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Resum 
 

Des del punt de vista ambiental, els incendis representen una destrucció de boscos i matolls, 

una alliberació a l‟atmosfera d‟una part del carboni i dels nutrients acumulats prèviament a 

l‟ecosistema i importants efectes sobre la fauna. També tenen un efecte directe sobre els 

processos geomorfològics i hidrològics. D‟altra banda, molts estudis mostren alguns efectes 

positius del foc per a la biodiversitat però la realitat és que els incendis posen en perill els 

assentaments humans i faciliten l‟erosió del terreny.  

El risc d‟incendis és molt important en la regió mediterrània degut a una marcada estacionalitat, 

en la qual destaca un període estival caracteritzat per les altes temperatures i una baixa 

humitat relativa de l‟aire. Si en aquesta combinació de factors climàtics s‟hi afegeixen episodis 

de vents secs i càlids, propis d‟aquestes regions, es reuneixen totes les condicions perquè es 

produeixi un escenari d‟incendi catastròfic que pot arribar a cremar desenes de milers 

d‟hectàrees. Addicionalment, després de l‟estació seca, moment propici pels incendis, succeeix 

una estació amb pluges torrencials que actúa erosionant els terres desproveïts de tot tipus de 

coberta vegetal. A més a més, la tendència climàtica es decanta cap a un increment del 

número de dies estivals, amb altes temperatures i baixa humitat de l‟aire i cap a una reducció 

de les precipitacions, que es tornaran episòdiques i més intenses. 

L‟objectiu principal d‟aquesta tesi és modelitzar l‟ocurrència dels incendis i, en particular, 

analitzar la variabilitat del seu comportament en funció de l‟espai i el temps tot coneixent quins 

són els factors que, amb més o menys intensitat, influeixen en el seu comportament.  

La tesi planteja tres grans objectius. En primer lloc s‟analitza si les dades, en aquest cas els 

incendis, segueixen un patró determinat o altrament tenen un comportament aleatori. Analitzant 

únicament els incendis de Catalunya produïts en el període 2004-2008 i aplicant la metodologia 

dels processos puntuals basada en la comparativa d‟un model estocàsticament independent, 

es descarta, en primera instància, el comportament aleatori. En segon lloc, s‟estudia que la 

distribució dels incendis és variable en el temps i s‟aplica un model que incorpora la component 

temporal. Aquest segon treball amplia els anys d‟estudi considerant els incendis ocorreguts des 

de l‟any 1994 fins al 2008. Finalment, particularitzem l‟ocurrència dels incendis i ens interessem 

únicament en els incendis més grans que una extensió específica fixada (50ha, 100ha o 150ha) 

ja que, tot i no ser els més abundants en número són els que més extensió i més mal 

mediambiental ocasionen. D‟aquest tercer anàlisi se n‟extreu que els grans incendis són 

provocats majoritàriament per l‟acció de l‟home, ja sigui per accident o intencionat però es 

descarta que siguin degut a causes naturals. 

Els mètodes presentats en aquesta tesi s‟engloben dins la teoria de processos puntuals però, 

cada un d‟ells, té les seves particularitats. El primer mètode analitza el tipus d‟interacció entre 

els punts analitzats (incendis en el nostre cas d‟estudi) fent una comparativa gràfica amb la 
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funció K de Ripley, que suposa un comportament completament aleatori. El segon mètode es 

basa en una classe de models flexibles molt útils per modelitzar punts agregats amb informació 

subjacent no observada. En particular, es tracta dels processos de Cox, que són capaços de 

barrejar les dues principals branques de l'estadística espacial, els processos puntuals i la 

geoestadística. Finalment, per tractar el darrer objectiu, s‟utilitza un model economètric en dues 

parts, concretament, el model Hurdle.  

Els resultats obtinguts en aquesta tesi poden contribuir a la prevenció i a la gestió dels incendis 

forestals. A més, la metodologia utilitzada en aquest treball és útil per conèixer quins són els 

factors que fan que un incendi es converteixi en un gran incendi forestal. 
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Resumen 

 

Desde el punto de vista ambiental, los incendios representan una destrucción de bosques y 

matorrales, una liberación a la atmosfera de una parte del carbono y los nutrientes acumulados 

previamente en el ecosistema e importantes efectos sobre la fauna. También tienen un efecto 

directo sobre los procesos geomorfológicos e hidrológicos. Por otra parte, muchos estudios 

muestran algunos efectos positivos del fuego para la biodiversidad, pero la realidad es que los 

incendios ponen en peligro los asentamientos humanos y facilitan la erosión del terreno. 

El riesgo de incendios es muy importante en la región mediterránea debido a una marcada 

estacionalidad en la que destaca un período estival caracterizado por las altas temperaturas y 

una baja humedad relativa del aire. Si a esta combinación de factores climáticos se añaden 

episodios de vientos secos y cálidos, propios de estas regiones, se reúnen todas las 

condiciones para que se produzca un escenario de incendio catastrófico que puede llegar a 

quemar decenas de miles de hectáreas. Además, después de la estación seca, momento 

propicio para los incendios, sucede una estación con lluvias torrenciales que actúa erosionando 

los suelos desprovistos de todo tipo de cubierta vegetal. Por otra parte, la tendencia climática 

se decanta hacia un incremento del número de días estivales, con altas temperaturas y baja 

humedad del aire y hacia una reducción de las precipitaciones, que se volverán episódicas y 

más intensas. 

El objetivo principal de esta tesis es modelar la ocurrencia de los incendios y, en particular, 

analizar la variabilidad de su comportamiento en función del espacio y el tiempo conociendo 

cuáles son los factores que, con mayor o menor intensidad, influyen en su comportamiento. 

La tesis plantea tres grandes objetivos. En primer lugar se analiza si los datos, en este caso los 

incendios, siguen un patrón determinado o de lo contrario tienen un comportamiento aleatorio. 

Analizando únicamente los incendios de Cataluña producidos en el periodo 2004-2008 y 

aplicando la metodología de los procesos puntuales basada en la comparativa de un modelo 

estocástico independiente, se descarta, en primera instancia, el comportamiento aleatorio. En 

segundo lugar, se estudía que la distribución de los incendios es variable en el tiempo y se 

aplica un modelo que incorpora la componente temporal. Este segundo trabajo amplía los años 

de estudio considerando los incendios ocurridos desde el año 1994 hasta el 2008. Finalmente 

particularizamos la ocurrencia de los incendios y nos interesamos únicamente en los incendios 

más grandes que una extensión específica fijada (50ha, 100ha o 150ha) ya que, aunque no 

son los más abundantes en número son los que más extensión y más daño medioambiental 

producen. De este tercer análisis se extrae que los grandes incendios son provocados 

mayoritariamente por la acción del hombre, ya sea por accidente o intencionado pero se 

descarta que sea debido a causas naturales. 
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Los métodos presentados en esta tesis se engloban dentro de la teoría de procesos puntuales 

pero cada uno de ellos tiene sus particularidades. El primer método analiza el tipo de 

interacción entre los puntos analizados (incendios en nuestro caso de estudio) haciendo una 

comparativa gráfica con la función K de Ripley, que supone un comportamiento completamente 

aleatorio. El segundo método se basa en una clase de modelos flexibles muy útiles para 

modelar puntos agregados con información subyacente no observada. En particular, se trata de 

los procesos de Cox, que son capaces de mezclar las dos principales ramas de la estadística 

espacial, los procesos puntuales y la geoestadística. Finalmente, para tratar el último objetivo, 

se utiliza un modelo econométrico en dos partes, concretamente, el modelo Hurdle. 

Los resultados obtenidos en esta tesis pueden contribuir a la prevención y a la gestión de los 

incendios forestales. Además, la metodología utilizada en este trabajo es útil para conocer 

cuáles son los factores que hacen que un incendio se convierta en un gran incendio forestal. 
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Summary 

 

From an environmental point of view, fires represent a danger to forests and brush; they release 

some of the carbon and nutrients previously accumulated in the ecosystem to the atmosphere 

and seriously affect wildlife. They also have a direct effect on geomorphological and 

hydrological processes. On the other hand, many studies show some positive effects of fire for 

the biodiversity but on balance, fires endanger human settlements and facilitate soil erosion. 

Fire risk is highly important in the Mediterranean region because of its seasonal nature, with 

summers of high temperatures and low humidity. Weather is a fundamental component of the 

fire environment. The prolonged drought and high temperatures of the summer period in the 

Mediterranean climate are the typical drivers that define the temporal and spatial boundaries of 

the main fire season. Future trends of wildfire risks in the Mediterranean region, as a 

consequence of climate change, will lead to an increase of temperature in the East and West of 

the Mediterranean, with more frequent dry periods and heat waves, facilitating the development 

of very large fires. Due to the climate change there is an increasing relationship between the 

number of days of extreme fire hazard weather and the number and size of fires in the 

Mediterranean coast of Spain. 

The main objective of this Thesis is to model the occurrence of wildfires and, in particular, 

knowing the factors with more influence, to evaluate how they are distributed in space and time. 

The Thesis presents three major objectives. Firstly it has been analysed if data - in this case, 

fires - follows a particular pattern or behaves randomly. Analysing only fires in Catalonia 

occurred in the period 2004-2008 and applying the methodology of point processes based on 

the comparison of an independent stochastic model, random behaviour is discarded. Secondly, 

this study has shown that fire distribution is variable in time, so a model which includes the 

temporal component is used. This second study extends the database considering fires 

occurred from 1994 to 2008. Finally, we focus on modelling the occurrence of big wildfires, 

which are those that burn areas greater than a given extension of hectares (50ha, 100ha or 

150ha); even though they only represent a small percentage of all fires, they signify a high 

percentage of the area burned and cause important environmental damage. The main finding of 

this third analysis is that big wildfires are mostly caused by human action, either through 

negligence and accidents or intentionally but not by natural causes. 

Methods presented in this Thesis are included in the theory of point processes but each one 

has its own specific characteristics. The first method explores the nature of interaction between 

the points analysed (fires in our case of study) applying K Ripley‟s function, a graphical tool for 

discarding random behaviour. The second method is based on a flexible class of point 

processes that is particularly useful in the context of modelling aggregation relative to some 
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underlying unobserved environmental field. These processes, which are Cox models, are able 

to mix the two main areas of spatial statistics, point processes and geostatistics. Finally, to deal 

with the last objective an adapted two-part econometric model is used, specifically a Hurdle 

model. 

The results presented in this Thesis may contribute to the prevention and management of 

wildfires. In addition, the methodology used in this work can be useful to determine those 

factors that help any fire to become a big wildfire.  
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Hypothesis 

 

Throughout this project we formulate the following hypothesis: 

 

1. The occurrence of wildfires in a given period can be predicted using statistical methods. 

2. Wildfires are not randomly distributed in space or time but they are concentrated in 

certain areas and / or periods. 

3. Clustering of wildfires depends on covariates, specifically on the topographic variables 

(slope, aspect, hill shade and altitude; proximity to anthropic areas such as roads, urban 

areas and railways), meteorological variables (maximum and minimum temperatures), 

land use and forest fuels. 

4. The probability of occurrence can also be different depending on the initial cause of the 

wildfire. 

5. Assuming separability between spatial and temporal patterns allows include interaction 

between the two components. 

6. Wildfires bigger than a given extension (50ha, 100ha or 150ha) are mostly caused by 

human action either through negligence and accidents or intentionally but not by natural 

causes. 

7. Because every wildfire can turn into a big wildfire, they are not modelled as structural 

zeros by a ZIP model but by a Hurdle model.  
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Objectives 

 

The main objective of this Thesis is to analyse the spatio-temporal patterns produced by wildfire 

incidences in Catalonia, located in the north-east of the Iberian Peninsula, using spatio-temporal 

point processes.  

 

Specific objectives: 

 

1. To evaluate how the extent of clustering in wildfires differs across the years they 

occurred. 

2. To analyse the influence of covariates on trends in the intensity of wildfire locations. 

3. To analyse the spatio-temporal patterns produced by those wildfire incidences by 

considering the influence of covariates on trends in the intensity of wildfire locations. 

4. To model the occurrence of big wildfires (greater than a given extension of hectares) 

using an adapted two-part econometric model, specially a Hurdle model. 

5. To build maps of wildfire risks, by year and cause of ignition, in order to provide a tool 

for preventing and managing vulnerability levels. 

6. To analyse which factors have more influence in generating wildfires bigger than a 

given extension (50ha, 100ha or 150ha). 

7. To evaluate two different statistical alternatives (ZIP models and Hurdle models) to 

analyse and estimate the excess of zeros of a stochastic process. 
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1. Characterisation of the study area 

 

Catalonia, located in the north-east of the Iberian Peninsula, is one of the autonomous 

communities of Spain. The region is bordered by mountains, with the Pyrenees lying in the 

north and the Iberian System to the south. The region is further demarcated by the Ebro River 

to the south and south-west, and the Mediterranean coast to the east. It is a region with a 

surface area of 30,000 square kilometres (12,355 sq mi), representing 6.4% of the total Spanish 

national territory. According to the Catalan Statistics Institute (IDESCAT) and Spanish Statistical 

Office (INE), in 2010 Catalonia was inhabited by 7,512,000 people¹ of whom two thirds lived in 

the metropolitan area of Barcelona, a very dense and highly industrialised region. 

Broadly speaking, Catalonia can be categorised into three main geographical areas: a 

mountainous region made up by the Pyrenees Mountains, which connect the Iberian Peninsula 

to continental Europe and are located in the north of Catalonia. Another region is formed by 

alternating elevations and plains parallel to the Mediterranean coast called the Catalan 

Mediterranean System, or the coastal Catalan mountain ranges, and a third element located 

within a flatter area called the Catalan Central Depression. Figure 1 depicts this varied 

geography which has a variety of landscapes, from the high Pyrenees to the curious geological 

formations such as the mountains of Montserrat or the now extinct volcanoes of La Garrotxa. 

 

Figure 1: Morphostructural units of Catalonia 

 
 

Source: Translated from http://www.zonu.com 

 

http://www.zonu.com/
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The climate in Catalonia is not uniform throughout the region and has significant temperature 

variations caused by Catalonia‟s complex relief. This heterogeneity leads to different climate 

types. The coastline is characterised by a mild climate, warm in winter and very hot in summer, 

whereas inland Catalonia is noted for its Continental Mediterranean climate characterised by 

cold winters and hot summers. Finally, the mountainous areas close to the Pyrenees have a 

typical alpine climate featuring temperatures below zero and high winter snowfall. The annual 

rainfall is over 1,000 mm and summers are cool². 

The heterogeneity of the Catalan landscape, both morphological and climatologically, gives rise 

to a territory of extraordinary diversity, making Catalonia a region rich in a wide variety of 

landscapes which can be considered as part of the country‟s environmental, cultural, social and 

historical heritage influencing the quality of the citizens‟ life. This wealth is a resource for 

economic development, particularly in tourism, but also in agriculture, livestock farming and 

forestry. This diversity contributes to the preservation of the biodiversity and, in particular, plays 

a positive role in preventing wildfires³. 

 

Figure 2:Evolution of the number of fires and the wooded and not wooded areas from 1970 to 

2003. 

 

 

 

 

 

 

 

Source: Catalan Fire Department and author‟s own construction 
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Figure 2 shows a cyclic behaviour with respect to the number of fires, which directly affectsthe 

number of wooded or not wooded hectares. Taking into account the number of hectares burned, 

the worst years were from 1978 to1986. However, after a peak in fires in 1994 a decrease in the 

annual burned area can be noticed, as well as an improvement in wildfire extinction and better 

climatic conditions, characterised by less harsh and wetter summers. Nevertheless, from 1996 

fires continued to occur with high frequency, intensity and extension. 

In 1983 the “Bombers de la Generalitat” were created, which are the firefighters of the 

Governement of Catalonia, and since 1987, as the arrow below the graph in Figure 2 shows, 

the program “Foc Verd” (Green Fire) has been implemented
4
. 

 

2. Theory on fires 

 

2.1 Definition of wildfires 

 

Fire is defined as the rapid oxidation of a material in the exothermic chemical process of 

combustion, releasing heat, light, and various reaction products. It starts when a flammable 

and/or a combustible material, in combination with a sufficient quantity of an oxidizer such as 

oxygen gas or another oxygen-rich compound (although there are non-oxygen oxidizers which 

can replace oxygen) is exposed to a source of heat or ambient temperature above the flash 

point for the fuel/oxidizer mix, and is able to sustain a rate of rapid oxidation that produces a 

chain reaction. The minimum temperature needed to trigger the combustion is called ignition 

temperature, defined in degrees centigrade (°C) at a pressure of one atmosphere (1 atm), which 

is the condition in which the vapours generated start to burn
5
. 

The result of this exothermic process is carbon dioxide (CO2), water vapour, energy and a solid 

waste or ashes
5
. 

Fuel + O2 + Heat (H) = CO2 + H2O + Energy + Waste 

The above equation shows that in any combustion there is always a burning element, called 

fuel, and another which produces the combustion (oxidizer) that it usually is oxygen as gaseous 

O2. 

Fires cannot exist without the correct combination, in the right proportions of three elements. It 

requires a fuel, an oxidizer, such as oxygen, plus activation energy or ignition source. For 

example, a flammable liquid will start burning only if the fuel and oxygen are present in precise 
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proportions. Some fuel-oxygen mixes may require a catalyst, a substance that is not directly 

involved in any chemical reaction during combustion, but which enables the reactants to 

combust readily. 

There is a model called the fire or combustion triangle which describes these three elements 

graphically (see Figure 3): 

 

Figure 3: Fire triangle 

 

Source: Own construction from “Basic Course on Wildfires [in Spanish]”
5 

 

The key in preventing or attacking a fire is simply to remove any of these three factors. Thus, if 

one of these elements in the triangle is absent, fire cannot be generated. This is a key concept 

in establishing fire prevention methods which are based on the reduction or elimination of one of 

these elements
5
. 

Without adequate heat, fire cannot start or propagate, and without fuel the fire stops. This 

second element can be consumed by the fire itself, or it can be eliminated naturally or artificially, 

by introducing a retardant chemical to the flame which obstructs the chemical reaction itself until 

the rate of combustion is too slow to maintain the chain reaction. To prevent the fire from 

gaining access to the fuel there are also some physical obstacles such as firewalls. Finally, 

insufficient oxygen, as well the absence of heat, prevents the fire from starting or spreading. 

Correspondingly, wildfire behaviour and the severity of the resulting blaze are a combination of 

factors such as available fuels, physical setting, and weather conditions, all of which make up 

the fire behaviour triangle (see Figure 4). Some authors suggest that, under extreme weather 

conditions and on steep slopes, the importance of fuel is, at best, relative
6
. However, from a 

forest management and fire prevention point of view, fuel is the only factor which can be 

influenced in order to modify the behaviour of a fire. The methods used to keep the fire away or 

to change its behaviour are isolation as well as a fuel modification or conversion
7
. The objective 

is to control the fire in a specific area in order to be able to attack it directly. The forests where 

OXIDIZER SOURCE OF HEAT Ignition  

temperature 

FUEL 
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the fuel has been modified or converted may be useful in surrounding the fire, but the main 

objective is to influence the behaviour of the fire. 

Figure 4: Fire behaviour triangle 

 

Source: Own construction from “Basic Course on Wildfires [in Spanish]”
5
 

 

Apart from the fire triangle, another concept to explain fire is the fire tetrahedron which, unlike 

the two previously explained triangles, shows the essential elements for a fire to propagate and 

persist
5
. The fire tetrahedron adds another component, the chemical chain reaction, to the three 

elements already present in the fire triangle (see Figure 5). Once a fire has started, the resulting 

exothermic chain reaction sustains the fire and allows it to continue until at least one of the 

elements of the fire is blocked. Foam can be used to starve the fire of the oxygen it needs. 

Water can be used to lower the temperature of the fuel to below ignition point or to remove or 

disperse the fuel. Halo methane can be used to remove free radicals and create a barrier of 

inert gas in a direct attack on the chemical reaction responsible for the fire  

 

Figure 5: Fire tetrahedron 

 

Source: Own construction from “Basic Course on Wildfires [in Spanish]”
5
 

 

Oxidizer 

Fuel 

Energy 

Chain reaction 
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To better understand the types of chain reaction originating from the combination of the three 

elements, it is worth analyzing the propagation speeds, which are present
5
 (see Table 1). 

Table 1: Types of chain reaction according to their propagation speed 

SPEED OF PROPAGATION TYPE OF CHAIN REACTION 

Very slow Oxidation 

Slow Combustible 

Quick Conflagration 

Brief Explosion 
 

Source: Own construction from “Basic Course on Wildfires [in Spanish]”
5
 

 

As in the previous case, if any of these four elements is missing, the fire will be extinguished. 

A wildfire is an uncontrolled fire that occurs in the countryside or a wilderness area with an area 

of combustible vegetation. A wildfire differs from other fires by its extensive size, the speed at 

which it can spread out from its original source, its potential to change direction unexpectedly, 

and its ability to jump gaps such as roads, rivers and fire breaks. Moreover, wildfires differ from 

other fires because they occur in areas of grassland, woodlands, bush land, scrubland, peat 

land, and other wooded areas that act as a source of fuel, or combustible material. Buildings 

may be affected if a wildfire spreads to adjacent communities. While the causes of wildfires vary 

and the outcomes are always unique, all wildfires can be characterised in terms of their physical 

properties, their fuel type, and the effect that weather has on the fire.  

Fuel accumulation, due to total fire control but especially because of the abandonment of the 

rural environment and the agro-forestry-pastoral activities, as well as the progressive alteration 

of the landscape, generate new more devastating classes of fires; ones which quickly destroy 

enormous extensions of terrain. Official Spanish statistics call such fires “big wildfires” (GIF from 

now on) and they are characterised by areas larger than 500 hectares being ablaze. However, 

GIFs are not strictly large surface fires but rather fires which spread quickly and cannot be 

suppressed. In other words, GIFs are those fires which cannot be extinguished
8
. Their 

proliferation is made possible because of the change in the behaviour of wildfires over the 

years. It is interesting to note that between 1986 and 1997 while GIFs accounted for a mere 

0.6% of all registered fires in Catalonia, they represented 80% of the total area burned. In 2007 

fires over 100ha represented 94.6 % of the burn surface. This development can be analysed by 

considering four generations of fires (see Figure 2). 

The first generation of fires, which began at the end of the 50-60s, is characterised by having a 

surface area bursting with possible fuel which would cause large fires. Such amounts of fuel 

were available because rural areas were being or had been abandoned and were not being 
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maintained. Therefore, the goal here was to increase accessibility to the area and use linear 

prevention infrastructures (firewalls)
8
. 

The second generation manifested itself as faster and more intense fires and was a 

consequence of 10-15 years of large amounts of fuel accumulating after cultivation, and also 

traditional forests management, ceased
9
. Second generation fires appeared in the 70-80s and it 

were dealt with by reducing access time to fire control systems (water points, roads, security, 

fast arrival, etc.) and by increasing the number of resources, particularly airborne, in order to 

reduce the intensity of these fires. At the same time, linear infrastructures were applied to break 

the line of continuity between forests and houses. 

The third generation was in the 90s and it was characterised by high intensity fires due to crown 

fires, which burn materials at the canopy level. These fires were a result of 30-50 years of poor 

forest management and the suppression of all low and medium intensity fires, and were 

impossible to be extinguished in any way
8
. 

Finally, the fourth generation includes fires that spread over a new fuel: residential areas. These 

fires spread using the dense vegetation of gardens, as well as the fuel between forests, urban 

areas and housing
8
. 

GIFs are mainly deliberately lit and very difficult to control so a significant financial investment in 

fire extinction equipment may not be enough. Instead it is better to devote more resources and 

efforts on fire prevention rather than focusing on attacking the fires directly. Extensively 

analyzing a fire‟s history in order to design a good social prevention plan, as well as detecting a 

fire‟s pattern to better understand its behaviour and thus identify adequate fire extinguishing 

techniques and organization is paramount. 

Given the scope of GIFs, fire fighting equipment must have a flexible and dynamic structure, 

and must include professional well-trained expert fire-fighters who are able to take charge the 

moment a fire starts. Being ahead of and being able to anticipate any changes in the fire is also 

vital in being able to predict where it will be possible to suppress the fire; as is knowing the fire‟s 

intensity, where and when it will change its behaviour (critical points), and which of the fires 

could turn into a GIF (design fire), etc. Having teams of highly experienced fire fighters to 

manage large fires is vital, however, as building up such experienced teams is time-consuming 

and costly, it is often preferable to anticipate where fires might occur and devote more effort to 

fire prevention rather than focus on the direct attack of the wildfire because many times, the 

resources available are simply inadequate for fire-fighting
10

. 

Thus, it is important that any local action plan is based on a first-rate study about fire behaviour. 

Additionally, it is crucial to identify the critical points where one could apply the patterns of 

propagation analysed and then act according to the design created. 
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2.2 Wildfire components 

 

A fire is principally composed of three parts: the head, the flanks and the tail. The head of a fire 

is the most rapidly spreading portion of a fire‟s perimeter, usually to the leeward or up slope; 

may have multiple heads if there are separated flanking fires. The flanks are the parts of a fire‟s 

spread perimeter that grow to the sides and then run roughly parallel to the main direction of 

spread. Separated flank heads are extremely dangerous in steep terrain. The tail is the opposite 

side from the head. This last part corresponds to the portion which burns slower
5
 (see Figure 6). 

 

Figure 6: Wildfire components 

 

Source: Own construction from “Basic Course on Wildfires [in Spanish]”
5
 

 

There are three phases of a fire: incipient (growth), free burning (fully developed) and 

smouldering (decay). First there is the initiation phase, the beginning of the fire, which occurs 

either by natural causes or by human action (negligence, intentional or accidents). Then, there 

is the spread, which is the extension of the fire to the nearby vegetation. Lastly, there is the 

extinction phase, the end of the fire, either by natural causes (rain or lack of vegetation) or by 

human action
5
 (work of extinction). Each phase has its own unique characteristics and dangers 

to fire-fighters and should be understood thoroughly to ensure and improve safety during fire 

fighting operations. 

 

Tail 
Right Flank 

Left Flank Head 
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The first phase includes the ignitability concept, this is to say, the ability of the fuel to start the 

ignition. A material burns when it reaches its ignition temperature (flashover). In particular, 

ignition is defined as the time (t) required for ignition divided by the energy intensity per unit 

area (kW/m
2
) supplied

11
. 

The second phase depends on the weather conditions, the topography and the vegetation 

present. At any rate, the basic forms of fire spread may be categorised in a new triangle (see 

Figure 7): 

 

Figure 7: Triangle of possible pathways 

 

Source: Own construction from “Basic Course on Wildfires [in Spanish]”
5
 

 

Radiation is that the heat transmitted by any material without requiring physical contact and is 

one of the most common causes for a fire spreading. Heat radiation occurs especially in urban 

areas where the proximity to other structures and the generation of a large amount of heat 

originates the ignition of neighbouring buildings
5
. 

Conduction is the heat transfer via direct contact between objects. In the case of forest fuels 

conduction is not decisive as these fuels are very poor thermal conductors. 

Finally, convection is the most dangerous way of transmission as this is what causes major 

problems. Fire generates its own stream of overheated air that moves through the air 

surrounding us reaching temperatures high enough to ignite combustible materials on its way
5
. 

The last phase of a fire is the extinction which includes two possible ways to end the fire. One is 

a natural way, for example, the end of the fuel, while the other can considered as human action 

which will try to act on either side of the fire triangle (fuel, oxidizer and heat)
5
. 

CONVECTION 

RADIATION CONDUCTION 
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In general, the variables that influence a wildfire behaviour are the weather (speed, direction, 

temperature and relative humidity), topography (slope, aspect, altitude and relief) and fuel 

(quantity, moisture-delay time, distribution and compaction)
5
. 

 

2.2.1 Fuel 

 

Fuel is defined as a substance that, under certain conditions, is able to burn. All that is required 

is the presence of an oxidizer (oxygen, mostly) and the contribution of a certain activation 

energy. 

The general composition of fuel is essentially carbon (C) and hydrogen (H2), either in free form 

or combined in the form of hydrocarbons. It also contains sulphur, even if only in small 

percentages, due to the detrimental effects of the oxygen compounds. Another component is 

oxygen, which can be either fixed to carbon and hydrogen, or in a free state in the fuel. Finally, 

fuel contains inert elements, such as moisture, ash, CO2 and nitrogen. Also fuel can be defined 

as any material that stores potential energy in a form that can be practicably released and used 

as heat energy
12

. 

Chemical fuels can be divided in two ways. First, by their physical properties, they can be 

considered as a solid, liquid or gas. Secondly, on the basis of their occurrence they can be 

considered as either primary (natural fuel) or secondary (artificial fuel). 

Solid fuels are characterised by the ash they produce when they burn. Combustion can be by 

flame or incandescent and it depends mainly on the moisture content of the solid, the heat 

conductivity, the ignition temperature, the degree of combustion and the spread speed. Solid 

fuels include coal, wood, corn, wheat, rye, peat and other grains. Coal was the fuel source 

which powered the industrial revolution, from firing furnaces, to running steam engines. Wood 

was also extensively used to run steam locomotives. Both peat and coal are still used to 

generate electricity today
12

. 

Liquid fuels act differently from solid fuels because it is the fumes of liquid fuels, rather than the 

fluid, that are flammable. In this case, one must take into account the flash point which is the 

lowest temperatureat which the fumes can vaporize to form an ignitable mixture in the air. 

Measuring a flash point requires an ignition source. At the flash point, the vapour may cease to 

burn when the source of ignition is removed.Every liquidhas a vapour pressure, which is a 

functionof that liquid's temperature. As the temperature increases, the vapour pressure 

increases. As the vapour pressure increases, the concentration of vapour of the flammable 

liquid in the air increases. Hence, temperature determines the concentration of vapour of the 

flammable liquid in the air. Among liquid fuels there are natural gas and liquefied petroleum gas, 
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non-petroleum fossil fuels, alcohols, biodiesel, ethanol, hydrogen, ammonia and petroleum such 

as gasoline, diesel or kerosene
13

. 

Fuel gas is the most used over the previous two (solid and liquid). Fuel gas is contrasted with 

liquid fuels and from solid fuels, though some fuel gases are liquefied for storage or transport. 

While their gaseous nature has advantages, avoiding the difficulty of transporting solid fuel and 

the dangers of spillage inherent in liquid fuels, it also has limitations. It is possible for a fuel gas 

to be undetected and collected in certain areas, leading to the risk of a gas explosion. This is 

the reason why odorizes are added to most fuel gases so that they may be detected by a 

distinct smell. The combustion of a fuel gas requires the presence of combustion air (pure 

oxygen combustion is not considered). When considering all possible mixtures characterised by 

the content of gas compared to the homogeneous mixture, for example from 0% (pure air) to 

100% (pure gas), it is observed that combustion can only occur and propagate within a zone 

between these extremes. This area is known as the flammability zone. The lower limit is 

regarded as the value below which there is too much air in the mixture to make the combustion 

possible, and the upper limit the value above which there is insufficient combustion air to 

produce the combustion. This type of fuel is mainly composed of hydrogen, carbon monoxide 

(CO), saturated hydrocarbons (methane, ethane, propane, butane and isobutane, pentane and 

hexane vapour exceptionally), unsaturated hydrocarbons such as ethylene (C2H4), butane 

(C4H8), propane or propylene (C3H6) and unsaturated hydrocarbons unidentified in analysis 

(CnHm). Eventually also contain oxygen oxidizer and inert gases (CO2, N2) in small 

proportions
16

. Its main properties are density, important in respect to local ventilation, the 

calorific value and the ignition temperature, which represents the minimum value at which a 

point of a flammable mixture of fuel gas and oxidizer must be taken for combustion to begin and 

spread. The most common type of fuel gas in current use is natural gas
13

.  

The forest system's ability to maintain and extend fire defines its combustibility. Moreover, 

combustibility is defined as the speed at which the fuels are burned. 

For each type of vegetation, its flammability and combustibility are determined, which vary 

depending on the type and quantity of biomass and its spatial distribution or stratification
13

. 

 

2.2.2 Flammability 

 

Flammability represents how easily something will burn or ignite, causingfireor combustion.The 

degree of difficulty required to cause the combustion of a substance is quantified through fire 

testing. Internationally, a variety of test protocols exist to quantify flammability
14

. 
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Materials present two physical properties that indicate their flammability: flash point and 

volatility, which is determined by the boiling point
14

. 

On one hand the material‟s flash point is the lowest temperature at which a liquid (or a volatile 

solid) can vaporize to form an ignitable mixture in the air. When there is an external source of 

ignition (for example, electric sparks, flames) a material can ignite at temperatures equal or 

above its flash point
5
. 

The flash points of some products are: 

Gasoline Ethyl Benzene Hexane Diesel Diesel oil 

-43ºC 12ºC 20ºC -28ºC 52ºC a 96ºC 150ºC 

 

Flammable gases have no flash point as they already are in the vapour phase. 

On the other hand, the volatility of a material indicates the ease with which a liquid or a solid 

turns into steam. Volatility is measured by the boiling point of the material (the temperature at 

which the vapour pressure of the material is equal to the atmospheric pressure).There are some 

materials which are not volatile but rather are flammable, such as water, chloroform and 

mercury. 

