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Abstract 
 

This paper presents a multi-objective optimization of the laser milling process of micro-cavities 
for the manufacturing of drug eluting stents (DES). The diameter, depth and volume error are 
considered to be optimized in function of the process parameters including laser intensity, 
pulse frequency and scanning speed. A set of designed experiments is carried out in a pulsed 
Nd:YAG laser system using 316L Stainless Steel as a work material. Two different geometries 
are studied, and they are considered as another variable for the model. The multi-objective 
optimization problem is solved by NSGA-II algorithm, and the non-dominated Pareto-optimal 
fronts are obtained. The capability of the process to manufacture within a level of error is also 
investigated. Relative error capability maps for different scale of features are presented. 

 
 
 
 

Introduction 
 

Micro-manufacturing processes in the fields of electronics, optoelectronics, micro- and 
nanomachining, new materials synthesis, and medical and biological applications have become 
a growing area. This creates the need to find processes to manufacture these components 
with better precision, higher resolution, smaller feature size, true 3D fabrication, and higher 
piece part fabrication throughput. 

 
Coronary artery stents revolutionized the practice of interventional cardiology after they were 
first introduced in the mid-1980s. Since then, there have been significant developments in 
their design, the most notable of which has been the introduction of drug-eluting stents (DES). 
During the last years many type of DES have been developed. One of these types is the DES 
with biodegradable polymer. Interest has focused on these stents because initially after 
implantation, they theoretically may offer the antirestenotic benefits of a standard DES, 
whereas once the polymer has biodegraded, they speculatively may offer the safety benefits of 
a metallic stent [1]. Some of these DES are metallic stents that include reservoirs where the 
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polymer and the drug are contained. Like the Janus stent [2] which incorporates micro- 
reservoirs cut into its abluminal side that are loaded with drug. 

 
Laser systems can provide unique solutions in materials processing, offer the ability to 
manufacture otherwise unattainable devices, and yield cost-effective solutions to complex 
manufacturing processes [3]. Thus, the use of lasers in materials processing, machining, 
diagnostics, and medical applications is a rapidly growing area of research. 

 
In laser milling technology the material is removed by a laser beam through the layer by layer 
ablation mechanism. The removal of material during laser milling is affected by the 
characteristics of the laser beam and the workpiece but is mainly determined by the way that 
both interact [4]. The key process parameters which can be controlled and modified in order to 
obtain optimal machining results are the pulse frequency, the pulse intensity, and the scanning 
speed. The selection of the laser and its parameters significantly affects the quality of the 
micro-feature created and also the material removal rate. 

 
There are several experimental research works which deal with the effect of the laser process 
parameters on the quality of the final parts of laser machining in macro scale. Many authors 
analyzed the influence of the pulse frequency, scanning speed and pulse intensity on the 
surface roughness and material removal rate. Bartolo et al. [5] experimented with tempered 
steel and aluminum pointing out that better surface quality is achieved with low pulse 
frequencies and laser power are used. However, the higher material removal rate is achieved 
increasing both parameters. Cicala et al. [6] used an Nd:YAG pulsed laser for machining of 
aluminum alloy, stainless steel and titanium materials. Their results showed that the material 
removal rate depends mainly on the frequency of the laser pulses. They obtained the lowest 
levels of surface roughness with low scanning speeds and the highest frequency. Cheng et al. 
[7] used a femtosecond and picoseconds lasers on cooper, aluminum and titanium alloys to 
study the effects of pulse overlap, repetition rate and number of overscan. Saklakoglou and 
Kasman [8] machined 10x10mm square geometries into tool steel to study the effect of 
different process parameters on surface roughness and maximum milling depth using 30W 
fiber laser machine. 

