the relativelylow number of approaches based on MRF, which in principle also seems an interestingframework incorporating both spatial and intensity information. Among these, the work ofXiao et al. [129] seems to have a good potential for segmentation, but their work was basedon a limited number of cases and also needed an important amount of manual interaction.The aim of this chapter is to develop and evaluate a lesion segmentation algorithm based89



90 CHAPTER 4. BREAST LESION SEGMENTATIONon the earlier work of Xiao et al. More speci�cally, we present di�erent approaches toimprove the Xiao et al. approach by means of reducing the human interaction involvedin the method. Two datasets of US B-mode breast images obtained from two di�erenthospitals using di�erent US equipment are used to evaluate these approaches and comparethem to the original method. Furthermore, the results are evaluated depending on thelesion type. This study allows obtaining conclusive results regarding the accuracy of anMRF based method, and the in�uence of the lesion type in the dataset of images usedfor the segmentation process. This information could be useful in terms of further CADresearch for focusing the e�orts in the pathologies that present the worst results. Finally,a comparative study with di�erent approaches in the literature is performed.4.2 MRF-MAP segmentation overviewThe MRF-MAP segmentation method was originally proposed by Zhang et al. [136] tosegment brain tissues on MRI by estimating a bias (or distortion) �eld while labelingtissues at the same time, and later was adapted to BUS images by Xiao et al. [129].They considered the bias �eld as an additive artifact in the logarithmic ideal image. Thisdistortion �eld is estimated to restore the ideal image while regions of similar intensityinhomogeneity are identi�ed using a MRF and MAP framework; thus, this method will bereferred to hereafter as the MRF-MAP approach (see Figure 4.1).4.2.1 Image modelAttenuation-related intensity inhomogeneities are assumed to be a multiplicative �eld withlow-frequency. A logarithmic transformation yields such a multiplicative model to anaddition y = y∗ + d, where d denotes the log-transformed intensity distortion �eld. It isassumed that y∗i , ideal values at pixel i, follow a mixture of Gaussian distributions. Hence,assuming that the pixel intensities are statistically independent, the probability density forthe entire image given the bias �eld is de�ned as
p(y|d) =

∏

i∈S

∑

j∈L

g(yi − di; θ(xi))p(xi = j) (4.1)where L denotes the label set; xi is the corresponding class label of pixel i; and S denotesthe image pixel set. The prior probability is p(xi = j) and the Gaussian distribution is
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Figure 4.1: Block diagram of MRF-MAP method.de�ned as g(y∗i ; θ(xi)) with parameters θ(xi) = (µxi
, σxi

), µxi
and σxi

being the mean andstandard deviation of class xi, respectively.Given the observed intensity values, the Baye's rule can be used to obtain the posteriorprobability of the bias �eld:
p(d|y) = p(y|d)p(d)

p(y)
(4.2)where p(y) is a normalization constant, and the prior probability of the bias �eld p(d)is modeled as a Gaussian with zero mean to capture its smoothness property. The MAPprinciple can be used to obtain the optimal estimation of the bias �eld d̂, given the observedintensity values:

d̂ = argmax
d
p(d|y) (4.3)A zero-gradient condition is then used to assess this maximum, which leads to (see [128]for details).
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Wij =

p(yi|xi, di)p(xi = j)

p(yi|di)
(4.4)

di =
[FR]i

[Fψ−1E]i
, with E = (1, 1, ...)T (4.5)where Wij is the posterior probability that pixel i belongs to class j given the estimatedbias �eld d; F is a low-pass �lter, and R is the mean residual for a pixel i, and is de�nedas

Ri =
∑

j∈L

Wij(yi − µj)

σ2j
(4.6)and ψ is the mean inverse covariance, in which

ψ−1
ik =







∑

j∈L

Wijσ
−2
j if i = k

0 otherwise (4.7)If the prior probability p(xi = j) in equations 4.1 and 4.4 is set to be equal for all j ∈ Lat every pixel i, Wij is the normalized conditional probability and its estimation is givenby a maximum-likelihood approach. Hence, an EM algorithm can be applied as follows:Expectation step: calculates the posterior tissue class probability Wij when the bias�eld d is known using equation 4.4.Maximization step: the bias �eld di is estimated when Wij is known using equation4.5.Initially, the bias �eld is initialized to zero everywhere in the image. The algorithm runsiteratively until estimating the bias �eld. Once the bias �eld is obtained, the ideal intensity
I∗ can be restored by dividing the observed image I by exp(d). A class labeling x of thepixels is obtained by assigning to each pixel i ∈ S the label j ∈ L that has the largestvalue Wij .4.2.2 Label estimation using MRF-MAP frameworkThe maximum-likelihood approach is known to be sensitive to noise and thus one can arguethat it would not be suitable for US images. Hence, Zhang et al. [136] proved that a fullMAP estimation can be achieved incorporating a MRF prior model for the image tissueclasses. MRF formulation provides a convenient way to keep spatial information coherence.



4.2. MRF-MAP SEGMENTATION OVERVIEW 93Let x indicate the true but unknown labeling of the given image, and x̂ represents anestimate of x. Both variables can be interpreted as realization of a random �eld X, andthe log-transformed image y can be interpreted as the realization of a random �eld Y .Then, the problem becomes one of estimating x, given y, which can be obtained usingMAP estimation as follows:
x̂ = argmax

x∈X
p(x|y) (4.8)According to Baye's rule

p(x|y) = p(y|x)p(x)
p(y)

(4.9)where p(y|x) has the form of equation 4.1, p(y) is a normalization constant, and p(x) isdiscussed next.In MRF, it is assumed that neighboring sites have direct relationships with each other,and tend to have the same class labels. The probability density of an MRF model can bedescribed as a Gibbs distribution as follows
p(x) = Z−1 exp[−U(x)] (4.10)where Z is a normalization term and U(x) an energy function de�ned as
U(x) = β

∑

c∈C

Vc(x) (4.11)where, Vc(x) is a clique potential over all possible cliques C, which is de�ned as a subsetof pixels in S where every pair of pixels are neighbors and β is a positive constant thatcontrols the size of that clique. The clique potential of xi with respect to its clique neighbor
xi′ is of the form

Vxi,x
′

i
(xi) = 1− δ(xi=xi′)

(4.12)
δ(xi=xi′ )

=







1 if xi = x′i

0 if otherwise (4.13)Once the energy function U(x) is built, the MAP of class labels is obtained as
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x̂ = argmin

x∈X
U(y|x) + U(x) (4.14)where U(y|x) likelihood energy is the logarithm of the posterior probability p(x|y), and itis de�ned as follows

U(y|x) =
∑

i∈S

[

(yi − µxi
)2

2σ2xi

+ log(σxi
)

] (4.15)and the prior energy U(x) can be de�ned as
U(x) =

∑

i∈S

∑

i′∈Ni

[

1− δ(xi=xi′ )

] (4.16)where Ni denotes the set of neighbor pixels of i.Finding the global minimum in equation 4.14 is non-trivial, due to the large numberof possible con�gurations for pixel labels. Hence, Iterated Conditional Modes (ICM) [18]algorithm is used to obtain a suboptimal solution, with a fast convergence.Now, the MRF model is introduced in the segmentation framework by substituting theprior probability p(xi = j) in equation 4.4 for the MRF prior p(xi = j|xNi
), which takesthe labels of the neighbor pixels into account.

Wij =
p(yi|xi, di)p(xi = j|xNi

)

p(yi|di)
(4.17)where p(xi = j|xNi

) has the form of equation 4.10.The algorithm is implemented in a multiresolution Gaussian pyramid. As further dis-cussed in Xiao et al. [129], this implementation justi�es the assumption of a GaussianProbability Density Function (PDF) for US images in general. Ideally, the PDF shouldbe derived from the ultrasound physics of image formation. However, in a multiresolu-tion implementation, lower-resolution (�blurred�) solutions are shown to locally satisfy theGaussian assumption. Thus, the classi�cation and the distortion �eld estimation are per-formed at each scale, and both results are used to initialize the solution search at the next�ner scale. Therefore, in each scale, the algorithm is only adjusting rather than solvingfrom scratch for the parameters. Note that the Gaussian PDF assumption would not holdif the method were applied at a single resolution.