In the case of a gas mixture, such as the gases present in a fire, there are a number of different 

molecules, each subjected to the action of heat. This heat, as a primary form of energy, 

transfers a movement to these molecules, which is added to their own movement. In this state, 

the lighter gas molecules move more quickly than the heavier ones, causing collisions between 

them which increase the internal energy of the gas, both for light molecules as well as heavy 

ones. As the heat increases, the molecules increase their motion and gradually multiply the 

number of collisions between them and therefore their energy level. As this process continues, it  

leads to a state in which the energy accumulated by the gas is greater than the energy which 

joins the molecules and these molecules may eventually be broken by the shock effect, i.e., 

they disintegrate. If there is enough oxygen in the surroundings the activated fuel will ignite
14

. 

The presence of oxygen in the fuel (oxidation) generates a reaction which, thanks to the energy 

(heat) provided by the mechanism described above, releases heat (exothermic). It can be said 

that the flammability of a gas is a mechanical consequence aided by an energy source, i.e., 

heat. However, there are other sources such as shock waves, or the combination of heat and 

shock waves
14

. 

It is important to keep in mind that the disintegration of molecules is not enough to start the 

ignition. A significant number of molecules together with oxygen in the air are needed. The 
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mixtures of gaseous fuels and air will only burn if the fuel concentration lies within well-defined 

limits. These limits are determined experimentally.The flammability range is delineated by the 

upper and lower flammability limits. On one hand, the lower flammability limit(LFL), usually 

expressed in volume percentage, is the lower end of the concentration range over which a 

flammable mixture of gas or vapour in air can ignite at a given temperature and pressure. 

Outside this range of air/vapour mixtures, the mixture will not ignite (unless the temperature and 

pressure are increased).The LFL decreases with increasing temperature; thus, a mixture that is 

below its LFL at a given temperature may ignite if heated sufficiently. On the other hand, the 

upper explosive limit (UEL) is the highest concentration (percentage) of a gas or a vapour in air 

capable of producing a flash of fire in presence of an ignition source (arc, flame, heat). 

Concentrations higher than UFL or UEL are "too rich" to burn
14

. 

The flammability limits depend primarily on three factors: the temperature, the pressure and the 

concentration of the oxidizer.  

Temperature is very important because it affects both the fuel and the oxidizer. Thus, if the 

temperature is increased it will have an influence on two factors. On one hand, it will affect the 

contribution of the heat energy to the fuel, whereby it will be close to the flash point and 

consequently insignificant amounts of this it may be flammable. On the other hand, it will reduce 

the cooling effect of the excess of air in the enclosure. Along these lines, higher temperature 

results in lower LFL and higher UFL, while greater pressure increases both values. On the other 

hand, oxygen enriched atmospheres lower the LFL and increase the UFL. An atmosphere 

devoid of an oxidizer is neither flammable nor explosive, regardless of the fuel gas 

concentration. Increasing the fraction of inert gases in an air mixture raises the LFL and 

decreases the UFL
14

. 

Some materials are pyrophoric, i.e., they can burn spontaneously without any external ignition 

source. For example, metallic sodium can react with atmospheric moisture. This reaction 

produces hydrogen gas and the heat generated by the reaction may be sufficient to ignite the 

hydrogen and oxygen. 

 

2.3 Classes of wildfires 

 

There are different criteria to separate and classify wildfires. Some of them are: by fuel type, 

where the fire spreads or what governs it
5
. 

According to the type of fuel, wildfires can be classified into 3 different groups. The first group 

corresponds to solid material fires, usually organic material fires, where combustion takes place 
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by the creation of embers (wood, cloth, rubber or some plastics). The second refers to fires of 

liquids or liquefiable solids (gasoline, grease, etc.) and the last includes gas fires as butane or 

natural gas
12

. 

In the second criterion, there are three different classes of wildfires: surface wildfires, 

smoldering wildfires and crown wildfires. A surface wildfireis the most common type and burns 

along the floor of a forest, moving slowly and killing or damaging trees (see Figure 8a). Such 

fires can also start other fires because they can become crown fires
5
. 

 

Figure 8: Classes of wildfires 

a. Surface fire 

 

b.Smoldering fire 

 

c. Crown fire 

 

Source: 

http://www.proteccioncivil.org/catalogo/carpeta02/carpeta24/vademecum12/vdm010.htm 

 

Asmoldering fireis usually started by lightning and burns on or below the forest floor in the dark 

earth made of organic material such as decayed leaves and plants (see Figure 8b). Such fires 

are less common and are characterised by burning with little or no flame due to the little oxygen 

available. For this reason its propagation is very slow compared with other types of wildfires. 

However these types of wildfires can be more destructive as they are able to eliminate the 

underground systems of vegetation
5
. 

http://www.proteccioncivil.org/catalogo/carpeta02/carpeta24/vademecum12/vdm010.htm
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Finally, there is the crown fire which usually represents the greatest threat to the fire fighting 

system as it generates high intensities, massive generation of secondary outbreaks, high flame 

length and propagation speeds which are double those produced by surface fires. It spreads 

rapidly by wind and moves quickly by jumping along the tops of trees. The ignition of a crown 

fire is dependent on the density of the suspended material, canopy height, canopy continuity, 

and sufficient surface and ladder fires in order to reach the tree crowns (see Figure 8c).These 

types of wildfires usually begin as surface fires
5
.  

Crown fires can be classified into three different categories: torching, passive or active. 

Torching is the movement of a surface fire up into tree crowns, the precursor to an active crown 

fire. Passive crown fires involve the torching of individual trees or groups of trees. Crown fires 

become active when enough heat is released to preheat and combust fuel above the surface, 

followed by active spreading of fires from one tree crown to the next though the canopy. Crown 

fires are usually intense and are strongly influenced by wind, topography, and tree (crown) 

density
5
. 

 

Finally, considering the last criterion, what governs the flames, fires can be classified as
15

: 

1) Convection fires or fuel fires: the large accumulation of forest fuel is responsible of the 

developed intensity (see Figure 9). 

2) Topographic fires: topography of the terrain causes fire to develop in complex 

orography being influenced by the slope, sun exposure (daytime) and roughness. The 

driving force is the convective wind produced by the heating of the surface and its 

interaction with the relief. These fires usually follow the valleys and ravines (see Figure 

10). 

3) Wind fires: the weather plays a very important role here. The direction from where the 

wind comes, its intensity and velocity, provides oxygen and dries fuel in general and 

more importantly, it quickly dries the „death fuel‟. These fires tend to spread linearly in 

the wind direction and adapt more or less, to the morphology of the ground (see Figure 

11). 

4) Hungry fires: they are called big wildfires and are characterised by creating their own 

weather conditions (temperature, relative humidity and wind speed) that make only an 

indirect attack feasible. 

 

The first type is subdivided according to whether the fuel is underground, on the surface or in 

the air resulting, in each case, in different intensities and fire propagation velocities. These fires 

are characterised by spreading by convection and not by radiation, developing extreme 
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behaviours and advancing thanks to a massive generation of secondary outbreaks. These fires 

are detected by analyzing the fuel that is burning and the way it spreads. Their extinction is 

usually achieved if the fuel can be moved on to a less favourable place to burn or by changing 

its structure
5
. 

 

Figure 9: Convection fires 

Standard: the accumulation and availability 

of fuel generate enough intensity to create a 

fire 

 

Convection with wind: convection 

dominates the fire and secondary 

centres follow the general wind axis. 

 
 

Source: Integrating risk of big wildfires (GIF) in forest management
16

 

 

Topographic fires are quite devastating and are characterised by having the same behaviour in 

both the head and the flanks. The extinction of this type of fire has to take into account 

orientation (sun exposure), roughness and, above all, slope
5
. In general they are characterised 

by having a high diurnal intensity and a low night intensity
16

. 

 

Figure 10: Topographic fires 

  

Source: Integrating risk of big wildfires (GIF) in forest management
16

. 

General wind 
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Figure 10 shows that this type of fire changes direction by following the sunny slopes (thin 

arrows point out a lower spread intensity)
16

. 

Fires driven by wind, as its name suggests, are those whose strength and speed are 

determined by the wind which brings oxygen and dries the fuel in the areas that is susceptible to 

burning. These fires are detected by observing the status of the plume and the presence of 

strong winds on the surface. The characteristics of convective columns (colour, size or slope of 

the column) provide a lot of information about the type of fire that is being generated. A white 

column of smoke will show a low-intensity fire while a grey-black colour will indicate a high 

intensity fire. On the other hand, a vertical column suggest a topographic fire with atmospheric 

instability, one lying prone will warn wind and a parting plume, produced by a topographic fire 

with upper wind, will represent a column which generates secondary fires 
5
. 

The extinction of these types of fires is based on waiting for the fire in areas without any wind so 

that they can treated as if they were a topographic or a fuel fire. 

 

Figure 11: Wind fires 

                                  In the plains                                    With relief 

 

Source: Integrating risk of big wildfires (GIF) in forest management
16

. 

 

Finally, as we have already mentioned, hungry fires are a particular case of GIF‟s and the major 

factors influencing their occurrence are the weather conditions (drought), large amount of 

vegetation (fuel) and above all, the determining factor for their spread is the extreme weather 

conditions (low ambient relative humidity and high wind speed). 
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For an active fire to become a GIF certain weather conditions, that are described from the 

synoptic situations which generate them, are necessary. However, assigning a synoptic 

situation only makes sense in the case of wind fires and convection fires. With topographic fires, 

there is not a clear synoptic situation and therefore other variables are analysed
16

. These 

variables are shown in Table 2. 

 

Table 2: Meteorological conditions and weather station data for the topographic analysis of 

fires
16

. 

Meteorological conditions Weather station data 

Presence of meteorological or geographical 

elements that can modify local weather 

conditions and adjust fire behaviour. 

Type of wind, whether general, topographic, 

topographic from a valley, marine, offshore 

or erratic, or sudden changes in wind speed 

and direction in the day and night. 

 

So, the assignment of a specific synoptic situation to wind fires and convection fires is carried 

out by consulting the historical daily synoptic available online at www.wetter3.de. These maps 

are the following
16

: 

 Geopotential Height Map at 500hPa and surface pressurefrom 01/01/1948. 

 Temperature mapat 850 hPafrom01/01/1948. 

 Air pressure map with fronts
23

from01/27/1998. 

In Catalonia, the synoptic situations which can generate GIF are identified in Table 3. The other 

synoptic situations that may occur are not considered here because they are deemed as not 

capable of generating GIF
16

. 

 

Table 3: Synoptic situations that can generate GIFs in Catalonia, grouped by common features. 

Entries of south and west Wind fromnortheast to 

northwest 

Instability and storm with 

front step 

General situation of south 

 

General situation of 

southwith out west 

 

Synoptic situation of wind 

from west 

Synoptic situation of wind 

from north 

Synoptic situation of wind 

from northeast 

 

Synoptic situation of wind 

from northwest 

Synoptic situation of instability 

with front subsequent step 
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The south synoptic situation or south entries annotated in Table 3 reference the input of 

Saharan air mass. In addition, the other synoptic situations present in this Table explain most of 

the burned area in Catalonia during the last decades. However, other specific synoptic 

situations cannot be ruled out as GIF generators
16

. 

Then, the study of fires allows us to observe that in the same topography and meteorological 

conditions, fire spreads along similar propagation schemes,which mainly depends on the water 

stress accumulated and the amount of fuel and its structure,and changes its intensity according 

to fuel availability. 

In this sense, the same type of fire does not involve the same fire behaviour. Differences in the 

structure of the fuel, the land use or the ignition points determine fire behaviour, although 

propagation scheme remains constant. Therefore, for the same type of fire, the points where it 

changes its behaviour with respect to the orography and the opportunities for extinction are 

similar
16

. 

 

2.4 The concept of wildfire risk 

 

The term "risk" applied to wildfires, includes many definitions and interpretations and meanings 

can vary. In this sense, the risk can be defined exclusively as the probability of ignition
17

, while 

the danger, according to other authors, is an abstract concept defined by the social perception 

and the evaluation of the factors which are considered harmful
18

. Moreover, the English term 

„hazard‟ refers to the vulnerability of a forest to suffer a fire when considering only fuel
16

. 

In the field of engineering, wildfire risk is defined as the probability of occurrence in a specific 

space and period of time, and the potential damage of the fire in that area
18

. From this definition 

one creates a wildfire risk model that incorporates the likelihood of occurrence and the impact or 

the potential damage of the wildfire. Thus, the factors which influence the probability of 

occurrence are the cause of ignition (human / natural) and the pre-fire conditions (type of fuel 

and moisture content). On the other hand, the factors which influence the impact or potential 

damage of the fire are the impact probability, whose expression is related to a gradual scale 

obtained from the difficulty of extinction, fire behaviour (type of fuel, moisture content, wind, 

terrain) and the element impact, expressed as the value of this and the fire behavior
16,18

. 

In Catalonia, the current tools that characterise the risk of wildfires are the daily risk map
19

 and 

the basic hazard map
20

. The daily risk map of wildfires is calculated every day according to the 

integration of a series of information into a single map: fine fuel moisture, maps of variables and 

risk indexes of meteorological components, percentile calculations of the basic variables, 
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historical information about wildfires and situations that have occurred in the recent years, 

graphics of specific risk monitoring sensors, tracking synoptic weather patterns related to the 

risk of fire, and static maps (forest fuels, flammability, altimetry). The daily risk map computes 

every day the risk according to momentary situations, and is then used for the activation of the 

alpha plan, the movement of brigades, the coordination with fire-fighters and civil protection 

entities, the warning of local authorities, fire authorizations, danger warnings to the population, 

etc
16

. 

The basic hazard map defines the probability of static occurrences of wildfires based on 

vegetation, historical, orographic and climatic factors. This map integrates the concept "ignition 

hazard", i.e., the ease with which a forest fire can start and the risk of spreading or ease with 

which it can spread. This map is quantitative, i.e., each point of the territory has a numeric risk 

value ranging from zero to ten assigned to it, of which is the result of the combination of 

different factors that determine the risk of fire. The basic fire hazard map is a map created by 

management and planning to help establish territorial priorities in preventive actions; rationalize 

and optimize the performance of management and define areas of planning and intervention. 

Historical factors are frequency of ignitions (number of fires in a period of time divided by this 

period) and the frequency of ignitions‟ consequences, in which the weight of each is weighted 

according to the affected area. Vegetation is included in a fire hazard because of its 

flammability, and its combustibility, or ability to ignite, which affects fire behaviour. Orographic 

factors taken into consideration in the risk of fire are the slope and the isolation. One of the 

factors considered most important in determining the risk of wildfires is the weather. Wind and 

water deficit together with adverse situations (extreme conditions which are low in frequency or 

duration but have great impact on the occurrence of fires) are included in this map. The wind is 

analysed on the climate field, not the episodic. The basic hazard map analyses the ease with 

which a wildfire starts and spreads
16

. 

The standard fire risk map provides information on the most vulnerable areas, from the point of 

view of the odds of having a certain type of GIF, and it is used as a basis to identify key areas 

where it is more important to establish wildfire prevention as the preferred management tool 

(see Figure 12). 

The Standard fire risk map applied in Catalonia allows us, by providing information about the 

most likely type of fire as well as its main characteristics in terms of its behaviour, pattern of 

spread and control possibilities, to identify those areas with a higher risk of having a standard 

wildfire. This is a map that responds to current land and forest landscapes and that may be 

adapted in the future, if there are significant changes in the landscape and the structural 

configuration of the forests in Catalonia
16

. 

  



Introduction 

 

33 

Figure 12. Development of the Standard fire risk map 

 

STANDARD FIRE RISK MAP 

 

 

Standard fire risk calculation based  

ona number of factors  

 

 

Factor 1: Standard fire (difficulty of extinguishing and complicating fire behaviour) 

Factor 2: Frequency of fires. 

Factor 3: Land, landscape, climate and vegetation features. 

 

Source: Integrating risk of big wildfires (GIF) in forest management
16

. 

 

Thus, especially in recent decades, convection fires, characterised by their speed of spread and 

high front intensities and with a potential determined by the continuity of fuel and the duration of 

the synopsis episode, are concentrated in areas of high continuity of forests and forest 

structures which have accumulated vertical fuel continuity. In these cases, forest management 

can focus on landscapes that are more resistant to wildfires and change the level of risk of fire 

type in areas currently affected by convection fires (see Figure 13)
16,21

. 

 

Figure 13: Standard fire risk map of Catalonia 

 

 

Source: Departament d'Interior. Generalitat de Catalunya i Centre Tecnològic Forestal de 

Catalunya
21

. 
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Then, some of the challenges that must be addressed jointly in the fields of prevention and 

suppression of forest fires, are in anticipating big wildfires, reducing the spreading ability of 

latent GIFs, as well as reducing the damage that fires can cause to people, property and 

landscape uses
22

. Therefore, standard risk maps are a useful tool in determining those areas of 

very high and high risk, which will be denoted as the Catalan areas with the highest fire 

prevention priority and where forest management models that provide a greater degree of 

prevention against a GIF should be used, while areas of minor fire risk levels would not be 

prioritised. On the other hand, there are some areas in Catalonia where it is difficult to 

determine a standard risk of fire (these are the zones that lie between areas of high and 

moderate risk) because while their fire history may not be very abundant, they have been 

identified as areas with a possible risk of powerful convection fires. 

 

3. Wildfires in Catalonia 

 

Since the early twentieth century until today, in European countries and particularly in Catalonia, 

there has been remarkable social change thanks to rural to urban migration. In particular, after 

the land confiscation by the State of the eighteenth century, the Mediterranean landscape 

underwent an important demographic change which in the twentieth century led to 

intenseindustrialization accompanied by the abandonment of farming and the movement of the 

population from rural areas to towns
23

. The process of giving up farming practises because of 

the loss of job profitability, coupled with an aging rural population, has accelerated the 

difficulties of the environmental change in recent years. This change is of great consequence in 

the analysis of fires since forest fire behaviour is related to the state of forests and rural areas in 

general. 

The first visible consequence has been the change of a rural mountain lifestyle (pasture, 

cultivated land, forestry exploitation and hamlets) to that of a lifestyle of entertainment in the 

mountains with the advent of food and beverage outlets, hiking trails, adventure tourism, second 

homes etc., but with the added distinction of very few houses. Unfortunately, in recent decades, 

Catalan landscapes have experienced a progressive social change influenced mainly by 

changes in the economic structure of the region and the movement of society from rural to 

industrial areas
23

. 

On one hand, changes in the economic structure have led to very poor forest management 

which does not invest in the mass quality improvement and forgets the long term objectives of 

persistence: ignoring the fire, the return of nutrients and the erosion as part of the system
23

. On 

the other hand, urban areas have increased without order or control; there has been the impact 

of certain infrastructures, the abandonment of farming, forestry and ranching, and the 
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degradation of some urban areas or the saturation of other places. All this has directly 

influenced the state of environmental, cultural and historical values of these landscapes and has 

increased geological risks, along with other environmental hazards. 

In particular, the depopulation of rural areas and the consequent abandonment of agricultural 

activity is an immediate cause for the generation of wildfires as it has facilitated the rapid 

increase of scrub and woodland causing the modification of the territory in irregular structures 

with a dense undergrowth. All this means that the evolution of the Catalan region represents an 

increased risk of wildfires as the historically open spaces are transformed into highly flammable 

ones and thus have become far more vulnerable to possible wildfires. Other factors such as the 

increase of second homes in forest areas, the proliferation of roads and power grids and the 

increase in recreation use have made Catalonia increasingly susceptible to forest fires, because 

the combination of all these factors simply serves to aid wildfire ignition. These changes in land 

use have had not only an impact on the natural vegetation, but also on the risk of wildfires and 

the loss of cultural, biological and landscape diversity
23

. 

All of these changes can be reflected in numbers. In Catalonia in the early twentieth century, 

10% of the area was forested surfaces, whereas now they represent about 61%, according to 

the Ecological and Forest Inventory of Catalonia (CBEFIs, 1991)
23

. With only these data the 

figure representing the increased amount of fuel is justified. Therefore, it would be in the 

countryside‟s best interest to stop the process of depopulation and abandonment and attempt to 

secure the population in the territory by maintaining traditional rural activities (agriculture, 

ranching, forestry, etc.) because this would help to restore and maintain the rich cultural 

heritage, the quality of life and the environmental sustainability throughout Catalonia. 

It can be seen that over the years the population of Catalonia has experienced a very significant 

increase
24

 (see Table 4). Specifically, the percentage of the population trends of the mid-

twentieth century, with respect to the beginning of the twenty-first century, represents an 

increase of 56'87%. 

 

Table 4: Evolution of the population of Catalonia 

POPULATION 1950 2000 2004 2005 

Catalonia 3.240.313 6.261.999 6.813.319 6.995.206 

 

POPULATION 2006 2007 2008 2009 2010 

Catalonia 7.134.697 7.210.508 7.364.078 7.475.420 7.512.381 

 

Source: Own elaboration from IDESCAT. Padró Continu (2011). 
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Graphically we can see a global prediction for the evolution of the rural and urban population 

from 1950 to 2050 and a map with the distribution of the population in Catalonia (see Figure 

14). 

 

Figure 14: Prediction of the evolution of the rural and urban population 

  

Source:  

Left: Own construction from United Nations Population Division 

Right: http://blocs.xtec.cat/legosocials/2009/01/29/la-poblacio-a-catalunya/ 

 

A further significant factor related to wildfire evolution, is the effort in recent years (2007-2008) 

to have total extinction. The choice of these types of models assumes a negative selection of 

fires as authorities choose to fight those with minor or moderate intensity while letting fires with 

a more extreme behaviour burn
8
. Those fires which burn with a low intensity burn off quickly and 

burn very small surfaces, while those of high intensities devastate large areas, escaping the 

control of the systems set up to extinguish them. 

Although there are studies showing that fire has some positive effects for biodiversity, the fact is 

that fires threaten not only human lives and settlements but they also facilitate soil erosion. 

In Catalonia climatological trends interact with the landscape dynamics. Fire risk is 

interconnected with the Mediterranean climate and its distinct seasons. In general, we can 

speak about a summer period with high temperatures and low relative humidity combined with 

episodes of hot and dry winds which are typical of these regions. Such factors create the perfect 

setting for the occurrence of a large fire
22

. 

http://blocs.xtec.cat/legosocials/2009/01/29/la-poblacio-a-catalunya/
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It would also seem that the climate is shifting towards more intense extreme conditions and an 

increase in the number of summer days with high temperatures and low humidity, together with 

a decrease in rainfall which seems to become more episodic and intense favouring soil erosion 

devoid of any vegetation. This will increase the frequency of fires and their consequences
17,22,25

. 

Catalonia's socioeconomic change is visible in much of the Catalan territory and has caused 

significant changes in the behaviour of fires. The abandonment of rural areas has led to an 

evolution of a kind of symbiosis between the forest and urban spaces which requires a much 

more complex management of the risk of fires: special training for the fire-fighting services in 

order to work in these areas
26

, campaigns to increase the resident population‟s awareness
27

, 

preventative actions to reduce the biomass fuel
28

 and a more careful distribution of residential 

developments in forested areas with high fire risk. Proper characterisation of these areas 

against fire behaviour is a first step towards an effective fire management, both from the point of 

view of extinction as primarily prevention. 

All of these changes have forced society to adapt to the new situation by taking new measures 

of prevention and prohibition. It is important to understand, and above all to learn how to 

anticipate the fire behaviour, in order to identify the strength and power of each fire and to be 

able to anticipate and improve the ways to extinguish them. Work has to be done before, during 

and after the fire, so adopting a change in the intervention policy both from the perspective of 

emergency management and the social perception of the effects and uses of fire is essential. A 

dynamic and flexible structure of the fire-fighting services is required, based on the anticipation 

of fire behaviour, to the dynamic decisions taken at the fire line and the integrated management 

of fire as an emergency
23

. 

It has been found that work done prior to any fire is much more effective than immediate action 

once the fire has started to burn because late action usually leads to the fire exceeding 

extinguishing capabilities and thus making the situation difficult to control and consequently the 

extinction of the fire
5
. 
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1. Introduction 

 

1.1 Spatial statistics 

 

Spatial statistics is a general discipline that includes a set of appropriate methodologies for data 

analysis which corresponds to the measurement of random variables in different locations 

(points in space or spatial clusters) of a given region. In other words, spatial statistics analyse 

the elements of a stochastic process 𝑍 𝑠 : 𝑠 ∈ 𝐷 , where 𝑠 ∈ ℝ𝑑  represents the location in a 

Euclidean space of dimension 𝑑, 𝑍 𝑠  is a random variable in the location s and s varies on a 

set of indexes 𝐷 ⊂ ℝ𝑑 . The methodology used differs depending on the features of the set 𝐷 

and allows spatial data to be classified into three large groups: geostatistical data, lattice data 

and point processes
1
. 

Geostatistics is concerned with spatial data, that is, each data value is associated with a 

location in space and there is at least an implicit connection between the location and the data 

value. "Location" has at least two meanings; one is simply a point in space (which only exists in 

an abstract mathematical sense) and the other is an area or volume in space. Therefore, 

geostatistical data are measurements taken at fixed points but defined anywhere in the space 

so their locations spatially define a continuous surface. The idea is to extend the spatial 

distribution of the values taken at fixed sampling points of a particular attribute to the entire 

study region. 

From a mathematical point of view, for this type of data, 𝐷 is a continuous fixed subset of ℝ𝑑  

while 𝑍 𝑠  is a random vector in the location 𝑠 ∈ 𝐷
1
. 

 

Figure 1: Representation of spatially continuous data 

 

Source: CartoEduca.cl Geography, TICs and Education (digital library) 
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Lattice data are observations from a random process (observed over a countable collection of 

spatial regions which may be regularly or irregularly distributed), supplemented with information 

on neighbouring regions. Because this type of data is defined in spatial regions, the explicit 

locations specified by the vector 𝑠 usually refer to the centroid of the region and do not form a 

surface but rather a set of connected nodes. 

From a mathematical point of view, 𝐷 is considered as a discrete fixed subset of ℝ𝑑 , and 𝑍 𝑠  a 

random vector in the location 𝑠 ∈ 𝐷
1
. 

 

Figure 2: Lattice data representation 

 

Source: Own construction 

 

Point processes are characterised because their locations are the variables of interest. One 

considers a finite number of observed locations in a specific region and observes whether the 

distribution of individuals within the region is random, aggregated or uniform, i.e., if the intensity 

of the events varies over the region of study. Moreover, its goal is to look for models that explain 

or help to understand the phenomenon
1
. If one observes a variable of interest or a mark in each 

location, then it is said that the events have associated measures, or marks, and is called a 

“marked point process” or “with marks”
2
. 

On the other hand, spatial covariates provide additional relevant information that is needed to 

create a more comprehensive framework for the analysis of the study. 

From a mathematical point of view, in spatial processes, the observations belong to a random 

subset 𝐷 ⊂ ℝ𝑑  which can be discrete or continuous. 
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Figure 3: Outline of point processes 

 

Source: Own construction 

 

Hereafter, this Thesis will focus only on point processes with marks.In particular, within the field 

of fires, variables analysed only at the site of the fire are called marks. In this work marks 

include the year the fire occurred and also the causes of ignition. In particular, we consider: (i) 

natural causes, (ii) negligence and accidents, (iii) intentional fires or arson and (iv) unknown 

causes and rekindled fires. Spatial covariates are also considered, specifically, eight continuous 

covariates (topographic variables: slope, aspect, hill shade and altitude; proximity to anthropic 

areas-roads, urban areas and railways; and meteorological variables-maximum and minimum 

temperatures) along with one categorical variable (land use).  

 

1.2 Point processes 

 

Point processes are a type of discrete stochastic processes whose importance, is mainly due to 

their ability to model a wide variety of phenomena in physics, biology, economics and 

engineering. They correspond to the mathematical abstraction that arises when considering 

such phenomena as if they were a population randomly located in a space of parameters or as 

a random sequence of events in time
3
. 

A point process can be specified by its joint distributions of the number of points in arbitrary sets 

or by its joint distributions of the time intervals between successive points, starting at an 

appropriate origin. However, it is better to give the formal definition of a point process in terms 

of counting properties
3
. 

A point process can easily be defined as a stochastic model that generates a finite number of 

events  𝑥𝑖 , 𝑖 = 1, … , 𝑛 , which represent spatial locations in a set 𝑋. Since this work focuses on 

spatial point processes, 𝑋 will be a bounded region of ℝ𝑑or a torus (“donut”) or, more generally, 



Methodology 

 

46 

𝑋 can be a locally compact Hausdorff space with a second countable topology
4
. Mathematically, 

it is considered appropriate to define a point process by a measure 𝛬in 𝑋.  

Let Λ be the space of all non-negative measures 𝛬 .  , with values in the integers, defined in the 

σ-algebra ( ℝ) of the Borel sets on the real numbers ℝ, such as 𝛬(𝐴) < ∞ for all boundedBorel 

sets 𝐴 ∈ 𝐵. Let ζ be the σ-algebra generated by subsets such as,  𝛬: 𝛬 𝐴 ≤ 𝑘 , 𝑘 ∈

{0, 1, … }and 𝐴 ∈ 𝐵
3
. 

According to this nomenclature, a point process can be defined as a measurable function of a 

probability space (Ω, ℑ, P) in (Λ, ζ). In particular, any probability measure defined on (Λ, ζ) 

produces a point process. The main characteristics are
3
: 

1. 𝛬(𝑡1, 𝑡2)represents the number of points which occurred at the interval (𝑡1 , 𝑡2). The stochastic 

process  {Λ 𝑡, 𝑢 ; 𝑢 ≥ 𝑡} identifies the point process as a counting process. 

2. 𝐿𝑛(𝑡)is the required time, i.e., the length of time required for the 𝑛-th point after time 𝑡 to 

occur. When n varies, 𝐿𝑛 (𝑡) identifies the process in terms of the length of intervals between 

successive events. 

3. 𝐿 − 𝑛(𝑡)is the required time for the nth point previous to 𝑡 to occur. 

 

1.2.1 Point process properties 

 

Let 𝑁 𝐴  be the random variables which represent the number of events in a region 𝐴 ⊂ ℝ2 

𝑁 𝐴 = #(𝑥𝑖 ∈ 𝐴) 

Some of the properties that can verify spatial point processes are: 

a) The process is stationary if for any integer k and region 𝐴𝑖 , 𝑖 = 1, … , 𝑘,the joint distribution of 

𝑁(𝐴1), 𝑁(𝐴2), … , 𝑁(𝐴𝑘)is invariant bytranslationsof 𝐴𝑖 , for any set 𝑥. 

This means that, for a time point process, the process depends only on the separation between 

the different moments considered but not on the shifts in time. 

The concept of stationality is very useful in modelling time series
5
. In this case, the interpretation 

is straightforward because there is only one direction of variation (time). In the space field there 

are multiple directions and therefore one has to assume that in all of them, the phenomenon is 

stationary. 

http://en.wikipedia.org/wiki/Locally_compact_space
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b) The process is isotropic
2
 if the joint distribution is invariant by rotation of the union of 𝐴𝑖 , 

where 𝑖 = 1, … 𝑘, ∀ 𝑘 ∈ 𝑍. In addition, a process is isotropic if the correlation between the data 

does not depend on the direction in which it is calculated. Mathematically, the isotropy is studied 

by calculating autocovariance functions or sample semivariance such that if they have 

significantly different forms the assumption of isotropy can be rejected. 

The functions that model the dependence on isotropic processes are easier to interpret. 

c) The process is orderlywhen there are no coincident events
2
, that is to say:  

𝑙𝑖𝑚
 𝑑𝑥  →0

𝑃(𝑁 𝑑𝑥 > 1)

 𝑑𝑥 
= 0 

Likewise we can say a process is orderly
2
 if: 

𝐸[𝑁(𝑑𝑥)]~𝑃[𝑁 𝑑𝑥 = 1], because their ratio tends to 1 when  |𝑑𝑥| → 0. 

d) It can be verified that a process is second order orderly when, for any pair of events
2
 x and y: 

lim
 𝑑𝑥  →0
 𝑑𝑦  →0

𝑃 𝑁 𝑑𝑥 > 1 𝑃(𝑁 𝑑𝑦 > 1)

 𝑑𝑥  𝑑𝑦 
= 0 

Assuming stationarity (invariant process by translation) and isotropy (invariant process by 

rotation) point processes are characterised by two basic properties
2
:  

 

 First order properties 

These describe the intensity or the expected number of points by unit area in any 

location. 

Given the random variable 𝑁 𝐴 , for 𝐴 ⊆ ℝ𝑑 , the first order characteristics are specified 

by the measure of intensity defined as: 

𝜆 𝐴 = 𝐸 𝑁 𝐴  , 𝐴 ⊆ ℝ𝑑  

In certain cases this can also be expressed as follows: 

𝜆 𝐴 =  𝜆 𝜁 𝑑𝜁
𝐴

 

where is a non-negative function and represents the intensity function. 
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 Second order properties 

These describe the relationship between arbitrary pairs of points. In the case of uniform 

or regular patterns, the probability of finding a point in the neighbourhood of the other is 

lower than it would be in a random pattern, while in a cluster pattern the probability is 

higher. 

The factorial moment of order 2 describes the characteristics of the second order of the 

random variable 𝑁 𝐴 , for 𝐴 ⊆ ℝ𝑑  and it is represented by the following expression:  

𝛼 2 (𝐶) = 𝐸[  𝐼((𝜁, 𝜂)𝜁≠𝜂∊𝑋 ) ∊ 𝐶)], 𝐶 ⊆ ℝ𝑑 × ℝ𝑑  

The most commonly used estimate of the second-order properties is Ripley's K 

function, which estimates on all scales
2
. 