 
In the micro scale there are many works investigating the laser machining process in laser 
microdrilling (Biswas / Kumar ) and laser micro-cutting (Muhammad / Meng), there are few 
researches about laser 3D micromilling. Biswas et al. [9] studied the influence of lamp current, 
pulse frequency, air pressure and thickness of the job on the hole circulatity at exit and the 
hole taper of the drilled hole for laser drilling of gamma-titanium-aluminide. Kumar et al.[10] 
investigated the dependence of groove depth on laser power, repetition rate, number of scans 
and gas pressure in the generation of micro-notches in stainless steel and aluminium. 
Muhammad et al. [11] investigate the basic characteristics of fiber laser cutting of stainless 
steel 316L tube and understand the effect of introducing water flow in the tubes on minimizing 
back wall damages and thermal effect. The influence of laser parameters upon cutting quality 
for  fixed  gas  type  and  gas  pressure  was  investigated.  Meng  et  al.  [12]  designed  a 
cardiovascular stent cutting system based on fiber laser where the kerf width size was studied 



 
 
 
 

for different cutting parameters including laser output power, pulse length, repeat frequency, 
cutting speed and assisting gas pressure. Karanakis et al. [13] discussed the merits of laser 
micromilling using lasers with different pulse durations and wavelengths. They generated 2.5D 
structures in different industrial materials. Volume removal rates and surface roughness were 
analyzed presenting good results. Teixidor et al. [14] studied the effect of the key laser 
parameters on target dimensions and surface roughness for laser milling of micro-channels on 
tool   steel.   They   adopted   a   multi-objective   process   optimization   to   predict   the   best 
combination of process parameters. 

 
Many  other  research works  developed models  and methods to  simulate the process  and 
predict the best set of parameters for the final result. Campanelli et al. [15, 16] implemented 
an Artificial Neural Network and a multi objective statistical optimization on the laser milling of 
aluminium 5754 using a Nd:YAG laser. In the first model they determined the values of the 
scan speed and the repetition rate for the preset ablation depth. In the second algorithm they 
evaluated the influence of the main parameters on the depth, MRR and surface roughness. 
Dhara et al. [17] developed a strategy for predicting the optimum machining parameter setting 
for the generation of the maximum depth of groove with minimum height of recast layer. 
Finally,  Ciurana  et  al.  [18]  developed  neural  network  models  and  multi-objective  particle 
swarm optimization (PSO) of process parameters for laser ablation of t-shaped features. 

 
There is a lack of research in the literature for the laser milling of 3D micro-geometries. 
Therefore, the objective of this work is to study the capability of a nanosecond Nd:YAG laser to 
produce micro-cavities with preset dimensions. These cavities have the dimensions and shape 
to be manufactured into stent struts in order to produce DES. It is necessary to capture the 
influence of laser milling process parameters on the desired dimensional quality. Thus, multi- 
objective optimization (NSGA-II) method is adopted to find the optimal set of parameters to 
improve the dimensional accuracy reducing the error of the dimensions of the cavities 
manufactured. Finally, a deeper analysis has been carried out with respect to the errors of the 
dimensions at different scales in order to understand the capabilities of the process at error 
level. 

 
 
 
 

2. Multi-Objective Optimization using NSGA-II 
 

Multi-objective optimization problems can be solved by using evolutionary computational 
algorithms   such   as   genetic   algorithms   [19].   NSGA-II   (Non-dominated   Sorting   Genetic 
Algorithm, modified version of NSGA [20, 21]), is one of the most popular multi objective 
optimization   algorithms   with   three   special   characteristics;   fast   non-dominated   sorting 
approach, fast crowded distance estimation procedure and simple crowded comparison 
operator [20]. It has been most widely applied for optimizing machining process parameters 
and recognized as one of the best evolutionary algorithms for multi-objective optimization 
[22]. 
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Generally, NSGA-II can be roughly detailed as follows: Once the population is initialized the 
population is sorted based on non-domination into each front. Once the sorting is complete, 
the crowding distance value is assign front wise. The individuals in population are selected 
based on rank and crowding distance. The crowding distance is a measure of how close an 
individual is to its neighbours. Large average crowding distance will result in better diversity in 
the population. Parents are selected from the population by using binary crossover and 
polynomial mutation based on the rank and crowding distance. Offspring population and 
current generation population are combined and the individuals of the next generation are set 
by selection. The new generation is filled by each front subsequently until the population size 
exceeds the current population size. The selection is based on rank and the on crowding 
distance on the last front. 

