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ABSTRACT 

This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In 

this model, the queries are propagated through the social network, with propagation being faster through more trustable 

acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the 

answers that arrive first are likely to be the most relevant, and we computed the correlation of answer relevance with the order of 

arrival to demonstrate this result. We obtained correlations equivalent to heuristics that use global knowledge, such as profile 

similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol 

Asknext, it is possible to stop a search when enough relevant answers are found; additionally, it is possible to stop the search with a 

small risk of not obtaining the best answers available. Furthermore, Question Waves does not require a re-ranking algorithm 

because the results come sorted. 

Keywords: multi-agent systems, p2p, query-routing, social networks, social search. 

1. Introduction 

Query-routing is a key element of social search; where the search process can be reduced in finding the right 

person to ask [42]. We propose a query-routing algorithm for social search that provides first the answers that are 

probably the most relevant. The heuristic behind the algorithm consists on asking first the best candidates to satisfy the 

information need. Although than the usefulness of search engines cannot be questioned, there are information that is 

not indexable (deep Web [5]) which contains data from online social networks with restricted access. Furthermore, 

one pending issue in the evolution of search engines is about answering open questions as can be recommendations, 

which are still ill-served, and social search [10] is a valid answer to them. In this paper, we refer to open questions as 

those abstract, subjective, and recommendation type questions [39]. For example, questions like: “What would be a 

good app to find bargains in Barcelona?” cannot be expressed in a way that today’s search engines can understand, let 

alone answer it. In social search, which emerged as a new paradigm of research interest, a good way to get a useful 

answer for that question would be by posing it to all your closer or distant friends or colleagues. Furthermore, Smyth 

et al. [33] note that 70% of the time users are searching for information previously found by their friends or colleagues. 

For these reasons, there are recently developed tools, such as HeyStacks [33] or the +1 button of Google, that 

contribute to the sharing of interesting results. 

Due to these multiple concerns regarding how searches are conducted and the need to turn search into a social 

issue, several researchers suggest a change of paradigm. Advocates of the Social Search like Yu and Singh [42] 

expressed that often the most relevant information can be only accessed by asking the right people, and Nardi [28] 

wrote that “It is not what you know, but who you know”, which can be the motto of today’s search. Hendler [16] 

expressed this concept even more clearly by introducing the term of social machines: “Social-networking sites are 

replacing search engines and news sites as people’s favoured homepages and a new generation of applications is 

centring on large groups of people collaborating over an increasingly distributed network” and “one thing is for sure: 
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many of the entrenched models of AI will have to be rethought as computers change from application devices to social 

machines”.   

Social search [10] is then a new paradigm, referred to as the village paradigm [17], a type of search that uses 

social interactions to provide results. It can be classified as Social Feedback Systems (SFS) and Social Answering 

Systems (SAS) [10]. SFS use social data to sort the answers, while SAS use people’s expertise or opinions to question 

answering. SFS cannot address questions when the information is not available; SAS solve this problem, yet experts 

might receive a same question many times. What is interesting is that recommender systems [26] can be considered a 

SFS, ranking within a category (RWC) recommender systems [40]. In an RWC system, users obtain a list of items 

with a personalized ranking, as in SFS. That is why we consider recommender systems data are valid for testing 

algorithms of social search, what will be novel and extremely useful for the design and test of social search algorithms. 

Knowledge exchange portals (Q&A) are SAS that are usually used when users do not obtain satisfactory results from 

search engines [15], as is the case when they are searching for opinions or customized advice. The most important 

drawback of these portals is the frequent lack of answers, perhaps due to the fact that the right people are not willing 

to answer or are not accessible, or the question did not get through to them. Usually, experts receive a burden of 

questions that overloads their limited bandwidth, and in consequence, the questions might be answered slowly. There 

are three main options to minimize answering time and provide good results [1]: reusing content [6,19], routing 

questions to experts on the topic [13,23,45] and encouraging more answers by understanding answering behaviours 

[13,22]. Furthermore, questioner satisfaction is an interesting problem in SAS; Agichtein and Liu [1] showed that 

previous interactions are useful predictors of questioner satisfaction and are able to outperform human classifiers. 

The drawbacks of social search is that querying all the people you know is very expensive in terms of effort and is 

thus not a viable solution. As we will see in the paper, there are several query-routing algorithms to help users 

satisfying their answer need through finding the right person to ask such a question. Instead, there should be an 

algorithm for getting the most relevant answers, relevant to the questioner, from the right person to answer such a 

question, with reduced questioning effort. That algorithm that put the question forward a sequence of subsets of 

acquaintances and later aggregates or selects the right answer is a new type of query-routing algorithm that is referred 

to as Question Waves (QW). QW uses intelligent agents that works on behalf of people with the aim of automating 

query-routing and combining the SFS with SAS approaches of social search that takes advantage of the benefits of 

both of them: when an agent receives a question; if it has enough knowledge then it will answer automatically, 

otherwise, if it considers that its owner will be interested to answer, then it poses to her the question; the agent also 

can forward the question to its acquaintances; the agent will send first the question to the acquaintances with a higher 

probability of providing a relevant answer. After certain time, if the information need is not satisfied, the agent will 

send the question to the following subset of acquaintances that are best suited to answer; this last process is repeated 

until their information need is satisfied or there are not acquaintances available. 

To the best of our knowledge, there are no such algorithms with a proven track record of getting the most relevant 

answers. Experiments use measures of relevance (as recall) for comparing the several aspects of the algorithm that 

contributes to its performance. 

QW algorithm is executed at every node of the social network, using local knowledge and contact lists to decide 

query-routing, social behaviour, and question-answering. Intelligent agents are chosen for QW as a suitable approach 

for social search because they share the reactive, social, proactive, and autonomous features of the actors, people, in 

the social networks; furthermore, they are a good match for P2P systems [24] that are at the cradle of the query-

routing algorithms. Agents decide the actions to perform after receiving a question, are capable of asking questions to 

other agents, and can take the initiative of requesting knowledge maintenance from their users. Agents can improve 

the answering time by appropriately routing questions to experts and reusing previous answers. 

We advocate the usage of P2P systems for this scenario due the following reasons: the model of a general search 

engine for everything might not be scalable with the size, variability and heterogeneity of the Web and its users [41]; 

the entities that create these centralized systems can have conflict of interest with the results [40]; or can act as a “big 

brother” [8]; social networks are inherently peer-to-peer (P2P) [8]. 



 

 

P2P systems require query-routing protocols to find the right information source. Query-routing for decentralized 

search is an important research problem with applications in social search and file-sharing environments [3].  

In all, QW can be described as a query-routing algorithm for social search using agents that operate on the same 

(P2P) social network of people. We will see that QW provides first the answers of the highest probability of being 

relevant before providing other, less relevant answers. This study demonstrates the mechanisms behind such results 

with every detail. Section 2 contains a brief literature review of query routing in unstructured P2P networks. In 

Section 3, the proposal of QW is presented in detail. In Section 4, simulations of the algorithm are described, and their 

results are discussed. Finally, in Section 5, the conclusions and future work are presented. 

2. Literature review 

Considering social search, query-routing has been applied to several domains, such as Internet browsers [41], 

question answering [3,17,38] and recommender systems [40]. The classification of the query-routing algorithms used 

in those domains is based on if the algorithms are unicast or multicast. In unicast query-routing algorithms, a query is 

only sent to one acquaintance or user [3,25,34], while multicast algorithms are ones in which a query is sent to many 

of them [38,40,41]. 

To better understand query-routing, it is important to know Milgram’s experiments. In the 1960s, Milgram carried 

out a set of experiments to study the small-world problem. [34] explains the experiments: in brief, they selected 2 sets 

of individuals. The individuals in the first set received a document explaining the experiment, defining who should be 

the target person (belonging to the second set) of the document and containing some information about her. If the 

people of the first set knew the target person (TP) personally, then she would have sent the document to the TP; 

otherwise, she would have sent it to an acquaintance more likely to know the TP, and these acquaintances would be 

requested to repeat the process. The authors sent the document to 296 initial users, of which 73% followed the 

instructions, and the other 27% ignored it. Each time the folder was forwarded, there was probability of it being 

forgotten (dropped). From these experiments, we can see that unicast query-routing is feasible, but its drop rate 

considerably reduces the success rate; in the work of Travers and Milgram, only 64 folders reached their destination, 

while the others were dropped at some point.  

More recently, but in a similar vein, Banerjee and Basu proposed the Social Query Model (SQM) [3], which is a 

probabilistic model that measures the probability of obtaining an answer ��  (Eq. 1). In the SQM, the nodes that receive 

a query can ignore, answer or forward it. The model considers the following components: 

• The expertise ei ϵ [0,1] indicates the probability that the node ai answers a query, with a probability 1- ei that 

the node ai forwards the query. 

• The correctness wi ϵ [0,1] indicates the probability that the answer provided by the node ai is correct.  

• The response rate ri,j ϵ [0,1] indicates the probability that a node aj accepts a query from node ai. The 

probability that a node aj drops the query is then 1- ri,j. 

• The policy π� of a node ai is a probability distribution that indicates the probability of selecting neighbours of 

ai (Ni) when ai decides to forward a query; concretely, each π�� indicates the probability that ai forwards the 

query to aj. 

�� = ��	� + (1 − 	�) � ���
�

�∈��
��,���   

(1) 

 

The SQM is based on unicast query-routing in which the authors propose an algorithm to compute the optimal 

policy, although they also suggest finding the next-best policies in the case of a multicast application. In their 

experiments [3], they set the expertise by random or based on degree, making nodes with higher in-degree to have 

more expertise. The response rate can also be random or degree-based; the degree-based rate is directly proportional to 



 

 

 

the expertise of the asking node and inversely to the node requested because the authors assumed that “people tend not 

to ignore requests from experts” and “experts tend to be often too busy to answer”. 