From a mathematical point of view, a spatial point process is characterized as:  

 The first order intensity function: 

(𝑥) = lim
|𝑑𝑥 |→0

  
𝛦[𝑁(𝑑𝑥)]

|𝑑𝑥|
   

 The second order intensity function: 

𝜆2(𝑥, 𝑦) = lim
 𝑑𝑥  →0
|𝑑𝑦 |→0

  Ε[𝑁 𝑑𝑥 𝑁(𝑑𝑦)]

 𝑑𝑥 |𝑑𝑦|
   

 The density of covariance: 

𝛾 𝑥, 𝑦 = 𝜆2 𝑥, 𝑦 − 𝜆(𝑥)𝜆(𝑦) 

In particular, if you consider a stationary and isotropic point process, you can define 𝑢 =  𝑥 − 𝑦  

and the above functions can be expressed as follows
2
: 

1.  𝑥 =   = 𝐸 𝑁 𝐴  / 𝐴  (constant for all A) 

2. 𝜆2 𝑥, 𝑦 = 𝜆2( 𝑥 − 𝑦 ) 

3. 𝛾 𝑢 = 𝜆2 𝑢 − 𝜆2 

 

Another interesting definition for the development of the analysis is the conditional intensity 

function expressed by: 
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𝜆𝑐(𝑥 𝑦 ) = lim
|𝑑𝑥 |→0

  𝛦[𝑁 𝑑𝑥 𝑒𝑣𝑒𝑛𝑡 𝑖𝑛 𝑦]

|𝑑𝑥|
   

The reduced second moment function ofan stationary and isotropic point process is expressed 

by the K-Ripley function which simplifies its interpretation
2
: 

𝐾(𝑟) = 𝜆−1 𝐸[𝑁0 𝑟 ] 

where𝑁0 𝑟  represents the number of events located at a distance smaller than𝑟 to an arbitrary 

event (randomly chosen), 𝜆 the individual density and 𝜆𝐾(𝑟) the average number of events 

within a circle of radius r around a certain event of the pattern. Sometimes, it is also interesting 

to consider
𝜆2𝐾(𝑟)

2
, which is interpreted as the average number of different pairs of points with a 

distance smaller than or equal to r, and where one of the points belongs to a fixed surface unit 

subset 𝐴. 

The practical importance of this feature is that it can be expressed as the mean of an 

observable amount, which suggests it is a good tool for estimating this function.  

In order to relate 𝐾 𝑟 and 𝜆2(𝑟), one assumes that the process is orderly, i.e, 𝐸[𝑁 𝑑𝑥 ] ∼

𝑃[𝑁 𝑑𝑥 = 1] because their ratio tends to 1 when |𝑑𝑥| → 0. On the same way, one assumes 

also the equivalence relation  𝐸 𝑑𝑥 𝑁 𝑑𝑦  ~𝑃 𝑁 𝑑𝑥 = 𝑁 𝑑𝑦 = 1 .Thus, one affirms that the 

expected number of events at a distance less than r to an arbitrary event can be calculated by 

integrating the conditional intensity in the disk of the centre of origin and radius r: 

𝜆𝐾(𝑟) =   𝑐 𝑥 0  𝑥𝑑𝑥𝑑𝜃
𝑟

0

2𝜋

0

 

Knowing that 𝑐 x 0  =  2(x)/, a new expression for function 𝐾 .  , which is easier to 

manipulate, can be computed as
2
: 

𝐾 𝑟 = 2𝜋−2
 2 𝑥 𝑥𝑑𝑥

𝑟

0
    (1) 

Or, conversely as: 

2 𝑟 = 2(2𝜋𝑟)−1𝐾′(𝑟) 

Although graphically 𝐾 𝑟  has a more intuitive interpretation than 2 𝑟 , from the theoretical 

point of view, it is better to work with 2 𝑟  as it is easier to manipulate analytically
2
. 
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2. Methods 

2.1 Features and properties of spatial point processes 

2.1.1  Homogenous spatial point processes 

 

Spatial point processes are governed by a particular law of process which describes the spatial 

structure of these points: completely random distribution, regular or clustered. 

To analyse the spatial structure of a pattern of points, firstly a test of complete spatial 

randomness (CSR, Complete Spatial Randomness) is required. This test attempts to detect if 

there is any data structure, i.e., if there is any interaction between the points of the process
6
. 

A complete random process is related to white noise and is characterised by its random 

variables which are not correlated. This is why these types of processes are identified by the 

homogeneous Poisson processes. 

A test, in which the null hypothesis states that the process follows a pattern of a homogeneous 

Poisson process, i.e., that it follows a complete random distribution, is made to rule out 

completely random behaviour. The test consists of computing the K-function of the pattern of 

the observed points and comparing it with the theoretical K-function of a Poisson pattern of the 

same intensity
6
. In practice one constructs a joint graph with the observed values and the 

theoretical values and a visual comparison between the two resulting curves is made (see 

Figure 4). 

Figure 4: Inhomogeneous K-function representation 

 

 

Source: Own construction 
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In Figure 4, the bottom line represents the K-function of the observed points‟ patternand the 

upper band represents the confidence interval of the theory K-function. As the bottom line 

appears outside the upper band, one interprets that the observed data do not follow a random 

distribution, although depending on the graph displayed above or below the band there is some 

interaction between the points via attraction or repulsion. 

As it has been depicted in Section 1.2.1, the K-function is the reduced second moment function 

or Ripley‟s K function and it is expressed as: 

𝐾(𝑟) = 𝜆−1 𝐸[𝑁0 𝑟 ] 

The function 𝐾(𝑟) describes the dependence between the pairs of points in the process
2
. 

For stationary processes, an easy way to estimate 𝜆 and 𝐾(𝑟) is: 

𝜆 =
𝑁

 𝐴 
  𝐾  𝑟 =

1

𝜆 

1

𝑁
  𝐼(𝑑𝑖𝑗 <𝑗≠𝑖 𝑟)𝑁

𝑖=1  

where𝑁 is the number of points of the pattern,  𝐴  the surface of the study area, 𝜆  represents 

the observed number of events per unit area and 𝐼(𝑑𝑖𝑗 < 𝑟) the indicator function which is 

defined as: 

  1 if 𝑑𝑖𝑗 < 𝑟 

𝐼 =  

  0 otherwise 

 

To estimate Ripley‟s K function, we must take into account that in many applications of spatial 

point processes the boundary of thestudy area is arbitrary and what is called the "border effect" 

may appear. This effect refers to the points that lie outside the analysed surface and are not 

considered to estimate the Ripley's K function, although they are at a distance less than 𝑟 from 

a point located within the region. By ignoring this effect, biased estimations of the function K, 

especially for large values of 𝑟, are obtained
6
. 

There are different ways and estimators to correct this effect, such as, weighted counts around 

points near the edge
7
 or to replicate the pattern around the study area

8
. However, as the 

potential solutions are not perfect, it is recommended not to calculate K(r) beyond 𝑟 < 1/3 of the 

length of the shorter side of the study area
9
 or, in the case of non-rectangular areas

10
 not further 

than𝑟 < (
 𝐴 

2
)1/2. 
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Figure 5 shows some of the methods used to correct the boundary effect graphically. From left 

to right, Ripley‟s Method, the buffer area method and the translation method. 

 

Figure 5: Method to correct border effect 

 

Source: Environmental information systems
6 

 

When considering the border effect, the K-function estimation for an observed point pattern in a 

region 𝐴, may take a slightly more complicated expression: 

𝐾1
  𝑡 =

|𝐴|

𝑛(𝑛 − 1)
 𝐼(|𝑦 − 𝑥| ≤ 𝑡)𝑤𝑎 (𝑥, 𝑦)

𝑥≠𝑦

 

where𝑤𝑎 𝑥, 𝑦  is a corrector of the border effect
2
. 

Nevertheless, assuming CSR (a specific case of a homogenous Poisson process in ℝ2) it 

follows that the value of𝐾(𝑟)is 𝜋𝑟2. Thus, the visual or numerical comparison between the 

theoretical and the observed K-function give the following classification
6
: 

𝐾(𝑟) > 𝜋𝑟2 ⇒Aggregated process 

𝐾 𝑟 < 𝜋𝑟2 ⇒Regular or uniform process 

 

The graphic representation of the estimator 𝐾 (𝑟), together with the upper and lower covers 

calculated by the Monte Carlo method, provide a graphical CSR test.  
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2.1.2 Extension to the inhomogeneous case 

 

In the particular case of fires (the focus of this study) the intensity is clearly not constant, as the 

number of fires depends on the year and it will also be necessary to mention the 

inhomogeneous case. To extend the second order analysis of the process to the 

inhomogeneous case, we need to introduce the inhomogeneous K-function.  

To define the inhomogeneous K-functioncertain preconditionsare needed. If𝜆(𝑥), 𝑥 ∈ ℝ2 is the 

first order intensity of the point process𝑋, it is defined: 

𝑀 𝐴, 𝐵 = 𝐸    
1

𝜆(𝑥𝑖)𝜆(𝑥𝑗 )
𝑥𝑗 ∈𝑋∩𝐵𝑥𝑖∈𝑋∩𝐴

  

And it is assumed that it is finite for every pairofBorel sets.Then𝑀is thesecond order momentof 

the randommeasurement ℱ which associate the weight 
1

𝜆(𝑥𝑖)
 to each event, that is to say, 

ℱ =  
1

𝜆(𝑥𝑖)
𝑥𝑖𝜖𝑋

 

It is said that a point process is second-order reweighted stationary when the random measure 

ℱ is second-order stationary. 

In this framework the hypothesis of constant intensity is removed but stationarity and isotropy 

remain. In particular, the process must be stationary second-order reweighted
2
.  

A second-order stationary process is also second-order reweighted stationary
2
. 

Calculating 𝐾𝑖𝑛𝑜𝑚 requires a previous estimation of the intensity at each event. There are two 

possible estimation methods: parametric and non-parametric. 

The first method consists of finding a fitting model that explains both the spatial trend and the 

interactions between events. If there is no interaction between events, parametric models 

(where the logarithm of the intensity is a polynomial), can explain the intensity of the processes 

belonging to all fires and also to those related to each type or cause. The formal expression of 

the intensity associated with these models is
2
: 

𝜆 𝑥 = exp 𝛽𝑇𝐹(𝑥)  
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Where𝐹(𝑥) = {𝑓0 = 1, 𝑓1 = 𝑥, 𝑓2 = 𝑥2, … , 𝑓𝑚 = 𝑥𝑚 } is an m-order polynomial in ℝ2 and 𝛽𝑇 is the 

vector of the coefficients associated with the polynomial. These coefficients will be obtained by 

the method of fitting models by maximum pseudo-likelihood
9
. 

The second method for estimating the variable intensity requires constructing a kernel type 

estimator of𝜆. It has the following expression: 

𝜆  𝑥 =
1

𝑝 (𝑥)
 𝑘 𝑥 − 𝑋𝑖 =

1

𝑝 (𝑥)2

𝑛

𝑖=1

 𝑘  
𝑥 − 𝑋𝑖


 

𝑛

𝑖=1

 

where𝑘 is the kernel function,  the smoothing parameter and 𝑝 𝑥 =  2𝑘  
𝑥−𝑢


 𝑑𝑢

𝐴
 is the 

corrector of the border effect. Similarly, a Gaussian kernel is used, where 𝜍 acts as a parameter 

window
9
. In this way, large values of 𝜍 carry on smoothing and approach a constant intensity, 

whereas excessively small values introduce too much variability and reflect a local trend rather 

than an overall one
2
. 

The interpretation of the inhomogeneous K-function is the same as it was in the homogeneous 

case but now the intensity is not constant but rather depends on the location of the events. In 

this case the intensity is represented by the function 𝜆 𝑥𝑖 , which is variable in𝑥𝑖 . The 

inhomogeneous K-function is defined as
2
: 

𝐾𝑖𝑛𝑜𝑚   𝑟 =
1

|𝐴|
𝐸    

𝐼(  𝑥𝑖−𝑥𝑗   ≤ 𝑟)

𝜆(𝑥𝑖)𝜆(𝑥𝑗 )
𝑥𝑗 𝜖(𝑋⋂𝐴)\ 𝑥𝑖 𝑥𝑖𝜖𝑋⋂𝐴

  

where𝐴 is a bounded Borel set in ℝ2, 𝐼(. ) is the indicator function, 𝑋 is the point process and 𝑟 

the maximum distance between pairs of events 𝑥𝑖 , 𝑥𝑗 . 

As an estimator, the following unbiased punctual estimator of the inhomogeneous K-

function
11

can be considered: 

𝐾 𝑖𝑛𝑜𝑚  𝑡 =
1

|𝐴|
   

𝐼(  𝑥𝑖−𝑥𝑗   ≤ 𝑟)

𝜆 (𝑥𝑖)𝜆 (𝑥𝑗 )𝑤𝑖𝑗𝑥𝑗 𝜖(𝑋⋂𝐴)\ 𝑥𝑖 𝑥𝑖𝜖𝑋⋂𝐴

  

where𝑤𝑖𝑗  is the corrector of the border effect
2
. 

As in the homogeneous case, once the inhomogeneous K-function for the observed process, 

represented by 𝐾 𝑖𝑛𝑜𝑚 , is estimated by following the same steps as in the homogeneous case, 

we can apply a CSR contrast based on this function. Then, the K-function 𝐾 𝑖 𝑡 , 𝑖 = 1, … , 𝑠, is 

computed for s-1 independent simulations of a process with estimated intensity 𝜆 (𝑥) and the 

upper and lower covers are defined by the Monte Carlo method
2
. 
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𝑈 𝑟 = max
𝑖=2…𝑠

 𝐾 𝑖𝑛𝑜𝑚 ,𝑖(𝑟)  

𝐿 𝑟 = min
𝑖=2…𝑠

 𝐾 𝑖𝑛𝑜𝑚 ,𝑖(𝑟)  

From these results we can graphically represent the observed data 𝐾 𝑖𝑛𝑜𝑚 ,1(t), the covers and 

the empiric K-function. The result is a graphic test of CSR, which is interpreted similarly to the 

description given for the homogeneous case. 

Figure 6 shows an example of a non-homogeneous K-test for all the fires in Catalonia in 2005. It 

may show that the black curve (representing the observed data) is not within the limits 

represented by the confidence interval of the theory K-function, so we can reject the null 

hypothesis and say that there is some interaction between the analysed data. 

 

Figure 6: Example of a non-homogeneous K-test using the fire pattern of Catalonia of 2005 

 

 

 

 

 

 

 

Source: Own construction using the free software R
12

. 

 

To improve data interpretation we often transform the 𝐾(𝑟) function and we use: 

𝐿(𝑟) =  
𝐾(𝑟)

𝜋
 

in order to linearize the function and stabilize the variance. This new expression is interpreted 

representing the function 𝐿 𝑟 − 𝑟with which the null hypothesis is rejected from the zero line.In 

this way, if𝐿 𝑟 − 𝑟 is significantly greater than zero, points follow a cluster distribution, whereas 

if it is less than zero it tends to follow a regular pattern
2
. 
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We can verify directly that for a homogeneous Poisson process 𝐿 𝑟 = 𝑟, by slightly simplifying 

the value that is obtained by considering the function 𝐾(𝑟), 𝐾 𝑟 = 𝜋𝑟2. 

In addition, we also can transform the inhomogeneous K-function by the expression  

𝐿𝑖𝑛𝑜𝑚 (𝑟) =  
𝐾𝑖𝑛𝑜𝑚 (𝑟)

𝜋
 

And likewise, we can consider the test based on the non-homogeneous L-function
2
. 

Under CSR, this function, as in the homogeneous case, verifies that 𝐿𝑖𝑛𝑜𝑚 (𝑟) = 𝑟. 

 

2.2 Models for spatial point processes 

2.2.1 Poisson processes 

 

The homogeneous Poisson processes are the simplest stochastic models for a planar point 

pattern and are frequently referred to as the model of complete spatial randomness (CSR). 

They represent the base from which one constructs the theory of spatial point processes and 

they are characterised because their points are stochastically independent, and behave 

independently, which it is not a realistic option with natural phenomenon. 

A point process is a flat homogeneous Poisson process of intensity𝜆 if
2
: 

1) The number of events in a flat region  𝐴, represented by  𝑁(𝐴), follows a Poisson 

distribution with mean 𝜆|𝐴| where |𝐴| represents the area 𝐴 and 𝜆 is the process 

intensity, i.e., the expected number of events per unit area.  

2) Given n events {𝑥𝑖}𝑖=1
𝑛  in the region  𝐴, 𝑥𝑖 form a random sample of a uniform distribution 

on  𝐴. Therefore, there is no interaction between the events. 

3) For two disjoint regions 𝐴y 𝐵, random variables 𝑁(𝐴) and 𝑁(𝐵) are independent. 

 

Assuming 𝑁(𝐴) as a fixed number of events, the simulation of a partial realization of a Poisson 

process in 𝐴 consists of generating uniform and independent events in  𝐴. If the shape of region 

A is complex, the simulation process is performed in a larger region with a simpler form, such as 

a rectangle or a disc, and one considers only the events inside  𝐴. 
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If you want 𝑁(𝐴) to vary randomly, one uses the above process preceded by the 𝑁(𝐴) 

simulation according to the corresponding Poisson distribution. In some implementations, direct 

simulation of 𝑁(𝐴) has a high computational cost. In 1979, an alternative method that can be 

used when 𝐴 is a rectangle
13

, for example (0, 𝑎) × (0, 𝑏) was proposed. This method is based 

on the fact that the location of the coordinate 𝑥 of each event in the band  0 ≤ 𝑦 ≤ 𝑏, form a 

Poisson process with intensity 𝜆𝑏. Therefore, the differences between successive 𝑥 coordinates 

are independent realizations of an exponential random variable with distribution function
2
: 

𝐹 𝑣 = 1 − exp −𝜆𝑏𝜐 ;  𝜐 ≥ 0 

The K-function of the homogeneous Poisson processes is represented by the following 

expression
2
: 

𝐾 𝑟 =
1

𝐴
  

𝜔𝑖𝑗 𝐼(𝑑𝑖𝑗 ≤ 𝑟)

𝜆2

𝑗≠1𝐼=1

 

where𝐴 represents the area of the study region; 𝜆 is the intensity, 𝜔𝑖𝑗  is the edge correction 

term, 𝑑𝑖𝑗  represents the distance between two points and I is the piecewise function such that: 

𝐼 =  
1 𝑖𝑓 𝑑𝑖𝑗 < 𝑟 

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

The intensity (event number density) is the parameter that can be estimated in this model. 

Within Poisson processes, inhomogeneous processes are more realistic than the last one, as 

they consider that the intensity is not constant but rather it is a heterogeneous function that 

includes the space component. They are the simplest models when it comes to non-stationary 

processes. 

It is said that a point process is a non-homogeneous Poisson process if
2
: 

1) The number of events in a region 𝐴, 𝑁(𝐴), follows a Poisson distribution with 

mean  𝑥 𝑑𝑥
𝐴

, given any non-negative function  𝑥 . 

2) Given n events {𝑥𝑖}𝑖=1
𝑛  in the region 𝐴, 𝑥𝑖  form a random sample from the distribution in 

𝐴 with probability distribution function proportional to  𝑥 . 

3) Given two disjoint regions 𝐴y 𝐵, random variables 𝑁(𝐴) and 𝑁(𝐵) are independent. 

 

Inhomogeneous Poisson processes can incorporate covariates, which provide additional 

information about the point pattern behaviour, thus improving the modelling
2
. Covariates are 

included in the intensity function 𝑥 =   𝑧1 𝑥 ,  𝑧2 𝑥 , … , 𝑧𝑝 𝑥  . 
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The K-function of these types of processes is defined as: 

𝐾 𝑟 =
1

𝐴
  

𝜔𝑖𝑗 𝐼(𝑑𝑖𝑗 ≤ 𝑟)

𝜆(𝑥𝑖)𝜆(𝑥𝑗 )
𝑗≠1𝐼=1

 

where𝐴, 𝜆, 𝜔𝑖𝑗 , 𝑑𝑖𝑗  and 𝐼 represent the same parameters as in the homogeneous Poisson 

process and 𝜆(𝑥𝑗 ) and 𝜆(𝑥𝑖) are the values of the intensity function in 𝑥𝑗 and 𝑥𝑖 , respectively. In 

particular, the intensity function 𝜆(𝑥) is modelled as a polynomial regression with logarithm: 

𝜆(𝑥) = exp(𝛽𝑇𝐹(𝑥)) 

where𝐹(𝑥) is a variable vector and 𝛽𝑇 is the regression parameters vector
2
. 

 

2.2.2 Thomas Processes 

 

Homogeneous Thomas processes describe processes of dispersal, in which “offspring” are 

limited to aggregate around their “parent”. Therefore, they model the effect of dispersal 

limitation. They are a particular class of Poisson cluster processes and can be used to model a 

series of clustered patterns
14,15

.  

Homogeneous Thomas processes are modelled in two steps. First, locations of parents are 

generated by a homogeneous Poisson process with a density 𝑗. Second, a group of offspring 

are produced around each parent. Their locations are assumed to be independent of one 

another and isotropically distributed around each parent with a Gaussian dispersal 

kernel,𝑁(0, 𝑟). The number of offspring is determined by a Poisson distribution with the mean 

being 𝐼
9,16

. 

It is said that a point process is a Poisson cluster process if: 

1) The main events form a homogeneous Poisson process with intensity 𝜌. 

2) Each main event produces a random number, 𝑆, of offspring, generated independently 

and identically distributed for each main event, according to the probability distributions 

𝜌𝑠, 𝑠 =1,2,… 

3) The offspring locations, with respect to their predecessor, are independent and 

identically distributed according to a bivariate probability distribution function (. ). 
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By agreement, final design is made only by overlapping the offspring of all the main events. 

According to this definition, Poisson processes with clusters are stationary with intensity 𝜆 =

𝜌𝜇where 𝜇 = 𝐸[𝑆], and they are isotropic when in the last three properties it is considered a 

probability distribution function radially symmetric
2
. 

The K-function of the homogenous Thomas process is given by: 

𝐾 𝑟 = 𝜋𝑟2 +
1 − 𝑒

(−𝑟2

4𝜍2 )

𝑘
 

where𝑟 is distance, 𝑘 represents the intensity of parents in a Poisson distribution and 𝜍 is the 

standard deviation of distance from offspring to the parent
14,15

. 

Inhomogeneous Thomas processes are the most complicated models of the four described thus 

far. They are used to evaluate the joint effects of covariates on the behaviour of events 

analysed
14,15

. This model is the same as a homogeneous Thomas process, except that the 

number of offspring per parent, 𝐼, is no longer constant and must be modeled by a spatially 

heterogeneous intensity function. As with the inhomogeneous Poisson process above, intensity 

functions are modelled by means of log-polynomial regressions. 

 

2.2.3 Gibbs process: Area-Interaction 

 

Gibbs processes are a fundamental class of point processes which emerged from Statistical 

Physics. They are able to capture the interaction structure of the generating spatio-temporal 

process, whose parameters can be estimated by maximum likelihood or pseudo-maximum 

likelihood
4
. 

Its general form is given by the expression: 

𝑝 𝑥 = 𝑒𝑥𝑝  −𝑣0 −  𝑣1(𝑥𝑖)

𝑖

−  𝑣2(𝑥𝑖 ,

𝑖<𝑗

𝑥𝑗 ) −  𝑣3(𝑥𝑖 ,

𝑖<𝑗 <𝑘

𝑥𝑗 , 𝑥𝑘) − ⋯   

where 𝑥 =  𝑥𝑖 , 𝑖 = 1 … 𝑛 𝑥 , 𝑣0 is constant and 𝑣𝑘 : 𝑊𝑘 → ℝ ∩ {−∞}are symmetric functions for 

𝑘=1, 2,… That is, the possible interactions between points can be decomposed.  
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Functions 𝑣𝑘  are called interaction potentials and point processes can be classified by the order 

of interaction between points. It is said that a point process has a K-order interaction between 

points if 𝑘 =  𝑚𝑎𝑥 {𝑗 ∊  ∶ 𝑣𝑗 ≢  0}. 

Gibbs point processes belong to the family of Markov processes
17

 and they are characterised 

because there is a symmetric neighbourhood relationship  and interactions are null expect for 

sets of points that are neighbours of each other (called cliques). 

The Gibbs process used in this study is the area-interaction for its good properties and better 

modelling. It is a Markov point process consisting of a generalization of pair interaction of point 

processes, obtained by giving freedom to the order of interaction between points. 

The probability density of a homogeneous area-interaction process in a compact region 𝐴 ⊂

ℝ𝑑with discsof radius 𝑟, intensity parameter 𝑘 and interaction parameter 𝛾 is given by
18,19,20

: 

𝑓 𝑥1 , … , 𝑥𝑛 =  𝛼𝑘𝑛(𝑥)𝛾(−𝐴 𝑥 ) 

where𝑥1 , … , 𝑥𝑛  represent the points of the pattern, 𝑛(𝑥) is the number of points in the pattern, 

and 𝐴(𝑥) is the area of the region formed by the union of discs of radius 𝑟centered at the points 

𝑥𝑖 . Here, 𝛼 is a normalizing constant. The interaction parameter  𝛾 can be any positive number. 

If 𝛾 = 1, then the model is reduced to a Poisson process with intensity 𝑘. If 𝛾 < 1 then the 

process is regular, while if 𝛾 > 1 the process is clustered. Thus, an area interaction process can 

be used to model either clustered or regular point patterns. Two points interact if the distance 

between them is less than 2𝑟. 

These kinds of models compute the likelihood function by neighbourhood. Each environment is 

determined by a radius that maximizes the likelihood function. Given the shape and size of 𝐴, 

the radius is defined by the expression 

𝑅 =
1

2
𝑠𝑢𝑝  𝑥 − 𝑦 : 𝑥, 𝑦 ∈ 𝐴  

The area-interaction is very convenient because it creates slightly aggregated or regular 

patterns. In addition to computing areas compact sets less standard and more general than 

disks can be used. 

The probability density function initially described, can be slightly modified, parameterizing the 

model into a different form easier to interpret
9
. In canonical scale-free form, the probability 

density is rewritten as 

𝑓 𝑥1 , … , 𝑥𝑛 =  𝛼𝛽𝑛(𝑥)𝜂(−𝐶 𝑥 ) 
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where𝛽 is the new intensity parameter, 𝜂 is the new interaction parameter and 𝐶(𝑥) = 𝐵(𝑥) −

𝑛(𝑥) is the interaction potential, 𝐵(𝑥)  =  𝐴(𝑥)/(𝑟2) is the normalised area (so that the discs 

have unit area). 

The inhomogeneous area interaction process is similar, except that the contribution of each 

individual point 𝑥𝑖  is a function  𝛽(𝑥𝑖 ) of location rather than a constant beta. 

 

2.3. Models for spatio-temporal point processes 

 

Returning to the definition of point process with marks, spatio-temporal point processes can be 

introduced as a series of observations of a point process with marks at instants  (𝑡1, 𝑡2, … , 𝑡𝑛) ∈

𝑇.It is assumed that events are distributed in a certain spatial region 𝐷 ⊂ ℝ𝑑  and occur at a 

specific temporal interval(0, 𝑇). Following the above notation, these processes are interpreted 

as a point process
2
 in  ℝ𝑑 × Ψ × 𝑇. 

The spatio-temporal modellingof spatial processes is a recent field of research and is presented 

as an extension of the spatial case. Their study is distinguished by the three types of data that 

are in spatial statistics; geostatistical data, lattice data and point processes. They indicate data 

collected in space and evolve in time. 

Spatio-temporal data can be idealised as realizations of a stochastic process indexed by a 

space and a time dimension*. 

𝑌(𝑠, 𝑡) ≡  𝑦 𝑠, 𝑡 |(𝑠, 𝑡) ∈ 𝐷 × 𝑇 ∈ ℝ2 × ℝ  

where𝐷 is a (fixed) subset of ℝ2 and 𝑇 is a subset of ℝ. The data can then be represented by a 

collection of observations  𝑦 = {𝑦 𝑠1 , 𝑡1 , … , 𝑦 𝑠𝑛 , 𝑡𝑛 }, where the set (𝑠1 , … , 𝑠𝑛 ) indicate the 

spatial units, at which the measurements are taken, and (𝑡1, … , 𝑡𝑛) the time points. 

To analyse spacetime data it is important to distinguish whether individual events are developed 

in a continuous spatio-temporal or it is considered that the time scale is either naturally discreet 

or it is discretised only considering spatial pattern events aggregated over a sequence of 

discrete time of periods. This distinction is essential when deciding the analysis method as it 

differs in each case. 
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2.3.1 Mixed models 

 

Mixed models are a generalization of the classical linear regression models and are 

characterised by considering two or more dimensions of analysis simultaneously. The term 

mixed model refers to the use of both fixed and random effects in the same analysis. Fixed 

effects have levels that are of primary interest and would be used again if the experiment were 

repeated. Random effects have levels that are not of primary interest, but rather are thought of 

as a random selection from a much larger set of levels. Subject effects are almost always 

random effects, while treatment levels are almost always fixed effects
21

. 

Mixed models allow solving issues of complex experimental design study, based on the 

simultaneous modelling of the response‟s expected value and its variability. Such models 

include multi-level designs or multi-level, also called hierarchical models, and longitudinal 

studies, or repeated measures
21

. 

Multi-level studies have a hierarchical structure where observations are grouped into clusters, 

and the distribution of an observation is determined not only by common structure among all 

clusters, but also by the specific structure of the cluster where this observation belongs
21

. In 

general, and considering a lineal response, a hierarchical model can be specified by the 

following equation
1
: 

𝑌𝑖𝑗 = 𝛽1𝑧1𝑖𝑗 + 𝛽2𝑧2𝑖𝑗 + ⋯ + 𝛽𝑝𝑧𝑝𝑖𝑗 + 𝜀𝑖𝑗  

which defines the observations of the dependent variable 𝑌𝑖𝑗  as being determined by 𝑝 observed 

explanatory variables in 𝑗, 𝑧𝑝𝑖𝑗 . Some of the explanatory variables are fixed (𝑧𝑝𝑖𝑗 = 𝑧𝑝𝑖  ∀𝑗) and 

others are variable, depending on the subscript 𝑖. 𝛽are𝑝 unknown parameters. Finally, 𝜀𝑖𝑗 , are 

independent random variables with a zero mean and have met the following requirements
1
: 

𝐸(𝜀𝑖𝑗 ) = 0 

𝐸 𝜀𝑖𝑗
2  = 𝜍𝜀

2  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝐸(𝜀𝑖𝑡𝜀𝑗𝑠 ) = 0  ∀ 𝑡 ≠ 𝑠   𝑦   ∀𝑖 ≠ 𝑗 

Using matrix notation and considering the entire sample, the model is represented by the 

expression
1
: 

𝑌 = 𝑍𝛽 + 𝜖 

And it is specified assuming 𝐸 𝑌 = 𝜇, 𝑉𝑎𝑟(𝑌) = 𝑉 and that 𝑉 follows the scheme: 
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𝑉 =  

𝑉1 0 ⋯ 0
0
⋮

⋱
⋮
0

0 ⋯ 0 𝑉𝑛

  

It is important to point out that 𝑉 must always be a block diagonal, i.e., it is assumed that areas 

(or clusters) are mutually independent. 

On the other hand, longitudinal studies or repeated measures involve repeated observations of 

the same variables over long periods of time. The structure of these models can be considered 

mixed, with observations (repeated) grouped within each individual and time, which can be 

considered as another explanatory variable within each group. This type of analysis is the only 

one which can distinguish between the variance between individuals (interindividual) and 

variation within the individual (intraindividual)
21

. The general expression is
1
: 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑧2𝑖𝑗 + ⋯ + 𝛽𝑝𝑧𝑝𝑖𝑗 + 𝜀𝑖𝑗  

As an advantage in comparison to cross-sectional, longitudinal analyses allow the temporal 

order of interest events to be studied. In particular, they make it possible to determine if the risk 

factors precede the possible effects of these factors on the variations of the variable of interest; 

a feature called temporality. Longitudinal analysis can be approximated marginally or 

conditionally
1,21

. 

On one hand, the marginal approach describes variation in population means of subgroups, 

averaged over all individuals. They attempt to explain the relationship between the dependent 

variable and explanatory variables independently of the intraindividual variability. This approach 

implies that both, the intercept (𝛽0) and the coefficients associated to the explanatory variables, 

are common to all individuals. There is not individual heterogeneity, i.e., all the effects of the 

explanatory variables, including the intercept, are fixed. The random effect (𝜀𝑖𝑗 ) has a constant 

variance and is correlated. Covariance parameters, i.e., autocorrelation and/or 

heteroscedasticity, are not of interest so that the marginal approach controls them but they are 

not estimated
1,21

. 