4.3. AUTOMATIC INITIALIZATION PROCESS 954.3 Automatic initialization processZhang et al. [136] proposed a MRF-MAP methodology for removing the bias �eld removaland segmenting brain tissue on MRI. Later, this work was adapted to US images by Xiaoet al. [129]. One of the characteristics of brain MRI is its histogram, which is commonlybimodal (see Figure 4.2). Thus, the MRI histogram has two distinctive peaks, hence themixture of Gaussian representation and the EM application seem a feasible approach.However, as far as we have observed in US images, the histogram of the backgroundalmost always overlaps with the histogram of the lesion information. Figure 4.2 showsa comparison between the histogram of a brain MRI and a BUS image where the MRIhistogram is clearly bimodal, and on the US image, the two peaks overlap.

(a) (b)

(c) (d)Figure 4.2: Intensity distributions of a brain MRI and a BUS. (a) Brain MRI. (b) Corre-sponding histogram. (c) Original BUS image. (d) Corresponding Gaussian distributions(in red). The larger Gaussian corresponds to the background and the smaller to the lesion.Both plotted over the image histogram (in blue).The MRF-MAP proposal solved this problem by selecting the Gaussian distribution



96 CHAPTER 4. BREAST LESION SEGMENTATIONparameters (mean and standard deviation) empirically, analyzing the intensity histogramsof the lesion region and the background by manually de�ning two di�erent windows andmanually �tting the best Gaussian distribution to them, as illustrated in Figure 4.3.

(a)

(b) (c)Figure 4.3: Histograms of two regions in an US image. (a) B-mode BUS image withthe two regions delimited by rectangles. (b) Histogram of the lesion (obtained from thecentral window). (c) Histogram of the background (obtained from the left window). Bothhistograms depicted in blue and Gaussian distributions in red.The main disadvantage of this initialization proposal is the cost in terms of user inter-action. As far as we determined, the initialization step takes longer than 2 minutes andrequires a previous image processing knowledge, which is an important drawback for radiol-ogists. We propose to improve the original initialization step including spatial information.Due to the di�culty of implementing a fully automatic initialization using the intensityinformation alone, the initialization reduces the user interaction from the empirical choiceof parameters to only one-click. Thus, the user selects the approximate location of thelesion, and a small window is de�ned to characterize the lesion pixels. Our experiments



4.3. AUTOMATIC INITIALIZATION PROCESS 97show that most of the images in the dataset present lesions within 1 and 2 cm. Althoughthis choice implies including unwanted background information in the lesion window insome cases, it is not critical for the results since the number of background pixels is muchlower than the lesion information. In addition, it is important to ensure that the windowalways includes as much lesion information as possible to statistically model the infor-mation as a Gaussian distribution. Taking these considerations into account, the size ofthe lesion window is �xed to 2 cm. Subsequently, a larger window is opened to obtain arepresentation of the background information. To obtain the most accurate backgroundinformation as possible, the pixels in the lesion window are ignored. However, some lesionpixels can still be part of the background in cases where the lesion is bigger than theprede�ned lesion window size, but according to our experiments, the number of these canbe neglected compared to the size of the background. This methodology is named LocalLesion Information (LLI) strategy and can derive in two di�erent initialization approachesdepending on how the original MRF-MAP method is applied: Local Lesion Informationat the Global image (LLIG), which uses the whole image, or Local Lesion Information atthe Partial image (LLIP), which uses a partial image obtained by cropping the image bymeans of the background window. Figure 4.4 shows an example of LLI initialization usingboth windows and the point placed by the user.

Figure 4.4: Local Lesion Information (LLI) acquisition. The inner rectangle contains pixelvalues for the lesion description and the outer rectangle contains background information.A third alternative to improve the initialization step is also proposed, in which thehistogram information is retrieved from 4 small windows surrounding the lesion to ensurethat no pixel belonging to the lesion is used to compute the background histogram. Thisproposal is named Local Lesion Surrounding Information (LLSI). Figure 4.5 shows an



98 CHAPTER 4. BREAST LESION SEGMENTATIONexample.

Figure 4.5: Local Lesion Surrounding Information (LLSI) acquisition. The central rect-angle contains pixel values for the lesion description, and the outer rectangles containbackground information.4.4 Results4.4.1 Image acquisitionTwo breast B-mode US image datasets containing 212 lesion cases in total (98 malignantand 114 benign) were used to evaluate the performance of this proposal. The breast B-mode US images were collected from two di�erent hospitals and ultrasound machines.Dataset S1 was acquired from the UDIAT Diagnostic Center of Parc Taulí Corporation(Sabadell, Spain) with a Siemens Acuson Sequoia C512 system 17L5 HD linear arraytransducer (8.5 MHz), and included 140 real BUS images: 44 malignant and 96 benign.Dataset S2 was obtained from the Churchill Hospital (Oxford, England) with a Zonarez.one system and a L10-5 linear array transducer (8.5 MHz), and included 72 real breastUS images: 54 malignant and 18 benign. In this study, only 1 image per case was usedin the experiments and an experienced radiologist performed the case selection on thebasis of the most representative cases for all pathologic types. Table 4.1 provides detailsof the two datasets in terms of lesion type. All of the images involved in this work werepreviously made anonymous to accomplish the rules issued by the Ethical Committee ofboth hospitals concerning the data con�dentiality.One of the aims of this work is the evaluation of the segmentation results taking into
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Table 4.1: B-mode ultrasound datasetDataset S1 Dataset S2 Total PercentageBenign Cyst 56 2 58 27.35%FA 34 13 47 22.17%Other benign 6 3 9 4.24%Malign IC (common type) 27 42 69 32.55%IC (uncommon type) 14 8 20 9.44%DCIS 3 6 9 4.25%Total 140 72 212 100%account the type of lesion. Within malignant and benign cases, this study focuses ondi�erent speci�c pathologies: cyst, 58 images; FA, 47 images; other benign masses, 9images; Invasive Carcinoma (IC;common type), 69 images; IC (uncommon type), 20images; and DCIS, 9 images. IC (common type) lesions include IDC and DCIS plus IDC.IC (uncommon type) includes mucinous carcinoma and ILC. Other benign masses includespapilloma, �brosis and lymphoma. An example of each lesion type is shown in Figure 4.6.The classi�cation of these types is based on the radiologists' experience, in line with theexisting literature [50].4.4.2 Ground truth generationFor the evaluation of the segmentation results, Ground Truth (GT) provided by expertradiologists is needed. However, US images present a high inter-observer variability, anda consensus GT is commonly used. To generate this consensus GT, the one of the mostextended techniques was used: Simultaneous Truth And Performance Level Estimation(STAPLE) [126]. This algorithm formulates the scenario as a missing-data problem, whichprovides a hidden GT estimation inferred from the experts' segmentation using an EMalgorithm.4.4.3 Inter-observer studyTo generate the consensus ground truth, we �rst analyzed the inter-observer agreementto determine whether the di�erences between the experts are signi�cant. We randomlyselected 50 images regardless of the dataset they belonged to, and performed manualsegmentations by an expert radiologist and 5 biomedical engineers to generate a consensusGround Truth (GT) using the STAPLE algorithm. Table 4.2 shows the results obtained
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(a) (b)
(c) (d)
(e) (f)
(g) (h)Figure 4.6: Example of each type of lesion: (a) cyst, (b) FA, (c) �brosis, (d) mucinouscarcinoma, (e) IDC, (f) DCIS, (g) DCIS+IDC and (h) ILC.to compare each expert segmentations with the consensus GT. Using the DSC value as areference, note that there are no signi�cant di�erences between the radiologist's and theengineers' segmentations as shown in Figure 4.7. This �nding indicates that all raters followa similar segmentation criterion and that their accuracy is equivalent. Thus, to evaluatethe entire dataset, we have generated a consensus ground truth using the segmentationsfrom a radiologist and 5 biomedical engineers for the entire dataset.
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Table 4.2: Comparison between of biomedical engineers and a radiologist segmentationsUser Sensitivity Speci�city PPV AO DSCRadiologist 0.871 0.997 0.968 0.845 0.914Engineer 1 0.806 0.999 0.991 0.800 0.885Engineer 2 0.859 0.998 0.997 0.840 0.910Engineer 3 0.873 0.997 0.970 0.846 0.912Engineer 4 0.901 0.994 0.919 0.827 0.900Engineer 5 0.878 0.998 0.969 0.852 0.915
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Figure 4.7: Box plot charts comparing the biomedical engineers' and the radiologist'ssegmentations.4.4.4 Quantitative and qualitative resultsAn initial experiment was performed to compare the original MRF-MAP work [129] withthe di�erent proposals based on the LLI initialization (LLIG, LLIP, LLSI). Figure 4.8 showsan example of qualitative segmentation results for di�erent images from both datasetsusing the LLSI approach, where (a and e) show the original BUS images. Their estimateddistortion �elds, and the restored images are shown in (b and f) and (c and g) respectively.Finally, (d and h) show the segmentation results.Table 4.3 details the mean values for all the measures chosen. In this experiment, thecases where the algorithm results do not overlap with the actual lesion were included witha DSC value of 0. This decreases the mean values reported in Table 4.3. Analysis of
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(a) (e)
(b) (f)
(c) (g)
(d) (h)Figure 4.8: Lesion segmentation results. (a-d) Results for an image from Dataset S1. (e-h)Results for an image from Dataset S2. (a, e) Original image. (b, f) Estimated distortion�eld. (c, g) Corrected image. (d, h) Segmentation result.this table shows that 2 of the 3 initialization proposals (LLIG and LLSI) improve thesegmentation results and considerably reduce the user interaction in comparison with theoriginal MRF-MAP proposal.
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Table 4.3: Segmentation results using di�erent evaluation criteria for each segmentationproposal Method Sensitivity Speci�city PPV AO DSCOriginal 0.565 0.991 0.729 0.508 0.610LLIG 0.557 0.996 0.806 0.518 0.635LLIP 0.451 0.997 0.693 0.425 0.519LLSI 0.604 0.995 0.804 0.550 0.663Figure 4.9 shows the segmentation results using DSC and AO values for all the images.Analyzing these diagrams for both measures, we can see that all median values of theresults for each method are within the con�dence interval of the other methods, whichmeans that there are no signi�cant di�erences between the methods. However, as shown inTable 4.3, the LLSI approach obtained the best results, while the LLIP approach obtainedthe worst. The way in which the LLSI approach acquires the background information (4windows surrounding the lesion) avoids the inclusion of shadows and other intensity relatedartifacts, improving the results.
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Figure 4.9: Box diagrams of DSC and AO measures for all the methods.