[25] presents SEMANT, an algorithm for distributed searching in P2P networks. In this algorithm, a forward ant that 

has the responsibility of answering the query is generated for each one; when it reaches a node with some content that 

might satisfy the query as an answer, the forward ant finishes its travel, and a new backward ant is generated and 

follows the inverse path while dropping pheromones. The algorithm uses two strategies for query-routing: in the 

exploiting strategy, the ant follows a link to the best, yet unvisited, neighbour; in the exploring strategy, the forward 

ant tries to find new paths. For every unvisited peer, it is randomly decided whether the peer should be visited on the 

basis of its goodness value. If more than one peer is selected, the forward ant is duplicated; each peer stores the 

information of the ants that visited it, allowing termination of the copies of the forward ant if they reach the peer more 

than once. In SEMANT, the exploiting strategy is clearly unicast, while the exploring strategy is multicast. 

Multicast query-routing in unstructured P2P networks is usually based on the breadth first search (BFS) algorithm, 

with the following main idea: 

• one node, that starts a search, asks a subset of its neighbours by sending a query/question message; 

• when a node receives a question, the node may answer or forward it; 

• when a node has an answer, an answer message is sent following the inverse path. 

These algorithms usually use the time to live (TTL) to reduce the number of question messages. The TTL 

determines how many hops can go between the questioner and the answerers. The TTL is initialized, and every time it 

is forwarded, it is reduced by one; when the TTL reaches 0, the message cannot be forwarded anymore.  

Sixearch [41] is a P2P search engine based on BFS that uses TTL. Peers store their neighbours’ profiles with the 

goal of increasing the probability of choosing an appropriate neighbour to receive a question. Peers store information 

in these profiles about the terms in which their acquaintances have expertise. Initially, a profile is requested from an 

acquaintance, and the profile is subsequently updated with the interactions of the node with its acquaintances. 

Walter et al. [40] proposed a recommender system for P2P social networks in which query-routing is also based 

on BFS. In their model, each answer has a trust value, which is the trust associated to the path followed to find the 

answer. All possible answers are collected, and finally, an answer is selected randomly out of the set, with answers 

that come from more trusted paths having a higher probability of being chosen. The authors concluded that this model 

shows self-organisation and sub-optimal performance. 

More recently, the Asknext protocol [35,38] was introduced, resulting in 20-fold fewer messages and higher 

scalability than Sixearch or related social search BFS query-routing based protocols. Asknext is also based on BFS 

with the novelty of stop messages, which stop questions from being sent when a relevant answer is found. The use of 

stop messages requires that answer and stop messages travel faster than question messages. It is possible to use a 

dynamic speed for question messages, making their propagation slower, and doing so allows the question propagation 

to be stopped at the same hops distance that a relevant answer is found (Eq. 2). ��  
and �� 	are the periods during which 

questions are forwarded and answers are sent, respectively. The forward speed can be set using Eq. 2. For example, 

with a	�� = 1 for nodes at distance (�) 1, ��  
should be	≥ 3; for nodes at � = 2, ��  

should be 	≥ 5, and for nodes 

at	� = 3, ��  
should be ≥ 7. In practice, using different periods for ��  and �� does not mean that the question messages 

travel slowly but rather that a node retains a question message for longer before forwarding it. 
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(2) 

 

In the case of multi-agent referral system (MARS) [42,43,44], the authors follow a different approach. Yu and 

Singh proposed a P2P application in which agents assist users in obtaining and following referrals to find experts who 

might answer their questions. When a user formulates a question, it is processed by her agent, who determines which 

contacts should be the question recipients. When an agent receives a question, it decides whether to show the question 



 

 

to its owner or answer by providing referrals. When an agent receives an answer, the user’s feedback is used to 

evaluate the expertise of the answerer. 

While in the unicast query-routing there is no threat to the system scalability and costs, there is a lower 

probability of finding an answer. In the end, using multicast query-routing threats the system scalability, yet there is 

higher probability of satisfying the information need.  

In the following Section, we will explain our contribution: each node consists on an intelligent agent that 

represents a user; these agents conduct several attempts to obtain answers in multicast query-routing and relax the 

problem of threatening system scalability to increase the probability of finding an answer. Initially, a question is sent 

to the best candidates. After a given time, if the information need is not satisfied (because it is not answered or the 

answer is not satisfactory) then the question is sent to the next best candidates. The process is repeated at each agent 

until the question is answered or there are no more candidates. 

3. Question Waves 

As has been stated in Section 2, unicast query-routing can be used to satisfy information needs while bothering 

only a few people in the network, but the probability of satisfying the information need is low; in contrast, using 

multicast query-routing, so that a question is propagated to all of the acquaintances, threats the system scalability. 

Finding the best number of acquaintances to which to forward a query is not straightforward. We consider that the best 

behaviour is requesting as few users as possible and obtaining the greatest or enough number of correct, relevant 

answers available. However, going rather far in reducing the number of recipients might avoid obtaining some 

relevant answers; otherwise, requesting all available peers can overload the system. 

We consider that one option to deal with this problem is to first ask the candidates who are estimated to give the 

best answers and only then, if after some time the initial candidates are not able to provide a suitable answer, 

requesting the next in the contact list. Heuristically, a unicast query-routing can be used when the requester is near to 

an expert willing to answer and highly available. In the worst scenario, the system will work as a BFS multicast query-

routing in which the majority of the nodes are requested only when no answer is yet available. The number of 

candidates that are requested will be adapted on the basis of the availability of answers. Subsection 4.3 provides 

details about the number of messages generated and the number of relevant answers provided by the different 

algorithms considered. 

The work described in this paper is based on an agent P2P social network; in which each user is represented by an 

intelligent agent (we will refer them as agents), we also will refer users as owners of an agent. Each user has a 

knowledge base that is managed and can be accessed by her agent. Those agents can send questions to a subset (Sa) of 

their acquaintances, and when they receive a question they can forward the question to Sa as well or can answer. The 

answers follow the reverse path [25,38,40,41]. 

For each question, the agents can play three roles: 

• Questioner: The questioner is the agent who started the question. 

• Answerer: An answerer is an agent who answers a question with the agent’s own knowledge or its user’s 

knowledge. 

• Mediator: A mediator is an agent who receives a question and forwards it to others. They also may 

forward an answer that they receive from another mediator or an answerer. 

In the following Subsection, we will explain briefly the probability of obtaining an answer in a multicast query-

routing, starting from the unicast social query model [3]. Then, with a better understanding of multicast query-routing, 

we will explain our main contribution, Question Waves, including the main points and the analogy from physical 

waves. In Subsection 3.3, we will explain some aspects that can be taken into account to set up Question Waves. 

 

 

 



 

 

 

3.1  Introduction to multicast query-routing 

 

In Section 2, we explained briefly the SQM proposed by Banerjee and Basu [3]. Their model is based on unicast 

query-routing and in that case, the probability of obtaining an answer asking others (expressed by the sum operator) 

contains a mutually exclusive probability. In the case of multicast query-routing, the probability of obtaining an 

answer that satisfies the question is not mutually exclusive, as several candidates can answer it correctly. We consider 

that it is the only aspect needed to be considered with the aim to apply their model in multicast query-routing. 

In this Subsection we explain the probability of satisfying a query in multicast query-routing, in function of the 

distance. Given that: 

• At a distance  , P�,�( ) is the probability that the question qj of questioner agent ai is satisfied with the 

answers obtained from answerers at a maximum distance  . 

• At a distance  , "P�,�( ) is the probability that the question qj of questioner agent ai is satisfied with the 

answers obtained from answerers at a distance   exactly. 

• #�,� is the probability that an agent ai satisfies the question need with an own answer the question qj. 

• At a distance   = 0, the probability of satisfying the question need depends only on the agent ai. 

 

Then: 

 

• ��,�(0) = #�,� 
• ��,�( + 1) = ��,�( )	%�	"��,�( + 1) = ��,�( ) + &1 − ��,�( )' ∗ 	"��,�( + 1) 

 

As a simplification, we assume the following major constraints: 

• ∀*	 #*,+=,.	,ϵ[0,1]. 
• Agents never drop a question. 

• The social network topology is an infinite tree of degree α (αϵℕ), so when the nodes forward a question, 

it is forwarded to α nodes that did not previously receive it. 

 

Now: 

 

• 2P�,�(d) = 1 − (1 − β)56 

• Given a , < 1 and a 7	> 1, then lim;→= 1 − (1 − β)56 = 1 

 

Example for several α and , are shown on Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                                      (b) 
Fig. 1. (a) 2P�,�  in function of distance (b) and P�,� in function of distance. For several β and α. 

Because social networks do not follow a tree topology, it is not always possible that each node forwards the 

question to α nodes that did not previously receive the question. Furthermore, social network topologies are finite. If 

the network topology is random, the probability that a neighbour already received the question will depend on the 

number of nodes that have been forwarded to before. In this case, the probability depends on the current distance. 

However, all nodes do not have the same amount of contacts. For example, for a topology of 1,000 agents with an 

average nodal degree of 3, we can obtain a situation similar to that in Fig. 2.   
 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                       (b) 
Fig. 2. (a) 2P�,�  in function of distance, and (b) and P�,�   in function of distance. For β = .005 in a finite network of 1000 agents 

with an average nodal degree of 3. 

We can see that 2P�,�( ) starts growing until a certain distance, after which it starts to decrease. The maximum 

point will depend on the shortest path from the questioner to the other nodes the point at which 2P�,�( ) starts to 

decrease is the average shortest path length. When using these simplifications, ��,� does not depend on the network 

topology as long as all nodes are requested. With different	#� but accessing the nodes in the same way, we obtain the 

same kind of results as in Fig. 2.   