On the other hand, the conditional approach makes individual inferences modelling 

simultaneouslythe mean of the dependent variable (interindividual variability) and the 

covariance or correlation structure (intraindividual variability). In this approach, parameters 

defining the correlation have the same or even more interest that those corresponding to the 

average. The best known conditional approach is given by random effects models which 

assume that the effects of some (or all) explanatory variables (regression coefficients) are 

specific to individuals (not common to all of them). There is individual heterogeneity, which is 

due to unobservable factors (or omitted variables) common to some individuals. In this sense, 
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the representation of the model considers the variations of the parameters according to each 

individual
1,21

: 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑧2𝑖𝑗 + ⋯ + 𝛽𝑝𝑖 𝑧𝑝𝑖𝑗 + 𝜀𝑖𝑗  

The Markov transition models, autoregressive or with a covariance structure, are another type 

of conditional approach. They model the conditional expectation of the response and the 

dependence (correlation) between the observations within each group in a single equation. It 

can be considered a first order autoregressive model in which the conditional expectation of the 

response variable depends not only on the explanatory variables, but also on the prior 

behaviour itself. We therefore introduce another explanatory variable, corresponding to a 

response variable delayed one period
1,21

. 

𝑌1𝑖𝑗 = 𝛽0 + 𝛽1𝑧2𝑖𝑗 + ⋯ + 𝛽𝑝𝑧𝑝𝑖𝑗 + 𝛾𝑌1𝑖𝑗 −1 + 𝜀𝑖𝑗  

Moreover, the random effect (𝜀𝑖𝑗 ) has no constant variance and it is autocorrelated. 

Autoregressive models, unlike other conditional models, assume that the dependence between 

repeated observations, represented by the coefficient associated with the lagged response (𝛾), 

is a fixed effect, that is, common to all individuals. Moreover, the dependence structure by 

autoregressive models of order one implies that the greatest influence on the dependent 

variable is produced by the value immediately preceding, with the influence declining 

exponentially as we move away in time
1,21

. 

Depending on the response variable to be analysed, either a statistical model or another model 

will be used. Thus, if the dependent variable is a continuous quantitative variable, distributed 

normally then, linear regression models, known as linear mixed models will be used, otherwise 

nonlinear mixed models will serve. When the response variable is discrete, quantitative Poisson 

regressions (mixed) will be used, and the analysis will be based on binomial logistic or 

multinomial regressions (mixed). Finally, when the response variable is dichotomous, binomial 

distribution will be used, and when it is polytomous, a multinomial probability distribution will be 

used
21

. 

From a mathematical point of view the notation in matrix format of the mixed models can be 

represented as: 

𝑦 = 𝑍𝑓𝛽 + 𝑍𝑟𝑢 + 𝜀 

where 𝑦 is the vector of observations with mean 𝐸(𝑦) = 𝑍𝑓𝛽, 𝛽 is a vector of fixed effects, 𝑢 is 

an independent and identically distributed vector (iid) of random effects with mean 𝐸 𝑢 = 0 and 

variance 𝑣𝑎𝑟(𝑢) = 𝜍𝑢
2 and ε is a vector of random error terms iid with mean 𝐸(ε) = 0 and 
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variance 𝑣𝑎𝑟 ε = 𝜍𝜀
2. 𝑍𝑓and𝑍𝑟  are matrices of explanatory variables on the observations 

𝛽 and 𝑢, corresponding to the fixed and random effects, respectively. 

The variance of the random effect reflects the variability between individuals, while the variance 

of the error collects the variability which is not explained by the model within each individual. If 

the variance of random effects was null, the model would be equal to the fixed effects model or 

lineal regression. 

 

2.4 Spatio-temporal mixed models 

 

Part of this Thesis focuses on longitudinal studies in which the time dependence is modelled in 

a spatial pattern of points considering the variation depending on time. 

The mathematical theory of spatial point processes is well defined
22,23

. However, most models 

for specific applications are restricted either to point processes in time or to the two-dimensional 

space. 

There are more adaptable types of models which allow solving some of the problems presented 

by point processes in fitting models. In particular, Cox processes are widely used as models for 

point patterns which are thought to reflect underlying environmental heterogeneity.These 

models are useful when the observed data presents a complex structure, one that would be 

impossible to represent in a regular lattice. 

Moreover, when the analysed data contain a significant number of zeros, Cox models are not 

adequate and it is necessary to use another type of mixed models. There are various 

alternatives. On one hand, there are zero inflated Poisson models (ZIP) which might be used to 

model count data for which the proportion of zero counts is greater than expected on the basis 

of the mean of the non-zero counts
24,25

. On the other hand, there are Hurdle models
26,27

 which 

are modified count models with two processes, one generating the zeros and one generating 

the positive values. The main difference between the two models is that ZIP model distinguish 

between two kinds of zeros, "true zeros" and excess zeros, whereas Hurdle models analyse 

those zeros that are zero at this moment but can be non-zeros in the future. 
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2.4.1 Log-Gaussian Cox processes (LGCPs) 

 

Log-Gaussian Cox models (LGCP) are a particular case of Cox processes and are particularly 

interesting as models for point patterns which are thought to reflect underlying environmental 

heterogeneity. However, standard methods to fit Cox processes have a high computational cost 

and those methods which use Markov chains by Monte Carlo methods (MCMC) are very difficult 

to fit this problem. 

Recently, a flexible framework using integrated nested Laplace approximations
28

 for fitting 

complicated LGCPs has been proposed (INLA)
29

. This approach is based on finding a Poisson 

approximation to the likelihood function of the LGCP and uses this to make the inference. This 

approach is done by replacing the concept of regular lattice, created on the observed points, to 

consider the number of points in each cell (see Figure 7). 

Figure 7: Scheme how a complicated LGCP is fitted 

 

 

 

Source: Own construction 

 

Although this approach is still based on a regular lattice, it can be shown that if the lattice is fine 

enough and appropriately discretised
30

, this approach leads to consistent estimates. However, 

this approach could be highly inefficient, especially when the intensity of the process is high, the 

observation window is large or, as in the case of wildfires, typically oddly shaped
31

. 

Consider a bounded regionΩ ∈ ℝ2. As has been described in previous sections, the simplest 

model, and one of the most commonly used in the context of point processes, is the 

inhomogeneous Poisson process in which the number of points within a region 𝐷 ⊂ Ω is 

distributed as a Poisson with mean Λ D =  𝜆 𝑠 𝑑𝑠
𝐷

, where 𝜆 𝑠  is the surface intensity of a 

point process. Given the intensity surface and a point of the model 𝑌, the likelihood for an LGCP 

is of the form 

We only consider the number 
of points in each cell
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𝜋 𝑌 𝜆 = 𝑒𝑥𝑝  𝛺 −  𝜆 𝑠 𝑑𝑠
𝛺

  𝜆(𝑠𝑖)𝑠𝑖∈𝑌    (2) 

where the integral is complicated by the stochastic nature of 𝜆 𝑠 . However, this integral can be 

numerically computed using fairly traditional methods. 

Considering the intensity surface as a realization of a random field 𝜆(𝑠) a type of point process, 

called Cox process, is obtained
32

. These types of processes are particularly useful in the 

context of modelling aggregation relative to some underlying unobserved environmental 

field
31,33

. 

The Log Gaussian Cox intensity surface is modelled as 

log 𝜆 𝑠  = 𝑍(𝑠) 

where𝑍(𝑠) is a Gaussian random field.  

Conditional on a realization of  𝑍(𝑠), a Log-Gaussian Cox process is an inhomogeneous 

Poisson process because its likelihood function follows the expression (2) which, as it is said, 

due to the stochastic structure of 𝜆(𝑠), includes an integral which is difficult to solve. 

Log-Gaussian Cox process fits naturally within the Bayesian hierarchical modelling framework. 

Furthermore, it is a latent Gaussian model, which allows us to embed it within the INLA 

framework. This embedding paves the way for extending the LGCP to include covariates, marks 

and non-standard observation processes, while still allowing for computationally efficient 

inference
28

. 

 

2.4.2 Zero inflated Poisson 

 

As discussed in previous sections, a Poisson model is assumed for modelling the distribution of 

the count observation or, at least, approximating its distribution. However, in various 

applications it has been observed that the dispersion of the Poisson model underestimates the 

observed dispersion. This phenomenon, also called overdispersion, occurs because a single 

Poisson parameter is often insufficient to describe the population. In fact, in many cases it may 

be suspected that population heterogeneity, which has not been accounted for, is causing this 

overdispersion. This population heterogeneity is unobserved. In other words, the population 

consists of several subpopulations, in this case of the Poisson type, but subpopulation 

membership is not observed in the sample. Mixed-distribution models, such as the zero-inflated 

Poisson (ZIP), are often used in such cases. In particular, the zero-inflated Poisson distribution 
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(ZIP) regression model might be used to model count data for which the proportion of zero 

counts is greater than expected on the basis of the mean of the non-zero counts
24,25

.  

Therefore, we can also consider that 𝑁𝑗𝑡  follows a zero-inflated Poisson model, thus providing a 

way of modelling the excess of zeros, in addition to allowing for overdispersion.  

Considering Λ𝑗𝑡  as the total intensity per cell, we can thus define the number of observations in 

a specific cell as 

𝑁𝑗𝑡 ~  
𝑍𝐼𝑃0 Λ𝑗𝑡  

𝑍𝐼𝑃1 Λ𝑗𝑡  
  

Different types of zero-inflated Poisson models differ from the others in terms of the form of their 

likelihood functions
34

.  

Firstly, Type 0 (ZIP0) likelihood is in the form of,  

𝑓 𝑦; 𝜃; 𝑝 =  
𝑝,                                                        𝑖𝑓 𝑦 = 0

(1 − 𝑝) 𝑃𝑜(𝑦, 𝜃|𝑦 > 0),               𝑖𝑓 𝑦 > 0
  

where𝑃𝑜 denote the Poisson density, 𝑝 is a hyperparameter given by 

𝑝 =
𝑒𝑥𝑝(𝜃)

1 + 𝑒𝑥𝑝(𝜃)
 

and𝜃 is the internal representation of 𝑝, meaning that the initial value and prior is given for 𝜃. 

Type 1 zero-inflated Poisson model (ZIP1) is a mixture of a point mass at 0 and a regular 

Poisson distribution, whereas Type 0 is a mixture of a truncated Poisson (the 𝑦 > 0 bit) and a 

point mass at 0, so that the probability at zero is governed directly by p. 

This means, for instance, that Type 0 can have a lower probability at 0 than a pure Poisson, 

(relative to the probability at 1), whereas Type 1 can only increase the relative probability for 0.  

Therefore, Type 1 likelihood has the form 

𝑓 𝑦; 𝜃; 𝑝 =  
𝑝 + (1 − 𝑝)𝑃𝑜(𝑦, 𝜃),        𝑖𝑓 𝑦 = 0
(1 − 𝑝)𝑃𝑜(𝑦, 𝜃),               𝑖𝑓 𝑦 ≠ 0

  

where𝑝 is a hyperparameter defined as in Type 0 and 𝜃 is the internal representation of 𝑝. 

Note that, the only difference between Type 0 and Type 1 is the conditioning on 𝑦 > 0for Type 

0, which means that for Type 0 the probability that 𝑦 = 0is 𝑝, while for Type 1, the probability is 

 𝑝 + (1 − 𝑝)𝑃𝑜(𝑦, 𝜃). 
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2.4.3 Poisson Hurdle models 

 

The concept underlying the Hurdle model is that a binomial probability model governs the binary 

outcome of whether a count variable has a zero or a positive value. If the value is positive, the 

"Hurdle is crossed," and the conditional distribution of the positive values is governed by a zero-

truncated count model. The ZIP model, on the other hand, is a mix of two models. One is a 

binomial process which generates structural zeros, and the second component a Poisson 

model, which generates counts, some of which can be equal to zero. 

A Hurdle model consists of two stages: 

The first part of the decision process can be modelled using a logistic regression, that models 

the probability of a specific event happening: 

𝑝𝑖𝑘𝑡 = 𝑃𝑟𝑜𝑏 𝑦𝑖𝑡𝑘 > 𝐴 𝑍, 𝛽  

log  
𝑝𝑖𝑡𝑘

1 − 𝑝𝑖𝑡𝑘

 = 𝑍′𝛽 + 𝑆𝑖 + 𝜏𝑡 + 𝜐𝑖𝑡  

In accordance with that proposed by
23

, in the second part of the model the distribution of an 

event happening is a truncated Poisson that models the number of events that there are per 

spatial unit, introducing covariates and spatial random effects: 

𝑝 𝑦𝑖𝑡𝑘  𝑆𝑖 =  1 − 𝑝𝑖𝑡𝑘  1(𝑦𝑖𝑡𝑘 <𝐴) + 𝑝𝑖𝑡𝑘 𝑇𝑝𝑜𝑖𝑠(𝑦𝑖𝑡𝑘 ; 𝜇𝑖𝑡𝑘 )1(𝑦𝑖𝑡𝑘 >𝐴) 

𝑙𝑜𝑔 𝜇𝑖𝑡𝑘  = 𝜂 𝑝𝑖𝑡𝑘   

𝜂 𝑝𝑖𝑡𝑘  =  𝛽𝛼𝑧𝛼 ,𝑖𝑡

𝛼

+ 𝑆𝑖 + 𝜏𝑡 + 𝜐𝑖𝑡  

where𝑇𝑝𝑜𝑖𝑠(𝑦𝑖𝑡𝑘 ; 𝜇𝑖𝑡𝑘 ) denotes a truncated Poisson distribution with parameter𝜇𝑖𝑡𝑘 ; 𝜂 denotes a 

link function such as the logit link; 𝑧𝛼 ,𝑖𝑡 represents the same spatial covariates used in the first 

part; and 𝛽𝛼  denotes the parameters associated with covariates. We also introduce three 

random effects: (i) spatial dependence, 𝑆𝑖 ; (ii) temporal dependence, 𝜏𝑡  and (iii) spatio-temporal 

interaction, υit . 

This particular estimation process has 2 steps. In the first step we use a binomial link to 

estimate the probability of occurrence of an event. The probabilities of occurrence obtained from 

this first step are used in the second step as interim priors. In the second step the link is a 

truncated Poisson distribution. In any case, the likelihood of each part is introduced 

multiplicatively in only one equation. 
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Abstract 

 

The paper has three objectives: firstly, to evaluate how the extent of clustering in wildfires differs 

across the years they occurred; secondly, to analyse the influence of covariates on trends in the 

intensity of wildfire locations; and thirdly, to build maps of wildfire risks, by year and cause of 

ignition, in order to provide a tool for preventing and managing vulnerability levels. For these 

objectives we analysed the spatio-temporal patterns produced by wildfire incidences in 

Catalonia, located in the north-east of the Iberian Peninsula. The methodology used has 

allowed us to quantify and assess possible spatial relationships between the distribution of risk 

of ignition and causes. These results may be useful in fire management decision-making and 

planning. The methods shown in this paper may contribute to the prevention and management 

of wildfires, which are not random in space or time, as we have shown here. 

 

Key words: wildfire, spatial point processes, marks, covariates, Area-interaction processes 
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1.- Introduction 

A wildfire is any uncontrolled fire in combustible vegetation that occurs in the countryside or a 

wilderness area. A wildfire differs from other fires in its extensive size, the speed at which it can 

spread out from its original source, its potential to change direction unexpectedly, and its ability 

to jump gaps such as roads, rivers and fire breaks (National Interagency Fire Centre, 2011). 

Wildfires are characterised in terms of the cause of ignition, their physical properties such as 

speed of propagation, the combustible material present, and the effect of weather on the fire 

(Flannigan et al., 2006).  

The four major natural causes of wildfire ignitions are lightning, volcanic eruption, sparks from 

rock falls, and spontaneous combustion (National Wildfire Coordinating Group, 1998; Scott, 

2000). McRae (1992), among others, suggests that lightning ignitions do not occur anywhere, 

but favour locations satisfying certain terrain conditions. However, many wildfires are attributed 

to human sources (Pyne et al., 1996). First, there are human actions that directly cause 

ignitions deliberately or accidentally. In addition to this, great social upheaval in the last century 

has led much of the population to move from rural to urban areas. Many areas have witnessed 

an abandonment of farming and livestock practices, which leads to an accumulation of fuel for 

fires to feed on. The abandonment of rural areas has also reduced the capacity among the 

population for noticing fires and taking action when they first begin (William et al., 2000; Badia 

et al., 2002). 

Fire risk is very high in the Mediterranean region due to its marked seasonality, with high 

temperatures and low humidity in summer, and these climatic trends interact with landscape 

dynamics. In the case of Catalonia, the process of afforestation in different agricultural areas 

and the increasing abandonment of rural activities have led to a situation of extreme 

vulnerability to fires, especially in Mediterranean mountain areas, where the aforementioned 

factors have led to forests being abandoned and their subsequent expansion, proliferation and 

interconnection (Loepfe et al., 2011). In addition to this, other factors, such as constructing 

second homes in these forest areas, the proliferation of roads and electricity networks and an 

increased flow of people make this region more susceptible to the ignition of large forest fires 

(Díaz-Delgado and Pons, 2001; Moreira et al., 2001). 

Given that fire is a naturally occurring element in the Mediterranean ecosystem, the prevention 

and suppression of forest fires needs to be addressed so as to minimize risk and vulnerability of 

society.  

In fact, there are by now many studies of the spatial patterns of wildfire risk in various locations 

around the globe. Without being exhaustive, and referring only to more recent we cite works on 

fires, above all, in North America (Chen, 2007; Yang et al., 2008; Gedalof 2011; Miranda et al., 

2011; Gralewitz et al., 2012) but also in the Mediterranean region (Millington 2005; Millington et 
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al., 2009, 2010; Romero-Calcerrada et al., 2010), Asia (Liu et al., 2012) and Oceania 

(O‟Donnell, 2011), among many others. 

If we associate wildfires with their spatial coordinates, the longitude and latitude of the centroid 

of the burned area or the place where they were detected, along with other variables such as 

size or cause, and we know the time at which they started, it is possible to identify them by 

means of a spatio-temporal stochastic process. Such processes, called spatial point processes, 

often present dependences between the spatial positions and time instants, as well as 

interdependence between one another. 

Spatial point processes are complex stochastic models that describe the location of events of 

interest and occasionally some information on these events. The most common models are 

those where the locations are given in two dimensions. Univariate point processes include only 

the location of events; point processes with marks (or marked point processes) include 

additional information about each event. These data sets can be used to respond to a variety of 

questions. The scientific context of these questions depends on the area of application, but they 

can be classified into three broad groups. First, one might be interested in whether the spatial 

pattern for the observed data is grouped, distributed regularly or random. A second group of 

questions would refer to the relationship between different types of events in a marked process 

or process with marks (variables measured only at fire locations, such as size of area burned, 

cause of fire or year of occurrence). The third and last group of questions focuses on density 

(number of events per unit area). 

What is usually of more interest is to detect trends in the intensity of fire locations (i.e. 

probability of occurrence), and to determine how (or whether) such trends are influenced by 

covariates, observable at each location of the spatial window. These covariates might include 

vegetation or land use, other descriptors of terrain (such as elevation, slope and orientation), 

and others such as proximity to human populations or to concomitants of human activity (roads 

and railroads). Interaction between points may generally be of some interest in its own right. 

More important is the impact of the presence of interaction on statistical inference concerning 

trends and its dependence on covariates. Temporal clustering of wildfires, whether deriving 

from multiple ignition lightning events, arson (Butry and Prestemon, 2005), or other sources, 

combined with favourable fuel and weather conditions, can force suppression resource rationing 

across space. Spatial clustering can also indicate the presence of risk factors. 

This paper has three objectives. Firstly, to evaluate how the extent of clustering in wildfires 

differs across marks, in particular years and causes of wildfire ignition. Secondly, to analyse the 

influence of covariates such as land use, slope, aspect and hill shade on trends in the intensity 

of wildfire locations. And finally, to build maps of wildfire risk, by year and cause of ignition, in 

order to provide a tool for managing vulnerability levels. 
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2.- Methods 

 

2.1.- Data set 

 

We have analysed the spatio-temporal patterns produced by wildfire incidences in Catalonia, 

located in the north-east of the Iberian Peninsula. The region is bordered by mountain 

landscapes, the Pyrenees in the north and the Iberian System in the south. The region is further 

delimited by the Ebro river to the south and south-west, and the Mediterranean coast to the 

east. It is a region with a surface area of 30,000 square kilometres (12,355 sq mi), representing 

6.4% of the Spanish national territory.  

The total number of fires recorded in the area studied during the period 2004-2008 was 3,083. 

In addition to the locations of the fire centroids, measured in Cartesian coordinates (Mercator 

transversal projections, UTM, Datum ETRS89, zone 31-N), several marks and covariates were 

considered.  

Variables measured only at fire locations are called marks. In this paper, marks included the 

year the wildfire occurred (from 2004 to 2008) and also the cause of ignition of each wildfire 

(classified as: natural causes; negligence and accidents; intentional or arson; and unknown 

causes and revived).    

Spatial covariates were also considered. In particular, three continuous covariates: slope, 

aspect and hill shade; and one categorical variable: land use. Land use will obviously affect fire 

incidence, but, moreover topographic variables (slope, aspect and hill shade) affect not only fuel 

and their availability for combustion (Ordóñez et al., 2012) but also have effects on weather, 

inducing several local wind conditions including slope and valley winds. In fact, Dillon et al. 

(2011) point out that topographic variables were relatively more important predictors of severe 

fire occurrence than either climate or weather variables. 

Slope is the steepness or degree of incline of a surface. In this paper, the slope for a particular 

location was computed as the maximum rate of change of elevation between that location and 

its surroundings. Slope was expressed in degrees. Aspect is the orientation of the slope, 

measured clockwise in degrees from 0 to 360, where 0 is north-facing, 90 is east-facing, 180 is 

south-facing, and 270 is west-facing. Hill shading is a technique used to visualize terrain as 

shaded relief, illuminating it with a hypothetical light source. Here, the illumination value for each 

raster cell was determined by its orientation to the light source, which, in turn, was based on 

slope and aspect. With respect to land use variables, we used the CORINE database 

(Coordination of Information on the Environment). The CORINE program was initiated in 1985 

by the European Commission and was adopted by the European Environment Agency (EEA) in 

1994. The main objective of the CORINE program is to capture numerical data and 
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geographical order to create a European database on environment for certain priority topics 

such as land cover and biotopes (habitats), through the interpretation of images collected by the 

Landsat series of satellites and SPOT. Although this is based on remote sensing images as a 

data source it is actually a photo interpretation project and not automated classification. In this 

paper we have used the CORINE land cover map for the year 2006 (European Environment 

Agency, 2007). Data are gathered on a 1:100.000 scale with a minimum mapping unit (MMU) of 

25 hectares; the linear elements listed are those with a width of at least 100 meters. The 

database includes forty-four categories, in accordance with a standard European nomenclature, 

organised into five large groups: artificial surfaces, agricultural areas, forest and semi-natural 

areas, wetlands and water bodies (Heymann et al., 1994). In this paper we reclassified land use 

into ten categories: coniferous forests; dense forests; pastures; fruit trees and berries; artificial 

non-agricultural vegetated areas; transitional woodland scrub; scrub; natural grassland; mixed 

forests; and urban, beaches, sand, bare rocks, burnt areas and water bodies. 

In order to model the dependence of a point pattern on a spatial covariate, there are several 

requirements. Firstly, the covariate must be a quantity observable at each location in the 

window (e.g. slope, aspect and hill shade). Such covariates may be continuous values or 

factors (e.g. land use). Secondly, the values of the covariate at each point of the data point 

pattern must be available. Thirdly, the values at some other points in the window must also be 

available.  

 

2.2.- Statistical methods 

 

The simplest of all possible point process models is the constant intensity Poisson process, 

frequently referred to as the model of complete spatial randomness (CSR). In this model, the 

points of a spatial pattern are stochastically independent. The nature of the phenomenon under 

study or a casual glance at a plot of the data usually makes it obvious when CSR is not a 

realistic option. 

The nature or behavior of a point pattern may be thought of as comprising two components, 

trend and dependence, or interaction between the points of the patterns. The simplest 

manifestation of such interaction consists of either attraction (aggregation or clustering) or 

repulsion (regularity) in the pattern. A useful step in analyzing a point pattern is to apply 

graphical tools which reveal information as to the nature of the interaction. A widely used tool for 

exploring the nature of interaction is Ripley‟s K-function (Ripley, 1976; Ripley, 1977; Cressie, 

1993; Diggle, 2003).  

The basic idea in interpreting the K-function is that a constant intensity Poisson process (a 

process exhibiting CSR) has a K-function equal to   2rrK  . If there is attraction (with impact 
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at distance r, the bounding radius of the spatial domain), then K(r) is larger than it would be 

under CSR. Conversely, if there is repulsion, then K(r) is smaller than it would be under CSR. 

 

2.2.1.- Spatial models 

 

Poisson processes 

 

The homogeneous Poisson process is the simplest point process that represents no underlying 

process, corresponding in our case to complete randomness in wildfire distribution. The K-

function of the homogenous Poisson process is defined as: 
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In this function, A denotes the area of the plot; λ is wildfire density, ijis an edge correction term, 

dij represents the distance between two points, and I is an index 

function where I = 1, if dij ≤ r, and I = 0 otherwise (Ripley, 1976). Wildfire density, λ, is the 

parameter to be estimated in this model. 

The inhomogeneous Poisson process can be used to model heterogeneous association in 

wildfires. In this model, relationships between density and heterogeneity are included via a 

spatially heterogeneous intensity function, λ(s) (Diggle, 2003; Illian et al., 2008). The K-function 

of the inhomogeneous Poisson process is defined as  
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whereA, λ,ij, dij, and I are the same as in the homogeneous Poisson process; and λ(si) and 

λ(sj) are the values of the intensity function at points si and sj, respectively (Diggle, 2003; Illian et 

al., 2008).  

Specifically, the intensity function, λ(s), is modelled as a log-polynomial regression: 

    sXs T exp
 

whereX(s) is a vector of variables and β
T
 is a vector of regression parameters. Two different 

types of log-polynomial regressions were used in this study: log-linear regressions with 

covariates and log-quadratic regressions with the coordinates of the wildfire. 
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Thomas processes 

 

The homogeneous Thomas process is a particular class of Poisson cluster process and can be 

used to model a series of clustered patterns (Diggle, 2003; Illian et al., 2008). This model 

describes processes of dispersal, in which „offspring‟ are limited to aggregate around their 

„parent‟. Therefore, it models the effect of dispersal limitation. The homogeneous Thomas 

process is modelled by two steps. First, locations of parents are generated by a homogeneous 

Poisson process with a density, j. Second, a group of offspring are produced around each 

parent. Their locations are assumed to be independent of one another and isotropically 

distributed around each parent with a Gaussian dispersal kernel, N(0,r). The number of 

offspring is determined by a Poisson distribution with mean being l (Moller and Waagepetersen, 

2004; Baddeley and Turner, 2005). 

The K-function of the homogenous Thomas process is given by: 
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wherer is distance,   represents the intensity of parents in a Poisson distribution and σ is 

standard deviation of distance from offspring to the parent (Diggle, 2003; Illian et al., 2008). 

Mean number of offspring per parent in a Poisson distribution, l, can be inferred from estimated 

intensity λand  . 

The inhomogeneous Thomas process is used to evaluate the joint effects of covariates (Diggle, 

2003; Illian et al., 2008). This model is the same as a homogeneous Thomas process, except 

that the number of offspring per parent, I, is no longer constant and must be estimated by a 

spatially heterogeneous intensity function. As with the inhomogeneous Poisson process above, 

intensity functions were modelled by means of log-polynomial regressions. 

 

Area-interaction processes 

The homogeneous area-interaction process (Widom and Rowlinson, 1970; Baddeley and van 

Lieshout, 1995) with disc radius r, intensity parameter κ and interaction parameter γ is a point 

process with probability density:  

  ))(()(
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where nss ,....1 represent the points of the pattern, n(s) is the number of points in the pattern, 

and A(s) is the area of the region formed by the union of discs of radius rcentred at the points 

nss ,....1 . Here, α is a normalizing constant.  

The interaction parameter γ can be any positive number. If γ = 1 then the model reduces to a 

Poisson process with intensity κ. If γ < 1 then the process is regular, while if γ > 1 the process is 

clustered. Thus, an area interaction process can be used to model either clustered or regular 

point patterns. Two points interact if the distance between them is less than 2r.  

Here, we parameterised the model in a different form (Baddeley and Turner, 2005), which is 

easier to interpret. In canonical scale-free form, the probability density is rewritten as  

  ))(()(

1...,
sCsn

nssf    

whereβ is the new intensity parameter, η is the new interaction parameter, and C(s) = B(s) - n(s) 

is the interaction potential. Here  

)/()()( 2rsAsB    

is the normalised area (so that the discs have unit area). In this formula, each isolated point of 

the pattern contributes a factor β to the probability density (so the first order trend is β). The 

quantity C(s) is a true interaction potential, in the sense that C(s) = 0 if the point pattern x does 

not contain any points that lie close together (closer than 2r units apart).  

The old parameters κ and γ of the standard form are related to the new parameters β and η, of 

the canonical scale-free form, by  

  /)( 2

  r  

and 

)( 2r   

providedκ and γ are positive and finite (Baddeley and Turner, 2005). 

In the canonical scale-free form, the parameter η can take any non-negative value. The value 

η=1 again corresponds to a Poisson process, with intensity β. If η<1 then >1 for any value of r, 

and the process is clustered. If η>1 then <1, and the process is regular. The value η=0 

corresponds to a hard core process with hard core radius r (interaction distance 2r).  
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The inhomogeneous area interaction process is similar, except that the contribution of each 

individual point si is a function )( is of location, rather than a constant beta. 

 

2.2.2.- Statistical inference 

 

To fit Poisson cluster models, such as the Thomas model, and given a user-specified maximum 

distance hk, the model parameters can be estimated by minimizing a „discrepancy measure‟ of 

the empirical K-function )(ˆ hK  and the expected value K(r) (Diggle, 1983): 

 
kh

dhrKhK
0

225.025.0 ))()(ˆ(  

And for the inhomogeneous case: 
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These are known as minimum contrast procedures. 

Because the choice of hk is arbitrary, Diggle (2003) recommended that hk should be 

considerably smaller than the dimensions of the observation plot.  

When spatial interactions exist, and a likelihood is obtained in closed form, the model 

parameters can then be estimated via the maximum pseudo-likelihood method. Goodness-of-fit 

of the models was evaluated using Akaike‟s information criterion (AIC) and Monte Carlo 

simulations. The AIC was used to select the best-fit model for each set of wildfires and was 

calculated using the following formula: 

kRnAIC 2)ln(   

where n is the number of observations, R is the sum of residual squares and k is the number of 

parameters (Moller and Waagepetersen, 2004; Shen et al., 2009). Number of parameters 

ranged from 1 to 12 for the various models. The AIC was used because in this study 

parameters were not estimated using standard maximum likelihood methods. Goodness-of-fit 

was further evaluated by means of Monte Carlo simulations, which were used to generate 95% 

confidence intervals of the K(r) for different models.  

To fit an area-interaction process we made use of maximum pseudo-likelihood based-methods 

(Baddeley and Turner, 2005). The pseudo-likelihood estimation approach provides an 

alternative to likelihood methods when the normalizing constant is no longer to be determined. 

This pseudo-likelihood function is based on the conditional intensity of a point si given 
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realization in a bounded region A. For pairwise interaction processes, the conditional intensity 

(Papangelou, 1974; Daley and Vere-Jones, 2003) of  at a location si may be loosely 

interpreted as giving the conditional probability that  has a point at x given that the rest of the 

process coincides with . For si / and f()> 0, the conditional intensity equals: 

)(
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while for si we have λ(si ;) = f()/f( − { si }). If η (i.e. pair potential function) is bounded then 

for any finite point configuration  with f(), the pseudo-likelihood of pairwise interaction 

processes is defined by (Besag, 1974; Jensen and Moller, 1991),  
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Usually, this is re-cast in terms of its logarithm. Maximization of the PL function with respect to 

the parameter set yields the maximum pseudo-likelihood estimators. 

 

2.3.- Analysis of spatial segregation 

 

With the double aim to assess our first objective and to provide additional evidence of the 

deviation of our data from the null hypothesis of CSR, we follow Diggle et al. (2005) and 

investigate the occurrence of spatial segregation. Spatial segregation occurs if, within a region 

of interest, some types of points dominate in some sub regions, and this dominance is 

determined by circumstances other than random. 

Data are now represented as a set of multinomial outcomes Yit, i=1,…,n, t=2004, …, 2008 

(n=3083 wildfires from 2004 to 2008; 563 in the year 2004; 893 in 2005; 628 in 2006; 578 in 

2007; and 421 in the year 2008), where, for each of k=1,..,m (m=4, 1= natural causes; 2= 

negligence and accidents; 3= intentional or arson; 4= unknown causes and revived), and year t, 

the outcome Yit=k denotes the occurrence of a wildfire for the cause k at the location xithe year 

t, and the corresponding multinomial cell probabilities are the cause-specific probabilities pk(x), 
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wherek(x) denotes the intensity function of the independent Poisson process corresponding to 

cause k. 
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The cause-specific probabilities, pk(x), were estimated through a multivariate adaptation of a 

kernel smoothing. In particular, the cause-specific probability surfaces were estimated by 

means of a kernel regression estimator, 
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whereI(.) was an indicator function; and, for each k=1,2,..,m,  
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wk(.) was the kernel function with bandwith hk>0, 
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where we used the Gaussian kernel as the standardised form of the kernel function in the 

numerator; and x denotes the Euclidean distance of the point x to the origin. 