104 CHAPTER 4. BREAST LESION SEGMENTATION4.4.5 Lesion type comparisonIn this subsection, the segmentation proposals are compared depending on the lesion ty-pology. This allows to obtain conclusive results regarding the best segmentation approachfor both datasets and in relation to the lesion type, as well as which pathologies are morecomplex for the segmentation process. This information is very valuable in terms of fur-ther work in order to focus e�orts on speci�c pathologies. Table 4.4 shows the comparisonresults for the di�erent cancerous lesion types and Table 4.5 summarizes the results forbenign lesions.Table 4.4: Comparison of measure means obtained for cancerous lesions (98 images)Method Sensitivity Speci�city PPV AO DSCIC (common type)(69 images) Original 0.551 0.989 0.688 0.472 0.578LLIG 0.605 0.993 0.795 0.536 0.665LLIP 0.435 0.997 0.703 0.409 0.517LLSI 0.611 0.991 0.752 0.529 0.646IC (uncommon type)(20 images) Original 0.429 0.997 0.753 0.411 0.525LLIG 0.426 0.994 0.78 0.390 0.520LLIP 0.439 0.996 0.831 0.410 0.545LLSI 0.476 0.994 0.818 0.428 0.567DCIS(9 images) Original 0.616 0.995 0.742 0.549 0.655LLIG 0.606 0.997 0.796 0.585 0.686LLIP 0.553 0.996 0.758 0.508 0.613LLSI 0.611 0.997 0.709 0.572 0.655Analysis of these tables makes it possible to conclude that LLSI approach obtains betterresults for IC (uncommon type), cyst, FA, and other benign lesions (134 images of 212).The LLIG approach is better for DCIS (9 images) and IC (uncommon type; 69 images),obtaining slightly better results than LLSI. The LLIP approach and the original MRF-MAP [129] proposal do not provide better performances for any type of lesions. This�nding is also graphically depicted in Figure 4.10, where (a) shows the DSC values foreach type of lesion and approach, and (b) shows the percentage of mis-segmented imagesfor each lesion typology and approach. A mis-segmented image is de�ned by a DSC of lessthan 0.6, which is below the commonly acceptable range. In summary, LLSI obtains thebest results comparing all of the images (see Table 4.3) and the best results for 4 di�erenttypes of lesions, which represent the 63% of the dataset.Finally, Table 4.6 plots a summary of the results of the LLSI method, which has obtained
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Table 4.5: Comparison of measure means obtained for benign lesions (114 images)Method Sensitivity Speci�city PPV AO DSCCyst(58 images) Original 0.584 0.999 0.870 0.576 0.686LLIG 0.605 0.999 0.873 0.587 0.696LLIP 0.546 0.998 0.786 0.528 0.628LLSI 0.607 0.998 0.854 0.588 0.698Fibroadenoma(47 images) Original 0.543 0.982 0.590 0.451 0.535LLIG 0.488 0.996 0.757 0.445 0.548LLIP 0.387 0.998 0.685 0.363 0.448LLSI 0.618 0.994 0.782 0.557 0.664Other benign masses(9 images) Original 0.543 0.999 0.852 0.530 0.657LLIG 0.544 0.998 0.873 0.537 0.663LLIP 0.303 0.994 0.547 0.299 0.376LLSI 0.546 0.999 0.986 0.541 0.684the best results for both datasets, indicating the DSC value, the DSC value excluding themis-segmented images, the percentage of mis-segmented images and the number of cases foreach type of lesion. In summary, the table indicates the performance of each segmentationapproach on every type of lesion.Focusing on the total dataset results (datasets S1 and S2), the best performance isobtained on cyst segmentation with a DSC of 0.69, and only 12.06% of cystic cases are mis-segmented, as they usually show a well-de�ned hypoechoic lesion. FA lesions obtained theworst results among the benign lesions (25.53% of mis-segmented images). These kinds ofabnormalities usually show intensity inhomogeneities within the lesion (see Figure 4.11(a))leading to under-segmented lesions. Cancerous lesions (common IC, uncommon IC andDCIS) obtained a worse performance than benign ones, all with a higher percentage ofmis-segmented images than cysts (24.63%, 55%, and 22.22%, respectively). These kindsof lesions usually show a prominent shadow (see Figure 4.11(b)). Although the LLSIapproach tends to avoid these artifacts, however, the segmentation fails when the imagecontains a large lesion. This problem could be solved in the future by using adaptablewindows depending on the lesion size to improve the background information acquisition.The number of mis-segmented images of uncommon IC is higher than the other carcinomasdue to the fact that the images are mostly composed of ILC, which has a spiculated shapewith blurred contours, increasing the complexity of the segmentation process. Althoughthe quantity of DCIS images was not enough to extract de�nitive conclusions, the resultsindicate that this type of lesion follows the tendency of common IC in terms of mis-
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(a)

(b)Figure 4.10: Segmentation results for each lesion type and segmentation approach. (a)Dice similarity coe�cient. (b) Percentage of mis-segmented images. ICC indicates IC(common type); ICU, IC (uncommon type); and OB, other benign lesions.segmented images. However, when removing the mis-segmented images, the lesions weresegmented better than the other carcinomas. Finally, the number of other benign imageswas also not conclusive, but the high number of mis-segmented images can be explainedby the lesion heterogeneity within this group.Table 4.6 also gives information about the behavior of the segmentation method usingthe two di�erent datasets, S1 and S2. Although the number of cases in each dataset was
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Table 4.6: Measures for each lesion type using LLSI (best proposal)Typology DSC DSC (no mis-segmented) Error Cases

Dataset S1 IC (common type) 0.654 0.775 25.92% 27IC (uncommon type) 0.528 0.737 57.14% 14DCIS 0.603 0.904 33.33% 3Cyst 0.694 0.793 12.5% 56FA 0.686 0.815 27.27% 33Other benign masses 0.768 0.768 0% 6All lesions 0.680 0.794 22.14% 140
Dataset S2 IC (common type) 0.641 0.762 23.8% 42IC (uncommon type) 0.554 0.735 50% 6DCIS 0.681 0.817 16.67% 6Cyst 0.820 0.820 0% 2FA 0.614 0.846 30.7% 13Other benign masses 0.518 0.670 66.66% 3All lesions 0.632 0.787 27.77% 72