 
This work conducted multi-criteria optimization to investigate the dimensional accuracy in 
laser milling of 316L stainless steel for micro-cavities fabrication. Optimal selection of process 
parameters of laser milling can be formulated and solved as an optimization problem. A 
simultaneous consideration of multiple objectives is required. Usually, process parameters 
selected for one objective function may not be suitable for the other objective function 
presenting conflicting objectives. This presents a challenge for the optimization problem, since 
selection of the parameter settings (decision variables) for given multiple choices which may 
be in conflict to each other. 

 
To set up the optimization model of machining parameters, the mathematical relationships 
between  machining  parameters  and  optimization  objectives  should  be  determined  firstly. 
Since there is no equation that relates them, a second order model is used to establish input- 
output relationship between response and process parameters efficiently. These models take 
the following generic form: 

 
y = βo + ∑k β  x k 

    
β i x xi 

k 
    

β   x 
2+  (1) 

 
where   is the residual error. 

 
Second order models are used to find the optimum values for a response. It includes the 
interaction terms and second order terms making it more suitable than linear regressions. 

 
The  generic  regression  form  in  Eq.  (1)  is  used  to  develop  experimental  models  for  the 
responses by using the experimental test data and establish the effect of variables on the 
outputs. The following section describes the experiments used to provide data for the 
optimization process with the different levels of the process variables. 



 
 
 
 

3. Experimental background 
 

3.1 Laser system 
 

The laser system used for the performance of the experiments was a nanosecond Nd:YAG laser 
Lasertec 40 machine from Deckel Maho. This system is a lamp pumped solid-state laser with 
1,064nm wave length. The laser has 100W average laser power and with a laser beam spot 
diameter of 30 µm, which results in an ideal maximum pulse intensity of 1.4 W/cm2 
(theoretically estimated as [14]). The x and y movements are guided by highly dynamic scanner 
as optical-axis-system with a scanning field of 60x60 mm. The machine program itself is 
generated automatically by the 3D-CAD data by the Lasersoft shape software 

 
3.2 Material 

 
In this work 316L Stainless steel was used as a workpiece material test. This material was 
selected because it is commonly used for coronary stents fabrication. 

 
3.3 Milling experiments 

 
The experiments were carried out machining micro cavities in two different geometries. The 
first geometry has a half spherical shape defined by depth and diameter dimensions. The 
second geometry has a half cylindrical shape with a quarter sphere at both sides, defined by 
depth, diameter and length dimensions. The geometries were fabricated with three different 
combinations of dimensions where the volume is the same. Thus, the experiments are 
performed in six different geometries. Figure 1 and Table 1 and 2 present the geometries and 
the dimensions for the spheres and the cylinders, used in the experiments, respectively. The 
geometries and dimensions used would allow machining the cavities in cardiovascular stent 
struts in order to manufacture drug eluting stents. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Cavity geometries used in the experiments. 



 
 
 
 

Table 1. Sphere geometry dimensions. 
 

Geometry 

 

Depth 
(µm) 

Ø 
(µm) 

 

Volume 
(µm3) 

 

Sphere 1 (e1) 50 166 721414 
 

Sphere 2 (e2) 70 140 718377 
 

Sphere 3 (e3) 90 124 724576 
 
 
 

Table 2. Cylinder geometry dimensions. 
 