Estimation of the cause-specific probabilities was done by means of cross-validated log-

likelihood (Diggle et al., 2005). For the testing of both, the null hypotheses of no spatial variation 

in the probability surfaces between wildfire causes (i.e. no spatial segregation); and of no 

change over time of the cause-specific probability surfaces (i.e. no temporal changes in spatial 

segregation) we used Monte Carlo sampling (Diggle et al., 2005). 

The analyses were carried out using the R freeware statistical package (versions 2.12.1 and 

2.14.2) (R Development Core Team, 2010);and the Spatstat (Baddeley and Turner, 2005); 

splancs (Rowlingson and Diggle, 1993) and spatialkernel (Zheng et al., 2012) packages. The 

free environment gvSIG (version 1.10) was used for representing maps. 

 

3.- Results 

 

Table 1 and Figure 1 show the distribution of the 3,083 wildfires occurring in Catalonia by year 

(from 2004 to 2008) and cause (natural causes; negligence and accidents; intentional or arson; 

and unknown causes and revived). 

The category of negligence and accidents was the most frequent cause (54.91%), followed by 

intentional or arson (20.27%), unknown (12.88%) and natural causes (11.94%). Note also that 
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after a dramatic increase in the number of wildfires from 2004 to 2005 (58.61%), there was then 

a decrease (29.68% from 2005 to 2006; 7.62% from 2006 to 2007; and 27.16% from 2007 to 

2008). In fact, 2008 was the year with the lowest number of wildfires during the study period. 

Note that the behaviour of each of the causes by year was more or less the same, with a slight 

difference in the case of unknown and revived, where the year with the lowest number of 

wildfires was 2004. The spatial distribution of the wildfires was very similar for all causes, 

perhaps with the exception of natural causes, with very few fires in coastal and urban areas 

(which are located mainly on the coasts). Note also, that intentional and unknown causes 

behaved more like each other than like other causes. 

Although it would be theoretically possible that the use of topographic variables would produce 

high collinearity, this problem did not occur in practice. Correlation between hill shade and 

aspect was equal to 0.402 (p<0.001); between hill shade and slope -0.360 (p<0.001); and -

0.025 (p=0.158), between aspect and slope. Nevertheless, we repeated all analyses using: i) 

slope and aspect separately (without hill shade); and ii) hill shade alone (without slope and 

aspect). However, the results vary very little. In neither model parameter estimators suffer a 

significant change and, in any case, vary the parameters of statistical significance.  

To model the behaviour of the wildfires we have used three different models for each year and 

cause. Initially, we individually entered each covariate (slope, aspect, hill shade and land use, 

see Figure 2) into each of the models. However, due to the large number of resulting models for 

all possible combinations, we decided to focus the study solely on the four covariates together, 

as this already covered individual results and gave other general information. 

Discarding the homogeneous models, since intensity is always clearly variable in the case of 

modelling wildfire, we started with the simplest model, the inhomogeneous Poisson process. 

We followed this with a cluster process model, specifically the Thomas process, and finished 

with the area-interaction point process. In total sixty models were fitted to the data. Among 

them, and according to the fit of the model to the observed spatial distribution of the wildfires, 

we selected the twenty best models (see Table 2). It is interesting to note that the Thomas 

process was only well modeled for natural causes for practically all years (except 2007). Note 

that the area-interaction model shows a clear improvement over the other two models. It 

properly adjusted most cases including, unlike the other two, the cause intentional or arson. The 

results of estimating the twenty best models are shown in Table 3 and the simulated envelopes 

of the fit are shown in Figure 3. 

Models were selected using a second filtration taking into account the AIC. As is known, this 

criterion measures the relative goodness-of-fit of the model in question and is therefore an 

effective tool for comparing models. The lower the AIC, the better the model (in terms of 

goodness-of-fit). AIC can be computed in terms of close likelihoods in which the number of 

parameters playing a role in the specific model are considered. For some cluster models, such 

as the Thomas one, the close likelihood can not be computed and thus AIC could also be 
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calculated in an approximate way, making the comparison with Poisson or Area-Interaction 

models unfair. In this sense, we only used AIC criteria for these latter two models (see Table 4). 

In these cases, there was generally little difference between the two models analysed, except 

for the cause negligence and accidents in the year 2007, where the Poisson model had the 

lowest AIC. 

The analysis of spatial segregation is shown in Table 5. All four cause-specific probabilities 

show wide spatial variation for all years. Using 999 simulated random relabellings of the wildfire 

causes among all case in the Monte Carlo tests for both, spatial segregation and the temporal 

changes of the spatial segregation, we rejected the null hypotheses each one of the years and 

causes, respectively. 

Note, that there was a great variability in the estimated effects of the variables on the intensities 

for all causes, years and spatial point process models finally fitted (see Table 4). As a result, 

conditional intensities should vary accordingly. 

Finally, we computed the conditional intensity of all fitted spatial point process models in Table 

2, evaluated at each spatial location used for model fitting. Our interest was to use these 

intensities to build maps of wildfire risks, by year and cause of ignition (Figure 4), in order to 

provide a tool for prevention and management of vulnerability levels. Here we show only those 

maps corresponding to the best models (in terms of goodness-of-fit), i.e. area-interaction with 

two exceptions, natural causes in 2006, where the only model was the Thomas process (see 

Table 2), and negligence and accidents in 2007, built using the Poisson model  (see Table 4) 

(results not shown can be requested from the authors).  

With some exceptions (unknown causes and revived in 2004 and 2005, and natural causes in 

2005 and 2007) the risks for each cause varied over the years. Note that, generally speaking, 

risks for natural causes in particular and, to a lesser extent, unknown causes and revived, were 

not very high, whereas for negligence and accidents (2004 and 2007) and intentional or arson 

(2006 and 2008) risks reached figures close to the maximum in some areas, mainly coastal and 

most urbanised areas. 

Wildfires attributed to natural causes are where we find more variability: each year is completely 

different from the rest. This is due to the fact that these fires are basically caused by dry 

lightning storms (no rain); this phenomenon can occur anywhere: mountains, sea, etc. With 

anthropogenic causes, on the other hand, we see a clear pattern in the coastal areas 

(especially Barcelona and the Costa Brava), where fires occur in July and August, when more 

tourists can be found in these places. 
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4.- Discussion and Conclusions 

 

This study has three main findings. Firstly, the extent of clustering in wildfires differed across 

marks, i.e. years and cause of wildfire ignitions. Secondly, covariates such as land use, slope, 

aspect and hill shade influenced trends in the intensity of wildfire locations. Finally, we have 

built maps of wildfire risks, by year and cause of ignition, from the estimated models. These 

could prove very useful as tools in preventing and managing vulnerability levels. 

As regards the first finding, we conclude that, despite the variability found among marks, 

especially over time, the model that best fits the behaviour of fires for most years and causes is 

the area-interaction point process model. This result is interesting because it will allow us to 

expand the study to spatio-temporalmodelling and will lead to improved prediction of fire risk. 

Regarding the second finding, the analysis should be completed using other covariates such as 

fuel (present at the location of fire), flammability, proximity of the wildfire to roads and towns, 

and economic factors such as land prices. On the other hand, it would also be interesting to 

introduce some meteorological covariates such as temperature, precipitation and wind. 

Note that we have restricted our attention to inhomogeneous spatial models where we have 

fixed the temporal scale and modelled only the spatial component. A necessary and further 

improvement of our modelling efforts might incorporate time into the model itself, considering 

thus spatio-temporal point process models. One good thing about this latter approach is that we 

could model and evaluate the corresponding spatio-temporal interaction, something that we 

have not considered in the present approach. We note that some approaches have already 

been considered in this respect, but they consider independent spatial replication in time, and 

this is not realistic. In the context of spatio-temporalmodelling, one useful approach is to try and 

model the spatio-temporal intensity function as an additive or multiplicative form of the spatial 

and temporal intensities, and then adding a spatio-temporal residual component (for instance 

Diggle et al., 2005b). This would probably provide more insight into the problem of modelling 

wildfires. 

With respect to the third finding, we constructed maps that could: i) help authorities to develop 

more reliable plans for forest fire prevention; ii) predict areas of forest fire risk more efficiently; 

iii) design awareness campaigns more efficiently; and iv) reduce the budget designed of fire 

management. In fact, if we understand prevention as prediction of scenarios on where and 

when forest fires could be stronger in critical moments, our maps could provide the necessary 

land-use planning measures, both in terms of preventive management practices and 

stakeholders‟ responsibility in managing fires; and identify priority actions for each component of 

the fire management system throughout the year. 
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As we said, hill shade was defined as a function of slope and aspect (along with angle of 

illumination). In fact, the correlation between hill shade-aspect and hill shade-slope were 

actually quite high (about 0.4 in each case). However, it seems that there is some property of 

the stochastic models which makes them insensitive to inter-correlation
1
. In fact, when we 

repeated all analyses using: i) slope and aspect separately (without hill shade); and ii) hill shade 

alone (without slope and aspect) the results vary very little. 

The methodology used has allowed us to quantify and assess possible spatial relationships 

between the distribution of risk of ignition and causes. These results may be useful in fire 

management decision-making and planning. We believe the methods shown in this paper may 

contribute to the prevention and management of wildfires, which are not random in space or 

time, as we have shown here. 

                                                      
1
We thank an anonymous reviewer for pointing out this point. 

2
We acknowledge this comment to one of the anonymous reviewers. 
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Table 1.- Distribution of wildfires occurring in Catalonia by year and cause 

 

 

 

Number of fires Cause 1  

(Naturals) 

Cause 2 

(Negligence) 

Cause 3 

(Intentional) 

Cause 4 

(Unknown) 

All causes 

2004 65 336 103 59 563 

2005 115 525 151 102 893 

2006 98 297 155 78 628 

2007 52 308 122 96 578 

2008 38 227 94 62 421 

All years 368 1693 625 397 3083 
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Table 2.- The twenty models with best fit to the observed spatial distribution of 

the wildfires 

 

Year 2004 2005 2006 2007 2008 

Cause C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 

                     

Poisson     X        X X   X    

Thomas X    X    X        X    

Area-

Interaction 

X X X X X   X  X X  X X   X  X  
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Table 3.- Results of estimating the twenty models with best fit to the observed 

spatial distribution of the wildfires 

Thomas 

2004 β
0
 (Aspect)β

1
 (Hill shade)β

2
 (Slope)β

3
 (Land Use)β

4
 κ σ 

Cause 1 4.2783 -0.0004 0.0026 0.0235 

 

0.0735 53.3747 0.0432 

 

2005        

Cause 1 5.4771 -4.848e-06 -0.0011 0.0119 0.0463 18.4070 0.0549 

2006        

Cause 1 4.7536 0.0001 0.0013 0.0025 0.0879 60.5309 0.0338 

2008        

Cause 1 4.7579 -0.0009 -0.0003 0.0192 0.0411 45.2217 0.0543 

 

Areal-interaction 

2004 β
0
 (Aspect)β

1
 (Hill shade)β

2
 (Slope)β

3
 (Land Use)β

4
  Interaction 

Cause 1 4.2446 -0.0003 0.0024 0.0145 0.0571 31.563 3.4520 

Cause 2 7.2342 -0.0014 -0.0002 -0.0068 -0.0135 7.0907 1.9588 

Cause 3 5.2597 -0.0024 0.0009 0.0251 0.0018 254.80 5.5405 

Cause 4 6.1766 -0.0028 -0.0015 0.0011 0.0128 4.0229 1.3920 

2005        

Cause 1 5.5155 -0.0002 -0.0011 0.0249 0.0456 0.8201 -0.1983 

 

Cause 4 5.6711 -0.0006 0.0008 0.0073 -0.0671 70.431 4.2546 

2006        

Cause 2 7.2418 -0.0023 -0.0006 0.0168 0.0025 8.3818 2.1261 

Cause 3 5.5181 -0.0011 -0.0001 -0.0002 -0.0331 313.024 5.7463 

2007        

Cause 1 4.8859 -0.0007 -0.0005 0.0330 -0.0041 48.078 3.8728 

Cause 2 6.9511 -0.0018 0.0009 0.0010 0.0230 6.0967 1.8077 

2008        

Cause 1 4.6428 -0.0008 -0.0007 0.0188 0.0336 32.852 3.4920 

Cause 3 5.7116 -0.0027 0.0007 0.0038 -0.0785 201.55 5.3060 
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Table 4.- AIC of best Poisson and area-interaction models (common years and 

causes) 

 

 AIC 

 Poisson Area-Interaction 

2005 cause 1 -1023.863 -1025.464 

2007 cause 1 -386.7365 -386.2792 

2007 cause 2 -3512.036 -735.2788 

2008 cause 1 -255.3777 -254.4718 
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Table 5.- Analysis of the spatial segregation 

 

 2004 2005 2006 2007 2008 Monte Carlo test for 

temporal changes of 

spatial segregation 

Cause-specific probabilities
1 

      

   Natural causes
 0.44982-5.353e-07 0.44781-1.262e-07 0.27130-0.00245 0.42920-0.00523 0.34484-0.05102 0.034 

   Negligence and accidents 0.52385-2.719e-05 0.91912-0.01334 0.89029-0.00814 0.26738-0.00135 0.37881-0.00833 0.002 

   Intentional or arson
 0.88786-0.31920 0.69422-0.00056 0.81789-0.01535 0.43960-0.00011 0.81901-0.17470 0.021 

   Unknown causes and revived
 0.47607-9.673e-06 0.46596-0.00674 0.55427-0.00300 0.88825-0.35331 0.39663-0.01364 0.044 

       

Monte Carlo test for spatial segregation 0.002 0.012 0.003 0.002 0.020  

 

1
 Maximum-minimum  
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Figure 1.- Distribution of wildfires occurring in Catalonia by year and cause (natural; negligence or accident; intentional or arson; 

unknown causes and revived) 
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Figure 2.- Spatial covariates, both continuous (slope, aspect and hill shade) and categorical (land use) 

 



Results 

103 

Figure 3a.- Simulated envelopes of the twenty models with best fit to the observed spatial distribution of the wildfires 
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Figure 3b.- Simulated envelopes of the twenty models with best fit to the observed spatial distribution of the wildfires 
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Figure 3c.- Simulated envelopes of the twenty models with best fit to the observed spatial distribution of the wildfires 
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Figure 4a.- Conditional intensity of the fitted spatial point process models. Natural causes 
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Figure 4b.- Conditional intensity of the fitted spatial point process models. Negligence and accidents 
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Figure 4c.- Conditional intensity of the fitted spatial point process models. Intentional or arson 
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Figure 4d.- Conditional intensity of the fitted spatial point process models. Unknown causes and revived 
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Abstract 

 

Wildfires have become one of the principal environmental problems in theMediterranean basin. 

While fire plays an important role in most terrestrial plant ecosystems, the potential hazard that 

it represents for human lives and property has led to the application of fire exclusion policies 

that, in the long term, have caused severe damage, mainly due to the increase of fuel loadings 

in forested areas, in some forest systems. The lack of an easy solution to forest fire 

management highlights theimportance of preventive tasks. 

The observed spatio-temporal pattern of wildfire occurrences may be idealised as a realization 

of some stochastic process. In particular, we may use a spatio-temporal point pattern approach 

for the analysis and inference process. We studied wildfires in Catalonia, a region in the north-

east of the Iberian Peninsula, and we analysed the spatio-temporal patterns produced by those 

wildfire incidences by considering the influence of covariates on trends in the intensity of wildfire 

locations. A total of 3,166 wildfires from 1994-2008 have been recorded. 

We specified spatio-temporal log-Gaussian Cox process models. Modelswere estimated using 

Bayesian inference for Gaussian Markov RandomField (GMRF) through the Integrated Nested 

Laplace Approximation (INLA)algorithm. 

The results of our analysis have provided statistical evidence that areas closer to humans have 

more human induced wildfires, areas farther have more naturally occurring wildfires.  

We believe the methods presented in this paper maycontribute to the prevention and 

management of those wildfires which arenot random in space or time. 

Key words: wildfire, spatio-temporal point processes, marks, covariates, log-Gaussian Cox 

models, GMRF, INLA. 
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Highlights 

 

- We obtain a model that maps fire risk in Catalonia. 

- We have provided clues as to which risk factors are associated with which different 

causes of wildfires.  

- Wildfires started intentionally were associated with low elevation locations. 

- With wildfires caused by nature, relative risks were higher for locations far from the 

coastal plains, and from urban areas, roads and railways.  

- Wildfires associated with human activity, are related to the accessibility of the areas. 
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1.- Introduction 

 

Forest fires are considered dangerous natural hazards around the world (Agee, 1993). After 

urban and agricultural activities, fire is the most ubiquitous terrestrial disturbance. It plays an 

important role in the dynamics of many plant communities, accelerating the recycling time of 

important minerals in the ashes, and allowing the germination of many dormant seeds in the 

soil. Natural occurring forest fires are ignited by lightings. In the Mediterranean area however, 

many forest fires are ignited by arsonists or by other human related causes, such as negligence 

or by machinery in farm land areas. 

 

In recent decades, forest fires have become one of the main environmental problems and one 

of the most significant causes of forest destruction in Mediterranean countries (Varga 2007). 

The term forest fire comprises any conflagration that might take place in a forest or wild land 

area, and includes wildfires. A wildfire is defined as an unplanned ignition caused by lightning, 

volcanoes, or unauthorized or accidental human actions (National Wildfire Coordinating Group 

(NWCG) Fire Policy Committee 2010). A wildfire differs from other fires in its extensive size, the 

speed at which it can spread out from its original source, its potential to change direction 

unexpectedly, and its ability to jump gaps such as roads, rivers and fire breaks (National 

Interagency Fire Centre 2011).  

 

Wildfires are classified according to the cause of ignition, physical properties such as speed of 

propagation, the type of combustible material and the effect of weather on the fire (Flannigan et 

al. 2006). The four major natural causes of wildfire ignitions are lightning, volcanic eruption, 

sparks from rock falls, and spontaneous combustion (Scott, 2000). However, many wildfires are 

attributed to human sources directly provoking ignitions deliberately or accidentally (Pyne et al. 

1996).  

 

At the beginning of the twentieth century, 10% of Catalonia (a region located in the northeast of 

the Iberian Peninsula and representing 6.4% of Spanish national territory, see Figure 1), was 

covered by forests, whereas currently the forest represents about 61% (two million hectares) 

(Varga 2007; CREAF 1991).This increase in the forested area has been particularly notable in 

recent years, making wild areas prone to the outbreak of wildfires. However, the re-shaping of 

the landscape due to the social and economic changes that have occurred in the last fifty years 

(Díaz-Delgado and Pons 2001; Moreira et al. 2001; Loepfe et al. 2011); together with many 

features of global climate change in the Mediterranean basin, such as a temperature increase 

and a reduction in precipitation (Varga 2007), could explain the evolution of wildfires. 

Accordingly, the worst years of wildfires in Catalonia have been in 1979, 1991, 1994 and 1998, 

when more than 400,000 Ha burned (Varga 2007). 

 



Results 

114 

The aforementioned facts drew the attention of government agencies about the importance of 

having scientific studies regarding wildfire occurrence, as well as the risk factors associated as 

the temperature (Dever et al, 2008, Piñol and Lloret, 1998), from different perspectives (Varga, 

2007). One such perspective comes from the statistical modelling of the spatial distribution of 

wildfires, while assessing which factors can be related to their existence. In fact in various 

locations around the globe, there are now many studies of the spatial patterns of wildfire risk. 

Without being exhaustive,and referringonly to those more recent studies, we cite works on fires, 

above all, in North America (Chen 2007; Yang et al.2008; Gedalof 2011; Miranda et al. 2011; 

Gralewitz et al. 2012), but also in the Mediterranean region (Millington et al. 2009; Millington et 

al. 2010; Romero-Calcerrada et al. 2010), including Catalonia (Juan et al. 2012; Serra et 

al.2012), as well as in Asia (Liu et al. 2012) and Oceania (O‟Donnell 2011). 

Wildfires can be associated to their spatial coordinates (representing, for example, the location 

of the origin, or the center of a burned area), the temporal instant, and the corresponding 

covariates. This association facilitates the representation of a wildfire as a realization of a 

spatio-temporal stochastic process. Spatio-temporal clustering of wildfires might indicate the 

presence of risk factors which are not evenly distributed in space and time. In fact, what is 

usually of interest is to assess the association of clustering of wildfires to spatial and seasonal 

covariates (Serra et al. 2012). Covariate information usually comes in the form of spatial 

patterns in regular lattices or as regular vector polygons that may be rasterized into lattice 

images using GIS (Simpson et al. 2011). The right methodological context able to deal with 

these pieces of information comes from spatio-temporal point processes. In particular, Log 

Gaussian Cox processes (LGCP) define a class of flexible models that are particularly useful in 

the context of modelling aggregation relative to some underlying unobserved environmental 

field (Illian et al. 2010; Simpson et al. 2011). These processes provide models for point patterns 

where the intensity function is supposed to come from a continuous Gaussian random field. In 

this sense, LGCP are able to mix the two main areas of spatial statistics, point processes and 

geostatistics. The spatial dependence amongst locations depends on the spatial structure of the 

underlying random field depicting a nice and clear combination between the two areas of spatial 

statistics.  

Recently, Illian et al. (2010) have proposed a flexible framework, using integrated nested 

Laplace approximations (INLA), for fitting complicated LGCPs (Rue et al. 2009). However, this 

approach is still based on a regular lattice, and although this leads to consistent estimates if the 

lattice is fine enough and appropriately discretized (Waagepetersen 2004), this approach could 

be highly inefficient, especially when the intensity of the process is high or the observation 

window is large or, as in the case of wildfires, typically oddly shaped (Simpson et al. 2011).  

To bypass the problem of inefficiency in the estimation under a general INLA approximation, we 

have tried another more computationally tractable approach based on stochastic partial 

differential equation (SPDE) models (Lindgren et al. 2011). On one hand, we used SPDE to 

transform the initial Gaussian Field (GF) to a Gaussian Markov Random Field (GMRF). GMRFs 

are defined by sparse matrices that allow for computationally effective numerical methods. 
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Furthermore, by using Bayesian inference for GMRFs in combination to the INLA algorithm, we 

take advantage of the many significant computational improvements (Rue et al. 2009). If, in 

addition, we follow the approach suggested by Simpson et al. (2011), in which the specification 

of the Gaussian random field is completely separated from the approximation of the Cox 

process likelihood, we gain far greater flexibility. 

We present here, the results of analyzing data for wildfires in Catalonia for the years 1994 to 

2008. The objective of this study was two-fold: (a) to evaluate which factors were associated 

with the presence of wildfires and their spatial distribution; and (b) to evaluate in time, the 

spatial variation of fire risk across Catalonia. We used two different kinds of log-linear models: 

Poisson regression and zero-inflated Poisson regression. In addition to the above, we were also 

interested in assessing the possible existence of interaction between space and time, in order to 

improve the quality of our models. 

 

The paper is structured as follows. Section 2 presents the dataset and the statistical approach. 

The results of the statistical analysis are presented in Section 3, and the paper ends with some 

discussion in Section 4. 

 

2.- Material and Methods 

 

2.1.- Data setting 

 

In this paper we analyzed the spatio-temporal pattern observed in the wildfires that occurred in 

Catalonia between 1994 and 2008. The study area encompasses 32,000 square kilometres and 

represents about 6.4% of the total Spanish national territory (see Figure 1). We consider a 

wildfire to be a fire that burns forested areas larger than 0.5 hectares, or a fire bigger than 1 

hectare in mixed and non-forested areas. The total number of fires recorded in the analysis was 

3,166, representing 126,989.44 hectares burned.  

 

In Catalonia, it is the Forest Fire Prevention Service (Government of Catalonia) who is the 

agency responsible for identifying, in each fire, the coordinates of the origin of the fire, the 

starting time and the cause of the fire. In addition, they record the ending time of the fire, the 

hectares (and their type) affected and the perimeter of the fire. The data used in this article were 

provided directly by the Service, and are definitive, once tested and approved. 

We distinguished between the numerouspotential causes of wildfire ignition. In particular, we 

considered: (i) natural causes; (ii) negligence and accidents; (iii) intentional fires or arson; and 

(iv) unknown causes and rekindled.  

 

The first category includes lightning strikes or heat from the sun. The second, takes into account 

that human carelessness can also start a wildfire, for instance with campfires, smoking, 

fireworks or improper burning of trash. Negligence and accidents also includes those wildfires 
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caused purely by chance. The third cause considers those wildfires that are started deliberately. 

Finally, the fourth set includes unknown causes and rekindled fires. Table 1 depicts the fires 

and some of their features. 

 

In the Mediterranean region we find episodes with high temperature and low moisture for many 

days. These episodes, added to the increase of forest mass in the last 50 years, lack of forest 

management and the lack of a fire prevention policy makes this territory very vulnerable. So any 

cigarette, unauthorized grass burning or barbecue may produce a wildfire. It is true that until 

now no one has been arrested for this crime. 

Many arsonist wildfires in Spain are caused for economic interests (payment of compensations, 

burnt wood, land price speculation, quarrels between hunters, landowners and tenants). It 

seems obvious that Spain needs to enact some more drastic anti-fire policing strategies. 

In addition to the locations of the fire centroids, several covariates were considered. Spatial 

covariates were also considered Spatial covariates were also considered.  Specifically, eight 

continuous covariates (i.e. topographic variables – slope, aspect, hill shade and elevation; 

proximity to anthropic areas – roads, urban areas and railways; and meteorological variables – 

maximum and minimum temperatures) and one categorical variable (land use).  

 

Land use will obviously affect fire incidence, but moreover, topographic variables (slope, aspect 

and hill shade) affect not only fuel and its availability for combustion (Ordóñez et al. 2012), but 

also affect the weather, inducing diverselocal wind conditions, which include slope and valley 

winds. In fact, Dillon et al. (2011) point out that those topographic variables were relatively more 

important predictors of severe fire occurrence, than either climate or weather variables. The 

proximity to anthropic areas could be considered a factor explaining not only the incidence of 

fires in the intentional fires and arson category, but also why natural cause fires do not occur. 

As climatic variables, feasiblyimportant for natural cause fires and perhaps rekindled fires, we 

use the maximum and minimum temperatures (further details can be found in Serra et al. 2012). 

 

In this paper, slope was the steepness or degree of incline of a surface. Slope cannot be 

directly computed from elevation points; one must first create either a raster or a TIN surface. In 

this article, the slope for a particular location was computed as the maximum rate of change in 

elevation between the location and its surroundings. Slope was expressed in degrees. Aspect 

was the orientation of the slope where the wildfire occurred, and was measured clockwise in 

degrees from 0 to 360. Given the circular nature of this covariate, it was transformed into four 

categories: 0 (north facing), 1 (east facing); 2 (south facing) and 3 (west facing).Hill shading is a 

technique used to visualize terrain as shaded relief by illuminating it with a hypothetical light 

source. Here, the illumination value for each raster cell was determined by its orientation to the 

light source, which, in turn, was based on slope and aspect and was also measured in degrees, 
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from 0 to 360. Finally, elevation was considered as elevation above sea level and expressed in 

meters. To obtain topographic variables (DTM) we have used the MET-15 model, which is a 

regular grid containing orthometric heights distributed according to a 15 m grid side, and has 

been created for the Cartographic Institute of Catalonia.  

The distances, in meters, from the location of the wildfire to urban areas, roads and railroads, 

were constructed by considering a geographical layer in each case. The urban area and road 

layers were obtained from the Department of Territory and Sustainability of the Catalan 

Government, through the Cartographic Institute of Catalonia (ICC) (http://www.icc.cat). 

We also used the land use in Catalonia maps (1:250 000), with classification techniques applied 

on existing LANDSAT MSS images for 1992, 1997 and 2002(Chuvieco et al. 2010; García et al. 

2008; Röder 2008). Additionally, we used orthophotomaps (1:5000) 2005-2007, to create the 

land use map for 2010. Specifically, we assigned the land use map just before the date of each 

wildfire. We assigned,asthe land use for eachbuffer, only the percentagevalue corresponding to 

the principal land use of thebufferwithin. In this paper, we transformed the twenty-two 

categories, obtained from the Catalonian Cartographic Institute (ICC) cover map of Catalonia, 

into eight categories: coniferous forests; dense forests; fruit trees and berries; artificial non-

agricultural vegetated areas; transitional woodland scrub; natural grassland; mixed forests; and 

urban, i.e., beaches, sand, bare rocks, burnt areas, and water bodies. Figure 2 provides a 

graphic distribution of the wildfires over time and with this categorical covariate. In general, they 

are spread out over the eight land use categories. However, wildfires caused by negligence and 

accidents are mainly concentrated in four specific categories: dense forests (2); fruit trees and 

berries (4);natural grassland (8) and mixed forests (10). 

We also included the temperatures (maximum and minimum) from up to seven days before the 

occurrence of the fire, in the location of the wildfire (Note that meteorological data were 

provided by the Area of Climatology and Meteorological Service of Catalonia). The 

temperatures at the point of the occurrence of the wildfire, along with the temperatures from the 

previous day and up to a week before, were estimated by means of a two-step Bayesian model. 

Further details can be found in Saez et al. (2012). In Table 2 we specify covariates and their 

source ordered by their importance on fire hazard generation. 

 

Rather than constructing a fine regular lattice, we constructed a very irregular grid using buffers. 

The reason being, that an irregular lattice avoids the arbitrariness of assigning the summary for 

the whole cell (i.e. the sum of the wildfires) to the centroid of the regular cell, and instead 

assigns the centre where wildfires occurred. We first built a buffer of some 1,500 meters 

(diameter) around each of the wildfires, with the centre being defined by its geographic 

coordinates. Then, we merged those buffers to form an intersection. Now, we had not only 

buffers (those without any intersection with other buffers), but also groups of (merged) buffers 

that, in turn, could form intersections with other groups of (merged) buffers. We remerged those 

groups of buffers that showed any intersection with other groups and/or with another single 

buffer. We ended the process when any group of buffers (and/or single buffer) did not intersect 

http://www.icc.cat/
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with another group (and/or single buffer). At the end of the process, we had a grid of „cells‟, i.e. 

each final group of buffers and/or single buffer. Specifically, we had 1,516 cells, each cell with a 

median of 2 wildfires, first quartile 1, and third quartile 5 wildfires. Since we follow the usual 

assumption that the point pattern observed is a realization of a point process defined in a space 

that contains the study area as a proper subset (Baddeley and Turner, 2000, Møller and Díaz-

Avalos, 2010), the system of buffer cells that surround the study area is necessary to avoid the 

bias in the estimation of the intensity function. Since the behaviour of the intensity function 

outside the study area does not have an effect in the estimation process, the form of the buffer 

system is irrelevant (Møller and Díaz-Avalos, 2010). The partition of the study area in a system 

of cells in spatial point process inference is necessary to compute the approximation of the 

pseudo-likelihood function and obtain the estimates of the model parameters. In our study, the 

cell system is based on a tessellation and was built such that every point within the study 

belongs to a lattice cell. 

 

2.2.-Methods 

 

Spatio-temporal data can be idealised as realizations of a stochastic process indexed by a 

space and a time dimension 

𝑌 𝑠, 𝑡 ≡ {𝑦(𝑠, 𝑡)|(𝑠, 𝑡) ∈ 𝐷 × 𝑇 ∈ ℝ2 × ℝ} 

where𝐷 is a (fixed) subset of ℝ2 and 𝑇 is a subset of ℝ. The data can then be represented by a 

collection of observations  𝑦 = {𝑦 𝑠1 , 𝑡1 , … , 𝑦 𝑠𝑛 , 𝑡𝑛 }, where the set (𝑠1 , … , 𝑠𝑛 ) indicates the 

spatial units, at which the measurements are taken, and (𝑡1, … , 𝑡𝑛) the time points. 

The mathematical theory of point processes on a general space is now well-established 

(Bremaud 1981; Daley and Vere-Jones 1988). However, most models for specific applications 

are restricted either to point processes in time or to the two-dimensional space. Cox processes 

are widely used as models for point patterns which are thought to reflect underlying 

environmental heterogeneity. 

In the general spatial point process context, intensity stands for the number of events (fires in 

our case) per unit area. When writing total intensity in each cell, we refer to the number of fires 

per cell area. A particular problem in our wildfire dataset is that the total intensity in each 

cell,Λ𝑗𝑡 , was difficult to compute, and so we used the approximation Λjt ≈  sj exp(ηjt (sj)); where 

sj is a point within the jth cell and exp(ηjt (sj)), is the estimated intensity function within such 

cell. Note that here we assume that Λjt  is constant or has small spatial variation within the jth 

cell, so  sj could be any point inside the cell. The approximation allows the use of a GLM 



Results 

119 

structure for the likelihood and therefore the computation of the estimate for ηjt (sj) is 

straightforward using numerical methods (Simpson et al., 2011).  

This approximation allowed us to describe the log-intensity of the Poisson processes by a linear 

predictor (Illian et al. 2012) of the form 

𝜂𝑖𝑗𝑡𝑘  𝑠𝑗  = 𝛽𝑗 + log 𝐸𝑠𝑝𝑗𝑡𝑘  +  𝛽𝛼𝑧𝛼 ,𝑖𝑡 + 𝑆𝑗 + 𝜏𝑡 + 𝜐𝑗𝑡𝛼    (1) 

where 𝛽𝑗  represents the heterogeneity, 𝐸𝑠𝑝𝑗𝑡𝑘  the expected number of wildfires, of cause k, in 

cell j and year t, 𝑧𝛼 ,𝑖𝑡  the spatial covariates, 𝛽𝛼  the parameters associated with covariates, 𝑆𝑗  the 

spatial dependence, 𝜏𝑡  the temporal dependence and 𝜐𝑗𝑡  the spatio-temporal interaction. 