Total Dataset IC (common type) 0.646 0.764 24.63% 69IC (uncommon type) 0.567 0.748 55% 20DCIS 0.684 0.924 22.22% 9Cyst 0.698 0.792 12.06% 58FA 0.664 0.798 25.53% 47Other benign masses 0.684 0.735 22.22% 9All lesions 0.662 0.792 24.05% 212di�erent, it can be observed that the results were quite similar for both datasets. Theimage quality di�erences between both datasets can be observed in Figure 4.11, where animage from each dataset is depicted. Dataset S1 images present more details of the breasttissues, while images from Dataset S2 present a higher in�uence of speckle.4.4.6 Comparison with other methods in the literatureIn this subsection, a comparison of the obtained results with the results reported in the mostrelevant works in the literature is shown. Speci�cally, the segmentation methods in thiscomparison are recent algorithms (from 2009), which need practically no user interaction(1 click) or none interaction at all. The results reported by these works are summarized inTable 4.7.
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(a) (b)Figure 4.11: Example of FA and IC lesions. (a) Fibroadenoma lesion in which intensityinhomogeneities within the lesion are present. (b) Invasive carcinoma in which a prominentshadow is formed. The images were acquired from di�erent ultrasound systems. Lesionboundaries have been provided by expert manual delineation.Table 4.7: Comparison of performance with other recent lesion segmentation methodsMethod DSC Number of imagesCui et al. (2009) [30] 0.85 250Liu et al. (2010) [86] 0.88 46Massich et al. (2010) [92] 0.78 25Zhang et al. (2010) [134] 0.91 347Hao et al. (2012) [64] 0.85 480Proposed method 0.66 212Analysis of this table shows that our proposal obtained the worst results. However,there is a set of conditional factors that makes this straight comparison unreliable. Themain factor is the dataset used in the assessment of the methods. Each dataset used iscompletely di�erent; acquired from di�erent ultrasound systems, di�ers in the number ofimages, and contains di�erent lesion types. The results of the segmentation methods varydepending on the image quality, the presence of artifacts, and the lesion types. As wehave shown before, it is easier to segment cystic lesions than, for instance, �broadenomas.In addition, we can not know if the methods are tuned to obtain good results in theirrespective datasets, or if they would work properly with di�erent ones. It is clear then,that for a fair comparison, all the algorithms should be tested using the same datasets.Due to the fact that we could not implement these other methods, the correctness ofour segmentation proposal must be assessed in other terms. We can take advantage ofthe inter-observer study to see how well an expert radiologist segments lesions in the



4.4. RESULTS 109dataset used. In this case, the radiologist obtained a DSC value of 0.91. Thus, it is clearthat a computerized method can hardly obtain better results than an experienced trainedradiologist.The proposed method obtained a DSC value close to 0.7, which is commonly considereda good result for a segmentation method. However, this average DSC measure contains24.05% mis-segmented images. Focusing on Dataset S1, the images that induce our methodto segmentation errors (22.14%) are mostly images where the lesions are zoomed-in on (seeFigure 4.12(a) and (b)), or where the appearance of the lesion is similar to healthy tissue(see Figure 4.12(c) and (d)). Excluding these errors, a DSC close to 0.8 was obtained, whichindicates that the method segments the lesions well when the above mentioned artifactsare not present (almost 80% of the images in the dataset).

(a) (b)
(c) (d)Figure 4.12: Example of Dataset S1 images which induce a segmentation error. (a) and(b) are zoomed-in lesions. (c) and (d) lesions with similar appearance to the normal tissue.The location of the lesion is labeled with a rectangle.Regarding Database S2, most of the segmentation errors are caused by the low qual-ity of the images. Figure 4.13 shows di�erent images that induce the algorithm to a



110 CHAPTER 4. BREAST LESION SEGMENTATIONmis-segmentation results (27.77% of the images in Dataset S2) due to their low quality.Excluding these errors, a DSC close to 0.8 was also obtained.

(a) (b) (c)Figure 4.13: Example of Dataset S2 images that induce a segmentation error due to theirlow quality. The location of the lesion is labeled with a rectangle.4.5 Summary and conclusionsIn this chapter, an exhaustive analysis of the proposal by Xiao et al. [129] (MRF-MAP)and a set of initialization improvements was performed using breast US images suppliedby two di�erent hospitals. A detailed analysis of the results obtained shows that the LLSIinitialization proposal obtained the best results for both datasets. Moreover, the originalproposal by Xiao et al. [129] is considerably improved in terms of segmentation resultsand the initialization procedure. This enhancement is due to the information acquisitionprocedure in LLSI in which the background information is obtained by using 4 windowssurrounding the lesion. Thus, the shadowing e�ect is minimized, and only backgroundinformation is collected to correctly initialize the Gaussian distribution, which models thenon-lesion tissue.Another goal of this work was to evaluate the robustness of the segmentation approaches.This evaluation was described in the previous section, with similar results obtained fromboth databases, which indicates that the method is not highly in�uenced by the acquisitionsystem used. However, the method is induced to segmentation errors in some images. Onereason is the low quality of some images, and secondly, some artifacts present in the images,such as zooming. The results obtained excluding the mis-segmented images indicate thatwe must focus on solving the in�uence of these artifacts to enhance the performance ofour method as future work. In addition, future work will also focus on multiple lesion



4.5. SUMMARY AND CONCLUSIONS 111segmentation as this is a current limitation of the method.Finally, we studied the segmentation results by lesion type. As expected, we concludethat cystic lesions are the easiest to segment. Fibroadenoma and cancerous lesions havemore mis-segmented images and consequently lower mean DSC values due to the inherentartifacts related to the lesion type. These results indicate that more e�orts in computer-aided diagnosis system research must be done to improve the segmentation of malignantlesions due to their impact on patient health.
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5Breast lesion segmentation using elastographyinformation
5.1 IntroductionMammography and ultrasonography are the diagnostic methods that have shown the high-est sensitivity in the diagnosis of breast cancer. However, both techniques present some lim-itations. Mammography performed in dense breasts may yield false-positive results [105].US is sensitive in the detection of lesions, but the speci�city in cancer detection is lowsince most of the detected solid lesions are benign. This leads to an increase of unneces-sary biopsies causing discomfort to the patients and increasing costs [58].To overcome these limitations and obtain a more accurate characterization of breastlesions, US elastography was introduced. Breast US elastography is a recent diagnos-tic technique based on imaging the di�erence in sti�ness between cancerous and benigntissues. Elastography is based on the principle that, in general, normal tissue is easilydeformed while cancerous tissue is sti�er. Hence, cancerous tissues are more easily iden-ti�able in an elastogram than in other screening techniques. Clinical studies support the113



114 CHAPTER 5. BREAST LESION SEGMENTATION USING ELASTOGRAPHYINFORMATIONuse of this technique to enrich current screening methods [56, 73, 137]. Following theprominent relevance of elastography in clinical environments, it is reasonable to assumethat lesion segmentation methods could also bene�t from this complementary information.In this chapter, we propose the inclusion of elastography information in the MRF-MAPsegmentation framework presented in the previous chapter. This involves an adaption us-ing a bivariant formulation as will be described in the following sections. This proposal isassessed using data acquired using two di�erent elastography techniques, which are alsopresented in the following section.5.2 Breast ElastographyElasticity is the property of a tissue to be deformed by an external force and, when theforce is removed, to return to its original shape. The elasticity is measured by a physicalquantity called Young's modulus and expressed in pressure units (kPa). Young's modulus
E can be de�ned as the relationship between an external compression (or stress S) appliedto a solid tissue and its deformation (or strain e) inside the tissue (see Figure 5.1).