If we consider a case in which all of the agents do not put equal effort toward trying to obtain an answer—for 

example, not all of the agents forward the question to the same number of contacts and the probability that agents can 

satisfy the information need (p) depends on the contacts’ expertise (#), correctness and response rate—and if we 

assume that all of the agents are able to identify the nodes that are more likely to answer and first ask the nodes with 

greater p then ask other nodes with the next highest p in different attempts (or waves), we expect a higher probability 

of satisfying the information need with answers from earlier waves. 

2P �,�
(  )  P �,�(
 )  

d d 

d d 

2P �,�
(  )  P �,�(
 )  



Now instead of evaluating 2P�,�( ), we are evaluating 2P�,�(?) where ? represents the time in simulation steps.  
We simulated an environment in which the questioner agent sends a request to 5 nodes, sorted from greater expertise 

to less, at timestamps {0, 1, 2, 3, 4}. There is a higher 2P�,�(?) from the initial waves (Fig. 3 (a) and (b)). 

Furthermore, if the questioner agent delays the waves, for example, initiating them at timestamps {0, 10, 20, 30, 

40}, we obtain the probabilities in Fig. 3 (c) and (d). In the first attempt (first wave), 2P�,�(?) is higher than in the other 

waves; after an initial increase, 2P�,�(?) decays over time. In this Section, we will try to obtain a system that generates 

the kind of probability distribution from Fig. 3 (c) when all of the agents have the same behaviour. 

 

 

 

 
 

Fig 3. 2P�,�(?) for each attempt or wave. (a) and (c) show the values obtained through simulation, while (b) and (d) show its 

tendency lines. (a) and (b) are the results when all of the agents execute the same behaviour, and (c) and (d) are the results when a 

questioner agent has applied higher delay to the waves. y axis represents the probability in that time step, while x axis represents the 

time in simulation steps. 

 

In the area of delay tolerant networks, Bulut et al. proposed and algorithm, that also uses some attempts to 

distribute copies of a message [9]. The problem they deal with consists on delivering a message before a deadline 

using the minimum number of message copies. Their algorithm first send a small number of copies (this is an attempt), 

and if after some time periods it is not delivered to the destiny, then more messages are sent to increase the delivery 

probability (further attempts).  The main idea is that if the message is delivered in the initial attempts then the number 

of message copies needed to deliver the message has been reduced. They also use messages to stop the propagation of 

the copies once the message has been delivered (they call it acknowledgment of delivery). Although its domain of 

application is different, the usage of several attempts follows a similar idea of QW. One of the most important 

differences dealing with different attempts in social search and delay tolerant networks, is that in the first one it is 

important to provide relevant answers, while in the second one it is only important to deliver the message. That is why 

(a) (b) 

(c) (d) 

2P �,�
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in this paper we compute several measures in our simulation to evaluate that the most relevant answers are received 

early.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Example of BFS (a), Asknext (b), and QW (c) with the same social network, where a1 is the questioner and a6 the answerer. 

 
Fig. 4. shows some of the main differences among BFS, Asknext and QW search algorithms. In this example, 

agent a1 is the questioner and a6 is the only possible answerer, because one answer would be enough for the questioner 

and mediators. We will explain how it may work with the different algorithms: 

• BFS is the most basic algorithm, where only there are question messages (q) and answer messages (a). These 

example corresponds to a TTL of 4 or greater: 

o Step 0: a1 is the questioner and sends the question to {a2,a5}.  

o Step 1: a2 and a5 forward the question to {a3,a4} and {a4,a6} respectively.  

o Step 2: a6 answers to a5, at the same time a4 forward the question to a3, and a3, who received the 

message previously from a2, forwards it to a7.  

o Step 3: a5 forwards the answer to a1, and a7 forwards the question to a6. 

(a) 
(b) 

(c) 



 

 

 

• Asknext introduces the usage of stop messages (SM), and it needs a delay on the question messages that 

depends on the distance, according Eq. 2. 

o Step 0: a1 is the questioner and sends the question to {a2,a5}.  

o Step 1: a2 and a5 receive the question, they do not have an answer, so they will forward the question 

in step 3. 

o Step 2: a2 and a5 wait until step 3. 

o Step 3: a2 and a5 forward the question to {a3,a4} and {a4,a6} respectively.  

o Step 4: a6 answers to a5. a3 and a4 will forward the question at step 8. 

o Step 5: a5 answers to a1. a5 and sends a SM to a4. 

o Step 6: a1 sends a SM to a2. a4 cancels forwarding the question. 

o Step 7: a2 sends a SM to a3. 

o Step 8: a3 cancels forwarding the question. 

• QW adds the concepts of effort, the question delay is based on trust on the contacts, not in the distance from 

the questioner as Asknext, and the answers also can contain a delay. In Fig. 4. (c) thicker links represents 

trust, and the question message propagate earlier for those links. 

o Step 0: a1 has 7 units of effort to try to obtain and answer. a1 decide to send first the question to a5 

with an effort of 5 units, and it will send to a2 the question with an effort of 2 units at step 3 if no 

answer is found yet. 

o Step 1: a5 sends the question immediately to a6 with an effort of 4 units, and a5 will forward the 

question to a4 at step 4 if no answer is found yet.  

o Step 2: a6 has confidence in his answer and sends it immediately to a5. 

o Step 3: a5 forward the answer to a1, and cancels forwarding the question to a4. a1 has no received 

an answer yet and forwards the question to a2 (it is the second wave). 

o Step 4: a1 receives the answer, and sends a SM to a2. a2 decides to forward the question to a3 and a4 

at step 6 as it has not enough trust on that agents. 

o Step 5: a2 receives the SM and cancels forwarding the question to a2 and a4. 
 

 

3.2 Modelling multicast query routing as waves of questions or question waves 

As we have seen in Subsection 3.1, it is possible to first ask the acquaintances with the highest probability of 

providing a relevant answer. We were distantly inspired by physical waves for modelling this process, which is why 

we call it Question Waves (QW), however the aim of QW is not obtaining physical waves properties and the resulting 

algorithm does not guaranties any of them, physical waves have been only an inspiration source.  

A question wave is an attempt to find an answer to a question. In every attempt, the same question is sent to a 

subset of acquaintances. The probability of finding appropriate answers decays after every attempt. The question 

propagates through the network of agents, which amplify or attenuate the effort invested in answering it, as a wave is 

attenuated over distance in an aquatic environment. QW tries to solve the following problems: 

a) In P2P there are scalability issues when you ask all peers. 

b) If you ask only one peer (or a small subset), it is very likely you will not find the right answer. 

c) If you ask several sequentially it is very likely you get stuck if any in the sequence not answers you. 

In any case (b, c) choosing the right peers to ask is not straightforward. The solution that we propose to address 

the above problem is to use several attempts (waves), elapsed in time. In each attempt, the question sender (questioner 

or mediator) selects the most reliable acquaintances who have not been previously selected for that question. Adding 

new recipients implies that the agent is not sure that it will receive an answer from the current recipients and is trying 

to obtain an answer from less-trusted recipients. This approach can be used when useful answers are received, 

enabling the user to read them in real time (when the search process is not complete) as a heuristic from the most to 



 

 

least relevant. The advantage of QW is that multiple agents are committed to finding the answers with diversified 

options to find them, resulting in more relevant
2
, faster

3
, and more robust

4
 answers.  

In physics, “a wave may be defined as a periodic disturbance in a medium that carries energy from one point to 

another” [14]. In our model, when an agent has a question, the agent is a wave source and generates a disturbance on 

the system with an amount of energy (@A). This energy indicates the amount of effort that the agent devotes to satisfy 

its question need. The probability of finding a relevant answer depends on the amount of effort invested in finding, 

and the agents can transmit part of this effort to others, delegating a part of the task (finding relevant answers). The 

propagation media are the links of the social network. 

For physical waves, the Huygens principle states that each region reached by a wave generated by a disturbance 

generates another disturbance in other regions. In our model, when an agent receives a question, it may act as the next 

mediator that transmits the disturbance to other agents forwarding the question.  

A physical wave speed depends on the medium properties. In our model, the medium is the link, and the speed of 

the question message will depend on the trust as the key property of the link. When a physical wave is propagated to 

several directions, the energy is spread over a large area, reducing the intensity at each point, although the total 

amount of energy in the system remains equal. In our model, the effort is also distributed among a subset of 

acquaintances; on average, each agent will receive less effort as more acquaintances are requested. In our model of 

question waves, effort does not need to be propagated uniformly to all of the acquaintances; agents can decide how 

they distribute the effort among their acquaintances.  

In physics, waves may lose energy due to attenuation [14]. The loss of energy is due to the viscosity and friction 

of non-perfectly elastic media and is described by the absorption law. As in question waves we modelled energy as 

effort it can be lost due to communication costs. Some effort will be dissipated due to friction in the sense that not all 

of the effort transmitted to an agent is converted to effort to answer a question because these agents may be less 

motivated to help a concrete acquaintance or the acquaintance does not want to contribute to this question. The 

principle of the superposition of physical waves explains that when several waves are coincident in the same space, 

their amplitudes are added. This interference can be constructive, i.e., resulting in a bigger amplitude, or destructive, 

resulting in a lower amplitude. In our model, it is possible that one agent receives a same question more than once 

from different sources or as a result of several question waves. In this case, it is possible to use more effort than that 

contained in each request; for example, the agent may add the efforts requested from each request. Finally, an answer 

can act as a destructive interference, e.g., when a relevant answer is found, further attempts are not needed. This 

destructive interference can be propagated in the form of answers and stop messages.  

To set up an environment to experiment with Question Waves (QW), it is necessary to consider the effort 

introduced with disturbances, attenuation, friction, speed of links to acquaintances, effort distribution, and constructive 

and destructive interferences. In the following Subsection, we will explain some ideas to build a QW environment. 