A full and detailed explanation of the role and meaning of each term in (1) will be given in 

section 2.4. 

Log Gaussian Cox processes (LGCP) are a particular case of a flexible class of point processes 

known as Cox processes, and which are characterised by their intensity surface being modelled 

as  

log 𝜆 𝑠  = 𝑍(𝑠) 

where𝑍(𝑠) is a Gaussian random field.  

Conditional on a realization of  𝑍(𝑠), a log-Gaussian Cox process is an inhomogeneous Poisson 

process. Considering a bounded region Ω ⊂ ℝ2, it follows that the likelihood for an LGCP is of 

the form 

𝜋 𝑌 𝜆 = exp( Ω −  𝜆 𝑠 𝑑𝑠
Ω

)  𝜆(𝑠𝑖)

𝑠𝑖∈𝑌

 

where the integral is complicated by the stochastic nature of 𝜆 𝑠 . However, this integral can be 

numerically computed using fairly traditional methods. We note that, the log-Gaussian Cox 

process fits naturally within the Bayesian hierarchical modelling framework. Furthermore, it is a 

latent Gaussian model, which allows us to embed it within the INLA framework. This embedding 

paves the way for extending the LGCP to include covariates, marks and non-standard 

observation processes, while still allowing for computationally efficient inference (Illian et al. 

2012). 

The basic idea is that, from a Gaussian Field (GF) with Matérn covariance function, we will use 

a SPDE approach to transform the initial Gaussian Field to a Gaussian Markov Random Field 

(GMRF), which, in turn, has very good computational properties. In fact, GMRFs are defined by 

sparse matrices that allow for computationally effective numerical methods. Furthermore, by 
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using Bayesian inference for GMRFs, it is possible to adopt the Integrated Nested Laplace 

Approximation (INLA) algorithm, which, subsequently, provides significant computational 

advantages over MCMC.  

Although Gaussian Fields are defined directly by their first and second order moments, their 

implementation is costly and provokes the so-called “big n problem” which is due to the 

computational costs of 𝒪(𝑛3) to perform a matrix algebra operation with 𝑛𝑥𝑛 dense covariance 

matrices, which is notablybigger when the data increases in space and time. To solve this 

problem, we analyse an approximation that relates a continuously indexed Gaussian field with 

Matérn covariance functions, to a discretely indexed spatial random process, i.e., a Gaussian 

Markov random field (GMRF). The idea is to construct a finite representation of a Matérn field by 

using a linear combination of basis functions defined in a triangulation of a given domain D. This 

representation gives rise to the stochastic partial differential equation (SPDE) approach, which 

is a link between the GF and the GMRF, and allows replacement of the spatio-temporal 

covariance function and the dense covariance matrix of a GF with a neighbourhood structure 

and a sparse precision matrix, respectively, typical elements that define a GMRF. This, in turn, 

produces substantial computational advantages (Lindgren et al. 2011). 

 

2.3.- Zero Inflated Poisson 

 

Data were taken for several causes of fire and when we worked with just one single cause we 

found some buffers without any wildfire, which led to the data having numerous zero counts. In 

many areas of interest, including public health, epidemiology, sociology, psychology, 

engineering, agriculture, among others, count data analysis is of primary interest. Typically, a 

Poisson model is assumed for modelling the distribution of the count observation or, at least, 

approximating its distribution. However, it has been observed in various applications that, the 

dispersion of the Poisson model underestimates the observed dispersion. This phenomenon, 

also called overdispersion, occurs because a single Poisson parameter is often insufficient to 

describe the population. In fact, in many cases it may be suspected that population 

heterogeneity, which has not been accounted for, is causing this overdispersion. This 

population heterogeneity is unobserved; in other words, the population consists of several 

subpopulations, in this case of the Poisson type, but subpopulation membership is not observed 

in the sample. Mixed-distribution models, such as the zero-inflated Poisson (ZIP), are often 

used in such cases. In particular, the zero-inflated Poisson distribution (ZIP) regression model 

might be used to model count data for which the proportion of zero counts is greater than 

expected on the basis of the mean of the non-zero counts (Breslow 1984; Broek 1995). 
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Therefore, we can also consider that 𝑁𝑗𝑡  follows a zero-inflated Poisson model, thus providing a 

way of modelling the excess of zeros, in addition to allowing for overdispersion.  

In this paper, we analysed the two most common types of ZIP models, namely ZIP0 and ZIP1. 

Considering Λ𝑗𝑡  as the total intensity per cell, we can thus define the observed number of 

wildfires in a specific cell as 

𝑁𝑗𝑡 ~  

𝑃𝑜𝑖𝑠𝑠𝑜𝑛 Λ𝑗𝑡  

𝑍𝐼𝑃  
𝑍𝐼𝑃0 Λ𝑗𝑡  

𝑍𝐼𝑃1 Λ𝑗𝑡  
 
  

The different types of the zero-inflated Poisson models differ from the others in terms of the 

form of their likelihood functions (Lambert 1992).  

Firstly, Type 0 (ZIP0) likelihood is in the form of 

𝑓 𝑦; 𝜃; 𝑝 =  
𝑝,                                                        𝑖𝑓 𝑦 = 0

(1 − 𝑝) 𝑃𝑜(𝑦, 𝜃|𝑦 > 0),               𝑖𝑓 𝑦 > 0
  

where𝑃𝑜 denotes the Poisson density, p is a hyperparameter given by 

𝑝 =
exp(𝜃)

1 + exp(𝜃)
 

andθ is the internal representation of p, meaning that the initial value and prior is given for θ. 

Type 1 zero-inflated Poisson model (ZIP1) is a mixture of a point mass at 0 and a regular 

Poisson distribution, whereas Type 0 is a mixture of a truncated Poisson (the y>0 bit) and a 

point mass at 0, so that the probability at zero is governed directly by p. 

This means, for instance, that Type 0 can have a lower probability at 0 than a pure Poisson, 

(relative to the probability at 1), whereas Type 1 can only increase the relative probability for 0.  

Therefore, Type 1 likelihood has the form 

𝑓 𝑦; 𝜃; 𝑝 =  
𝑝 + (1 − 𝑝)𝑃𝑜(𝑦, 𝜃),        𝑖𝑓 𝑦 = 0
(1 − 𝑝)𝑃𝑜(𝑦, 𝜃),               𝑖𝑓 𝑦 ≠ 0

  

where p is a hyperparameter defined as in Type 0 and θ is the internal representation of p. 

Note that, the only difference between Type 0 and Type 1 is the conditioning on y>0 for Type 0, 

which means that for Type 0 the probability that y=0 is p, while for Type 1, the probability 

is  𝑝 + (1 − 𝑝)𝑃𝑜(𝑦, 𝜃). 



Results 

122 

2.4.- Model specification 

 

Let 𝑁𝑗𝑡  denote the observed number of wildfires in a specific cell𝑠𝑗 , j=1,…,1,516 and year t (t= 

1994,…,2008). As a consequence of the definition of the LGCP, Njt may be considered as an 

independent Poisson random variable (Simpson et al. 2011). Summing up, we specified our 

LGCP defined in (1) with four explicitfeatures.  

1) We specified a spatio-temporal mixed model with two levels, the wildfire, with subscript i 

(i=1,…,3,166); and the cell to which the wildfire belonged, with subscript j (j=1,…,1,516). 

In addition, subscript t (t=1994,…,2008) denoted the year the wildfire occurred, and 

subscript k (k=1,…,4) denoted the cause. 

2) We included in the model (1), as an offset, the expected number of wildfires, of cause k, 

in cell j (and year t), Espjtk.We constructed this variable as a sample (one per cell) from 

a Poisson distribution with mean equal to the average of wildfires (per cause) per cell in 

the year t. In fact, we were not interested in the (predicted) number of wildfires per cell 

and year, or in the effect of covariates on the (predicted) number of wildfires. Rather, 

our interest was in the relative risk (RR) of wildfires per cell and year, as well as the 

effect of covariates on such relative risk. Directly analyzing the number of wildfires per 

cell does not give us a reference for determining whether the occurrence of wildfires is 

higher or lower than expected. Relative risk is a ratio of the observed number of 

wildfires, of cause k, in cell j, divided by the expected number of wildfires, of cause k, in 

cell j. It is the risk of an event relative to exposure. That is to say, if the risk of a wildfire 

occurring was higher than (RR>1), equal to (RR=1) or less than (RR<1) expected.  

3) Note that, we included only spatial covariates𝑧𝛼 ,𝑖𝑡  as explanatory variables of the 

relative risk of a wildfire. That is, all covariates were included at the level of the wildfire, 

not the cell (the subscript was i). 𝛽𝑗 denoted (unknown) parameters associated with 

covariates. With the exception of temperatures (both maximum and minimum), we 

categorised all continuous covariates. Thus, we approached a possible non-linear 

relationship between the covariate and relative risk parametrically. The finer the 

categorization, the closer it is to the possible nonlinear relationship. In fact, we 

preliminarily tested directly with continuous variables and other categorizations (seventh 

percentile, quartiles and thirds), but it provided a better fit were the quintiles.In addition, 

the categorization of a continuous variable allows for a better interpretation, because 

the relative risk associated with the quintile (in our case) is interpreted in relation to the 

reference quintile (the first, in our case). 

4) We introduced four random effects in (1): (i) heterogeneity, i.e. j accounting for 

variation in relative risk across different cells; (ii) spatial dependence, Sj; (iii) temporal 

dependence, 𝜏𝑡and (iv) spatio-temporal interaction,𝜐𝑗𝑡 . Note that, we assume 

http://en.wikipedia.org/wiki/Ratio
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separability between spatial and temporal patterns and allow interaction between the 

two components.  

 

The heterogeneity was specified as a vector of independent and Gaussian distributed random 

variables on j, with constant precision (R-INLA, 2012).  

When spatio-temporal geostatistical data are considered, we need to define a valid spatio-

temporal covariance function. For the spatial covariance structure we used the Matérn family, 

which specifies the covariance function as Σ𝑖𝑗 = 𝐶𝑜𝑣 𝜃𝑖𝑡 , 𝜃𝑗𝑢  = 𝜍𝐶
2𝑀 𝑠𝑖 , 𝑠𝑗 |𝜈, 𝜅  where 𝜍𝐶

2 > 0 is 

the variance component and  

𝑀  𝜈, 𝜅 =
21−𝜈

Γ 𝜈 
 𝜅   𝜈Κ𝜈 (𝜅  )    (2) 

controls the spatial correlation at distance  =  𝑠𝑖 − 𝑠𝑗  . Here, Κ𝜈  is a modified Bessel function 

of the second kind and 𝜅 > 0 is a spatial scale parameter whose inverse, 1/𝜅 is sometimes 

referred to as a correlation length. The smoothness parameter 𝜈 > 0 defines the Hausdorff 

dimension and the differentiability of the sample paths (Gneiting et al. 2010). Specifically, we 

tried 𝜐=1,2,3) (Plummer, 2008). When 𝜈 + 𝑑/2 is an integer, a computationally efficient 

piecewise linear representation can be constructed by using a different representation of the 

Matérn field  𝑥 𝑠 , namely as the stationary solution to the stochastic partial differential equation 

(SPDE) (Simpson et al. 2011) 

(𝜅2 − ∆)𝛼/2𝑥 𝑠 = 𝑊(𝑠) 

where  𝛼 = 𝜈 + 𝑑/2 is an integer,  ∆=  
𝜕2

𝜕𝑠𝑖
2

𝑑
𝑖=1  is the Laplacian operator and 𝑊(𝑠) is spatial white 

noise. 

The main idea of the SPDE approach consists in defining the continuously indexed Matérn GF 

X(s) as a discrete indexed GMRF by means of a basis function representation defined on a 

triangulation of the domain D, 

𝑋 𝑠 =  𝜑𝑙(𝑠)𝜔𝑙
𝑛
𝑙=1      (3) 

where n is the total number of vertices in the triangulation,  𝜑𝑙(𝑠)  is the set of basis function 

and  𝜔𝑙  are zero-mean Gaussian distributed weights. The basis functions are not random, but 

rather were chosen to be piecewise linear on each triangle;  

𝜑𝑙 𝑠 =  
1              𝑎𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒 𝑙

 0              𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒   
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The key is to calculate 𝜔𝑙 , which reports on the value of the spatial field at each vertex of the 

triangle. The values inside the triangle will be determined by linear interpolation (Simpson et al. 

2011).  

Thus, the expression (3) is an explicit link between the Gaussian field X(s) and the Gaussian 

Markov random field, and defined by the Gaussian weights  𝜔𝑙  that can be given by a 

Markovian structure.  

Both the temporal dependence (on t) and the spatio-temporal interaction (on j and t) were 

assumed smoothed functions, in particular random walks of order 1 (R-INLA, 2012). Thus, the 

random walk model of order 1 (RW1) for the Gaussian vector 𝑥 = (𝑥1 , … , 𝑥𝑛 ) is constructed 

assuming independent increments: 

∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖+1~𝑁(0, 𝜏−1) 

The density for x is derived from its  𝑛 − 1 increments as 

𝜋 𝑥 𝜏 ∝ 𝜏
 𝑛−1 

2 𝑒𝑥𝑝  −
𝜏

2
  ∆𝑥𝑖 

2 = 𝜏
(𝑛−1)

2 𝑒𝑥𝑝  −
1

2
𝑥𝑇𝑄𝑥  

where𝑄 = 𝜏𝑅 and R is the structure matrix reflecting the neighbourhood structure of the model. 

Given the specification in (1), the vector of parameters is represented by  𝜃𝑗 = {𝛽, 𝛽𝛼 , 𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 } 

where we can consider 𝑋𝑖 = (𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 ) as the i-th realization of the latent GF 𝑋(𝑠) with the 

Matérn spatial covariance function defined in (2). We can assume a GMRF prior on  𝜃, with 

mean 0 and a precision matrix Q. In addition, because of the conditional independence 

relationship implied by the GMRF, the vector of the hyper-parameters 𝜓 = (𝜓𝑆 , 𝜓𝜏 , 𝜓𝜐) will 

typically have a dimension of order 4 and thus will be much smaller than  𝜃. 

Table 3 shows the results after analyzing the wildfire data with the four different kinds of LGCP. 

A natural way to compare models is to use a criterion based on a trade-off between the fit of the 

data to the model and the corresponding complexity of the model. The Bayesian model 

comparison criterion based on this principle is called Deviance Information Criterion (DIC) 

(Spiegelhalter et al. 2002): 

DIC = „goodness of fit‟ + „complexity‟ =  
DpD 2  

where  D  is the deviance evaluated at the posterior mean of the parameters and Dp  

denotes the „effective number of parameters‟ which measures the complexity of the model 

(Spiegelhalter et al. 2002). When the model is true,  D  should be approximately equal to the 

„effective degrees of freedom‟,  𝑛 − 𝑝𝐷. Alternatively, because DIC may underpenalise complex 
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models with many random effects (Plummer 2008; Riebler et al. 2013), Table 3 also shows the 

conditional predictive ordinate (CPO) (Pettit 1990; Geisser 1993, Held et al., 2009), which 

expresses the posterior probability of observing the value (or set of values) of 𝑦𝑖  when the 

model is fit to all data except 𝑦𝑖 .  

𝐶𝑃𝑂𝑖 = 𝜋 𝑦𝑖
𝑜𝑏𝑠  𝑦−𝑖  

Here, 𝑦−𝑖  denotes the observations y with the i-th component omitted. This facilitates 

computation of the cross-validated log-score (Gneiting and Raftery 2007) for model choice (-

(mean(log(cpo)))). Therefore, both the lower DIC and the lower (-(mean(log(cpo)))) suggest the 

best model. Table 3 shows that Poisson regression proved the best method for modelling both 

the natural, and unknown and rekindled causes, and a zero-inflated Poisson regression was 

better for modelling the second and third causes. Finally, the last line in Table 3 shows the 

effective number of parameters of the model. The larger this is, the worse the data fit for the 

model. A high number of parameters mean more complexity. The best models are those with a 

lower level of complexity and high goodness of fit. 

All analyses were carried out using the R freeware statistical package (version 2.14.1) (R-

Development Core Team 2011) and the R-INLA package (R-INLA 2012). 

 

3.- Results 

 

Table 2 shows the evolution of wildfires (1994-2008) and distinguished by cause. In general, the 

table shows a decreasing trend with regards to the number of wildfires over the years. 

Specifically, it shows a decrease in the number of wildfires from 1994 onwards, coinciding with 

the development of better extinction methods and favourable weather conditions. The number 

of fires also differs greatly between causes.  

Table 4 provides total number of wildfires distinguishing by cause (natural causes; negligence 

and accidents; intentional fires or arson; and unknown causes and rekindled) and the numberof 

wildfires by buffer. The number of buffers differs between causes and depends on the number 

of wildfires; i.e., more fires mean more buffers. Table 4 also shows that there are a large 

number of buffers without wildfires. Specifically, natural causes have 94.40% zeros per buffer, 

followed by unknown causes and rekindled with 85.8%. The second and the third causes have 

fewer zeros: 41.60% and 78.20%, respectively. We can see that generally there are not many 

wildfires per buffer. For all causes, the percentage of buffers with more than three wildfires per 

buffer is below 2%.  
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Tables 5 to 8 show the relationship between relative risks (RR), according to the associate 

covariates and depending on the cause analysed. We have marked the estimated fixed effects 

that proved statistically significant. The RR>1 (i.e. risk factor) is highlighted, and the RR<1 (i.e. 

protective factor) is depicted in bold cursive.  

In the category of natural causes, it seems that the higher the elevation the greater number of 

wildfires. In this same category, relative risk increases with the distance to urban areas, roads 

and railways; this is clearly because we are dealing with natural causes. That is to say, 

concentrations of fires by natural causes are usually in zones without human presence and 

zones with more difficult access. On the other hand, low values of hill shade (i.e. the presence 

of shadow) were associated with a smaller number of fires, although with the exception of the 

third quintile. 

With reference torandom effects, we see not only a weak association between buffers and 

interaction dependence, but also an insignificant temporal association. In relation to negligence 

and accidents, a greater distance from both urban areas and roads and railways (from 0.72km 

to 10.49km) is associated with a decrease in the number of wildfires. Regarding topographic 

variables, high hill shade values are associated with an increase in the number of wildfires, and 

the higher the elevation the fewer fires. With respect to random effects, it is worth noting the 

presence of a significant spatial association and significant values with regard to heterogeneity. 

As for intentional causes or arson, a low elevation (90%-179%) increases the number of fires, 

and with respect to aspect, the relative risk of a wildfire was 23.54% in the fourth quintile, which 

is higher than other quintiles. Considering random effects, spatial dependency is even more 

important than in negligence and accidents, whereas heterogeneity is less significant. In the 

final category, topographic variables, with the exception of elevation, are generally associated 

with a reduction in the number of fires. In relation to random effects, the spatial and 

heterogeneity terms of the model are also very significant. Compared to the other terms, 

interaction dependency is also significant.  

We have used the conjugate prior to the Poisson likelihood which is a Gamma distribution 

function. Indeed, with the aim of checking the robustness of our methodological choice we have 

used several other (non-conjugate) priors for the precision parameters (in particular Gaussian 

and flat priors) and the posterior distribution for the precision hyper-parameters has not 

changed significantly. We have thus preferred using in the paper the corresponding Gamma 

conjugate priors. Clearly, as used generically in INLA for the hyper-parameters, the distribution 

of the fixed parameters is Normal for the Intercept, as we see in the Figure 3a, and Gamma for 

the random effects, as we see in the Figure 3b. 

With regard to the effect of temporal dependency on the relative risk of wildfire, Figure 4 shows 

its evolution graphically. In the first cause considered, natural causes, there is a notable 

temporal association. In fact, this effect decreased until 1998 and increased slowly thereafter. In 
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relation to negligence and accidents, we see that the effect of the temporal association on the 

relative risk of wildfire starts to increase in 1997, but it is not until after 2002 that the tendency 

increases significantly. As for intentional causes or arson, the temporal effect oscillated 

significantly until 2006, decreasing thereafter. In the final category, Figure 4 shows that the 

temporal effect decreased throughout the period analysed.  

On the other hand, causes 1 to 4 correspond to natural causes, negligence and accidents, 

intentional causes or arson, unknown causes and rekindled, respectively, and Figures 5a and 

5b provide a more visual view of the different distribution of fires according to time, space and 

cause. Looking at the top of Figure 4, we notice that fires produced by natural causes have an 

important spatial and temporal variability. The intensity of the fires shows a clear spatial and 

temporal variation. However, in all cases, the highest risk is concentrated in the centre of 

Catalonia, coinciding with the most rural areas. The relative risk of negligence and accidents, 

even if its distribution pattern varies over the years, is in general higher in the west. However, 

the maps at the bottom of Figure 5a do not present large areas with high relative risk, except for 

the year 2008 where there is a significant focal point around the area of Lleida, which is a city in 

the west of Catalonia. Intentional causes or arson is that with the least change over the years. 

Nevertheless, it is interesting to observe that the higher relative risks are concentrated around 

urban areas, especially the areas of Barcelona and Girona, cities located in the central area of 

the coastline and in the northeast of Catalonia, respectively. Finally, fires produced by unknown 

causes and rekindled fires do not follow a specific pattern 
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4.- Discussion and conclusions 

 

The analysis of wildfire incidence in Catalonia has provided important clues as to which risk 

factors are associated with which different causes. In the time frame of our study, wildfires 

started intentionally were associated with low elevation locations, which are easily accessible to 

most people, particularly arsonists. Although the relative risk of fires in this class indicates that 

the number of fires observed is 23% higher than the number of fires for hills facing southwest 

and 13% higher for lag 6 of maximum temperature, it is not easy to find an associated probable 

cause. The number of wildfires caused by negligence and accidents was, on average, 38% 

higher than the mean number of fires for hills facing southeast. The nature of this association is 

not clear. On the other hand, the relative risk for the covariate hill shade indicates that one must 

expect an incidence of wildfires between 66.9% and 284% higher than the mean in locations 

with hill shade values ranging between 172 and 251 degrees. The probable reason for this is 

that these locations have a high chance of small fires spreading quickly and becoming a 

wildfire. By contrast, the relative risk of wildfire caused by negligence or accident is lower than 1 

for high elevations and locations far from urban areas, roads and railways, due to the lower 

human presence and activities in such locations. Although minimum temperature was also a 

significant factor for negligence and accidental wildfires, we cannot find a reasonable 

explanation for this. 

For wildfires caused by nature, the relative risk is higher than 1.0 for locations far from the 

coastal plains and those locations distant from urban areas, roads and railways. For both 

covariates there is a clear gradient in the relative risk as these covariates increase, because the 

greater their value, the higher the importance of meteorological factors, such as lightning strikes 

or sun irradiance, in causing a fire. This, added to the lower human presence in such locations, 

facilitates the spreading of fire without control. An increased gradient in the relative risk was 

also observed for lags 1 and 4 of maximum temperature, in this case perhaps associated with a 

lower humidity of plant material, making it prone to becoming fuel. High temperatures combined 

with other effects, such as wind, increase fire danger. A slope exposed to the sun will have not 

only higher air and fuel temperatures, but also lower relative humidity. The lower relative 

humidity (<30%) rapidly dries out the fine dead fuels, and so a fire's spread rate and intensity 

will increase. When a fuel has more moisture, it is harder to ignite and burn. Although hills 

facing south receive higher sun irradiance and consequently tend to be drier, for naturally-

caused wildfires the relative risk was below 1.0. Finally, for wildfires with unknown causes or 

rekindled fires, all covariates (with the exception of elevation) showed a significant association 

with the relative risk, some higher and some lower than 1. It must be said however, that 

elevation and distance from urban areas should be correlated, which may make it difficult to 

attribute single factors to fire occurrence. This complex model structure is most likely due to the 

fact that here we have a mix of fires from all of the different causes.  

The results of our analysis have provided a deeper insight into factors associated with wildfire 
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incidence in Catalonia, Spain, than previous studies on this subject (Serra et al. 2012). We have 

statistical evidence that wildfires associated with humans could be related to the accessibility of 

the areas at risk, whilst naturally-caused wildfires show the opposite behaviour. This does not, 

of course, mean that naturally-caused wildfires are unlikely in areas near urban areas or roads, 

for example, we simply mean that the relative importance of humans being responsible for 

starting a wildfire, either intentionally or not, decreases as locations become more difficult to 

reach. Although the model considers both spatial and temporal structure, the results do not 

show the superiority of such consideration. Climatic variables (maximum and minimum 

temperature) could explain the spatial structure but we are not sure what drives the temporal 

variation of wildfires occurrences on time. However, we can note that land use varies with time 

and it has an effect on the temporal variation of the wildfire counts
2
. 

Models for forest fire occurrence have been studied using different approaches (Serra et al. 

2012; Juan et al. 2012). We chose the spatio-temporal point process because the nature of our 

data and the aim of our study suggested that this was the most sensible approach. For a wide 

class of point process models, the problem of evaluating the likelihood function has been solved 

using tessellations (Baddeley and Turner 2005). Instead, we have proposed a modification to 

the INLA method (Rue et al. 2009) by building a grid based on the intersection of buffers around 

the data points. The advantage of our approach is that it can be easily implemented within the 

INLA R package, using the computational advantages of INLA. The methodology we used in 

our analysis has allowed us to find a class of models that best fits the occurrence of wildfires 

distinguished by cause. In addition, we have proved that there is a spatio-temporal interaction 

and clearly different characteristics between the distributions of the wildfires, depending on each 

cause, exist. This leads to an improved predictive capability of fire risk and may contribute to the 

prevention and management of those wildfires which are not random in space and time, as we 

have shown here. It is worth noting that, fire is a natural component of all plant ecosystems on 

Earth, and its role is to accelerate the recycling of minerals, promote the germination of dormant 

seeds and open areas, and modify the composition of the forest in small areas, thus promoting 

biodiversity. For this reason, information such as that we have produced here, must be used 

with care by those agencies responsible for fire control and land management (Carmo et al, 

2011, Cardille et al, 2001, Chuvieco et al, 2010). 

There is at least one alternative to the ZIP model we have employed to estimate event count 

models in which the data result in a larger number of zero counts than would be expected. The 

hurdle Poisson model (Mullahy 1986; King 1989) is a modified count model with two processes, 

one generating the zeros and one generating the positive values. The two models are not 

constrained to be the same. The concept underlying the hurdle model is that a binomial 

probability model governs the binary outcome of whether a count variable has a zero or a 

positive value. If the value is positive, the "hurdle is crossed," and the conditional distribution of 

                                                      
2
We acknowledge this comment to one of the anonymous reviewers. 
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the positive values is governed by a zero-truncated count model. The ZIP model on the other 

hand is a mix of two models. One is a binomial process which generates structural zeros, and 

the second component a Poisson model with mean Λ𝑗𝑡 , which generates counts, some of which 

can be equal to zero. The ZIP model then combines both components through a factor p i that 

represents the probability of the zero counts coming from the binomial component, and (1- pi) 

the probability that a zero comes from the Poisson component. Zero counts coming from the 

binomial component are also known as structural or excess zeros. Although the practical results 

are very similar in both approaches, ZIP models are most appropriate in our case, since there 

are areas in which it is not possible for a wildfire to occur, either because they are urban, 

aquatic or do not have sufficient forest mass to make a wildfire possible. 

Our approach has some similarities to the model presented (Ramis et al. 2012) in the sense of 

both fitting a model based in a Poisson regression with an unstructured random effect and using 

a spatial random effect to account for the spatial structures of the data. However, we also 

consider the time component and the interaction between space and time, and we do not 

consider any element that follows a CAR model. Finally, our goal was to obtain a model that 

allows fire risk mapping and prediction in Catalonia.  

The comparison between MCMC and INLA approach has already been done. Most of them use 

simulations and conclude the superiority of INLA against MCMC alternatives (Held et al, 2009, 

Wilhelmsen et al, 2009, Martino et al, 2010 and Eidsvik et al, 2012). However, recently Taylor 

and Diggle, 2013, point out that the INLA approach is not as faster as MALA within a MCMC 

strategy. It is worth noting that the version of INLA they used is earlier than 2011 and they do 

not take advantage of the current SPDE approach (Krainski, 2013). 

Efforts to suppress wildfires have become an important problematic in last years. Current 

wildfire management policy is focused in suppressing almost all wildfires. Indirect costs of this 

achievement include the increase of dense vegetation in absence of wildfires and increasingly 

more intense wildfires. Furthermore, some results on climate changes argue that fire season 

comes earlier, stays longer each year and fires burn with more intensity. These fires could 

cause catastrophic damages as human lives, economics and environmental losses. 