Figure 5.1: Deformation (e) of a soft solid under an external stress (S).Often a linear relationship is assumed between stress and strain, and is expressed inequation 5.1.
E =

S

e
(5.1)Di�erent tissues are expected to respond di�erently to the external forces. This is thebasis of manual palpation, a common cancer diagnosis technique in medical practise. Ingeneral, fatty tissue is easily deformed while cancerous tissues are sti�er [58]. Elastographyis an imaging technique that evaluates the elasticity of the tissues, but is more sensitive and



5.3. COMPRESSION ULTRASOUND ELASTOGRAPHY (USE) 115less subjective than palpation. Breast elastography can be performed using two di�erenttechniques: Compression Ultrasound Elastography (USE) and Shear-Wave Elastography(SWE).5.3 Compression Ultrasound Elastography (USE)Compression or conventional elastography is based on the application of a compressive forceusing a conventional transducer on the breast and on the measurement of the deformationof the tissues.This technique allows only qualitative assessment due to the fact that the external com-pression force is unknown, allowing only the calculation of the deformability ratio (strain)by measuring variations in the RF of the US beam before and after compression [100], andnot the absolute elasticity value [58].In qualitative assessment, the tissue elasticity is encoded in a color map shown as anoverlay in a B-mode, as shown in Figure 5.2. The di�erent colors represent di�erentelasticity levels (in Figure 5.2 sti� tissues are represented in red while soft tissues in blue).Note that some works encoded the color map regarding the strain values (high strainrepresented in red while low strain in blue), which is the inverse mapping of Figure 5.2(high strain indicates soft tissue while low strain indicates sti�ness).

(a) (b)Figure 5.2: Figure (a) plots the B-mode image of a carcinoma and (b) its elastographyinformation represented by a color overlay. Note that red represents high values of sti�ness(hard tissue) and blue low values (soft tissue).In order to improve the objectivity of the elastography, several works proposed scoringsystems to describe the elastic behavior of a lesion [49, 60, 73, 81]. They proposed di�erent



116 CHAPTER 5. BREAST LESION SEGMENTATION USING ELASTOGRAPHYINFORMATIONscales to classify an elastogram based on colors. For instance, Itoh et al. [73] proposed ascale, assuming blue as the expression of sti�ness and green as softness, that includes: score1 for soft strain nodules with the entire lesion colored in green; score 2 for lesions with amosaic pattern of green, red and blue; score 3 for lesions with blue in the middle and greenin the periphery; score 4 for sti� strain nodules with the entire lesion colored in blue withoutthe surrounding area and �nally, score 5 for sti� strain lesions with a blue surrounding area(see Figure 5.3). Later, alternative, but similar, scales were proposed [49, 60, 81].In order to obtain a more objective assessment of the elastic behavior between lesions andnormal tissue, a numerical ratio (called strain ratio) between the deformation of the lesionand the normal tissue, and the di�erence in lesion size before and during the compression(referred to as length ratio) were proposed . The strain ratio is measured from a ROIadjusted to the lesion boundaries and a comparable ROI placed in the adjacent fat tissue [5,120, 138]. The length ratio (or width ratio) is calculated by measuring the maximalhorizontal length of the lesion in the USE image divided by the corresponding lengthmeasured in the B-mode image [5, 12, 104].
Figure 5.3: Five point scoring criteria according to Itoh et al. [73] for breast lesions. (a)Score 1: strain appears in the entire lesion. (b) Score 2: Strain is not seen in parts ofthe lesion. (c) Score 3: Strain appears only at the periphery of the lesion. (d) Score 4:No strain appears in the entire lesion. (e) No strain appears either in the lesion or thesurrounding area.5.4 Shear-Wave Elastography (SWE)Shear-wave elastography is a technique of obtaining elastography images based on thecombination of stress induced in a tissue by an ultrasonic beam, and an ultrafast imag-ing sequence capable of acquiring the propagation of the resulting shear waves in realtime [14]. The system induces mechanical vibrations created by a focused US beam. Anultrafast (5000 frames/s) US acquisition sequence is used to capture the propagation of



5.5. THE ROLE OF ELASTOGRAPHY ON CAD 117the shear-waves. The tissue's elasticity is directly deduced by measuring the speed of wavepropagation c, as indicated in equation 5.2
E = 3ρc2 (5.2)where ρ is the density of the tissue, which is assumed to be a constant in the body, i.e. itis very close to the density of water (1000 kg/m3).Shear-waves travel faster through hard tissue and therefore, hard tissue has largerYoung's modulus value compared to soft tissue. After the local shear-wave velocity isrecovered, the production of a two-dimensional map of shear elasticity is generated inreal-time, where sti�er tissues are coded in red and softer tissues in blue, as shown inFigure 5.4The production of the stress by the transducer rather than the operator (as applied inconventional ultrasound elastography) means that shear-wave elastography is more repro-ducible than conventional elastography. Since the absolute elasticity values of the tissuesare obtained, values for maximum sti�ness, mean sti�ness and standard deviation can becalculated from a given ROI in the ultrasound acquisition machine.Some studies established a relationship between the elasticity measures obtained withSWE and the Breast Imaging and Reporting Data System (BIRADS) classi�cation, andestablished thresholds to di�erentiate between benign and malignant lesions [11, 42, 44,119]. Other studies proposed a set of features extracted from the SWE, and analyzedthe discriminative properties of these features in the task of distinguishing benign frommalignant lesions [15, 63, 78].5.5 The role of elastography on CADElastography is a recent technique and, although it has been shown to improve the speci-�city of diagnosing lesions [15, 58], it is still not widely used in routine screening programs.For this reason, the role of the elastography on CAD systems is not relevant yet, and onlyseveral works investigated the use of computerized techniques with elastography imag-ing. These works can be grouped as to the stage of the CAD system in which they useelastography: lesion detection, segmentation or classi�cation.Regarding automatic lesion detection, only Zhang et al. [135] proposed a fully-automaticmethod for locating cystic lesions in BUS images. They used the same detection algorithm
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Figure 5.4: SWE of a �broadenoma. The bottom image depicts the B-mode and the topimage the B-mode with the elastogram overlayed.presented in [134], which used a machine learning framework with a PBT classi�er andHaar-like features [123] extracted from the image, but only extracting the features frompairs of B-mode and elastography images instead of a single B-mode.More e�orts in tissue segmentation can be found in the literature. Regarding lesionsegmentation on BUS images, we can �nd the work of Von Lavante and Noble [124], whoadded strain features extracted from the RF signal to a graph-cut segmentation framework.Later, Nedevschi et al. [97] proposed the segmentation of elastography images using theEM algorithm. The method automatically initializes the EM, analyzing the peaks in theelastography histogram. Finally, Zhou et al. [139] proposed the inclusion of elastography



5.6. BIVARIATE MRF-MAP SEGMENTATION APPROACH 119in a level-set segmentation framework, but they only evaluated their approach in phantomimages.Elastography data can also be useful in the segmentation of other organs, such as theliver or the prostate. This is the case of Techavipoo et al. [118], who proposed a semi-automatic algorithm to segment elastography images of the liver. In this work, the userinteraction is needed to place two ROIs to initialize a histogram thresholding segmenta-tion process. The segmentation is then re�ned with a morphological operation to removeartifacts. Liu et al. [87] also proposed the segmentation of elastography images of the liver.They presented an ACM method, where the contour is initialized with a coarse-to-�netransformation (Gaussian pyramid) [21]. In the �eld of prostate segmentation, we �nd thework of Mahdavi et al. [89], where they presented a method that combines B-mode andelastography information in an Active Shape Model.As we mentioned in the previous section, elastography features are used to distinguishbenign from malignant lesions in BUS images in clinical studies. Hence, some works focusedtheir e�orts on using elastography features for lesion classi�cation. This is the case of Changet al. [23], who extracted features of the lesion before and after the compression (volume,shape and contour di�erences) to train a SVM classi�er. Moon et al. [96] evaluates aset of features (5 from the elastography and 6 from the B-mode) extracted from manualsegmentations of the tumors, using a NN. Subsequently in [95], the same authors proposedan algorithm to pick the best image in an elastography video and used the best combinationof features to classify a previously segmented lesion. Also Selvan et al. [108] evaluated aset of combined features from B-mode and elastography extracted from a segmentationperformed with a level-set method.5.6 Bivariate MRF-MAP segmentation approachElastography information can be seen as a grayscale image. Indeed, in clinical environmentselastography information is commonly shown as an overlay in B-mode screening processassigning intensity value ranges to a di�erent color to visually help radiologists, as seenin Figures 5.2 and 5.4. Hence, elastography information can be combined with B-modeinformation to improve segmentation results, mostly when the B-mode image informationis not conclusive in providing the lesion location. We propose to extend the MRF-MAPapproach to take both B-mode and elastography into account in a unique framework, bymodeling both data in a bi-variate Gaussian PDF.