 

3.3 Setting up a question wave behaviour 

Previously, we have seen that to build a QW environment, we must consider the effort introduced with 

disturbances, attenuation or effort costs, medium properties (such as speed and the amount of effort transmitted to the 

recipients), and interferences (constructive and destructive). But in QW, the properties of the media are not physically 

different; the agents decide which acquaintances to send the question to first and which amount of effort the recipients 

would receive. A trust model is needed for this aim to evaluate the behaviour of the acquaintances, requiring some 

measures to evaluate the answers that they provide. In this Subsection, we will start with the answer evaluation, we 

will explain what the trust model must consider, and then, we will explain how to set the effort costs, medium speeds, 

effort distribution, and interferences.  

                                                 
2 Relevant in the sense that the answers come ranked by trust. 
3 Faster in the sense of reducing the burden of questions, and the agents are less overwhelmed. 
4 Robust in the sense of finding answers persistently. 



 

 

 

 

3.3.1 Answer relevance and trust model 

The relevance of one answer might depend on several factors, such as the expertise (k) of the person who 

generated it, the grade of implication (I) put on answering (the amount of effort), and the rewards used to motivate the 

agent, although motivation might also stem from the task itself or who asked for the task. Answer relevance also 

depends on other factors (R), such as the personal situation, the amount of time available to answer, the answerer 

mood, etc. [36,37]. The first aspect that we must consider before setting up a QW environment is if the answers will 

be generated to satisfy the requested information (i.e. requesting an answer from the user), if the system will reuse the 

answers available in the community, or both. It is also important to consider if the answer relevance is determined 

subjectively or objectively. In Section 4, we simulated a case in which the answers were objective and generated 

another one in which the answers were reused and subjective.  

The trust model is a key aspect of the QW behaviour because trust is used to decide the order in which to ask 

agents. Trust can be used as a predictor of answer relevance as well as it can be used to distribute the energy among 

acquaintances. In environments like this network, trust models tell us what is expected from an acquaintance. 

Agents’ behaviour may be based on reciprocity. [18] explains that social exchange theory assumes that people try 

to have balanced relationships (reciprocity); people prefer relationships in which they give and receive a similar 

amount of support. When there is a discrepancy between giving and receiving, the continuation of the relationship is 

threatened. There are some exceptions, such the cases of family or close friends. In close relationships, people feel 

responsible for each other’s well-being and do not consider the balance. For these reasons, we think that a Q&A agent 

will have contacts classified into two groups: one group for whom the agent feels responsible and does not consider 

the balance in the relationship and another group for whom the agent expects the relationship to be balanced. We call 

the members of the first group close acquaintances and those of the second group convenient acquaintances [36].   

In QW, when we consider convenient acquaintances, a trust model can be used to estimate the viscosity as a kind of 

reciprocity. If an agent does not receive any help from an acquaintance, the acquaintance’s trust value should 

decrease. Trust models also should detect the presence of malicious agents, who, for example, answer fast with spam.  

 

3.3.2 Question delay 

The QW behaviour is based on initially requesting sources with a higher likelihood of returning a suitable answer. 

For this proposal, it is necessary to implement a function that indicates the time needed to wait before submitting the 

question. This function can be implemented as a continuous or a piecewise function. When an agent sends a question 

to another recipient, the recipient’s ability as an answerer but also as a mediator should be considered.  

 

3.3.3 Delaying an answer 

When an agent receives a question and has an answer (or a set of them) available, it is able to answer 

immediately. In contrast, if the agent thinks that it is possible to obtain a better answer from an acquaintance, then it 

can delay the answer to allow a better one to be sent. In the case that the agent does not know of an available answer 

but can generate one, then it can delay the answer generation if the agent is aware of the quality of the answer it can 

generate. The heuristics used are sending any available answer when the agent considers that the probability of 

obtaining a better answer is low and delaying answering otherwise. 

 

3.3.4 Effort 

When an agent has to initiate a question, the agent puts an amount of effort E0 to answer it. This effort is put 

directly into answering or obtaining an answer from acquaintances or into the effort that the agent will delegate to 

acquaintances.  



 

 

Some of the effort can be lost in the search of answers because there are some communication costs that include 

processing the messages, sending them, and planning how to satisfy the requests. Most of these costs do not depend on 

the amount of effort requested, and we will refer them to as constant costs
5
. In contrast, the delegated agents may give 

less effort than requested due to the implication relation they have to the task, and the imbalance can be seen as some 

kind of commission or the benefit that the delegated agents get in the case that the system uses social currencies; we 

will refer to these as friction costs.  

Effort is also used to obtain answers. In the functioning of the environment, answer generation can require 

different amounts of effort (one clear example is numerical analysis, in which more effort can be understood as more 

iterations) or can have a constant cost, such as querying a database. 

The effort that an agent uses in solving a question can be used to set a threshold B after which the agent will stop 

trying to obtain new answers. This threshold can indicate the number of answers sent, the probability of providing a 

relevant answer, etc. 

Although the model considers that the effort will be attenuated with the question distribution, agents are 

autonomous, and it is possible that one agent might use more effort to obtain an answer than requested. This excess 

can happen in the case that one agent has its own interest in obtaining an answer for the question or it would like to 

improve the relationship with the requester (which can be seen as a kind of investment). 

 

3.3.5 Effort distribution 

When an agent delegates a question to its acquaintances, the agent can decide how the effort can be distributed. 

The most basic configuration would be an isotropic distribution, in which all of the acquaintances would receive the 

same amount of effort. However, it is also possible to use other configurations, which distribute effort as a function of 

trust, for example. The distribution may depend on the question, on aspects as the domain or question context, or on 

aspects of the self-confidence of providing a relevant answer. An agent can also take into account not continuously 

annoying the same agent, with the intention of not threatening their relationship.  

 

3.3.6 Interferences 

Mainly, the model considers two kinds of interference, constructive and destructive. Constructive interference is 

produced when an agent receives the same petition from different sources. As a function of how the model is 

designed, the amount of effort taken into account to try to answer a question can be the minimum effort transmitted in 

one of the requests or the sum of the requests. 

Destructive interferences are transmitted by answers and stop messages. For answers, when an agent receives 

enough answers of a certain quality that cross the threshold σ, the agent will stop trying to find more answers, and it 

can also ask to stop the search process by sending a stop message to the agents it posed the question. The objective 

threshold σ will depend on the effort put toward answering the question. 

 

 

4. Simulations 

The objective of this Section is to show how the QW model can be implemented and the benefits that it can 

provide. Optimizing the results will be a next step out of the scope of this paper because it would depend on every 

context. In our simulations, a set of agents A={a0 , a1, …, ai} perform the algorithm in Fig. 5 at every simulation step. 

                                                 
5 By constant, we refer to the fact that the costs do not depend on the amount of effort, but the costs can be different for each agent 

or can change over time. 



 

 

 

This Section contains two Subsections: in the first Subsection, we will use randomly generated data models to 

show that the answer relevance is correlated with the answer speed and that the distribution of "P in practice is similar 

to that expected from Fig. 3 (c). The second Subsection shows how QW is used as a collaborative filtering system. 

 

 

Method Step 

For each Received Answer 

  If Own Question, Update result and Trust 

  Else forward answer            

      If first answer from sender, Update Trust  

      If question objective achieved 

 Deprogram messages 

 If use stop messages, program stop messages 

If I have a stop message 

   Deprogram messages 

   Forward stop message to my recipients 

If I have a new Own question 

     Select contacts in contact waves; Program question messages 

For each received question 

   If I received it before, ignore it 

   Else  

     If I can answer, Program answer message 

     Select contacts in contact waves; Program question messages 

If I have a programmed answer 

  Send answer 

  If question objective achieved 

     Deprogram messages 

     If use stop messages, program stop messages 

Send programmed messages 

 

Fig. 5. Agents step QW algorithm. 

 

4.1 Knowledge exchanges dataset 

In the knowledge exchanges (KE) dataset simulations, the data has been randomly generated. We configured the 

simulator with the following requirements: 

• The expertise vector k of each agent has dimension 5. The value of k� ∈ [0,1] of an expertise vector k = {k1, k2, k3, 

k4, k5} means the expertise level in a domain j. In the initial conditions, k values are set randomly. 

• At each step, each agent has a question probability of having its own question (Ψ). In our simulations, Ψ = .05. 

• The interest vector It={i1, i2, i3, i4, i5} has the same dimension as vector k. It denotes the probability that a question 

will belong to a domain j. ∑ *�� = 1. 

• Each execution consists of 2,000 simulation steps with 100 agents. 

• The social network is represented by an undirected graph, although each connection has two different trust values. 

We used the social networks represented in Fig. 6. SN-a has 495 links, a clustering coefficient of .521, an 

assortativity of .0763, a diameter of 5, and an average shortest path length of 2.84. SN-b has 395 links, a clustering 

coefficient of .386, an assortativity of .0568, a diameter of 5, and an average shortest path length of 2.86. 

• The initial trust from each agent to its acquaintances is .75 for each domain. 

• We executed each configuration 20 times. 

• The questioning agents rate the answers received at their G value. 

• Each query belongs only to one domain. 



 

 

• In all three of the cases, we consider that the probability that an answer satisfies a question is p(G)= G/100. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Social networks used. The network on the left is SN-a, and the network on the right is SN-b. 

 

4.1.1 Answer relevance and trust model 

In these simulations, the answer quality (G) is computed in three different ways: 

• KM0: Use the knowledge model used by [36,37], expressed in Eq. 4, where I represents the implication, k is 

the expertise, and R is the external factors represented randomly, with the settings	�* = .2, �# = .7,	and �I= .1 

• KM1: Use the above knowledge model with the settings	�* = .4, �# = .5,	and �I = .1 

 

G = ��K + �L 	# + ��I (4) 

 

• KM2: Use a knowledge model in which an agent with an expertise of 		 will produce a G of 	 when the 

energy used to generate an answer is ∞	, with E=10, G = L	
N , with E=50, G = .9# and with E=0, G = 0 (Eq. 