For this reason, knowledge of wildfire occurrence (space/time) and wildfire ignition causes 

should be considered an important part of sustainable forest management and it is essential for 

effective risk assessment and policy formulation. This study can help to improve current 

prevention fire policy. Moreover economic benefits include reduced suppression and fuel 

treatment costs over long term. 
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Table 1: Evolution of wildfires by year and cause 
 

Year 
Natural 
causes 

Negligence 
and accidents  

Intentional or 
arson 

Unknown causes and 
rekindled 

1994 69 508 374 222 

1995 26 104 182 43 

1996 12 70 73 17 

1997 5 101 178 16 

1998 7 182 214 69 

1999 7 152 168 45 

2000 8 106 96 28 

2001 6 128 113 27 

2002 8 91 36 18 

2003 13 174 110 39 

2004 6 125 42 24 

2005 11 237 71 69 

2006 5 109 63 31 

2007 6 78 51 37 

2008 2 69 20 10 

Sum=Nº fires 191 2234 1791 695 

% OF FIRES 3.89% 45.49% 36.47% 14.15% 

TOTAL HA 
BURNED 

6,250.13 69,543.03 26,197.16 24,999.12 
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Table 2: Covariates and their source ordered by their importance on fire hazar 

generation 

 

 

Covariates Source 

Land uses 
Territory and Sustainability Department (Catalonia 

Government) 

Slope Own construction 

Isolation Own construction 

Aspect Own construction 

Altitude Cartographic Institute of Catalonia 

Distance to antrophic areas Own construction 
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Table 3.- Results after analyzing the wildfire data using the three different kinds of LGCP 
 

 

 

In bold, the best model 

 

DIC: Deviance Information Criterion, CPO: Conditional Predictive Ordinate; nEFF: Effective degrees of freedom; tmin: Minimum Temperature; tmax: Maximum Temperature 

 

 

 

 

 

 

 Natural Causes Negligence & accidents Intentional or arson Unknown causes and rekindled 

 Poisson ZIP0 ZIP1 Poisson ZIP0 ZIP1 Poisson ZIP0 ZIP1 Poisson ZIP0 ZIP1 
DIC  
tmin 
tmax 

 
1163.81 
1155.09 

 
--- 
--- 

 
--- 
--- 

 
11124.79 
11132.21 

 
9358.76 
9369.10 

 
10168.72 
10250.69 

 
7664.59 
7723.35 

 
--- 
--- 

 
5031.78 
5032.86 

 
4442.66 
4437.04 

 
--- 
--- 

 
--- 
--- 

CPO 
tmin 
tmax 

 
0.0698 
0.0680 

 
0.0443 

--- 

 
--- 
--- 

 
0.8685 
0.8692 

 
0.5666 
0.5765 

 
0.7381 
0.7433 

 
0.6299 
0.6335 

 
0.2145 
0.2150 

 
0.2845 
0.2950 

 
0.3637 
0.3643 

 
0.1183 
0.1474 

 
--- 
--- 

nEFF 
tmin 
tmax 

 
215.71 
218.35 

 
--- 
--- 

 
--- 
--- 

 
638.59 
644.54 

 
329.32 
329.33 

 
429.52 
409.08 

 
560.03 
544.59 

 
--- 
--- 

 
293.84 
287.65 

 
438.47 
448.82 

 
--- 
--- 

 
--- 
--- 
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Table 4: Wildfires distinguished by causes and percentage of buffer 

 

 

Natural 

causes 

Negligence and 

accidents  

Intentional or 

arson 

Unknown causes 

and rekindled 

Number of wildfires 191 2234 1791 695 

Number of buffers  128 1,035 367 284 

% of buffers with no wildfires 94.40% 41.60% 78.20% 85.80% 

% of buffers with one wildfires 4.2% 41.9% 10.5% 8.2% 

% of buffers with two wildfires 0.8% 10.5% 4.2% 3.2% 

% of buffers with three wildfires 0.5% 2.8% 1.8% 1.1% 

% of buffers with more than three wildfires 0.1% 1.1% 1.2% 0.5% 
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Table 5.- Natural causes – Poisson 
 RR (95% credible interval) 

Slope (<3%)  
  Q2 (3%-5%) 1.7707 (0.8437, 3.4655) 
  Q3 (5%-8%) 1.5483 (0.7398, 3.0778) 

  Q4 (8%-13%) 1.4331 (0.6626, 2.9337) 
  Q5 (13%-66%) 1.5835 (0.6746, 3.4364) 

Aspect_Orientac (<84º)  

  Q2 (84º-147º) 1.1002 (0.5397, 2.0285) 

  Q3 (147º-202º) 0.5974 (0.2766, 1.1303) 
  Q4 (202º-264º) 0.7311 (0.3733, 1.2825) 
  Q5 (264º-360º) 2.0580 (0.9502, 3.9926) 

  Hill shade(24º-159º)  

Q2 (159º-172º) 0.4679 (0.2307, 0.8395) 
  Q3 (172º-180º) 0.2796 (0.0931, 0.6444) 
  Q4 (180º-189º) 0.7195 (0.2561, 1.6436) 

  Q5 (189º-251º) 0.3001 (0.0997, 0.6969) 

Elevation (<90m)  

Q2 (90m-179m) 1.8926 (0.3653, 6.4064) 

  Q3 (179m-318m) 6.2610 (1.2971, 21.0708) 
  Q4 (318m-521m) 13.3041 (2.8918, 44.2008) 

  Q5 (521m-2532m) 25.5195 (5.4483, 85.6278) 

Land use (urban, beaches, sand, bare rocks, burnt areas, and water 
bodies) 

 

   Coniferous forests 0.4961 (0.1446, 1.3340) 
   Dense forests 0.7850 (0.1136, 2.6617) 
   Fruit trees and berries 0.7069 (0.2130, 1.8805) 
   Artificial non-agricultural vegetated areas  0.5155 (0.0200, 2.1723) 
   Transitional woodland scrub  0.9243 (0.3079, 2.3375) 
   Natural grassland  0.6216 (0.0044, 3.3089) 
   Mixed forests  0.5238 (0.0913, 1.6991) 

Distance to urban areas, roads and railways (<60m)  
   Q2 (60m-169.7056m) 0.9293 (0.4571, 1.6840) 
   Q3 (169.7056m-361.2478m) 1.1888 (0.6322, 2.0743) 
   Q4 (361.2478m-724.9828m) 2.0274 (1.1744, 3.3803) 
   Q5 (724.9828m-10494.5557m) 6.8247 (4.0303, 11.4032) 

Minimum temperature  

  Lag 1 1.2205 (0.9044, 1.6163) 
  Lag 2 0.9591 (0.6760, 1.3507) 

  Lag 3 1.2682 (0.9240, 1.6970) 
  Lag 4 0.8333 (0.6237, 1.1207) 
  Lag 5 0.8427 (0.6258, 1.1143) 
  Lag 6 1.1333 (0.8856, 1.4546) 

  Lag 7 1.1913 (0.8799, 1.5877) 

Maximum temperature  
  Lag 1 0.7073 (0.5063, 0.9804) 

  Lag 2 0.9475 (0.6193, 1.4276) 

  Lag 3 1.5840 (0.9929, 2.4295) 
  Lag 4 1.7570 (1.0365, 2.8421) 

  Lag 5 0.9637 (0.6161, 1.4592) 

  Lag 6 1.0310 (0.7458, 1.4141) 

  Lag 7 0.7573 (0.5256, 1.0831) 

  

Random effects  Mean (standard deviation) 
   Heterogeneity 0.0101 (0.0058) 
   Temporal 0.0103 (0.0062)  
   Spatial 1.3165 (0.2019) 
          Range (mean – 95% credible interval) 1317.414 (1179.225, 1458.656) 
   Interaction 0.0102 (0.0043) 

DIC 1163.81 
Effective number of parameters 282.80(16.67) 
Log(mean(cpo)) 0.0699 

 Reference values in brackets 
Highlighted RR>1. In bold cursive RR<1 



Results 

143 

Table 6.- Negligence and accidents – ZIP0 
 RR (95% credible interval) 

Slope (<3%)  
  Q2 (3%-5%) 1.0116 (0.7916, 1.2702) 
  Q3 (5%-8%) 0.8074 (0.6257, 1.0226) 
  Q4 (8%-13%) 0.9579 (0.7601, 1.1913) 
  Q5 (13%-66%) 1.1705 (0.8962, 1.5016) 

Aspect_Orientac (<84º)  

  Q2 (84º-147º) 1.3429 (0.9363, 1.8729) 

  Q3 (147º-202º) 1.3879 (1.0078, 1.8720) 

  Q4 (202º-264º) 1.1926 (0.8937, 1.5639) 
  Q5 (264º-360º) 0.8726 (0.6134, 1.2102) 

  Hill shade(24º-159º)  

Q2 (159º-172º) 1.4129 (0.9936, 1.9518) 

  Q3 (172º-180º) 1.6212 (1.0697, 2.3583) 

  Q4 (180º-189º) 2.2423 (1.3901, 3.4325) 

  Q5 (189º-251º) 1.8630 (1.1523, 2.8496) 

Elevation (<90m)  

  Q2 (90m-179m) 1.0447 (0.7849, 1.3627) 
  Q3 (179m-318m) 0.7468 (0.5439, 1.0007) 
  Q4 (318m-521m) 0.8506 (0.6232, 1.1353) 

  Q5 (521m-2532m) 0.4681 (0.3330, 0.6393) 

Land use (urban, beaches, sand, bare rocks, burnt areas, and water 
bodies) 

 

   Coniferous forests 1.0406 (0.6734, 1.5380) 
   Dense forests  0.7895 (0.3009, 1.6189) 
   Fruit trees and berries  0.9012 (0.5922, 1.3208) 
   Artificial non-agricultural vegetated areas  1.3821 (0.7929, 2.2372) 
   Transitional woodland scrub  1.4072 (0.9631, 1.9965) 
   Natural grassland  3.5427 (0.3619, 12.1879) 
   Mixed forests  1.3519 (0.7038, 2.3191) 

Distance to urban areas, roads and railways (<60m)  
   Q2 (60m-169.7056m) 1.0917 (0.9044, 1.3033) 
   Q3 (169.7056m-361.2478m) 1.2781 (1.0544, 1.5312) 
   Q4 (361.2478m-724.9828m) 0.9857 (0.8092, 1.1864) 
   Q5 (724.9828m-10494.5557m) 0.6830 (0.5440, 0.8438) 

Minimum temperature  

  Lag 1 1.0079 (0.8792, 1.1495) 
  Lag 2 1.1690 (1.0047, 1.3573) 

  Lag 3 0.8865 (0.7588, 1.0307) 
  Lag 4 1.0326 (0.8894, 1.1943) 
  Lag 5 0.8483 (0.7402, 0.9663) 
  Lag 6 1.0160 (0.8766, 1.1731) 
  Lag 7 1.0918 (0.9447, 1.2546) 

Maximum temperature  
  Lag 1 0.8344 (0.6878, 1.0032) 

  Lag 2 1.0885 (0.8810, 1.3357) 
  Lag 3 1.2047 (0.9263, 1.5491) 

  Lag 4 0.9873 (0.7796, 1.2475) 

  Lag 5 0.8240 (0.6319, 1.0568) 
  Lag 6 1.2329 (0.9662, 1.5550) 
  Lag 7 0.9381 (0.7676, 1.1346) 
  

Random effects  Mean (standard deviation) 
   Heterogeneity 0.9199 (0.1258) 
   Temporal 0.0101 (0.0063) 
   Spatial 0.2907 (0.6514) 
          Range (mean – 95% credible interval) 1782.846 (1433.903, 2125.503) 
   Interaction 0.0199 (0.0063) 

DIC 9358.76 
Effective number of parameters 365.28(16.27) 
log(mean(cpo)) 0.5666 

 Reference values in brackets 
Highlighted RR>1. In bold cursive RR<1 
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Table 7.- Intentional or arson – ZIP1 
 RR (95% credible interval) 

Slope (<3%)  
  Q2 (3%-5%) 0.9478 (0.7940, 1.1220) 
  Q3 (5%-8%) 0.9407 (0.7899, 1.1121) 
  Q4 (8%-13%) 1.1283 (0.9144, 1.3783) 
  Q5 (13%-66%) 1.1735 (0.9115, 1.4889) 

Aspect_Orientac (<84º)  

  Q2 (84º-147º) 1.1349 (0.8936, 1.4210) 
  Q3 (147º-202º) 1.0906 (0.8622, 1.3599) 

  Q4 (202º-264º) 1.2354 (1.0231, 1.4787) 

  Q5 (264º-360º) 1.0516 (0.8156, 1.3361) 

  Hill shade(24º-159º)  

Q2 (159º-172º) 1.2330 (0.9444, 1.5813) 

  Q3 (172º-180º) 1.0621 (0.7542, 1.4535) 

  Q4 (180º-189º) 1.1047 (0.7337, 1.5972) 

  Q5 (189º-251º) 1.1243 (0.7658, 1.5922) 

Elevation (<90m)  

  Q2 (90m-179m) 1.3461 (1.0773, 1.6600) 
  Q3 (179m-318m) 1.1821 (0.8928, 1.5309) 

  Q4 (318m-521m) 0.6471 (0.4561, 0.8944) 

  Q5 (521m-2532m) 0.5212 (0.3517, 0.7403) 

Land use (urban, beaches, sand, bare rocks, burnt areas, andwater 
bodies) 

 

   Coniferous forests  1.1873 (0.7845, 1.7276) 
   Dense forests  0.5230 (0.1974, 1.1036) 
   Fruit trees and berries  0.9842 (0.6443, 1.4427) 
   Artificial non-agricultural vegetated areas 1.3178 (0.8482, 1.9574) 
   Transitional woodland scrub  1.2454 (0.8527, 1.7621) 
   Natural grassland  1.0098 (0.0294, 4.5954) 
   Mixed forests  1.1650 (0.6197, 1.9950) 

Distance to urban areas, roads and railways (<60m)  
   Q2 (60m-169.7056m) 0.9863 (0.8491, 1.1382) 
   Q3 (169.7056m-361.2478m) 1.0430 (0.9088, 1.1902) 
   Q4 (361.2478m-724.9828m) 0.9724 (0.8482, 1.1089) 
   Q5 (724.9828m-10494.5557m) 0.9357 (0.7792, 1.1127) 

Minimum temperature  

  Lag 1 1.0064 (0.9024, 1.1187) 
  Lag 2 0.9357 (0.8224, 1.0597) 
  Lag 3 1.0165 (0.9013, 1.1424) 
  Lag 4 1.0194 (0.8884, 1.1646) 
  Lag 5 1.0086 (0.8807, 1.1490) 
  Lag 6 1.0093 (0.8712, 1.1611) 
  Lag 7 1.0311 (0.9212, 1.1501) 

Maximum temperature  
  Lag 1 0.9843 (0.8943, 1.0805) 
  Lag 2 1.0401 (0.9401 1.1484) 
  Lag 3 0.9171 (0.8209 1.0214) 
  Lag 4  1.0291 (0.9243, 1.1434) 
  Lag 5 0.9827 (0.8765, 1.0991) 
  Lag 6 1.1336 (1.0164, 1.2612) 
  Lag 7 0.9411 (0.8651, 1.0220) 

  

Random effects  Mean (standard deviation) 
   Heterogeneity 0.8180 (0.0605) 
   Temporal 0.0091 (0.0049) 
   Spatial 1.5223 (0.7053) 
          Range (mean – 95% credible interval) 797.6238 (315.573, 1289.779) 
   Interaction 0.0370 (0.0067) 

DIC 5031.78 
Effective number of parameters 322.24 (15.50) 
log(mean(cpo)) 0.2845 

 Reference values in brackets 
Highlighted RR>1. In bold cursive RR<1 
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Table 8.- Unknown causes and rekindled– Poisson 
 RR (95% credible interval) 

Slope (<3%)  
  Q2 (3%-5%) 0.9276 (0.7433, 1.1401) 

  Q3 (5%-8%) 0.8125 (0.6535, 0.9960) 
  Q4 (8%-13%) 0.6267 (0.4964, 0.7792) 
  Q5 (13%-66%) 0.7977 (0.6195, 1.0107) 

Aspect_Orientac (<84º)  

  Q2 (84º-147º) 0.7598 (0.5697, 0.9946) 

  Q3 (147º-202º) 0.9764 (0.7440, 1.2608) 
  Q4 (202º-264º) 0.7919 (0.6050, 1.0160) 
  Q5 (264º-360º) 0.8938 (0.6517, 1.1977) 

  Hill shade(24º-159º)  

Q2 (159º-172º) 0.8042 (0.5875, 1.0736) 

  Q3 (172º-180º) 0.5485 (0.3752, 0.7730) 
  Q4 (180º-189º) 0.5640 (0.3660, 0.8303) 

  Q5 (189º-251º) 0.6943 (0.4401, 1.0404) 

Elevation (<90m)  

  Q2 (90m-179m) 1.2445 (0.9622, 1.5840) 

  Q3 (179m-318m) 1.1526 (0.8615, 1.5095) 
  Q4 (318m-521m) 1.0155 (0.7147, 1.3965) 
  Q5 (521m-2532m) 0.8577 (0.5828, 1.2086) 

Land use (urban, beaches, sand, bare rocks, burnt areas and, water 
bodies) 

 

   Coniferous forests  0.6536 (0.4553, 0.9117) 
   Dense forests  0.1965 (0.0574, 0.4468) 
   Fruit trees and berries  0.6162 (0.4255, 0.8659) 
   Artificial non-agricultural vegetated areas 0.4234 (0.2409, 0.6765) 

   Transitional woodland scrub  0.6226 (0.4502, 0.8432) 
   Natural grassland  1.8478 (0.3546, 5.1774) 
   Mixed forests  0.8200 (0.4594, 1.3380) 

Distance to urban areas, roads and railways (<60m)  
   Q2 (60m-169.7056m) 0.8704 (0.7138, 1.0463) 
   Q3 (169.7056m-361.2478m) 0.9654 (0.7997, 1.1506) 
   Q4 (361.2478m-724.9828m) 0.9458 (0.7811, 1.1319) 
   Q5 (724.9828m-10494.5557m) 1.4568 (1.1857, 1.7667) 

Minimum temperature  

  Lag 1 1.0431 (0.9114, 1.1884) 
  Lag 2 1.1450 (0.9836, 1.3251) 
  Lag 3 1.1164 (0.9654, 1.2847) 
  Lag 4 0.8209 (0.7207, 0.9345) 

  Lag 5 0.9414 (0.8201, 1.0769) 
  Lag 6 1.0223 (0.8847, 1.1774) 
  Lag 7 0.9802 (0.8552, 1.1196) 

Maximum temperature  
  Lag 1 1.1456 (0.9394, 1.3853) 

  Lag 2 0.8938 (0.7183, 1.1019) 

  Lag 3 0.8889 (0.7256, 1.0860) 

  Lag 4 1.3642 (1.0767, 1.7095) 

  Lag 5 0.8020 (0.6422, 0.9944) 
  Lag 6 1.1036 (0.8708, 1.3870) 

  Lag 7 0.9504 (0.7779, 1.1520) 
  

Random effects  Mean (standard deviation) 
   Heterogeneity 1.2458 (0.1420) 
   Temporal 0.0114 (0.0073) 
   Spatial 0.2624 (0.6582) 
          Range (mean – 95% credible interval) 1455.749 (845.9864, 1897.105) 
   Interaction 0.0745 (0.0171) 

DIC 4437.04 
Effective number of parameters 538.28(31.14) 
log(mean(cpo)) 0.3643 

 Reference values in brackets 
Highlighted RR>1. In bold cursive RR<1 
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Figure 1: Location of Catalonia in Europe. The zoom shows the study area in 

more detail pointing out the regions and provinces in which Catalonia is divided. 
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Figure 2: In the abscissa we discernthe eight categories of land use listed in the ordinate. On the vertical axis, we showed the number 

of fires distinguished by cause. From top-left to bottom right, we graphed wildfires triggeredby natural causes; those caused by 

negligence and accidents; intentional or arson wildfires and unknown causes and rekindled. 
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Figure 3a: The intercept distribution. 
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Figure 3b: From top-left to bottom right it is showed the random effects 

distributions: the marginal posterior distribution for buffer, time, tau and kappa. 
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Figure 4: Effect of temporal dependency on relative risk of wildfires 

distinguishing by causes. From top-left to bottom-right it is showed those 

wildfires corresponding to natural causes, negligence and accidents, intentional 

or arson and those caused by unknown causes or rekindled. 
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Figure 5a: Effect of spatial dependency on relative risk of wildfire. On the top it is showed the results from wildfires caused by natural 

causes and on the bottom those caused by negligence and accidents. From left to right the results are specified in 4 years: 1994, 

1999, 2004 and 2008 respectively.  
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Figure 5b: Effect of spatial dependency on relative risk of wildfire. On the top it is showed the results from intentional wildfires or 

arson and on the bottom those caused by unknown causes or rekindled. From left to right the results are specified in 4 years: 1994, 

1999, 2004 and 2008 respectively. 
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Abstract. Wildfires have been studied in many ways, for instance as a spatial point pattern or 

through modelling the size of fires or the relative risk of big fires. Lately a large variety of 

complex statistical models can be fitted routinely to complex data sets, in particular wildfires, as 

a result of widely accessible high-level statistical software, such as R. The objective in this 

paper is to model the occurrence of big wildfires (greater than a given extension of hectares) 

using an adapted two-part econometric model, specifically a hurdle model. The methodology 

used in this paper is useful to determine those factors that help any fire to become a big wildfire. 

Our proposal and methodology can be routinely used to contribute to the management of big 

wildfires. 

Key words and phrases. Hurdle model, INLA, Spatio-temporal point processes, SPDE, Wildfire. 

 

1. Introduction 

 

Fire risk can be defined as a product of fire occurrence probability and expected impacts [3]. An 

area can be considered to have high wildfire risk if the probability of fire is high and the 

expected impacts of fire are large. Furthermore, fires are getting larger, more destructive, and 

more economically expensive due to fuel accumulations, shifting land management practices, 

and climate change. Wildfires have negative effects on human life and health, human property 

and wellbeing, cultural and natural heritage, employment, recreation, economic and social 

infrastructures and activities. It is worth noting that some fire episodes have caused catastrophic 

damages as loss of human lives and very significant economic and environmental losses. 

The European Mediterranean is a highly populated region. Approximately 65,000 fires occur in 

the European Mediterranean region every year. Wildfires destroy around 500,000 hectares 

every year in the European Union, 0.7 to 1 million hectares in the Mediterranean basin. This has 

a serious impact on the environment and on socio-economic activities, especially in southern 

Europe. Over 95% of the fires in Europe are due to human causes. An analysis of fire causes 

show that the most common cause of fires comes from agricultural practices, followed by
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negligence and arson ([34]). These wildfires are relatively frequent events with recurrence time 

of 23 years ([42]). 

 

Wildfires also destroy biodiversity, increase desertification, affect air quality, the balance of 

greenhouse gases and water resources. During recent years the increasing extension of urban 

areas mixed with rural or forest areas associated with a marked increase of fire activity make 

this impact even greater. The intense urbanization of our societies, the abandonment of rural 

lands and rural activities such as forest management along with the rapidly expanding of 

urban/forest interface are key drivers for wildfires in Europe and in the Mediterranean region. 

Weather is a fundamental component of the fire environment. The prolonged drought and high 

temperatures of the summer period in the Mediterranean climate are the typical drivers that 

demarcate the temporal and spatial boundaries of the main fire season. Future trends of wildfire 

risks in the Mediterranean region, as a consequence of climate change, will lead to the increase 

of temperature in the East and West of the Mediterranean, with more frequent dryness periods 

and heat waves facilitating the development of very large fires. Future scenarios of climate 

change should affect locally fire regimes, and therefore local analyses need to be performed by 

adapting global climatic models to regional conditions. Many factors have been considered to 

explain the temporal variation in fire regime in recent decades in Spain: Climate change is one 

factor, with a clear relationship between increasing number of days with extreme fire hazard 

weather and the number and size of fires in the Mediterranean coast of Spain. 

Earlier detection often leads to smaller fire size, and therefore reduces the probability of fire 

escape ([21]), final fire size, cost and risks to fire response crews. Wildfire prevention should be 

considered as an important part of sustainable forest management and should integrate a 

landscape approach taking into account different land uses. Knowledge of short and long-term 

impacts of wildfire is essential for effective risk assessment, policy formulation, and wildfire 

management. 

Spain is one of the most affected countries in Europe, both considering number of fires and 

area burned. Between 1980 and 2004 nearly 380.000 fires have occurred in Spain, and more 

than 4.7 millions hectares have been burned (roughly 10% of the country). Extreme fires 

(>500ha) are relatively frequent events with recurrence time of 2-3 years, causing large human, 

economic and environmental damage altogether. Their ignition and spread occur under 

favorable weather conditions, often following drought periods, in areas where fuel accumulation  

helps quick fire spread and high fire intensity, they usually burn out of control and can only be 

stopped when meteorological conditions support aerial and ground fire fighting ([39]). In 

Catalonia these fires only represent 1.4% of all fires and 79% of burned area. In this study we 

have included wildfires larger than 50ha because in the Mediterranean region represent more 
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than 75% of the area burned, although they represent only 2.6% of the total number of wildfires 

([19] and [30]). Over the last few years, the occurrence of large wildfire episodis with extreme 

fire behavior has affected different regions of Europe: Portugal, south-eastern France, Spain 

and Greece. 

 

Figure 1.Catalonia location in Europe. 

 

Wildfires have been studied in many ways, for instance as a spatial point pattern ([8], [9], [24], 

[42] and [44]) or through modelling the size of fires ([1]) or the relative risk of the big fires ([45]). 

Lately a large variety of complex statistical models can be fitted routinely to complex data sets, 

in particular wildfires, as a result of widely accessible high-level statistical software, such as R 

([32]). Researchers from many different disciplines are now able to analyse their data with 

sufficiently complex methods rather than resorting to simpler yet non-appropriate methods. In 

this case, the objective in this paper is to model the occurrence of big wildfires, and to 

determine those factors which are significative in helping any fire to become a big wildfire. 

We analyse the occurrence of big wildfires in Catalonia between 1994 and 2011, and consider a 

big wildfire to be a fire that burns areas larger than a fixed extension of hectares. Specifically we 

consider three sizes of areas; 50ha, 100ha and 150ha. Moreover, we distinguish between the 

numerous potential causes of wildfire ignition. In particular, we consider: (i) natural causes; (ii) 

negligence and accidents; (iii) intentional fires or arson; and (iv) unknown causes and rekindled. 

The study area encompasses 32,000 square kilometers and represents about 6.4% of the total 

Spanish national territory (1). 

In addition to the locations of the fire centroids, several marks and covariates are considered. 

The year the wildfire occurred is the unique mark considered. The spatial covariates are also 
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considered, specifically, eight continuous covariates (i.e. topographic variables – slope, aspect, 

hill shade and altitude, proximity to anthropic areas – roads, urban areas and railways, and 

meteorological variables – maximum and minimum temperatures) and one categorical variable 

(land use). 

The methodology for fitting spatial point process models to complex data sets has seen 

previous advances in facilitating routine model fitting for spatial point processes. For instance, 

the work by [4] has facilitated the routine fitting of point processes based on an approximation of 

the pseudolikelihood to avoid the issue of intractable normalizing constants ([5]) through the use 

of the library spatstat for R ([4]). In the same way, ([22]) consider hierarchical models able to 

analyse a wide variety of point process models, for example those appearing in fire problems. 

In our case, spatio-temporal data can be idealised as realizations of a stochastic process 

indexed by spatial and temporal coordinates. Spatio-temporal clustering of wildfires might 

indicate the presence of risk factors which are not evenly distributed in space and time. In fact, 

what is usually of interest is to assess the association of clustering of wildfires to spatial and 

seasonal covariates ([42]). Covariate information usually comes in the form of spatial patterns in 

regular lattices or as regular vector polygons that may be rasterised into lattice images using 

GIS ([41]). The right methodological context able to deal with these pieces of information comes 

from spatio-temporal point processes. To bypass the problem of inefficiency in the estimation 

under a general integrated nested Laplace approximation (INLA)([36]), we have tried a 

computationally tractable approach based on stochastic partial differential equation (SPDE) 

models ([25]). On one hand, we use SPDE to transform the initial Gaussian Field (GF) to a 

Gaussian Markov Random Field (GMRF). GMRFs are defined by sparse matrices that allow for 

computationally effective numerical methods. Furthermore, by using Bayesian inference for 

GMRFs in combination to the INLA algorithm, we take advantage of the many significant 

computational improvements ([36]). If, in addition, we follow the approach suggested by 

Simpson et al. (2011), in which the specification of the Gaussian random field is completely 

separated from the approximation of the Cox process likelihood, we gain far greater flexibility. 

The proposed method in this paper is an adapted two-part econometric model, specifically a 

Hurdle model. It consists of two stages and it is specified in such a way as to gather together 

the two processes theoretically involved in the presence of wildfires, that is, the fact to be a big 

wildfire (greater than a given extension of hectares) and the frequency of big wildfires per 

spatial unit. Specifically, the Poisson hurdle model consists of a point mass at zero followed by 

a truncated Poisson distribution for the non-zero observations. 

This paper addresses two issues. We develop complex joint models for big wildfires and, at the 

same time, we provide methods facilitating the routine for the fitting of these models, using a 

Bayesian approach. The approach is based on the INLA, which speeds up parameter 

estimation substantially so that particular models can be fitted within feasible time. 
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This paper is organised as follows: the following section describes the data. Section 3 presents 

the methodology used, including the statistical framework, the description of the Poisson Hurdle 

model and the statistical inference explanation. Section 4 presents the results. Finally, the paper 

ends with a discussion and future coming steps. 

 

2. DATA SETTING 

 

In this paper we analyse the occurrence of big wildfires in Catalonia between 1994 and 2011. 

The total number of fires recorded in the analysis is 3,283, which are distributed as follows: 206 

wildfires bigger than 50ha, 141 wildfires bigger than 100ha, and 112 wildfires bigger than 

150ha. In Figure 2, on the left, we can see all wildfires and wildfires bigger that 50ha. 

In Catalonia, the agency responsible for identifying the coordinates of the origin of the fire, the 

starting time and the cause of the fire is the Forest Fire Prevention Service (Government of 

Catalonia). In addition, they record the ending time of the fire, the hectares (and their type) 

affected, and the perimeter of the fire. The data used in this article are provided directly by the 

Service, and have been tested and polished before handling. 

We distinguish between the numerous potential causes of wildfire ignition. In particular, we 

consider: (i) natural causes; (ii) negligence and accidents; (iii) intentional fires or arson; and (iv) 

unknown causes and rekindled. The first category includes lightning strikes or heat from the 

sun. The second takes into account that human carelessness can also start a wildfire, for 

instance, with campfires, smoking, fireworks or improper burning of trash. Negligence and 

accidents also includes those wildfires caused purely by chance. The third cause considers 

those wildfires that are started deliberately. Finally, the fourth set includes unknown causes and 

rekindled fires. In Figure 2, on the right, we show the spatial distribution of wildfires bigger than 

50ha distinguishing by causes. 

  

Figure 2. Left: All wildfires (1994-2011) and big wildfires. Right: Big wildfires 

distinguishing by causes. 



Results 

158 

In addition to the locations of the fire centroids, measured in Cartesian coordinates (Mercator 

transversal projections, UTM, Datum ETRS89, zone 31-N), several covariates are considered. 

Specifically, eight continuous covariates (i.e. topographic variables – slope, aspect, hill shade 

and altitude; proximity to anthropic areas – roads, urban areas and railways; and meteorological 

variables – maximum and minimum temperatures) and one categorical variable (land use). 

Land use will obviously affect fire incidence, but moreover, topographic variables (slope, aspect 

and hill shade) affect not only fuel and its availability for combustion ([29]), but also the weather, 

inducing diverse local wind conditions, which include slope and valley winds. In fact, [15] point 

out that those topographic variables are relatively more important predictors of severe fire 

occurrence, than either climate or weather variables. The proximity to anthropic areas can be 

considered a factor explaining not only the incidence of fires in the intentional fires and arson 

category, but also why natural cause fires do not occur. As climatic variables are feasibly 

important for natural cause fires and perhaps rekindled fires, we use the maximum and 

minimum temperatures (further details can be found in [42]). 

In this paper, slope is the steepness or degree of incline of a surface. Slope cannot be directly 

computed from elevation points; one must first create either a raster or a TIN surface. In this 

article, the slope for a particular location is computed as the maximum rate of change in 

elevation between the location and its surroundings. Slope is expressed in degrees. Aspect is 

the orientation of the slope and it is measured clockwise in degrees from 0 to 360, where 0 is 

north-facing, 90 is east-facing, 180 is south-facing, and 270 is west-facing. Hill shading is a 

technique used to visualise terrain as shaded relief by illuminating it with a hypothetical light 

source. Here, the illumination value for each raster cell is determined by its orientation to the 

light source, which, in turn, is based on slope and aspect and is also measured in degrees, from 

0 to 360. Finally, altitude is considered as elevation above sea level and it is expressed in 

meters. To obtain topographic variables (DTM) we use the MET-15 model, which is a regular 

grid containing orthometric heights distributed according to a metricconverterProductID15 m15 

m grid side, and is created for the Cartographic Institute of Catalonia. We also use the surface 

analysis tools included in the ArcGis10 application Spatial Analyst ([42]). 

The distances, in meters, from the location of the wildfire to urban areas, roads and railroads, 

are constructed by considering a geographical layer in each case. The urban area and road 

layers are obtained from the Department of Territory and Sustainability of the Catalan 

Government, through the Cartographic Institute of Catalonia (ICC) (http://www.icc.cat). To 

obtain the two new raster layers we use the Euclidean distance function, included in the 

ArcGis10 application Spatial Analyst. Then, we use the merge function of ArcGis10 

Geoprocessing module, to combine those two layers (urban  areas and roads and railroads) into 

one single layer. The layers are continuous and defined as a raster layer (details can be found 

in [42]). 
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We also use the land use in Catalonia maps (1:250,000), with classification techniques applied 

on existing LANDSAT MSS images for 1992, 1997 and 2002 ([7], [17] and [35]). Additionally, we 

use orthophotomaps (1:5000) 2005-2007, to create the land use map for 2010. Specifically, we 

assign the land use map just before the date of each wildfire. We assign, as the land use, only 

the percentage value corresponding to the principal land use of the spatial units. In this paper, 

we transform the twenty-two categories, obtained from the Catalonian Cartographic Institute 

(ICC) cover map of Catalonia, into eight categories: coniferous forests; dense forests; fruit trees 

and berries; artificial non-agricultural vegetated areas; transitional woodland scrub; natural 

grassland; mixed forests; and urban, i.e., beaches, sand, bare rocks, burnt areas, and water 

bodies. 

We also consider the temperatures (maximum and minimum) and up to seven days before the 

occurrence of the fire, at the location of the wildfire (note that meteorological data are provided 

by the Area of Climatology and Meteorological Service of Catalonia). The temperatures at the 

point of the occurrence of the wildfire, along with the temperatures from the previous day and up 

to a week before, are estimated by means of a two-step Bayesian model. Further details can be 

found in [37]. 

 

3. METHODS 

 

3.1. Statistical framework. Spatio-temporal data can be idealised as realizations of a 

stochastic process indexed by a spatial and a temporal dimension 

(3.1)  𝑌 𝑠, 𝑡 ≡ {𝑦(𝑠, 𝑡)|(𝑠, 𝑡) ∈ 𝐷 × 𝑇 ∈ ℝ2 × ℝ} 

where𝐷 is a (fixed) subset of ℝ2 and 𝑇 is a temporal subset of ℝ. The data can then be 

represented by a collection of observations 𝑦 = {𝑦 𝑠1 , 𝑡1 , … , 𝑦 𝑠𝑛 , 𝑡𝑛 }, where the set(𝑠1, … , 𝑠𝑛 ) 

indicates the spatial locations, at which the measurements are taken, and (𝑡1, … , 𝑡𝑛) the 

temporal instants. 

In our case we assume separability in the sense that we model the spatial correlation by the 

Matérn spatial covariance function defined in (3.7) and the temporal correlation using a Random 

Walk model of order 1 (RW1). We introduce also the interaction effect between the space and 

time using another RW1 structure. Nevertheless, this inclusion does not change the separability 

structure. This temporal structure can be justified by the apparent randomness as shown in 

Figure 3. In fact, the dispersion of big wildfires varies between the periods considered. In 

particular, there is a reduction considering the number of them, specifically in the period 2008-

2011. 
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𝑝𝑖𝑡𝑘 = 𝑃𝑟𝑜𝑏 𝑦𝑖𝑡𝑘 > 𝐴 𝑍, 𝛽  

𝑙𝑜𝑔  
𝑝𝑖𝑡𝑘

1 − 𝑝𝑖𝑡𝑘

 = 𝑍′𝛽 + 𝑆𝑖 + 𝜏𝑡 + 𝜐𝑖𝑡  

3.2. The Poisson hurdle model. The model used in this paper is an adapted two-stage 

econometric model proposed by [13], specifically a hurdle model. It consists of two stages and 

specified in a way to gather together the two processes theoretically involved in the presence of 

wildfires, that is, the occurrence of being a big wildfire (greater than a given extension of 

hectares) and the frequency of big wildfires per spatial unit ([28]). Specifically, the Poisson 

hurdle model consists of a point mass at zero followed by a truncated Poisson distribution for 

the non-zero observations. 

In the first stage, we predict the probability that any wildfire becomes larger than 50ha, 100ha 

and 150ha. In the second part, we model the number of these big wildfires per spatial unit. 

The first part of the process can be modeled using a logistic regression that models the 

probability that any wildfire becomes larger than a fixed area  

 

  

  

Figure 3.Big wildfires in Catalonia in 1994 to 2011. Left-Up: 1994-1997; Right-Up: 1998-2002; 

Left-Down: 2003-2007 and Right-Down: 2008-2011. 