120 CHAPTER 5. BREAST LESION SEGMENTATION USING ELASTOGRAPHYINFORMATION5.6.1 Image modelWe assume that both images (B-mode and elastography) present intensity inhomogeneitiesand these are described by a multiplicative �eld. A logarithmic transformation yields thismultiplicative model to an addition. Similar to the notation described in Chapter 2, letthe observed and ideal log-transformed intensities be denoted respectively by y and y∗,then y = y∗ + d where d denotes the log-transformed intensity bias �eld. Given the classlabel xi ∈ L, where L denotes the label set. Note that now, y∗i at pixel i refers to bothB-mode and elastography values at that pixel. It is assumed that those values, y∗i , followa bivariate Gaussian distribution with parameter θ(xi) = (µxi
,Σxi

), where µxi
now is avector of means for B-mode and elastography, and Σxi

the covariance matrix of class xi,and de�ned as follows
p(y∗i |xi) = g(y∗i ; θ(xi)) =
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] (5.3)Variables in bold type represent vectors to distinguish between notation of the MRF-MAP formulation in Chapter 4 and bivariate formulation. Experimental results corroboratethe validity of the assumption of a bivariate Gaussian distribution for both lesion andbackground information in B-mode and elastography, as illustrated in Figure 5.5, wherethe intensity distribution for lesion and background are shown for elastography and B-mode, and a clear bivariant Gaussian distribution can be seen.Considering the bias �eld, the above distribution can be rewritten in terms of the observedintensities yi as
p(yi|xi,di) = g(yi − di; θ(xi)) (5.4)and the class-independent intensity distribution is denoted by

p(yi|di) =
∑

j∈L

g(yi − di; θ(xi))p(xi = j) (5.5)Thus, the intensity distribution is modeled as a bivariate Gaussian mixture and, assumingthat the pixel intensities are statistically independent, the probability density for the entireimage given the bias �eld is
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(a)

(b)Figure 5.5: Examples of bivariate distributions: 2D histograms showing B-mode and Elas-tography information of (a) lesion and (b) background.
p(y|d) =

∏

i∈S

∑

j∈L

g(yi − di; θ(xi))p(xi = j) (5.6)where S denotes the image pixel set.



122 CHAPTER 5. BREAST LESION SEGMENTATION USING ELASTOGRAPHYINFORMATION5.6.2 Label estimation using MRF-MAP frameworkSimilarly to the B-mode formulation, the MRF prior model is introduced to keep the spatialinformation. It is assumed that neighboring sites have a direct relationship with each otherand tend to have the same class labels. The probability density of a MRF model can bedescribed as a Gibbs distribution [17] (see equation 4.10 in Chapter 4).Following the same notation as in Chapter 4, the MAP of class labels is de�ned as
x̂ = argmin

x∈X
U(y∗|x) + U(x) (5.7)where U(y∗|x) likelihood energy is the logarithm of the posterior probability, and it isde�ned as follows

U(y∗|x) =
∑

i∈S

[
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(y∗i − µxi

)TΣ−1(y∗i − µxi
) + log(det(Σ)

1

2 )

] (5.8)and the prior energy U(x) can be de�ned as in equation 4.16 of Chapter 4.5.6.3 Expectation Maximization (EM) algorithmTo obtain the estimation of the distortion �eld, the EM algorithm is also used to updatethe label image and the intensity inhomogeneity �eld iteratively, initializing the bias �eld
d to be zero. Since a fast convergence is needed in a few iterations, the ICM algorithm [18]is used (see Chapter 4).Expectation step: calculates the posterior tissue class probability Wij using the MRFprior model when the bias �eld d is known and using p(xi = j|xNi

)

Wij =
p(yi|xi,di)p(xi = j|xNi

)

p(yi|di)
(5.9)Maximization step: the bias �eld d is estimated when Wij is known.

di =
[FR]i

[Fψ−1E]i
, with E = (1, 1, ...)T (5.10)where F is a low-pass �lter, and R is the mean residual values for both B-mode andelastography images, in which for pixel i are de�ned as
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Ri =

∑

j∈L

Wij(yi − µj)Σ
−1 (5.11)The di�erence from Chapter 4 is that the mean residual value Ri is a vector of size 1× 2,and that the mean inverse covariance matrix ψ−1

i at pixel i is a vector of size 2× 2 de�nedas follows
ψ−1

i =
∑

j∈L

WijΣ
−1 (5.12)5.7 Compression ultrasound elastography results5.7.1 Image datasetIn this study, two datasets provided by di�erent research institutions containing B-modeand elastography information were used to assess the proposed segmentation method.Dataset E1 is composed of 12 images obtained from the Churchill Hospital (Oxford,England) with a Zonare z.one system and an L10-5 linear array transducer (8.5 MHz).The strain information was provided by the BiomedIA research group of the Universityof Oxford, based on estimating the strain information by tracking the displacement ofthe RF signal [82]. Dataset E2, composed of 21 images, was provided by the MedicalImaging Group of the Cambridge University Engineering Department. The scans wereobtained with a Dynamic Imaging Diasus ultrasound machine with a 5-10 MHz lineararray transducer, and the strain information was generated using a tissue displacementtracking algorithm proposed by the same research group [83]. Manual delineations of thetumors were performed by an expert radiologist, and all of the images involved in this workwere previously made anonymous to preserve the con�dentiality of the patients.5.7.2 Qualitative resultsA qualitative evaluation is presented here to show the behavior of the algorithm dealingwith illustrative cases, one in which the lesion is easily segmented using B-mode informationalone (example 1) and one where this modality is clearly insu�cient (example 2). Firstly,the images are segmented using the previously proposed LLSI algorithm with B-modeinformation alone. Subsequently, the image is segmented including both B-mode andelastography information. We have compared the di�erent results in order to determine



124 CHAPTER 5. BREAST LESION SEGMENTATION USING ELASTOGRAPHYINFORMATIONthe bene�ts of combining both ultrasound B-mode and elastography information in thelesion segmentation problem.Figure 5.6 shows the segmentation results of the �rst example, where the tumor is wellde�ned in the B-mode image and the elastography does not provide essential additionalinformation. Note that the results are similar for both performances. Although it is notclearly appreciated in this example, the inclusion of elastography information might yieldan over-segmented result due to the fact that tumors invade surrounding tissues makingthem appear sti�er.

(a) (b) (c)Figure 5.6: Example 1: Segmentation results using B-mode information alone (�rst row),and combining B-mode and elastography (second row). Column (a) plots the originalimage, (b) the segmentation result and (c) the overlap between the result and the GT,where the light gray colour denotes TP pixels, dark gray represents FN and white denotesFP.On the other hand, Figure 5.7 shows the segmentation results of the second example. Inthis case, the B-mode does not provide enough information to clearly segment the tumorand the method fails. In this kind of image, elastography provides better information onthe location of the tumor, as shown in the second row of Figure 5.7. Using this information,the segmentation result is clearly improved.
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(a) (b) (c)Figure 5.7: Example 2: Segmentation results using B-mode information alone (�rst row),and combining B-mode and elastography (second row). Column (a) plots the originalimage, (b) the segmentation result and (c) the overlap between the result and the GT,where the light gray colour denotes TP pixels, dark gray represents FN and white denotesFP.5.7.3 Quantitative resultsIn this subsection, quantitative results are presented. Speci�cally, we compared the resultsobtained by using B-mode information alone and combining it with elastography informa-tion in the segmentation framework. The results are presented in relationship with thedataset used in Table 5.1. Analysis of this table shows that the inclusion of the elastogra-phy in the segmentation framework considerably improves the segmentation results in thetwo di�erent datasets independently and in the total dataset (Dataset E1 and E2). For abetter comparison of these results, Figure 5.8 shows a set of box plot charts comparing theDSC values obtained. Analyzing this �gure, we can observe a signi�cant improvement inthe results using Dataset E1, while no-signi�cant improvements are appreciable in DatasetE2. This di�erence in results between datasets can be explained by looking at the imagesof each dataset: while most of the lesions appear well de�ned in Dataset E2, they aremore di�cult to locate in Dataset E1. Hence, the impact of including elastography ishigher in datasets where B-mode information alone is not su�cient. However, the inclu-sion of elastography information improves (being signi�cant or not) the performance of thesegmentation algorithm in all cases.
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Table 5.1: Quantitative results using B-mode alone or including elastography informationfor USE. Information Sensitivity Speci�city PPV AO DSCDataset E1 B-mode 0.427 0.907 0.722 0.370 0.501B-mode + elasto 0.661 0.990 0.839 0.583 0.728Dataset E2 B-mode 0.732 0.942 0.865 0.6752 0.780B-mode + elasto 0.750 0.989 0.861 0.673 0.789Total Dataset B-mode 0.621 0.292 0.813 0.564 0.679B-mode + elasto 0.717 0.990 0.853 0.641 0.767