5). The model is inspired by the ART-Testbed [12], in which the authors focus on the standard deviation 

produced instead of G.  

G = # PQ
PQRSTU PRVTTU      (5) 

Agents evaluate their acquaintances for each domain considering the mean G of the first answer provided. When 

agents have to determine the amount of effort that they will allocate to obtaining answers or generating an answer, the 

agents use the highest trust value. 

 

4.1.2 Question delay and delaying own answer 

Although there are many ways to delay questions and answers based on estimations of their relevance, we 

considered that there are two important points. The first one is that the answers that are more likely to be relevant 

should arrive quickly, and the time that users have to wait should be short. The second one is that answers that are 



 

 

 

more likely to be not relevant have to be sent only when there are no other answers available, so their delay should 

increase considerably. With this purpose, in our simulations, we used Eq. 6, and the delay distribution based on trust 

can be seen in Fig. 7. With these function, with a ��,� of {.9,.8,.6} ?�,� are ⋍{2,5,15} respectively.  

?�,� = 13 (	−150	��,�X + 550	��,�N 	− 700	��,� + 300)		 (6) 

 

 
 

Fig.7. Question and answering delay (?�,�) in simulation steps in function of trust (��,�). 
4.1.3 Effort settings 

In these simulations, we used 3 effort settings: 

• ES0: The more trusted acquaintances receive more effort. An acquaintance aj receives an amount of effort @�,� from the agent ai based on the trust that ai has in aj	��,�, the effort that ai can transmit @� and in 

comparison to the trust that ai has of the other acquaintances. @�,� = @� ��,�N ∑ ��,LNLY . 

• ES1: The effort is distributed equally among the acquaintances.  

• ES2: The effort used to try to answer a question is infinite. 

 

The initial effort (E0) in ES0 and ES1 is 10
5
, and the effort costs are 2 for planning how to answer a question, 

including checking if would be possible to answer the question without forwarding it, selecting how to distribute the 

effort and sending messages. The costs do not include the cost of generating an answer, for which the maximum value 

will be 90 in ES0 and ES1.The effort loss due to friction is expressed in Eq. 7, were @� is the effort that agent aj will 

use to try to solve the question while @�,� is the effort transmitted by ai to aj (so, before applying friction). We used μ = .1 because we assumed that the maximum loss due to friction for these simulations may be 10%, which will 

happen when the trust value is 0. 

 

@� = @�,�[1 − μ	(1 − ��,�)\ (7) 

 

4.1.4 Interferences 

In the following simulations, we only considered destructive interferences. As a function of the effort used to 

obtain answers, each agent will continue seeking answers until the answers reach an estimated probability of 

answering the question correctly (σ). When an agent reaches σ, it will not put more effort into trying to obtain answers 

to the question, and it may send a stop message to the agents to which it delegated the question. When an agent 

receives a stop message, the agent will not put more effort into trying to answer the question. However, in both cases, 

��,�  

? �,�  



 

 

agents may continue forwarding answers received. We consider that σ must tend to 1 when @ tends to ∞ and that σ 

must be 0 when @ = 0. Furthermore, considering that	@A = 10], we designed σ to be .9 when	@ = @A, and σ when @ = 	@A/2. An approximated function is Eq. 8. In this equation, we used @^	instead of	@, where @^ = _@. The idea is 

to use _ to modify agents sensibility. _ ϵ [0,∞], values of _ lower than 1 suggest that the agents have a lower σ, and 

they decide to stop their contribution faster. In contrast, values of _ greater than 1 suggest that agents are more 

conservative, and they will need more answers to end their contribution. 

 

σ = @′N@′N − 2.78		10c@^ + 3.89		10d (8) 

  

4.1.5 Evaluation and results 

With the aim of evaluating the correlation of answer speediness with G (- Delay), we added other correlations that 

would not be as easy to use in a real system and would be needed to re-rank the results:  

• the distance to the answering agent (D) 

• the reputation of the acquaintance that sends the answer (R) 

• the transitive reputation of the path (TR). We computed this factor as the product of the reputation values of 

the path 

• the reputation of the answerer (RA) 

• the expertise of the answerer (Ex), directly based on the expertise value with which the answers are 

generated. 

 

To compute these correlations, we used simulations without waves. The results are shown in Table 1. As expected, 

Ex has the best correlation with G in the simulations with KM0, as Ex has a weight of .7 to G. RA has results close to 

Ex, and the correlation with answer speed is high, but D and R provide no correlation in this group. There are no 

significant differences in the ES and networks for this KM. 

Considering KM1, the results are similar to KM0, but there are weaker correlations for TR, Ex, RA and -Delay. 

Also, the results seem to indicate that there is a slightly higher correlation with Time and TR for the second network 

than the first. 

Considering KM2, with finite effort (ES0 and ES1), D has some correlation, TR has the best correlation for 

network SN-a, while -Delay has the best correlation for network SN-b. In the case of infinite effort, the simulation has 

a similar behaviour as KM0 and KM1. 

Additionally, Fig. 8. shows "�(?) for each ES and KM; we can observe that it follows a similar pattern than the 

presented in Subsection 3.1 (Fig. 3. (c)), where after a setup time, the probability of finding a relevant answer at time 

instant ? is inversely proportional to ?. 
 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

                                                          Table 1.  

           QW results. 
KM E. S. Network D R TR Ex RA -Delay 

0 0 SN-a -.028 .090 .446 .985 .984 .935 

0 0 SN-b -.010 .065 .447 .985 .984 .937 

0 1 SN-a .003 .098 .441 .985 .985 .935 

0 1 SN-b .001 .076 .445 .985 .985 .936 

0 2 SN-a .002 .098 .435 .985 .985 .936 

0 2 SN-a .001 .076 .442 .985 .985 .937 

1 0 SN-a -.010 .092 .341 .954 .955 .909 

1 0 SN-b .0 .078 .352 .953 .955 .912 

1 1 SN-a .003 .101 .346 .954 .956 .909 

1 1 SN-b .002 .080 .353 .953 .955 .912 

1 2 SN-a .003 .100 .341 .954 .956 .908 

1 2 SN-b .002 .080 .350 .953 .955 .912 

2 0 SN-a .540 .119 .776 .573 .599 .759 

2 0 SN-b .448 .133 .749 .670 .684 .811 

2 1 SN-a .627 .055 .668 .586 .617 .612 

2 1 SN-b .514 .056 .632 .699 .711 .736 

2 2 SN-a .002 .095 .488 1 .999 .953 

2 2 SN-b .001 .073 .488 1 .999 .953 

 

 

 ?  
Fig. 8. Probability of finding a relevant answer at time ?,	"�(?), as a function of time. The x axis shows the time (in simulation 

steps), and the y axis shows the probability. 
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              Table 2.  
                                              Results using interferences. 

 _ -Delay G̅ m (106) a/q 

Without Interferences No .935 .569 4.77 97.35 

 4 .838 .671 3.304 42.958 

 2 .804 .687 2.677 35.34 

With Interferences 1 .757 .714 2.586 30.731 

 .5 .544 .792 1.726 17.19 

 .25 .488 .804 1.43 14.34 

 
To show the behaviour of interferences, we used KM0, SN-a and stop messages that will be sent when the 

probability of having a good answer is higher than B (Eq. 8). The results can be seen in Table 2, where we can observe 

that when we increase _, there are more answers per question (a/q), but the mean quality of the answers (G̅) is 

decreased. In contrast, decreasing _ makes less (a/q), but G̅ is increased. The correlation with -Delay is reduced when 

a/q is reduced. We see several explanations for this pattern. The first one, as can be seen in Fig. 7, is that the 

difference of the time delays for higher trust values is really small; a second one is that the R factor takes more 

importance when the expertise rankings are similar. The third explanation is that the distance to reach agents with 

higher expertise also affects the arrival time and has more importance when we only receive a few answers. This loss 

of correlation is not really important because the system provides the best answers, as can be seen for the increase of G̅. 

 

4.2 Experiments with real data extracted from a recommender systems dataset 

It is not straightforward to use real data with questions answered and rated by users because on Q&A sites the 

same question is often repeated, and it is difficult to determine which questions are equivalent.  

Some of the protocols referred to in this paper [40,41,44] used generated data especially suited for their 

experiments. For example, [40,44] set up a few categories and generated random profiles that were used for one [44] 

or more agents [40], while the queries were restricted to one category only. The answer suitability was based on user 

expertise evaluated at random [40] or on the similarity among user profiles [40]. In Sixearch [41], the authors based 

the content on real data, categories and answers (that consisted of real webpages), although they modelled the users 

randomly. In all of the cases, they generated random test users. 

Using a real social network with real data for this kind of simulation is not straightforward because there is no 

available real data pool that contains all of the following points: 

• A real social network in which the links among users indicate relationships (friends, colleagues, or 

family).  

• A set of questions sent by the users of that social network and a set of similar or equivalent questions 

sent to one another, based on the idea that more than one user asks the same question. 

• A set of answers for different questions provided by one user, which should be rated by a considerable 

number of users, not only a few.    

