
 
 
 
 
 
 

CASE-BASED DIAGNOSIS OF BATCH PROCESSES 
BASED ON LATENT STRUCTURES 

 
 
 

Xavier BERJAGA MOLINÉ 
 
 
 

Dipòsit legal: Gi. 1713-2013 
http://hdl.handle.net/10803/126303   

 
 

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets 
de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials 
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual 
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En 
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la 
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació 
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc 
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de 
drets afecta tant als continguts de la tesi com als seus resums i índexs. 
 
 
ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los 
derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en 
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto 
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización 
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá 
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se 
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación 
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una 
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como 
a sus resúmenes e índices. 
 
 
WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It 
can be used for reference or private study, as well as research and learning activities or materials in the 
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and 
previous authorization of the author is required for any other uses. In any case, when using its content, full 
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit 
use or public communication from outside TDX service is not allowed. Presentation of its content in a window 
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis 
and its abstracts and indexes. 

http://hdl.handle.net/10803/126303


PhD Thesis 

Xavier Berjaga Moliné 

2013 

Case-based diagnosis of 
batch processes based on 
latent structures 



DOCTORAL THESIS

Case-based diagnosis of batch

processes based on latent

structures

Xavier Berjaga Moliné
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Resum

L’objectiu d’aquesta tesi és la de presentar un mètode automàtic per al mon-

itoratge dels processos per lots basat en la combinació de models estad́ıstics

i mètodes d’aprenentatge automàtic. El primer s’utilitza per modelar el

procés mitjanant les relacions ms significatives entre les variables mesurades

al llarg del temps, mentre que el segon s’utilitza per millorar la capacitat de

diagnosi del sistema. Els mètodes estad́ıstics no relacionen una observació

amb falla amb l’origen d’aquesta (només llisten el subconjunt de variables

què han vist alterat el seu comportament) al mateix temps que no tenen

capacitat d’aprenentatge. El fet d’utilitzar raonament basat en casos per a

la diagnosi permet relacionar les observacions amb falla amb informació més

significativa (com seria la causa de la falla). Els models estad́ıstics també

proporcionen una nova representació de les observacions, en una base or-

togonal, que facilita l’aplicabilitat dels mètodes basats en distàncies del

raonament basat en casos, tot millorant-ne els resultats obtinguts.

La informació provëıda de projectar sobre el model estad́ıstic s’ha util-

itzat per definir vëınatges significatius per al monitoratge de processos per

lots. Tanmateix, s’han definit nous mètodes per minimitzar l’efecte de les

instàncies “sorolloses” a l’hora de reutilitzar la informaci recuperada de

casos anteriors, aix́ı com procediments per minimitzar la base de casos tot

mantenint la seva eficàcia. Amb aquest objectiu en ment, tota la informació

relativa a un lot (configuració del procés, variables observades, etapes del

procés, entre altres), mesures al llarg del temps i la informació relacionada

amb el seu diagnosi (origen de la falla, direcció de falla, accions correc-

tives, etc.) s’han fet servir per caracteritzar el lot com a un cas, els quals

s’agrupen posteriorment en la base de casos per futures diagnosis.

Per tal de provar la metodologia, s’han desenvolupat dues aplicacions difer-

ents (depuració d’aigües i màquines d’injecció en motlles) basades en la
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metodologia proposada. La metodologia s’ha aplicat tant “o↵-line” com

dins de la cadena de producció (un cop finalitzat el lot), obtenint molt bons

resultats en ambdós casos. Per una banda, la metodologia ha permès iden-

tificar la variable i l’etapa del procés en les què s’observa millor la diferència

de granularitat en un reactor seqüencial per càrregues en el procés de depu-

ració d’aigües, mentre que per l’altra banda, la metodologia ha permès

relacionar cadascuna de les peces injectades amb el seu defecte aix́ı com les

contramesures per corregir futures aparicions dels defectes.