Figure 5.8: Box plot charts comparing the DSC values for Dataset E1, E2 and the totaldataset.5.8 Shear-wave elastography results5.8.1 Image datasetThe dataset of SWE images was collected recently (2013) from the UDIAT DiagnosticCentre of the Parc Taulí Corporation, Sabadell (Spain) with an Aixplorer V4 US system(SuperSonic Imagine, Aix-en-Provence, France), which was equipped with a 4-15 MHz lin-ear array transducer. The dataset consists of 24 images from di�erent patients. Figure 5.4shows an example of a SWE image from this dataset. The B-mode and the elasticity mapare depicted on the same screen for a better visualization. The values of elasticity areembedded in the DICOM �le when acquiring the image, and can be extracted using asoftware tool provided by SuperSonic Imagine.



5.9. CONCLUSIONS 1275.8.2 Qualitative resultsA qualitative evaluation is presented here to show the behavior of the algorithm dealingwith two representative cases. The �rst case, Figure 5.9(a-e), shows a well de�ned lesion inthe B-mode. The second case, Figure 5.9(f-j), shows a lesion which appears in the B-modewith similar intensity values to normal tissues. In this case, the inclusion of elastographygives essential information for the lesion identi�cation.Shear-wave elastography provides reliable information on the location of the lesion. How-ever, when performing this study, we found the presence of an artifact in most of the SWEcases, caused by the peritumoral sti�ness [43, 44, 132]. As depicted in Figure 5.10, in somecases with cancerous lesions, the sti�est tissue is found in the peritumoral region ratherthan in the cancer itself. In addition, in some cases the elasticity information within thelesion is not even measured. The presence of the peritumoral sti�ness is helpful for the ra-diologist when detecting malignant lesions. However, it induces our segmentation methodto fail. Thus, no quantitative results using SWE can be reported as most of the casesshow peritumoral sti�ness. This will need further investigation to assess the nature of thisartifact.5.9 ConclusionsIn this chapter, a novel uni�ed framework for simultaneously estimating the bias �eld andsegmenting lesions in breast ultrasound using both B-mode and elastography informationwas proposed.First, the inclusion of compression elastography data was evaluated. Qualitative resultswere performed using two illustrative cases, one where the B-mode shows a well de�nedlesion and another where elastography provides more meaningful information. The seg-mentation results were compared by using the B-mode information alone or combiningthe B-mode and elastography. These qualitative results show that combining both theB-mode and elastography information in a unique framework improves the segmentationresults, especially when B-mode images are not conclusive, which is the often the case innon-cystic lesions. These results are corroborated later in the quantitative results section.The proposal has been assessed in two datasets (E1: 12 images, E2: 21 images) obtainingbetter results when including elastography information in both datasets.Finally, we evaluated the inclusion of SWE in the segmentation framework. The presence



128 CHAPTER 5. BREAST LESION SEGMENTATION USING ELASTOGRAPHYINFORMATIONof the peritumoral sti�ness in the majority of the cases in the dataset induced our approachto mis-segment the images, and made its evaluation impossible with this kind of image.Since the presence of peritumoral sti�ness is helpful in the detection of cancerous lesions,we consider that it would be interesting to include SWE information in a novel lesiondetection method.
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(a) (f)
(b) (g)
(c) (h)
(d) (i)
(e) (j)Figure 5.9: Qualitative results for two SWE breast images. (a-e) show the results for the�rst case and (f-j) for the second case. (a and f) show the original image with the elasticitymap, measured within a ROI placed by the radiologist, superimposed. (b and g) show theB-mode image corresponding to the ROI. (c,h) show the elastography map of the ROI. (dand i) show the segmentation results. (e and j) show the overlap between the segmentationand the GT, where the light gray color denotes TP pixels, dark gray represents FN andwhite denotes FP.
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(a)

(b)Figure 5.10: Examples of the SWE peritumoral artifact. (a) Malignant case where theperitumoral tissues appear as the sti�er regions. (b) Elasticity values of the lesion are notmeasured.



6Conclusions and future work
The current and �nal chapter summarizes the methodology and results of the studies on thedi�erent CAD stages presented in this thesis. It further describes the original contributionsmade by this thesis to the research area of computer-aided breast cancer detection. It alsohighlights possible future improvements and directions of research related to the workpresented.6.1 Conclusions of the thesisThe aim of this thesis has been the proposal of a new pipeline capable of detecting, seg-menting, and classifying breast lesions in ultrasound imaging. Starting with an initial studyof the state-of-the-art of breast lesion detection, it was concluded that machine learning-based methods adapt better to the speci�c characteristics of the target dataset, and do notneed the use of an extra false positive reduction step, necessary in most of the detectionmethods based on image processing.A further analysis of the breast lesion segmentation literature was also provided inorder to highlight the strengths and weaknesses of each segmentation technique analyzed.131



132 CHAPTER 6. CONCLUSIONS AND FUTURE WORKAnalysis of these works shows that machine learning-based methods obtained good resultsand do not require any kind of user interaction. Through this analysis, it was assessed thatfew approaches were based on MRF, which, in principle, can be regarded as an interestingframework incorporating both spatial and intensity information.Subsequently, a study of the state-of-the-art of breast lesion classi�cation was also carriedout in order to highlight the most frequent chosen important factors, such as features, classi-�er, train/test procedure and dataset composition, for the classi�cation results. Regardingthe features used to classify the lesions, most are extracted from manual delineations orfrom a ROI placement, and the majority of the methods studied used a combination oftexture and morphological features. It has also been demonstrated that most of the meth-ods used the k-fold cross validation in the training/testing process as well as unbalanceddatasets, which contained fewer malignant than benign images.Therefore, a computerized lesion detection system for breast US images using DeformablePart Models (DPM) has been proposed. Di�erent con�gurations of parameters were ex-tensively evaluated to improve the results of the DPM in breast US images. A comparisonof several of the most important methods in the literature was performed, evaluating allthe methods with the same datasets. Amongst the di�erent methodologies compared, theproposed method obtained the best results. Furthermore, the detection system was trainedto detect malignant lesions directly, obtaining similar results to the best proposals in theliterature, but considerably simplifying the traditional cancer detection pipeline.After the detection proposal, di�erent initialization processes to include spatial infor-mation in the MRF-MAP segmentation framework to reduce the interaction of the userwith the method were introduced. It was concluded that the LLSI initialization proposalobtained the best results. Moreover, the segmentation results were studied in relationshipwith the lesion type, concluding that cystic lesions obtained the best results due to theirwell de�ned boundaries and the homogeneous appearance, while �broadenoma and can-cerous lesions performed poorly due to inherent artifacts related to the lesion type, suchas shadowing or heterogeneities within the lesion.In order to improve the segmentation results, a novel algorithm including elastographyinformation has been proposed. The MRF-MAP segmentation framework was redesignedto include both B-mode and elastography ultrasound data by modeling both types of infor-mation as bivariate Gaussian PDFs. The proposed method was evaluated with compressionelastography, outperforming the results obtained when using B-mode information alone. Itwas also evaluated with shear-wave elastography images, but the presence of peritumoral