Some exceptions might be Twitter and Quora. In the case of Twitter, and compared to other social networks, it 

might be easier to extract information, being it done through hoses (accessible through API), and several datasets have 

been published in the very recent years (e.g. [21]). In Twitter, there are less question answering interactions compared 

to other social networks yet there is vital exchange of comments and opinions among their users that are following 

each other. As said, Twitter is not a platform for question answering, though its open contact lists are very 

advantageous for our research, as we can create a replica of the social network behind and do experimentation. In the 

case of Quora, users also follow others and its usage is well focused on Q&A, and as an additional strong feature, 

Quora does suggest similar questions to guide the question preparation, yet it does not require the existence of any 

path in the social network from the questioner to the answerer (that is, potential answerers are accessible directly), and 



 

 

 

finally we did not find any dataset with our required data (contact lists, questions and answers). In all, Quora did not 

fit our experimentation needs for our approach of social search research, yet we are open to extend our results to that 

platform soon in the future. Due to the lack of a true social question-answering environment useful for 

experimentation, we reused existing datasets used for information retrieval or recommender systems. Two of the most 

popular datasets are Text REtrieval Conference (TREC
6
) and movielens

7
. The first dataset contains a set of textual 

questions with a set of documents that may contain the answer. However, TREC datasets have no user ratings and no 

users who would encourage the reconstruction of a possible social network on it. In the case of movielens, the 

identified users rate a set of items. In this case, we can consider an item as a type of question and a rating as a type of 

answer, so there are many answers for each question. It is also possible to use recommendation techniques to evaluate 

answer suitability for a user, which equivalent to having the answers rated. The main item missing is a true social 

network, which could be generated randomly or using similarity functions [26]. For these experiments, we consider it 

better to generate the social network randomly, although considering that the network has social network properties. 

The main motivation is that in QW, we consider that people should have a network in which most of their contacts are 

people that they know as friends, family, colleagues, etc. An additional reason is that to identify similar profiles from 

unknown users, a centralized approach or some method to construct this similarity network that is out of the scope of 

this paper would be required.   

Social search engines and recommendation systems (collaborative filtering or opinion-based filtering) are 

converging, as we consider that recommendation systems must be classified as SFS according to the classification of 

social search systems by [10], more concretely when we consider RWC recommender systems [40], which provide a 

personalized list of items. In SFS and RWC, users receive a list of items sorted with the aim to fit the user’s taste. 

Therefore, using a dataset originally designed as a recommender-system dataset for social search simulations is 

appropriate for experimenting with social search because recommender systems can be seen as a subtype of social 

search (like an SFS, according to Chi [10]). Ratings gathered in these databases can be considered subjective answers 

to open questions like “What do you think of Gone With the Wind?”, to which one can answer “I love it”, “I hate it” 

or “It is all right, but not that much”. 

We decided to use the movielens dataset, consisting of 100,000 ratings for 1,682 movies produced by 943 users. 

The ratings are split into two sets: a training or base set with 80% of the ratings and a test set with the remaining 20%. 

With the movielens dataset, the only aspect missing is the social network, which is generated at random. 

In the following Subsection, we will explain how we prepared the data for the simulations and, briefly, the social 

networks used. In Subsection 4.3.2, we will briefly explain collaborative filtering recommender systems, then we will 

explain how we used Question Waves with these data, and finally, we will show our results. 

 

4.2.1 Simulation data 

We used the data that we prepared to use with Asknext [38], it was as follows: 

• We have removed the users who had fewer than 10 questions in the test set because many users had no 

questions. 

• We have a queue of questions generated by distributing them between 1 and 1,000 steps of simulation. 

• All of the simulations end at step 2,000. 

As a result, the number of questions is 19,463, and there are 387 users. We generated 2 social networks, SN-1 and 

SN-2 (Fig. 9). SN-1 has 3,089 links, a clustering coefficient of .53, an assortativity of .0401, an average path length of 

3.02 and a diameter of 5. SN-2 has 1,933 links, a clustering coefficient of .515, an assortativity of .0277 and average 

path length of 3.905 and a diameter of 7. 

                                                 
6
 http://trec.nist.gov/data/qa.html 

7
 http://www.grouplens.org/node/73 



 

 

 

 
Fig. 9. Networks used in the simulations with movielens data. The network on the left is SN-1, and the network on the right is SN-2. 
 

4.2.2 Collaborative filtering recommender systems 

Collaborative filtering (CF) is used to recommend items that similar users have liked. CF is based on the social 

practice of exchange opinions. In the 1990s, GroupLens worked with this family of algorithms [20,30], leading a 

research line on recommender systems that expanded globally because of growing interest in the Internet. Usually, 

these systems rate items between 1 and 5. The most popular measures to estimate the similarity of pairs of users are 

the cosine [7,31] (Eq. 9) and Pearson's correlation coefficient (Eq. 10) [30,32].  

f(?, g) = ∑ [�h,�\[�i,�\�∈jk
l∑ [�h,�\N∑ [�i,�\N�∈j�∈jk

 
(9) 

 

f(?, g) = ∑ [�h,� −	�hm\[�i,� −	�im\�∈jk
l∑ [�h,� −	�hm\N∑ [�i,� −	�im\N�∈j�∈jk

 
(10) 

 

Where: 

• f(?, g) is the similarity of owners of the agents at and av. 

• rt,i is the rating given by owner of the agent at to item imi. 

• Im is the set of items. 

• �hm is the mean of the ratings of  owner of the agent at. 

There are other measures, for example, the PIP proposed by Ahn [2] that is composed of three factors: proximity, 

impact, and popularity. A PIP score is computed for each co-rated item, and the similarity between two users is the 

sum of these PIP scores. This measure takes into account the distance between the co-rated items (proximity), gives 

more significance to ratings in the extremes of the rating range (impact) and also increases the importance of similar 

ratings that are far from the mean rating of the items (popularity).   

The owner of the agent ai rating item imj (��,�)	can be predicted with Eq. 11. In this equation, the constant K is 

used to match the prediction within the range of values. 

 



 

 

 

��,� =	�nm + 	o � f�,L[�L,� −	�Lm\
pq,r	|	qt�

	 (11) 

 

The main benefits of this method compared to another dominant recommendation technique, content-based 

filtering (CBF), are that items can be recommended without knowing their features, and users with hard-to-describe 

taste can still be classified with accurate recommendations. The drawbacks are that this method needs a lot of ratings 

and suffers from problems of cold starts and scattering data. 

As alternative evaluation measures to CBF, the mean absolute error (MAE), mean squared error (MSE) or rooted 

MSE (RMSE) are well suited for simulated experiments and are good alternatives for measuring the suitability of 

answers or recommendations. The MAE, MSE, and RMSE show the mean error of the predictions; to achieve 

relevance on this kind of SFS, it is important to obtain low errors. 

Once we have introduced the different metrics and concepts related to CF, in the following Subsection, we will 

explain how we simulated the network and show the results that were obtained. 

 

4.2.3 Simulating a P2P Recommender System with Question Waves 

In the literature, there are some examples of P2P recommender systems. The first ones, proposed by Walter et al. 

[40] and Montaner [26], were mentioned previously. Other ones based on BFS are [4,11,29]. The objective of this 

Subsection is to show the benefits of using QW in a more real scenario where it can be applied. To study the answer 

suitability offered by Asknext, we use an algorithm similar to traditional CF. How this proposal works is beyond the 

scope of this paper, except that because these CF systems are BFS based, Question Waves can be used with them. 

To use Question Waves as a P2P recommender system, we determined the following: 

• The question message includes the questioner profile. 

• In the answer field of the answer message, we added two fields: 

o Accumulated vector: ∑ f�,L[�L,� −	�Lm\pq,r	|	qt�  

o Similarity vector: ∑ f�,Lpq,r	|	qt�  

• The prediction of ��,�  is performed with Eq. 11 using o = 1/( a
1/2∑ f�,Lpq,r	|	qt� ), where a is the 

number of answers. 

When we applied CF, we obtained an MAE of .765 and an MSE of .958. It was possible to predict 19,210 items. 

We use these values as a reference target for our implementation of QW. 

We modelled the QW as follows: 

• In the simulations, we used Pearson’s similarity measure between questioners and answerers to measure 

answer relevance. 

• We added a domain for each possible questioner, and agents determine how good a mediator is at providing 

answers for a profile similar to a concrete questioner. 

• The question time and the delay of the own answer are determined with a piecewise function (Eq. 12)  

• The initial effort used by the questioners is @A = 10]. The effort is distributed equally to all of the agents, 

and there is no cost of answering, but we maintained the same friction cost of Eq. 7, as in Subsection 4.1.3. 
• When a mediator sends back an answer, the mediator will check if it has achieved its objective for that task; 

if so, it will send stop messages and will stop forwarding the questions related to that task. The objective for 

the task (σ) depends on the effort applied to obtain an answer (@′ = _@A), computed with Eq. 13. _	has the 

same meaning as in Subsection 4.1. We used _ = u. 25, .5625,1, 1.5625, 2.25, 3.0625, 4w. 
 



 

 

?�,� =

xy
yy
yz
yy
yy
{ 1	*|	��,� > .92	*|	.9 ≥ ��,� > .83	*|	.8 ≥ ��,� > .74	*|	.7 ≥ ��,� 	> .65	*|	.6	 ≥ ��,� > .510	*|	.5 ≥ ��,� > .315	*|	.3 ≥ ��,� > .120	*|	.1 ≥ ��,� > −.325	*|	 − .3 ≥ ��,� > −.540	*| − .5	 ≥ ��,�

 

 

 

 

 

(12) 

 

σ = √@′
�@A 

(13) 

 

 

4.2.4 Results 

 
In Fig. 10, one can see the results of applying QW as a collaborative filtering system. Fig. 10 (a) and (b) show the 

MAE and MSE, respectively; the system provides slightly fewer errors using QW, and the results are getting closer of 

the reference values of CF (MAE of .765 and MSE of .958) along with the effort applied. Fig. 10 (c) shows the 

number of messages sent, where one can see that the configurations without waves (A1 and A2) have a higher slope. 

A2 starts using fewer messages than QW2, but due to the higher slope, the simulations have a similar number of 

messages at _ = 1.   
Fig. 10 (d) shows the number of questions being answered. The variation between A and QW is not significant; in 

some cases, A does more predictions and vice versa.  

 
Table 3.  

Correlations of error prediction with time and similarity. 