Geometry 

 

Depth 
(µm) 

Ø 
(µm) 

 

Length 
(µm) 

 

Volume 
(µm3) 

 

Cylinder 1 (c1) 50 130 55 723220 
 

Cylinder 2 (c2) 70 110 46 721676 
 

Cylinder 3 (c3) 90 100 36 725707 
 
 

In the experiments, the scanning speed (SS), the pulse frequency (PF) and pulse intensity levels 
(PI) were considered as input parameters. A full factorial design was used. A preliminary test 
was carried out to determine the proper process parameters to be used. From the result, three 
different levels were selected for each factor, as is presented in Table 3. These design of 
experiments results in a total of 27 unique factor level combination for each geometry studied. 
Thus, a total of 162 experiments were carried out.  All the experiments were machined in the 
same 316L SS blank under the same ambient conditions with a track displacement (distance 
between passes, a) of 10µm. The response variables investigated were the cavity dimensions 
depth (D) and diameter (Ø) and the volume of removed material. Although the cylinder shape 
has three target dimensions just two have been modeled, understanding that the results will 
be similar. 

 
Dimensional measurements and characterization of the laser cut samples was conducted by 
confocal microscope Axio CSM 700 from Carl Zeiss. Surface replicant silicone for was used in 
order to obtain the negative of some of the samples. 3D SEM images of these negatives were 
obtained. 

 
Table 3. Factors and factor levels. 

 
Factors Factor Levels 

 

Scanning Speed (SS) [mm/s] 200 400 600 
Pulse Intensity (PI) [%] 60 78 100 

Pulse Frequency (PF) [kHz] 30 45 60 



 
 
 
 

4. Simulation 
 

The experimental data measured is used to develop the second order models using the generic 
form in Eq (1) for responses of the relative error of depth, diameter and volume for the mean 
values (µ) and the standard deviation (σ) values. Six equations are obtained where the six 
responses are related with the four controllable process variables including the interaction 
terms and the second order terms. These constitute the six objective functions for the 
optimization model, which are considered separately. 

minimize {f(x), g(x), h(x), j(x), k(x), l(x)}
 

s. t.    f(x) S b  , g(x) S b2 , h(x) S b3 , j(x) S b4 , k(x) S bS and l(x) S b6   where x E X.        

(7)

 
In  the  optimization  problem  formulation  in  Eq.  (7)    f(x),  g(x),  h(x),  j(x),  k(x)  and  l(x)

 represent the objective functions for depth error mean, depth error variance, diameter error 
mean, depth error variance, volume error and variance, respectively with a set of process 
parameters (x = x   + · + xn ,  n = 1, 2, 3 or 4). X is the solution space with all feasible values

 
for the process parameters. 

 
The four controllable process variables are x1=Geo , x2=PI, x3=PF, x4=SS, where Geo is the type 
of geometry (spherical or cylindrical), PI is the Pulse Intensity (%), PF is the pulse frequency 
(kHz) and SS is the scanning speed (mm/s). 

 
In the above given formulation, the objective is to simultaneously minimize the objective 
functions. In solving this optimization problem, a general approach based on Pareto-optimal 
set of non-dominated decision variables settings is considered. The selection of a Pareto- 
optimal set avoids the problem of a single combined objective function with weights which 
often  leads  to  a  unique  solution  but  offers  no  other  solution  to  the  decision  maker  for 
optimum parameter selection. 

 
In the case of laser machining process, the optimization problem is defined with multiple 
objectives. Decision variables such as geometry (Geo) scanning speed (SS), pulse intensity (PI), 
and pulse frequency (PF) are constrained within the ranges of the experiments (see Table 3). 

 
The simulations were run by using a population of 200 individuals and a maximum number of 
300 iterations. After obtaining the best individuals values in each iteration of the simulation, 
the individuals are plotted in a two-dimensional objective space for viewing. This procedure is 
repeated  until  a  clear  Pareto  frontier  forms.  Matlab  R2011b  is  used  to  simulate  the 
optimization model. The Pareto frontiers of the non-dominated solution sets are obtained by 
using multi-objective NSGA-II method as shown in Figure 2 through Figure 5. 