6.1. CONCLUSIONS OF THE THESIS 133sti�ness in most of the images induced the method to fail, and only qualitative results werereported.6.1.1 ContributionsThe goal of this thesis is to aid radiologists in the day-to-day practise by assisting themin the challenging task of cancer detection in breast sonography by providing them witha second opinion and help to increase the diagnosis accuracy, reducing the biopsy rateand saving time and e�ort. This second opinion should ideally be provided automaticallyso as to be e�ective in a real clinical environment. From this point of view, the maincontributions of this thesis to both the scienti�c and clinical community are:
• A novel lesion detection algorithm in breast ultrasound images using DeformablePart Models (DPM) that outperformed the current methods in the literature. Thisdevelopment has been achieved after elaborating an extensive survey of the mostrelevant breast ultrasound lesion detection algorithms, an exhaustive analysis of theparameters involved in the method to determine the best con�guration for sonogra-phy, an exhaustive test using two di�erent datasets, and an experimental comparisonbetween our lesion detection proposal and relevant methods in the state-of-the-art.
• A cancer detection technique in breast ultrasound images using DPM. The modelis trained to detect malignant lesions directly, simplifying the traditional cancer de-tection pipeline, which �rst detect candidate lesions, segments them for extractingfeatures, and �nally, classi�es them into benign or malignant.
• A proposal of di�erent initialization improvements of the MRF-MAP method thatreduces the interaction process involved in the original proposal to one-click. Thisdevelopment has been achieved after elaborating an extensive survey of the mostrelevant breast ultrasound lesion detection algorithms, an exhaustive test using twodi�erent datasets, and an experimental comparison between our lesion segmentationproposal and relevant methods in the state-of-the-art.
• A study of the in�uence of lesion type in the MRF-MAP segmentation results. Toour knowledge, this type of study has not been performed before, and indicates whichtypes of lesions obtain better and worst segmentation results.
• A novel lesion segmentation algorithm in breast ultrasound images including elas-tography information in a uni�ed framework, assessed including conventional com-



134 CHAPTER 6. CONCLUSIONS AND FUTURE WORKpressing elastography and the recent shear-wave elastography. This development hasbeen achieved after elaborating an extensive survey of the most relevant works whichinvestigated the use of computerized techniques with elastography imaging.6.2 Future workThe analysis of breast US images is a complex topic involving several aspects and multipleresearch lines. This notion is exempli�ed in the research of CAD systems, where di�erentprocesses play an important role. The research e�orts can focus on a particular stage ofthe CAD pipeline, or on a combination of them. Furthermore, other interesting topicsarise from the needs of current clinical practise, with the introduction of new screeningtechniques, such as elastography or ABUS.Hence, future directions are presented divided into two categories: those related toincreasing the reliability of our proposal, and future research lines departing from thisthesis.6.2.1 Short-term proposal improvementsAfter the analysis of the proposed methodologies, some potential improvements could bemade in the near future. In regard to malignant lesion detection, a more exhaustiveparameter analysis could be performed to improve the detection results. The sensitivityof this proposal is in line with the methods of the state-of-the-art, but with a highernumber of FP per image, as commented in Chapter 3. One proposal could be a two-stagedetection method, where �rst, lesions are detected, and then, cancers are detected amongstthe previously detected lesions. This proposal will increase the malignant lesion pipeline,but it will continue having fewer stages than the traditional pipeline.Regarding the segmentation process, more e�orts need to be made when dealing withimages with speci�c artifacts that induce the method to fail. As was shown in Chapter 4,the method obtained results in line with the other state-of-the-art methods when excludingthese con�ictive images. To solve the in�uence of such artifacts, we propose using adaptablesize windows in the lesion and background information acquisition and the inclusion of apre-processing step to enhance the lesions. Adaptable windows could manage zoomed-inlesions, and the pre-processing step could enrich the visualization of lesions with similarintensity to normal tissue. Another limitation of the method that would be interesting tosolve is the fact that only one lesion per image can be segmented.



6.2. FUTURE WORK 135A new approach for lesion segmentation including elastography has been presented inthis thesis. Promising results were obtained, but an additional further evaluation in alarger dataset should be performed. We have also shown the potential of SWE imaging.However, further investigation of the acquisition of these images should be performed tosolve the presence of artifacts.6.2.2 Future research linesIn the long term, there are several new research lines departing from this thesis that couldbe studied. One that was initially explored in this thesis was the inclusion of elastog-raphy information in the segmentation framework. The bene�ts of the introduction ofelastography in current screening programs have been proved in di�erent studies. Hence,we consider that elastography can play an important role in computerized lesion detectionand classi�cation.Regarding the MRF-MAP segmentation proposal, we consider that it would be necessaryto include spatial information in the methodology. Thus, the method could take advantageof the lesion location provided by the user (one click) or by the lesion detection method.Analyzing the results obtained in lesion detection by the DPM, we also consider that thismethodology has the potential of being adapted to detect lesions in 3D volumes, such asABUS, which is currently being adopted in clinical practice and becoming a relevant topicof interest in medical imaging research. Because of the large number of slices or planesin a 3D breast volume, one of the main problems in 3D lesion detection is the numberof FP. The DPM approach obtained a low ratio of FPs per image, which could possiblybe improved by including a new FP reduction post-processing technique to analyze thepropagation of the detections in the volume.
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ASummary of datasets
In this thesis, di�erent datasets have been used for evaluating the proposed methodologies.Here, a summary of the datasets used is given.Name: Dataset D1.Provided by: Manchester Metropolitan Univeristy, Manchester (UK).Images: Breast sonography.Machine: B&K Medical Panther 2002 and B&K Medical Hawk 2102.Transducer: 8-12 MHz linear array transducer.Year: 2001.Cases: 406.Benign cases: 246.Malignant cases: 60.Other cases: 100 healthy images.Avg. image size: 377x396 pixels.Ground truth: Posterior biopsy/pathological examination, and boundary delineation ofa radiologist.Used for: Lesion detection. 137



138 APPENDIX A. SUMMARY OF DATASETSName: Dataset D2.Provided by: UDIAT Diagnostic Centre of the Parc Taulí Corporation, Sabadell (Spain).Images: Breast sonography.Machine: Siemens ACUSON Sequoia C512.Transducer: 8.5 MHz 17L5 HD linear array.Year: 2012/13.Cases: 326.Benign cases: 110.Malignant cases: 53.Other cases: 163 healthy images.Avg. image size: 760x570 pixels.Ground truth: Posterior biopsy/pathological examination, and boundary delineation ofa radiologist.Used for: Lesion detection.Name: Dataset S1.Provided by: UDIAT Diagnostic Centre of the Parc Taulí Corporation, Sabadell (Spain).Images: Breast sonography.Machine: Siemens ACUSON Sequoia C512.Transducer: 8.5 MHz 17L5 HD linear array.Year: 2012.Cases: 140.Benign cases: 96.Malignant cases: 44.Other cases: N/A.Avg. image size: 760x570 pixels.Ground truth: Posterior biopsy/pathological examination, and boundary delineation ofa radiologist.Used for: Lesion segmentation.Name: Dataset S2.Provided by: Churchill hospital, Oxford (UK).Images: Breast sonography.



139Machine: Zonare z.one.Transducer: 8.5 MHz L10-5 linear array.Year: 2009.Cases: 72.Benign cases: 18.Malignant cases: 54.Other cases: N/A.Avg. image size: 226x1017 pixels.Ground truth: Posterior biopsy/pathological examination, and boundary delineation ofa radiologist.Used for: Lesion segmentation.Name: Dataset E1.Provided by: Churchill hospital, Oxford (UK).Images: Breast sonography and elastography.Machine: Zonare z.one.Transducer: 8.5 MHz L10-5 linear array.Year: 2010.Cases: 12.Benign cases: N/A.Malignant cases: N/A.Other cases: N/A.Avg. image size: 226x1017 pixels.Ground truth: Boundary delineation of a radiologist.Used for: Lesion segmentation with elastography.Name: Dataset E2.Provided by: Medical Imaging Group of the Cambridge University, Cambridge (UK).Images: Breast sonography and elastography.Machine: Dynamic Imaging Diasus.Transducer: 5-10 MHz linear array.Year: 2008.Cases: 21.



140 APPENDIX A. SUMMARY OF DATASETSBenign cases: 17.Malignant cases: 4.Other cases: N/A.Avg. image size: 384x294 pixels.Ground truth: Posterior biopsy/pathological examination, and boundary delineation ofa radiologist.Used for: Lesion segmentation with elastography.
Name: Dataset E3.Provided by: UDIAT Diagnostic Centre of the Parc Taulí Corporation, Sabadell (Spain).Images: Breast sonography and shear-wave elastography.Machine: SuperSonic Aixplorer V4.Transducer: 4-15 MHz linear array.Year: 2013.Cases: 24.Benign cases: N/A.Malignant cases: N/A.Other cases: N/A.Avg. image size: 540x317 pixels.Ground truth: Boundary delineation of a radiologist.Used for: Lesion segmentation with elastography.
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