 
 -DelaySN-1 -DelaySN-2 Similarity 

Mean correlation -.5759 -.62 -.5934 

St. dev. .075 .08 0 

 

 

We computed the correlation of the error produced by each answer message and the answer delay, and we 

obtained a correlation of 57.59% for SN-1 with a standard deviation of .075 and 62% for SN-2 with a standard 

deviation of .08, as can be checked in Table 3. We also computed the correlation of the error produced and users’ 

similarity (similarity has been computed with Eq. 10) and we obtained -59.34%. We can claim that the correlation 

obtained between the answer relevance and answer speed (that is the inverse of the answer delay) is equivalent to the 

correlation of users’ similarity and answer relevance. The similarity is the standard reference in a centralised CF 

recommender system. Our results of QW using partial information are comparable to a CF system that has information 

full access.  

 

 

 



 

 

 

 

 

 

 

 

 
 

Fig. 10. Results of applying QW as a CF, comparing the results of using waves (QW1 and QW2) and not using waves (A1 and 

A2). (a) shows the MAE, (b) the MSE, (c) the number of messages and (d) the number of predictions done, all as a function of _. 
 

4.3 Practical Considerations 

 

At the beginning of Section 3, we explained that the best behaviour of query-routing would be requesting to the 

minimum number of agents and obtaining the maximum or enough number of relevant answers. We perform now a set 

of experiments to measure the cost of obtaining relevant answers regarding the effort used and the number of 

generated messages, to test what configuration of QW is behaving best, and whether they are in all behaving better 

than the other algorithms of social search. 

We compare 4 configurations: 

• The first configuration (BFSe), is BFS with the improvement of effort to limit the question propagation. 

• A second configuration (SMe) uses stop messages, as Asknext does; and it uses effort to limit the 

question propagation. 

• A third configuration (QW) introduces the effects of answer and question messages delay but does not 

use stop messages. 

• The fourth configuration (QW-SM) uses answer and question delay messages and uses stop messages. 
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The only input for every simulation is the initial effort per question, while the outputs are the following: 

• Number of messages generated (m). In the introduction, we talked about how many agents are requested. 

Now, more precisely, the number of messages represents how many times agents are requested.  

• Proportion of relevant answers obtained from relevant answers available (recall). Answers would be 

considered as relevant when their G is above a threshold χ.   
• Proportion of relevant answers obtained in order of arrival within a window of size n (precision). We 

considered size n=3.  

 

The thresholds χ that we used are {.95, .85, .5} for the KE dataset, and {.95, .75, .45} for the movielens dataset 

creating the scenarios of {very high, high, and medium χ} for every configuration and dataset. The networks used are 

SN-a and SN-1. Furthermore, we ensured that all compared models had a same number of relevant answers available: 

in the case of the KE dataset, we computed the answer relevance only with the expertise, which is equivalent to Eq. 4 

with �j = 0,  �L = 1,	and �� = 0.  

 Fig. 11 (a) and (b) shows the number of messages in function of the effort for KE dataset and movielens dataset 

respectively. In the KE dataset, we can see that QW and QW-SM start with higher number of messages than BFSe and 

SMe, but their convergence is slower; they converge to the highest number of messages because answers might follow 

longest paths than in BFSe and SMe. In the KE dataset, stop messages do not reduce the number of messages. In the 

case of the movielens dataset, the usage of stop messages shows some benefits, although in the case of QW-SM there 

are some effort values where the number of messages goes over the steady value of the number of messages. In this 

scenario, BFSe shows faster convergence, while SMe shows the slowest convergence. 

Fig. 12 (a), (b) and (c), shows the number of relevant answers for the KE dataset with χ = {.95, .85, .5} 

respectively. We can observe than BFSe and SMe follow a same behaviour. In the cases of QW and QW-SM, in the 

initial values, QW-SM obtains few more answers, but with χ = {.90, .85} QW shows faster convergence. 

Fig. 12 (d), (e) and (f), shows the number of relevant answers for the movielens dataset, with {.95, .75, .45} 

respectively. In this scenario, we can see that the behaviour of QW is equivalent to QW-SM, while BFSe is equivalent 

to SMe. Also, it is possible to observe that the QW and QW-SM converge faster, yet the convergence gap of QW (and 

QW-SM) and BFSe and SMe get narrower when χ is being decreased (from very high to medium values) so that in 

Fig. 12 (f) (for medium χ) the convergence behaviours are nearly equivalent for all configurations. 

In Fig. 11 (b) and Fig. 12 (d, e, f) corresponding to the movielens dataset, we can clearly appreciate that the recall 

and the number of messages belong to a saturated growth model. 

 

 

 

 

 

 

 

 

 

 
 

 

Fig 11. Number of messages in function of effort. For the KE dataset (a) and movielens dataset (b). 
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Fig. 12. Recall (y-axis) in function of effort (x-axis) for the KE dataset (a) (b) and (c) with χ of .95, .85 and .5 respectively, and for 

the movielens dataset (d), (e) and (f) with χ of .95, .75 and .45 respectively. 
 

Considering that we want to obtain a good recall, let us consider it good a recall of at least 75%; the following  

configurations hit that figure of recalls:  

• KE dataset: BFSe and SMe obtain it (the good recall) with an effort of 8*10
5
. QW-SM obtains it at  

efforts of {1.66*10
4
, 10

5
, 1.6*10

6
} with a χ of .95, .85 and .5 respectively, and QW obtains it with efforts 

of 2.5*10
4
 with a χ of .95 and .85, while it needs an effort of 8*10

5
 to achieve it with a χ of .5. 

• Movielens dataset: BFSe and SMe obtain it with an effort of 4.1*10
6
 for the 3 values of χ, while QW and 

QW-SM depend of χ, they obtain it with efforts of 2.56*10
5
, 5.12*10

5
 and 4.1*10

6
 with a χ of .95, .75 

and .45 respectively.  

 

For better explaining the relation between the number of relevant answers found in comparison to the number of 

messages with the purpose of comparing the configurations, we approximate the relation between the recall and the 

number of messages as a saturated growth model (Eq. 14), where τ is the time constant and � the saturated (or final) 

value of � in function of t. 

�	(?) = �(1 − e��/�	) (14) 

 

This approximation works well for the recall in function of the number of messages, except for the tail and head 

of the function; the most relevant behaviour is approximated with Eq. 15, inspired by [27]. 
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�	(�) = 1 − e��/�	 (15) 

Where: 

• � is the number of messages. 

• r is the recall estimated model. It must converge to 100%. 
• B is the constant that represents the recall model convergence, and it will be referred to as the 

number of messages constant. It has the property that � = (1 − 	��) ⋍ .632 at m=	B that indicates 

that with B messages we obtain a recall of .632. Dividing the B of the several configurations we can 

obtain how many times more messages a configuration needs to obtain a same recall r compared to 

the other configurations. 

 

We used the method of Newton-Rapshon to obtain the τ of the regression model for Eq. 15 that minimizes the 

sum or squared error (S) of the real and the modelled recalls. The results of the τ of the 4 configurations (BFSe, QW, 

SMe, QW-SM) at the 3 scenarios (very high, high, and medium χ) and 2 datasets (KE and movielens) are shown in 

Table 4. 

 
Table 4. 

 τ and sum of squared error (S) for each configuration in function of χ and dataset. 
  KE dataset movielens dataset 

  χ =.95 χ =.85 χ =.5 
 

χ =.95 χ =.75 χ =.45 
 

BFSe 

 
B	(�10�) 

S 
 

1.84 1.85 1.83 

.00621 .00680 .00637 
 

111.11 109.26 101.59 

.0521 .0516 .0538 
 

QW 

 
B	(�10�) 

S 
 

1.17 1.35 2.22 

.222 .305 .282 
 

35.25 40.12 66.16 

.0306 .0316 .0317 
 

SMe 

 
B	(�10�) 

S 
 

2.11 2.13 2.11 

.0107 .0118 .0111 
 

71.46 65.9 70.4 

.00612 .00654 .00625 
 

QW-SM 

 
B	(�10�) 

S 
 

1.03 1.76 3.8 

.0483 .0423 .0686 
 

29.3 33.56  56.73 

.0246 .0224 .0199 
 

 

The models corresponding τ of Table 4 are shown on Fig. 13. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 13. Modelled recall (y-axis) in function of number of messages (x-axis). For KE dataset ((a), (b) and (c)) and movielens dataset 

((c), (d) and (e)), with different χ values. 

 

In Table 5 we show the quotient q of the τ of pairs of configurations. Quotient q = τi/τj means that configuration i 

hits a same recall in q times the number of messages of configuration j, thus the lower q the lower number of messages 

are necessary for configuration i to converge compared to configuration j. We can observe that, in the KE dataset 

scenarios of χ={.95, .85}, QW needs the least number of messages to provide a same number of relevant answers (that 

is it has the lowest τ and the lowest quotient q), and that SMe is the configuration that needs to use more messages to 

provide the same number of relevant answers; in the other hand with χ=.85 BFS needs fewer messages to provide the 

same number of relevant answers.  

Observing the outputs of the movielens dataset, we can observe that with all χ values the quotient of τ (QW-SM) 

divided by the τ of the other configurations is the lowest, thus QW-SM requires lesser messages to provide a same 

number of relevant answers than the other configurations. However, this advantage diminishes when the χ is 

decreased; this is due to the effect of σ, because in QW the answers arrive sorted by relevance and the agents decide 

that they do not need more answers sooner that in consequence the agents are satisfied with lower recall.  
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Table 5. 