 
Figure 2 presents the multi-objective optimization for the relative error diameter for the mean 
and the variance value. The pareto frontier is almost a straight line. All the process presents a 
very good tolerance for the diameter dimension. However, reducing this to 2% increases the 



 
 
 
 

relative error for the mean until the 33%. Therefore, better results can be achieved reducing 
the diameter error mean getting a little bit more of variance. 

 

 
 

Figure 2. Pareto frontier of optimal diameter mean and diameter variance relative error laser 
parameters. 

 
Figure 3 presents the multi-objective optimization for the depth and diameter relative errors. 
The convexity shape of the Pareto frontier shows a clear independence between both error 
objective parameters. A lower diameter error will result in a higher depth dimensional error. 
However, paying attention to the values at the axes, the range of the diameter is much lower 
than the one for the depth error. Diameter errors are between 0.27 and 0.274 while the error 
range for the depth is from 0.32 and 0.4. Therefore, in order to find the best combination of 
parameters, would be a good solution trying to reduce the depth error, since the diameter 
error won’t increase much. 

 

 
 
 

Figure 3. Pareto frontier of optimal diameter and depth relative error laser parameters. 



 
 
 
 

Figure 4 and 5 show the pareto frontier for the volume with the diameter and the depth 
relative errors, respectively. The concavity shape of both lines shows that volume is related to 
both parameters. Therefore, as expected, reducing the error for depth and diameter 
dimensions, the volume will get closer to the target. In the Figure 4, the pareto frontier is 
formed by two straight lines, with different inclinations. Small improvements in the diameter 
increases further the volume. 

 

 
 

 
Figure 4. Pareto frontier of optimal volume and diameter relative error laser parameters 

 

 
 
 

Figure 5. Pareto frontier of optimal volume and depth relative error laser parameters 
 

Figure 6 shows the multi-objective optimization for the three main objective functions as 
volume, diameter and depth relative errors. As pointed out the previous figures, reducing 
depth relative error is the main objective of the process, concerning the dimension quality. If 
this error is reduced the volume error will decrease and the diameter error will not increase 
much because the range of all the optimum combinations is lower. Although, it can be claimed 
that there is not combination that reaches an optimal result, a good parameter selection could 
be a pulse intensity of the 60%, pulse frequency of 45 kHz and scanning speed of 600mm/s. 



 
 
 
 

This result confirms what was pointed out in a previous study [14]. As pointed out, this 
combination reduces the depth relative error, keeping the other objective functions in low 
values. 

 
 
 
 

 
 

Figure 6. Multi-objective optimization for volume, diameter and depth relative error laser 
parameters 

 
5. Error analysis 

 
In order to deepen the study of dimensional error that occurs during laser milling, the 
experimentation was expanded to machining the same geometry but with a magnitude five 
times bigger. In this case, full factorial experimental design has not been carried out. Six 
experiments have been performed following the combinations of parameters presented in 
Table 4. This results in a total of 36 more experiments. 

 
Table 4. Process parameter combinations for the second set of experiments. 

 

 
Trial 

 
PI (%) 

 
PF (kHz) 

 
CS (mm/s) 

1 60 30 200 
2 60 60 600 
3 78 30 200 
4 78 60 600 
5 100 30 200 
6 100 60 600 

 
As in the previous experiments the depth and width dimensions were measured, as well as the 
relative error was calculated. In this way, capacity maps can be presented. In these maps, the 
198 results of the experiments performed fill the space drawing a line which delimits the 
tolerance which the laser is capable to performance depending on the dimension. 