 

(3.2) 
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where A denotes one of the fixed area‟s values (50ha, 100ha or 150ha), y is the response 

variable (in this case, each wildfire), 𝑍 a matrix of explanatory spatial covariates (containing the 

intercept), 𝛽 is the vector of unknown parameters associated with the covariates, the subscript i 

denotes the wildfire, the subscript t (t=1994,..., 2011) the year of occurrence of the wildfire, and 

the subscript k (k =1,..., 4) the cause of occurrence. We also introduced three random effects: (i) 

spatial dependence, 𝑆𝑖 , (ii) temporal dependence, 𝜏𝑡  and (iii) spatio-temporal interaction, 𝜐𝑖𝑡 . 

In accordance with that proposed by [27], in the second stage of the model the distribution of 

being a big wildfire follows a truncated Poisson that models the number of big wildfires per 

spatial unit, introducing covariates and spatial random effects ([28]) 

 

(3.3) 

 

 

where 𝑇𝑝𝑜𝑖𝑠(𝑦𝑖𝑡𝑘 ; 𝜇𝑖𝑡𝑘 ) denotes a truncated Poisson distribution with parameter 𝜇𝑖𝑡𝑘 , 𝜂 denotes a 

link function such as the logit link, 𝑍𝑚 ,𝑖𝑡  represents the same spatial covariates used in the first 

stage, and 𝛽𝑚  denotes the parameters associated with these covariates. 

The particular estimation process has two steps. In the first step we use a binomial link in order 

to estimate the occurrence of a big wildfire. The probabilities of occurrence obtained from this 

first step are used in the second step as interim priors. In the second step the link is a truncated 

Poisson distribution. In any case, the likelihood of each part is introduced multiplicatively in only 

one equation. 

 

3.3. Statistical inference. 

 

3.3.1. SPDE approach. The SPDE approach allows to represent a Gaussian Field with the 

Matérn covariance function defined in (3.7) as a discretely indexed spatial random process 

which produces significant computational advantages ([25]). Gaussian Fields are defined 

directly by their first and second order moments and their implementation is highly time 

consuming and provokes the so-called “big n problem”. This is due to the computational costs of 

O(n
3
) to perform a matrix àlgebra operation with 𝑛 × 𝑛dense covariance matrices, which is 

notably bigger when the data increases in space and time. To solve this problem, we analyse 

an approximation that relates a continuously indexed Gaussian field with Matérn covariance 

functions, to a discretely indexed spatial random process, i.e., a Gaussian Markov random field 

(GMRF). The idea is to construct a finite representation of a Matérn field by using a linear 

𝑝(𝑦𝑖𝑡𝑘  𝑆𝑖 =  1 − 𝑝𝑖𝑡𝑘  1 𝑦𝑖𝑡𝑘 <𝐴 + 𝑝𝑖𝑡𝑘 𝑇𝑝𝑜𝑖𝑠(𝑦𝑖𝑡𝑘 ; 𝜇𝑖𝑡𝑘 )1(𝑦𝑖𝑡𝑘 >𝐴) 

log(𝜇𝑖𝑡𝑘 ) = 𝜂(𝑝𝑖𝑡𝑘 ) 

𝜂(𝑝𝑖𝑡𝑘 ) =  𝛽𝑚𝑍𝑚 ,𝑖𝑡 + 𝑆𝑖 + 𝜏𝑡 + 𝜐𝑖𝑡

𝑚
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combination of basis functions defined in a triangulation of a given domain D. This 

representation gives rise to the stochastic partial differential equation (SPDE) approach given 

by (3.8), which is a link between the GF and the GMRF. This link allows replacement of the 

spatio-temporal covariance function and the dense covariance matrix of a GF with a 

neighbourhood structure and a sparse precision matrix, respectively, typical elements that 

define a GMRF. This, in turn, produces substantial computational advantages ([25]). 

In particular the SPDE approach consists in defining the continuously indexed Matérn GF X(s) 

as a discrete indexed GMRF by means of a basis function representation defined on a 

triangulation of the domain D, 

(3.4)    𝑋 𝑠 =  𝜑𝑙(𝑠)𝜔𝑙
𝑛
𝑙=1  

where n is the total number of vertices in the triangulation, {𝜑𝑙(𝑠)} is the set of basis function 

and {𝜔𝑙} are zero-mean Gaussian distributed weights. The basis funcions are not random, but 

rather are chosen to be piecewise linear on each triangle 

𝜑𝑙 𝑠 =  
1 𝑎𝑡 𝑣𝑒𝑟𝑡𝑖𝑥 1
0 𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒

  

The key is to calculate the weights {𝜔𝑙}, which reports on the value of the spatial field at each 

vertex of the triangle. The values inside the triangle will be determined by linear interpolation 

([41]). 

Thus, expression (3.4) defines an explicit link between the Gaussian field 𝑋 𝑠  and the 

Gaussian Markov random field, and it is defined by the Gaussian weights {𝜔𝑙} that can be given 

by a Markovian structure. 

Both the temporal dependence (on t) and the spatio-temporal interaction (on j and t) are 

assumed smoothed functions, in particular RW1 ([33]). Thus, RW1 for the Gaussian vector 

𝑥 = (𝑥1 , … , 𝑥𝑛 ) is constructed assuming independent increments  

(3.5)    Δ𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1~𝑁(0, 𝜏−1) 

The density for 𝑥 is derived from its n−1 increments as 

(3.6)  𝜋 𝑥 𝜏 ∝ 𝜏
 𝑛−1 

2 𝑒𝑥𝑝  −
𝜏

2
  Δ𝑥𝑖 

2 = 𝜏
(𝑛−1)

2 𝑒𝑥𝑝  −
1

2
𝑥𝑇𝑄𝑥  

where𝑄 = 𝜏𝑅 and 𝑅 is the structure matrix reflecting the neighbourhood structure of the model 

([33]). 

Considering a spatio-temporal geostatistical data we need to specify a valid spatio-temporal 

covariance function defined by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀(𝑠𝑖 , 𝑠𝑗 |𝑡, 𝑞)where 𝜍𝐶

2 > 0 is the variance 

component and 𝑀(𝑠𝑖 , 𝑠𝑗 |𝑡, 𝑞) is the Matérn spatio-temporal covariance function. Depending on 

our assumptions the spatio-temporal covariance function can be adapted to each situation. In 



Results 

163 

the case of stationarity in space and time, the spatio-temporal covariance function can be 

specified as a function of the spatial Euclidean distance Δ𝑖𝑗 , and of the temporal lag Δ𝑡𝑞 = |𝑡 −

𝑞|so it is defined by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀(Δ𝑖𝑗 ; Δ𝑡𝑞 ). If we assume separability, the spatio-temporal 

covariance function is given by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀1(Δ𝑖𝑗 )𝑀2(Δ𝑡𝑞 ), with 𝑀1 and 𝑀2 being the 

spatial and temporal correlation functions, respectively. Alternatively it is possible to consider a 

purely spatial covariance function given by 𝐶𝑜𝑣 𝑦𝑖𝑡 , 𝑦𝑗𝑞  = 𝜍𝐶
2𝑀(Δ𝑖𝑗 ) when t=q and 0 otherwise. 

In this last case, the temporal evolution could be introduced assuming that the spatial process 

evolves in time following an autoregressive dynamics ([20]). 

Assuming separability we need to define the Matérn spatial covariance function which controls 

the spatial correlation at distance   =  𝑠𝑖 − 𝑠𝑗   and this covariance is given by 

(3.7)    𝑀  𝜈, 𝑘 =
21−𝜈

Γ 𝜈 
 𝑘   𝜈𝐾𝜈 (𝑘  ) 

where𝐾𝜈  is a modified Bessel function of the second kind and 𝑘>0 is a spatial scale parameter 

whose inverse, 1/ 𝑘, is sometimes referred to as a correlation length. The smoothness 

parameter 𝜈>0 defines the Hausdorff dimension and the differentiability of the sample paths 

([18]). Specifically, we tried 𝜈=1,2,3 ([31]). Using the expression defined in (3.7), when 𝜈 + 𝑑/2 

is an integer, a computationally efficient piecewise linear representation can be constructed by 

using a different representation of the Matérn field x (s), namely as the stationary solution to the 

stochastic partial differential equation (SPDE) ([41]) 

(3.8)      𝑘2 − Δ 𝛼 2 𝑥 𝑠 = 𝑊(𝑠) 

A 𝛼 = 𝜈 + 𝑑/2 is a integer, Δ =  
𝜕2

𝜕𝑠𝑖
2

𝑑
𝑖=1  is the Laplacian operator and 𝑊(𝑠) is spatial white 

noise. 

In the general spatial point process context, intensity stands for the number of events (fires in 

our case) per unit area. When considering the total intensity in each cell, we refer to the number 

of fires per cell area. A particular problem in our wildfire dataset is that the total intensity in each 

cell, Λjt is difficult to compute, and so we use instead the approximation, Λjt  ≈ |sj | exp(ηjt (sj )), 

where ηjt (sj ) is a „representative value‟ (i.e., it represents the intensity or number of fires in a 

particular cell given by a linear predictor of covariates and other terms) ([41]), within the cell and 

|sj | is the area of the cell sj. To treat this kind of problems, Cox processes are widely used. In 

particular, Log Gaussian Cox processes (LGCP), which define a class of flexible models are 

particularly useful in the context of modelling aggregation relative to some underlying 

unobserved environmental field ([22]; [41]) and they are characterised by their intensity surface 

being modeled as 

(3.9)     log 𝜆(𝑠) = 𝑍(𝑠) 

where𝑍(𝑠) is a Gaussian random field. 
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3.3.2. LGCP. Conditional on a realization of 𝑍(𝑠), a log-Gaussian Cox process is an 

inhomogeneous Poisson process. Considering a bounded region Ω ⊂ ℝ2 and given the intensity 

surface and a point pattern Y, the likelihood for a LGCP is of the form 

(3.10)   𝜋 𝑌 𝜆 = 𝑒𝑥𝑝  |Ω| −  𝜆 𝑠 𝑑𝑠  𝜆(𝑠𝑖)𝑠𝑖∈𝑌Ω
  

where the integral is complicated by the stochastic nature of 𝜆 𝑠 . We note that, the log-

Gaussian Cox process fits naturally within the Bayesian hierarchical modelling framework. 

Furthermore, it is a latent Gaussian model, which allows to embed it within the INLA framework. 

This embedding paves the way for extending the LGCP to include covariates, marks and non-

standard observation processes, while still allowing for computationally efficient inference ([23]). 

The basic idea is that, as we have explained in previous paragraphs, from a Gaussian Field 

(GF) with a Matérn covariance function, we use a SPDE approach to transform the initial 

Gaussian Field to a Gaussian Markov Random Field (GMRF), which, in turn, has very good 

computational properties. In fact, GMRFs are defined by sparse matrices that allow for 

computationally effective numerical methods. Furthermore, by using Bayesian inference for 

GMRFs, it is possible to adopt the Integrated Nested Laplace Approximation (INLA) algorithm 

which, subsequently, provides significant computational advantages. 

Because our data is potentially zero inflated, as not all our events will become big fires, in this 

paper we present a spatial Poisson hurdle model to address these particular aspects of the 

data. 

 

3.3.3. Bayesian computation. In a statistical analysis, to estimate a general model it is useful to 

model the mean for the i-th unit by means of an additive linear predictor, defined on a suitable 

scale 

 (3.11)     𝜂𝑖 = 𝛼 +  𝛽𝑚𝑧𝑚𝑖
𝑀
𝑚=1 +  𝑓𝑙(𝜐𝑙𝑖 )𝐿

𝑙=1  

where α is a scalar which represents the intercept, 𝛽 = (𝛽1, … , 𝛽𝑀) are the coefficients which 

quantify the effect of some covariates 𝑧 = (𝑧1 , … , 𝑧𝑀) on the response, and 𝑓 = {𝑓1(. ), … , 𝑓𝐿(. )) is 

a collection of functions defined in terms of a set of covariates 𝜐 = (𝜐1 , … , 𝜐𝐿). From this 

definition, varying the form of the functions 𝑓𝑙(. ) we can estimate different kind of models, from 

standard and hierarchical regression, to spatial and spatio-temporal models ([36])  

Given the specification in (3.8), the vector of parameters is represented by θ ={ 𝛼, 𝛽, 𝑓}. 

In our case, assuming that the subscript i denotes the wildfire, the subscript j the municipal 

district and the subscript t (t=1994... 2011) the year of occurrence of the wildfire, for each cause, 

we specify the log-intensity of the Poisson process by a linear predictor ([23]) of the form 
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(3.12)    𝜂𝑖𝑗𝑡  𝑠𝑗  = 𝛼0𝑗 + 𝛽1𝐺𝑖𝑗𝑡 + 𝛽2𝑍𝑗𝑡 + 𝛽3𝑊𝑗 + 𝑆𝑗 + 𝜏𝑡 + 𝜐𝑗𝑡  

where 𝛼0𝑗  represents the heterogeneity accounting for variation in relative risk across different 

municipals districts,𝐺𝑖𝑗𝑡 represents those covariates which depend on the wildfire, the municipal 

district and the time, 𝑍𝑗𝑡 represents those covariates which depend onthe municipal district and 

the time, 𝑊𝑗  corresponds to those covariates which only depend on the municipal district,𝑆𝑗  is 

the spatial dependence, 𝜏𝑡  is the temporal dependence, and 𝜐𝑗𝑡  is the spatio-temporal 

interaction. 

Note that, we assume separability between spatial and temporal patterns and allow interaction 

between the two components. 

 

Following the Bayesian paradigm we can obtain the marginal posterior distributions for each of 

the elements of the parameters vector 

(3.13)    𝑝 𝜃𝑖 𝑦 =  𝑝 𝜓 𝑦 𝑝 𝜃𝑖 𝜓, 𝑦 𝑑𝜓 

and (possibly) for each element of the hyper-parameters vector 

(3.14)    𝑝 𝜓𝑘  𝑦 =  𝑝 𝜓 𝑦 𝑝𝑑𝜓−𝑘  

Thus, we need to compute: (i) 𝑝 𝜓 𝑦 , from which all the relevant marginals 𝑝 𝜓𝑘  𝑦  can be 

obtained, and (ii) 𝑝 𝜃𝑖 𝜓, 𝑦 , which is needed to compute the marginal posterior for the 

parameters. The INLA approach exploits the assumptions of the model to produce a numerical 

approximation to the posteriors of interest, based on the Laplace approximation ([43]). 

Operationally, INLA proceeds by first exploring the marginal joint posterior for the hyper-

parameters 𝑝  𝜓 𝑦  in order to locate the mode; a grid search is then performed and produces a 

set G of “relevant” points {𝜓∗} together with a corresponding set of weights, {𝑤𝜓∗}to give the 

approximation to this distribution. Each marginal posterior 𝑝  𝜓∗ 𝑦  can be obtained using 

interpolation based on the computed values and correcting for (probable) skewness, e.g. by 

using log-splines. For each 𝜓∗, the conditional posteriors 𝑝  𝜃𝑖 𝜓
∗, 𝑦  are then evaluated on a 

grid of selected values for 𝜃𝑖  and the marginal posteriors 𝑝  𝜃𝑖 𝑦  are obtained by numerical 

integration ([6]) 

(3.15)   𝑝  𝜃𝑖 𝑦 ≈  𝑝  𝜃𝑖 𝜓
∗, 𝑦 𝑝  𝜓∗ 𝑦 𝑤𝜓∗𝜓∗∈𝐺  

Given the specification in (3.12), the vector of parameters is represented by 𝜃𝑗 = {𝛽, 𝛽𝛼 , 𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 } 

where we can consider 𝑋𝑖 = (𝑆, 𝜏𝑡 , 𝜐𝑗𝑡 ) as the i-th realization of the latent GF X(s) with the 

Matérn spatial covariance function defined in (3.7). We can assume a GMRF prior on θ, with 

mean 0 and a precision matrix Q. In addition, because of the conditional independence 
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relationship implied by the GMRF, the vector of the hyper-parameters 𝜓 = (𝜓𝑆 , 𝜓𝜏 , 𝜓𝜐) will 

typically have a dimension of order 4 and thus will be much smaller than θ. 

Note that in both parts of the model we control for heterogeneity, spatial dependence and 

spatio-temporal extra variability. Models are estimated using Bayesian inference for Gaussian 

Markov Random Field (GMRF) through the Integrated Nested Laplace Approximation (INLA). 

The use of INLA and the SPDE algorithms produce massive savings in computational times and 

allow the user to work with relatively complex models in an efficient way. All analyses are 

carried out using the R freeware statistical package (version 2.15.2) ([32]) and the R-INLA 

package ([33]). 

 

4. RESULTS 

 

We note that, in general, wildfires caused by natural causes are not larger than 50ha. The same 

happens for those fires caused by unknown causes or for those rekindled. For this reason, even 

if we have analysed the forth causes we focus our results only on big wildfires caused by 

negligence and accidents and on those caused intentionally or arson. 

4.1. First stage results. 

We first consider a logistic regression to model the probability of a wildfire becoming larger than 

a particular area. Table 1 shows the significant factors of the logistic model distinguishing by the 

three sizes (50ha, 100ha and 150ha) and considering wildfires occurred by negligence and 

accidents (cause 2) and those caused by intention or arson (cause 3). The main factors that 

have an influence in the presence of wildfires (larger than a given extension of hectares) are the 

orientation and the land use. Taking into account the rest of the covariates considered we can 

see that the hill shade, the distance to anthropic areas and the maximum temperature have no 

influence in the probability of a fire to become larger than a specific area. Table 2 shows the 

means of the posterior distributions for the hyper-parameters of the first stage considering the 

three sizes of area analysed. The heterogeneity, the time and the interaction have a small 

impact and moreover, their values decrease when the extension of the wildfires increases. We 

can also appreciate that there are not big differences between the two causes. On the other 

hand, the values of the spatial component show that there is an important spatial dependence, 

especially for wildfires occurred by negligence and accidents. 

In Figures 4 and 5, we show the marginal distribution of hyper-parameters 𝜅, 𝜏 , 𝜌, heterogeneity, 

time and interaction for Causes 2 and 3. In all of them, the distribution is Gamma, the 

distributions are similar for both causes. Finally, Figure 6 shows the prediction of the probability 

of a fire to become larger than 50ha as well as the standard deviation of this prediction. Looking 
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at the wildfires occurred by negligence and accidents we can see that higher probabilities are 

concentrated around the main urban areas of Catalonia: Girona (in the north-east), Barcelona 

(in the middle of the coast), Tarragona (in the south along the coast) and Lleida (in the centre 

west). There are also high probabilities in the north-west, corresponding to a large forest area. 

With respect to intentional and arson wildfires the probabilities are less concentrated than in 

wildfires occurred by negligence and accidents but are also higher in the same areas. 

Regarding the standard deviation we do not appreciate alarming values. On the second cause 

higher values are found where the probabilities are also higher. The third cause presents lower 

values of deviation than wildfires occurred by negligence and accidents meaning that the model 

works better with wildfires occurred by intention or arson. 

 

 Cause 2 Cause 3 

 50 100 150 50 100 150 

(Intercept) X X X X X X 

factor(Aspect)2       

factor(Aspect)3  X     

factor(Aspect)4    X X X 

factor(Slope)2       

factor(Slope)4       

factor(Slope)5   X    

factor(Altitude)3 X      

factor(Land use)1 X      

factor(Land use)3  X X    

factor(Land use)4     X X 

factor(Land use)6      X 

ftmin 3     X  

ftmin 5  X     
 

Table 1. Significative factors for the logistic model in the first stage of the 

analysis. 

 

 

Table 2. Means of the posterior distributions for the hyper-parameters of the first stage. 

 50ha 100ha 150ha 

 Cause 2 Cause 3 Cause 2 Cause 3 Cause 2 Cause 3 

Heterogeneity 0.000054 

0.000054 

5.212E-09 

5.192E-09 

3.959E-09 

5.247E-09 

0.000054 5.212E-09 5.192E-09 3.959E-09 5.247E-09 

Space 0.246900 

0.148810 

0.3908300 

0.0520790 

0.0884000 

0.0131780 

0.148810 0.3908300 0.0520790 0.0884000 0.0131780 

Interaction 0.000043 0.000043 3.885E-09 3.827E-09 3.408E-09 3.762E-09 

Time (year) 0.000053 0.000049 5.187E-09 5.135E-09 4.444E-09 4.759E-09 
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Figure 4. From Top-Left to Bottom-Right: Marginal posterior distribution for 

𝜅, 𝜏 , 𝜌, heterogeneity, time and interaction, respectively, for Cause 2. 

 

 

Figure 5. From Top-Left to Bottom-Right: Marginal posterior distribution for 

𝜅, 𝜏 , 𝜌, heterogeneity, time and interaction, respectively for Cause 3. 

 

4.2. Second stage results. In the second stage we model the frequencies of wildfires (larger 

than a specific area) per spatial unit. Table 3 shows the values of the hyper-parameters. It is 

important to note that in this second stage the spatial values are not included. The reason is 

because there is a too high correlation between the spatial dependence component, 𝑆𝑖 , and the 

spatio-temporal interaction, 𝜐𝑗𝑡 , that prevents the model from working properly. Therefore, we 

introduce the spatial random effect through the interaction. The heterogeneity is quite much 

significant than in the first stage, especially for intentional wildfires and arson. Something similar 

happens with the interaction. It is much larger than in the first stage and it is also more 

representative for wildfires occurred by intention and arson. Finally, with respect to the temporal 

dependence, this is also larger than in the first stage but it has almost no variation between the 

two causes. In addition there are not relevant differences between the three extensions of 

hectares in any of the three hyper-parameters analysed. In Figure 7, we show the marginal 
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posterior distribution of hyper-parameters for heterogeneity, time and interaction for Causes 2 

and 3. In all of them, the distribution is Gamma. Finally, Figure 8 shows the predicted number of 

wildfires larger than 50ha per spatial unit. Wildfires occurred by negligence and accidents and 

those caused by intention or arson present the same pattern of distribution according to the 

probabilities obtained in the first stage of the model. In general, big wildfires are concentrated 

along the coast being denser around the metropolitan area of Barcelona. Looking at the 

standard deviations we point out that intention wildfires and arson have very low values so, 

again, we note that the model correctly fits wildfires occurred intentionally or arson. 

 

 
 

  

Figure 6. Top: Prediction maps for Cause 2 and Cause 3. Bottom: 

Standard Deviation for the prediction under Cause 2 and Cause 3. 

 

 

 50ha 100ha 150ha 

 Cause 2 Cause 3 Cause 2 Cause 3 Cause 2 Cause 3 

Heterogeneity 0.116645  1.083424 0.116918 1.088495 0.116836 1.089681 

Interaction 0.000181  0.010143 0.000177 0.010101 0.000180 0.009634 

Time (year) 0.000048  0.000048 0.000047 0.000048 0.000048 0.000040 

Table 3. Hyper-parameters for the model in the second stage. 
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Figure 7.Posterior distribution of the hyper-parameters for the 

second stage. Left: heterogeneity, Middle: time and Right: 

interaction. First line: Cause 2, second line: Cause 3. 

 

  

  

Figure 8. Number of fires expected Maps: On the Top: Cause 2 and Cause 3 and on the 

Bottom: Cause 2-sd and Cause 3-sd.  
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5. DISCUSSION 

 

The main finding of this study is that big wildfires are mostly caused by human actions either by 

negligence and accidents or by intention or arson. These results make sense with what the 

bibliography shows and what we have commented in the introduction; over 95% of the fires in 

Europe are due to human causes.  

Normally a natural wildfire does not spread as much as an intentional wildfire and so, the 

number of wildfires which are larger than a big extension, is not enough to obtain results. 

Analyzing the four causes separately we noticed no significant results for wildfires caused by 

natural causes and for those caused by unknown causes or rekindled. In fact separating 

wildfires by cause and by its extension we almost did not have wildfires caused by natural 

causes nor unknown causes or rekindled. In particular in our data there are only 15 wildfires 

bigger than 50ha occurred by natural causes compared to 180 caused by negligence or 

accidents. Our model does not work properly with such a limited small number of data so, even 

if we have studied the four causes, we have restricted the study to the second and the third 

causes. To analyse and estimate the number of zeros in a dataset there are different statistical 

alternatives. On one hand we have the ZIP model, which is employed to estimate event count 

models in which the data result in a larger number of zero counts than would be expected. The 

hurdle Poisson model [27] is a modified count model with two processes, one generating the 

zeros and one generating the positive values. The two models are not constrained to be the 

same. 

The concept underlying the hurdle model is that a binomial probability model governs the binary 

outcome of whether a count variable has a zero or a positive value. If the value is positive, the 

”Hurdle is crossed,” and the conditional distribution of the positive values is governed by a zero-

truncated count model. In the ZIP models, unlike the hurdle model, there are thought to be two 

kinds of zeros, ”true zeros” and ”excess zeros”. Although the practical results are very similar in 

both approaches, hurdle models are most appropriate in our case, since every wildfire can turn 

into a big wildfire and therefore, every point is susceptible to become larger than a specific 

number of hectares. 
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The first part of this Thesis is restricted to inhomogeneous spatial models, where the temporal 

scale is fixed, and only the spatial component is modeled. After the first results, a second 

analysis includes time into the model, thus considering spatio-temporal point process models. 

One good thing about this approach is that we were able to model and evaluate the 

corresponding spatio-temporal interaction. We are aware of some approaches which had 

already considered this modelling, but they consider independent spatial replication in time 

which is not realistic. In the context of spatio-temporal modelling, one useful approach is to 

model the spatio-temporal intensity function as an additive or multiplicative form of the spatial 

and temporal intensities, and then adding a spatio-temporal residual component (for example 

Diggle et al. 2005).  

During this work we have started using some covariates (slope, aspect, altitude, hill shade and 

land use) and we have completed the analysis adding more covariates such as proximity to 

anthropic areas and climatic variables (maximum and minimum temperatures). Climatic 

variables could explain the spatial structure but we are not sure on what drives the temporal 

variation of wildfires occurrences over time. However, we can note that land use varies over 

time and it has an effect on the temporal variation of the wildfire counts. 

Knowing that models for forest fire occurrence have been studied using different approacheswe 

have chosen the spatio-temporal point process because the nature of our data and the aim of 

our study suggested that this was the most sensible approach. For a wide class of point process 

models, the problem of evaluating the likelihood function is solved using tessellations (Baddeley 

and Turner 2005). Instead, we have proposed a modification to the INLA method (Rue et al. 

2009) by building a grid based on the intersection of buffers around the data points. The 

advantage of our approach is that it can be easily implemented within the INLA R package, 

using the computational advantages of INLA. The methodology we have used in our analysis 

has allowed us to find the class of models that best fits the occurrence of wildfires distinguishing 

by cause.  

Our approach has some similarities to the model presented (Ramis et al. 2012) in the sense of 

both fitting a model based in a Poisson regression with an unstructured random effect and using 

a spatial random effect to account for the spatial structures of the data. However, we have also 

considered the time component and the interaction between space and time, and we have not 

considered any element that follows a CAR model. On contrary, we have modeled the spatial 

correlation by the Matérn spatial covariance function using a regular lattice through stochastic 

partial differential equation (SPDE)to transform the initial Gaussian Field to a Gaussian Markov 

Random Field (GMRF). 

The comparison between MCMC and INLA approach has already been done. Most of them use 

simulations and conclude the superiority of INLA against MCMC alternatives (Held et al. 2009, 

Wilhelmsen et al. 2009, Martino et al. 2010 and Eidsvik et al. 2012). However, recently Taylor 



Discussion 

180 

and Diggle, 2013, point out that the INLA approach is not as faster as MALA within a MCMC 

strategy. It is worth noting that the version of INLA they used is previous than 2011 and they do 

not take advantage of the current SPDE approach (Krainski, 2013) as we have done. 

Finally, it is worth noting that efforts to suppress wildfires have become an important problem in 

recent years. Current wildfire management policy is focused in suppressing almost all wildfires. 

Indirect costs of this achievement include the increase of dense vegetation in absence of 

wildfires and increasingly more intense wildfires. Furthermore, some results on climate changes 

argue that fire season comes earlier, stays longer each year and fires burn with more intensity. 

These changes in wildfires behaviour could cause catastrophic damages as human lives, 

economics and environmental losses. 

The analysis of wildfire incidence in Catalonia presented in this Thesis provides important clues 

as to which risk factors are associated with which different causes. The results of our analysis 

have provided a deeper insight into factors associated with wildfire incidence in Catalonia.  

A future work might incorporate more covariates related to the occurrence of wildfires such as 

humity or wind. Moreover, a further research should focus on considering space and time 

separable instead of approaching no separability by means of the interaction between them. 
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Throughout this work we have achieved several findings. First, the extent of clustering in 

wildfires differs through the years and through the considered causes of wildfire ignitions. 

Second, covariates such as land use, slope, aspect and hill shade influence the trends in the 

intensity of wildfire locations. Third, spatio-temporal point process is the most sensible approach 

to model forest fires occurrence. Fourth, Hurdle model is the best to model the occurrence of 

big wildfires (wildfires greater than a given extension of hectares: 50ha, 100ha or 150ha). 

Finally, maps of wildfire risks built from the estimated models, by year and cause of ignition, are 

useful tools in preventing and managing vulnerability levels. 

All these settlements are specyfied below following the objectives described at the beginning of 

this Thesis: 

Specific objective 1.–(1) To evaluate how the extend of clustering in wildfires differs across the 

years they occurred. 

From the first article we have concluded that wildfires are not random in space or time and that, 

despite the variability found among marks, especially over time, the model that best fits the 

spatial distribution ofwildfires is the area-interaction point process model. In addition, the 

analysis of wildfire incidence in Catalonia has provided important clues as to which risk factors 

are associated with which different causes.  

Specific objective 2, 3 and 5.–(2) To analyse the influence of covariates on trends in the 

intensity of wildfire locations.(3) To analyse the spatio-temporal patterns produced by those 

wildfire incidences by considering the influence of covariates on trends in the intensity of wildfire 

locations. (5) To build maps of wildfire risks, by year and cause of ignition, in order to provide a 

tool for preventing and managing vulnerability levels. 

 

From the second articlewe have foundthat covariates affect differently depending on the cause 

of the wildfire. On the one hand, wildfires started either through negligence and accidents or 

intentionally are associated with low elevation locations, which are easily accessible to most 

people, particularly arsonists. In addition, the relative risk of wildfires caused by negligence or 

accident is lower than 1 for locations far from urban areas, roads and railways due to the lower 

human presence and activities in such locations. On the other hand, for wildfires caused by 

nature we have conclude that the relative risk is higher than 1.0 for locations far from the 

coastal plains and those locations distant from urban areas, roads and railways. For both 

covariates there is a clear gradient in the relative risk as these covariates increase, because the 

greater their value, the higher the importance of meteorological factors, such as lightning strikes 

or sun irradiance, in causing a wildfire. This, added to the lower human presence in such 

locations, facilitates the spreading of wildfire without control. An increased gradient in the 

relative risk is also observed for lags 1 and 4 of maximum temperature, in this case perhaps 

associated with a lower humidity of plant material, making it prone to becoming fuel. Although 
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hills facing south receive higher sun irradiance and consequently tend to be drier, for naturally-

caused wildfires, the relative risk was below 1.0. Finally, for those wildfires caused by unknown 

causes or rekindled, elevation is the only covariate which does not have any significant 

influenceon trends in the intensity of wildfire locations. However, it must be said, that elevation 

and distance from urban areas should be correlated, which may make it difficult to attribute 

single factors to wildfire occurrence. This complex model structure is most likely due to the fact 

that here we have a mix of wildfires from all of the different causes.  

In addition, throughout this second article we have proved that there is a spatio-temporal 

interaction and that clear different characteristics exist between the distributions of wildfires, 

depending on each cause.  

Specific objective 4, 6 and 7.–(4) To model the occurrence of big wildfires (greater than a given 

extension of hectares) using an adapted two-part econometric model, specially a Hurdle model. 

(6) To analyse which factors have more influence in generating wildfires bigger than a given 

extension (50ha, 100ha or 150ha).(7) To evaluate two different statistical alternatives (ZIP 

models and Hurdle models) to analyse and estimate the excess of zeros of a stochastic 

process. 

From the third article we have justified that big wildfires are mostly caused by human actions 

either through negligence and accidents or intentionally but not by natural causes. Analysing the 

four causes separately we noticed no significant results for wildfires caused by natural causes 

and for those caused by unknown causes or rekindled. 

Furthermore we have concluded that among different statistical alternativesto analyse and 

estimate the number of zeros in a dataset, as ZIP models, Hurdle models are most appropriate 

in analysing big wildfires occurrence, since every wildfire can turn into a big wildfire and 

therefore, every point is susceptible to become larger than a specific number of hectares. 

Summarysing, the main conclusions of this Thesis are: 

1. Wildfires are not random in space or time and so we are able to model them. 

2. The traditional methodology of spatial statistics, which the model that best fits the 

pattern of wildfires is the area-interaction, has shown that there are variability in space and time. 

This conclusion has made possible to apply a spatio-temporal methodology using mixed 

models. 

3. The spatio-temporal mixed model used to analyse the occurrence of wildfires in 

Catalonia is a new approach which allow quantifying and assessing possible spatial 

relationships between the distribution of risk of ignition and causes. 
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4. Big wildfires are not attributed to natural causes and the best model to analyse them is 

the Hurdle model. 

5. The methodology used through this Thesis may be useful in fire management decision-

making and planning.and so may contribute to the prevention and management of wildfires 
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