Quotient between the τ of the different configurations in function of the χ and dataset. 
 KE dataset  movielens dataset 

 

 

χ =.95 

 

quotient BFSe QW SMe QW-SM 

BFSe 1 1.57 .871 1.79 

QW .637 1 .555 1.14 

SMe 1.15 1.8 1 2.06 

QW-SM .56 .877 .487 1 
 

 

 

χ =.95 

 

quotient BFSe QW SMe QW-SM 

BFSe 1 3.15 1.56 3.79 

QW .317 1 .493 1.2 

SMe .643 2.03 1 2.44 

QW-SM .264 .831 .410 1 
 

 

 

χ =.85 

 

quotient BFSe QW SMe QW-SM 

BFSe 1 1.37 .87 1.05 

QW .732 1 .637 .771 

SMe 1.15 1.57 1 1.21 

QW-SM .949 1.3 .825 1 
 

 

 

χ =.75 

 

quotient BFSe QW SMe QW-SM 

BFSe 1 2.72 1.55 3.26 

QW .367 1 .57 1.2 

SMe .644 1.76 1 2.1 

QW-SM .307 .837 .477 1 
 

 

 

χ =.5 

quotient BFSe QW SMe QW-SM 

BFSe 1 .827 .869 .483 

QW 1.21 1 1.05 .584 

SMe 1.15 0.951 1 .556 

QW-SM 2.07 1.712 1.8 1 
 

 

 

χ =.45 

 

quotient BFSe QW SMe QW-SM 

BFSe 1 1.54 1.54 1.79 

QW .651 1 1 1.17 

SMe .649 1 1 1.16 

QW-SM .558 .857 .861 1 
 

 

A new measure has to be analysed for engineering reasons: Precision. It is easier and more practical to be 

measured than recall. Recall is in fact only measurable in simulation. Precision is measured as the fulfilment out of a 

window of answers. We took a window size of 3 answers. The results obtained shown in Fig. 14; (a) and (b) are the 

proportion for the KE dataset with χ={.95, .85} respectively while (c) and (d) are the values for the movielens dataset 

with χ={.95,.45} respectively. In all cases, QW and QW-SM show lower quotient than BFSe and SMe; the 

explanation is that with BFSe and SMe the answers do not come sorted by relevance, as it does happen with QW and 

QW-SM. In the KE dataset, we can see that stop messages help to increase this proportion while using QW, although 

that the convergence value is the same. 

 

 

 

 
 
Fig. 14. Precision (in a window size of n=3) in function of effort for KE dataset ((a) and (b), with χ=.95 and χ=.85 respectively) and 

movielens dataset ((c) and (d) with a χ=.95 and χ=.45 respectively). 
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Considering Fig. 14, the best performance of KE dataset is achieved by QW-SM with an effort of 10
4
, while in the 

movielens dataset it is achieved by QW and QW-SM with an effort of 10
5 

when χ is .45 and with and effort of 4*10
6
 

when χ is .95. 

QW and QW-SM results can be modelled using Eq. 14 resulting into a B (which is the effort constant) of 2.77*10
3
 

when χ is .45 and a B of 5.35*10
3
 for χ is .95.  While the precision obtained by algorithms as BFSe and SMe does not 

depend on E’, QW and QW-SM increase the precision obtained when the effort is increased until saturation of the 

precision is gotten. Furthermore, it is important to consider that for χ=.95 there are only 4,006 relevant answers in total 

available for the 19,463 questions; in case of χ=.45 there are 105,514 relevant answers available in total. 

 

5. Conclusions and Future Work 

Although Travers and Milgram [34] showed that it is feasible to reach a node using unicast query-routing 

algorithms, there is high probability that a message may be dropped before the message reaches its destination. 

Banerjee and Basu [3] developed a probability model that takes into account the probability that a message is 

answered using unicast query routing, considering that each node has enough expertise to answer the question but also 

some probability of dropping the question. Several P2P systems use multicast query routing, in which a question is 

sent to many contacts instead of sending it to one acquaintance at a time. Although the probability of obtaining an 

answer is increased with multicast query routing, there are more nodes requested, and as a consequence, system 

scalability can be threatened.  

Several state-of-the-art techniques have been proposed to reduce the number of messages generated by multicast 

query-routing algorithms. For example, the usage of time to live (TTL) limits the number of hops for a given question. 

Recently, in [38], we proposed Asknext, an agent protocol for social search that uses stop messages. Using stop 

messages allows flooding to be stopped at the same number of hops at which the answer that satisfies the question is 

found. With these two techniques (TTL and stop messages), the best answer that is present somewhere in the network 

is not found due to being out of the distance or time range set in the search process.  

In this paper, we presented Question Waves (QW). QW generates several attempts (waves) to find the 

information needed. Initially, agents send the question to their acquaintances with the highest probability of providing 

a good answer, i.e., a subset of their contact list. If, after some time, there is no satisfying answer, then the agents send 

the request to the next best contacts on the list. With QW, the answer relevance is correlated with the answer arrival 

order. This feature is key for stopping the search process with a lower probability of losing answers that are more 

relevant than the received ones. Furthermore, the process can save user’s time because users can read the answers as 

they come, and the first answers are the most likely to be the relevant ones. Finally, the number of messages generated 

by QW is fewer than those generated by other methods, such as Asknext, yet even better relevance is achieved.   

With QW inspired from physical waves, we used the ideas of effort to answer a question, effort distribution 

among acquaintances, effort that is dissipated when it is propagated to other agents due to friction, different speeds to 

send question messages to several acquaintances, and constructive and destructive interferences, which modify the 

effort that an agent uses to search for answers.  

These ideas can be implemented with continuous or piecewise functions. We implemented and used them in two 

types of simulations. The first type of simulation consisted of using randomly generated knowledge bases (KE dataset) 

in which all of the agents were able to answer all of the questions but with different relevance due to their expertise, as 

a type of social question answering. In this set of simulations, we used 2 social networks with 100 agents, 495 and 395 

links, .521 and .386 clustering coefficients, and .0736 and .0568 assortativity coefficients, respectively. The objective 

of this type of simulation was to show that it is possible to obtain answers ranked by their arrival time by using only 

local information (as in a P2P environment). We obtained as a best correlation .953, which is a high value for using 

local information; this value is clearly higher than the correlation of answer quality with the reputation of the mediator 

or the transitive reputation, which were the highest reputations of .133 and .776, respectively. A second objective was 

to determine the answer relevance when the search process was stopped. When a search is stopped with fewer 

answers, the correlation with time is lower, but the mean answer quality is higher. We consider the trust model we 



 

 

used in this experiment as the main reason for this decrease of correlation coefficients; there is not enough 

discrimination between answerers of high expertise and the usage of random values to compute the answer relevance, 

which may affect when they have similar expertise values. This set of simulations can be seen as the application of 

QW in a social answering system. In summary, the highest correlation is achieved by using QW with long answering 

sets, although even in small answering sets, the correlation is high enough to consider that the first answers are the 

most relevant. 

The second type of simulation was in the context of recommender systems and consisted of using data from 

movielens, a highly reputable and widely used movie-recommender dataset. The contribution of this type of 

simulation is a step forward with real data in the experimentation with the aim of showing that the method can be 

applicable in a real domain: recommender systems can be seen as a kind of social search system, concretely a social 

feedback system [10]. The movielens dataset does not include a social network; thus, with the aim to simulate QW, we 

created 2 social networks of 387 agents out of the movielens dataset, with 3,089 and 1,933 links each one and the 

following features of every network: .53 and .515 clustering coefficients and .0401 and .0277 assortativity 

coefficients, respectively. The objective of these simulations was to show that the QW method can generate a smaller 

number of messages than other algorithms applied in P2P social networks, and the answer quality is even higher. 

Because we are using data from a recommender system, we understand that the answers of higher quality are those 

with lower prediction errors (MAE and MSE). The results demonstrate that the system uses fewer messages than 

Asknext, and the answer quality is higher. We also compared the correlation of the answer quality with the arrival 

time, and it was comparable with the correlation of the answer quality with answerer similarity (approximately .6), on 

which the agents’ behaviour is based. This set of simulations can be considered an appropriate application of QW in a 

social feedback system. 

Finally, in Subsection 4.3 we studied the recall and the precision in a window of the 3 first answers per question, 

in function of the initial effort. The simulation results show that to achieve a target recall, QW needs less effort than 

BFSe (BFS with usage of effort) and SMe (using SM with effort); this behaviour is accentuated for more strict 

classifications of relevant items. We modelled the relation of recall and number of messages as a saturated growth 

model, obtaining that QW-SM needs approximately 3 times less messages to obtain the same recall than BFSe and 

approximately 2 times less messages than SMe (for χ =.75 or higher with the movielens dataset). About precision, 

considering the first three answers per question, in movielens dataset, considering QW and QW-SM reach 3.5 times 

higher precision than BFSe and SMe; and at the initial values (E’=10
3
) the precision is at least 2 times higher with 

QW. 

In future efforts, we think that it would be interesting to study the effects of small-world network topology 

characteristics in the scalability and correlation (or correctness) of answers because these factors can have a 

considerable impact and may affect the design of functions. Extracting which network features contribute to higher 

scalability, speediness of relevant answers or higher correlation with answer arrival and answer relevance can help to 

create local methods to modify the network dynamically to obtain these objectives. We also believe that allowing 

agents to modify their contact list would improve the correlations because the agents will be able to correct some 

shortcomings of the arrival order of the answers. The trust model is the base of QW, and studying the effect of 

different trust models can be interesting. A better understanding of the effects of trust models may help to implement 

an adaptable delay of the question time. Because the agents are autonomous, each one can have different 

implementations of the functions of the model and can adapt them based on interactions, and an interesting future 

work would be to study the behaviour of agents with heterogeneous behaviours. Also, studying question-message 

propagation in an epidemic model could be interesting. Additionally, once the benefits of the algorithm have been 

shown, it is needed to use a more complete and real dataset that include natural language processing, a dataset like that 

can be extracted from Quora, Twitter, etc.  Finally, it would be interesting compare QW results with traditional search 

systems as search engines and Q&A portals.  
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