 
 
 
 

Figure 7 and 8 present the capacity maps for the depth and diameter dimension respectively. 
The results on the map are plotted by the geometry. In both cases the precision of the laser 
gets better as the dimension increase. As expected, the depth dimension is clearly much more 
complicated to control than the diameter dimension. The dimensions in the x-y plane are 
mainly controlled by the movement of the laser, the laser spot size and the overlapping 
between the different pulses. Although the spot size varies depending on the process 
parameters, the other conditions are well controlled. Thus, this results in a good control of the 
diameter dimensions. On the other hand, for the depth control, the system establishes a 
constant removing depth for each pulse. This results in a bad approximation because the 
removed depth for each laser shot changes due to many aspects (thermodynamic equilibrium, 
process parameters), as is presented in many studies (10, 17) 

 
Besides presenting much larger errors, the results are much more dispersed. Clearly, in 
dimensions around 50 microns depth, the process becomes poorly controlled. One would 
expect that in higher dimensions the results become better, as some results point out (about 
0.5 relative error). However, in some conditions, the system moves away completely from the 
target set. This translates into a much lower tendency than expected, as it happens in the 
diameter map. Moreover, the results from the cylinder geometry are worst than the spherical 
ones. Is very evident in the smaller dimension where the sphere results are below 1 and many 
of the cylinder results are well above that value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Capacity map for the depth dimension. 
 

In the case of the diameter dimension, the tendency of the results follows a parabolic shape 
with very similar values for each dimension. Also, the results for both geometries present are 
very similar. Hence, as expected, this dimension is much more controlled. Being the spot size 
known, the error can be reduced. Nevertheless, for micrometric dimensions the errors are 
between 0.2 and 0.5 showing the difficulties in obtaining the preset dimensions. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Capacity map for the diameter dimension. 
 

Clearly, the results presented on a larger scale are better than those obtained in a smaller size. 
Although the depth is still difficult to control, the forms obtained are much better defined, as 
presented in Table 5. Although the process to obtain the negative of the cavities present more 
problems when the dimensions are much smaller, the cavities obtained in the second set of 
experiments present shape much similar to the target. 

 
table 5. SEM images of cavities negative; a) geometry C1; PI = 60%, PF = 60 kHz and SS = 

600mm/s, b) geometry c2; PI = 60%, PF = 30 kHz and SS = 200mm/s, c) geometry E1; PI = 60%, 
PF = 60 kHz and SS = 600mm/s, d) geometry e2; PI = 100%, PF = 60 kHz and SS = 600mm/s. 

 

 



 
 
 
 

6. Conclusions 
 

In this study a multi-objective optimization of the laser milling process of micro-cavities for the 
manufacture of drug eluting stents is presented. The optimization problem is solved by NSGA-II 
algorithm where the diameter, depth and volume errors are considered to be optimized 
function affected by four variables. These variables are the geometry of the cavity, the pulse 
intensity, the pulse repetition rate and the scanning speed. The objective is to minimize all 
three dimensional errors. Experiments in 316L Stainless Steel are carried out to provide data 
for the model. The capability of the process to manufacture within a level of error is also 
investigated.  Relative  error  capability  maps  for  different  scale  of  features  are  presented. 
Clearly, the process presents more control on the diameter than on the depth dimension. This 
affects the volume error. Some trends and specific conclusions can be drawn as following: 

 
1.   Multi-objective NSGA-II provides Pareto frontiers of non-dominated solution sets for 

optimum laser milling process parameters, providing a resourceful and efficient means 
to the decision maker. 

2.   The  nanosecond  Nd:YAG  laser  is  capable  to  produce  micro-cavities  with  preset 
dimensions presenting relative error around 1,5 for the depth dimension and 0,3 for 
the diameter dimension. 

3.   The capability of the laser milling process to produce micro-geometries is limited by 
the  scale  of  the  feature.  As  bigger  the  dimensions  of  the  cavity,  smaller  the 
dimensional error. 

4.   The diameter dimension error decreases more than the depth error when the scale of 
the cavity machined is increased. 

5.   The geometry of the feature to machine affects the process performance. 
6.  Although laser milling is a complex process and it is not easy to find the proper 

combination of process parameters to achieve the final part, a good parameter 
selection is presented for the laser milling of micro-cavities; pulse intensity of the 60%, 
pulse frequency of 45 kHz and scanning speed of 600mm/s. 
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