Paraules clau: monitoratge de processos per lots, anàlisi de components

principals, raonament basat en casos, diagnosi basada en casos, plantes de

depuració d’aigües, procés d’injecció en motlles.
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Resumen

El objetivo de esta tesis es la de presentar un método automático para la

monitorización de procesos por lotes basado en la combinación de modelos

estad́ısticos y métodos de aprendizaje automático. El primero se utiliza

para modelar el proceso mediante las relaciones más significativas entre las

variables medidas a lo largo del tiempo, mientras que el segundo se uti-

liza para mejorar la capacidad de diagnóstico del sistema. Los métodos

estad́ısticos no relacionan los fallos con su causa ráız (sólo listan el subcon-

junto de variables cuyo comportamiento se ha visto alterado por la aparición

del fallo), aśı como no poseen capacidad de aprendizaje. El hecho de usar

el razonamiento basado en casos para el diagnóstico permite relacionar las

observaciones con fallo con información más significativa (como puede ser

su causa). Los modelos estad́ısticos también proporicionan una nueva rep-

resentación de las observaciones, en una base orotogonal, que facilita la

aplicabilidad de los métodos basados en distancia del razonamiento basado

en casos, presentando unos mejores resultados.

La información proporcionada por la proyección sobre el modelo estad́ıstico

se ha utilizado para definir vecindarios significativos para la monitorización

de procesos por lotes. Asimismo, se han definido nuevos métodos para

minimizar el impacto de los casos “ruidosos” a la hora de reutilizar la in-

formación recuperada de los casos anteriores, aśı como procedimientos para

minimizar la base de casos sin alterar su eficacia. Con este objetivo en

mente, toda la información asociada a un lote (configuración del proceso,

variables medidas, etapas del proceso, entre otros), tomadas a lo largo del

tiempo y la información relacionda con el diagnóstico del lote (causa ráız

del fallo, dirección de fallo, acciones correctivas, etc.) se utilizan para su

caracterización como caso, que luego se agrupan en la base de casos para

futuros diagnósticos.
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Con el fin de probar la metodoloǵıa, se han desarrollado dos aplicaciones

diferentes (depuración de aguas y máquinas de inyección en moldes) basadas

en la metodoloǵıa propuesta. La metodoloǵıa se ha aplicado tanto “o↵-line”

como dentro de la ĺınea de producción (una vez finalizado el lote) obteniendo

muy buenos resultados en los dos campos. Por un lado, la metodoloǵıa ha

permitido determinar la variable y etapa del proceso que permite diferen-

ciar mejor entre los dos grados de granularidad de un reactor secuencial por

cargas en el campo de depuración de aguas, mientras que por otro lado,

la metodoloǵıa permite relacionar cada una de las piezas inyectadas con su

defecto, aśı como las medidas correctivas para evitar su futura aparición.

Palabras clave: monitorización de procesos por lotes, análisis de compo-

nentes principales, razonamiento basado en casos, diagnosis basa en casos,

plantas de depuración de aguas, proceso de inyección por moldes.
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Abstract

The aim of this thesis is to present a methodological approach for the au-

tomatic monitoring of batch processes based on a combination of statistical

models and machine learning methods. The former is used to model the

process based on the relationships among the di↵erent monitored variables

throughout time, while the latter is used to improve the diagnosis capabili-

ties of the system. Statistical methods do not relate faulty observations with

its root cause (they only list the subset of variables whose behaviour has

been altered) and they lack of learning capabilities. By using case-based

reasoning (CBR) for the diagnosis, faulty observations can be associated

with more significant information (like causes). Statistical models also pro-

vide a new representation of the observations, on an orthogonal basis, that

improves the use of the distance-based approaches of the CBR, giving a

better performance.

The information provided by projecting on the statistical model has been

used to define neighbourhoods meaningful for batch process monitoring.

Additionally, new methods for reusing the information retrieved from pre-

vious experiences were defined such that the influence of “noisy” instances

was minimised, as well as a new procedure to maintain the case pool to a

minimum, while keeping its performance. In order to do so, all the informa-

tion related to a batch (process configuration, measured variables, stages

of the process, among others), measurements along time and information

related to its diagnosis (root cause of the fault, fault direction, actions to

correct the misbehaviour, etc.) are used to characterise the batch as a case,

and grouped in a case base to diagnose future observations.

In order to test the methodology, two di↵erent application examples (wastew-

ater treatment plants and injection moulding machines) have been devel-

oped based on the proposed methodology. Both o↵-line and real-time release

xxv



(at the end of the batch) applications for both fields have been carried out,

obtaining good results for both approaches. On the one hand, the method-

ology permitted the identification of the variables and stages for which the

granulation change in a sequencing batch reactor was most observable for

wastewater treatment plants; while on the other hand, the application per-

mitted the traceability of all injected parts, while indicating the defect found

on the piece (fault-free, sink marks, flashes or locally oversize) and indicate

possible countermeasures to correct these defects.

Keywords: batch process monitoring, principal component analysis, case-

based reasoning, case-based diagnosis, wastewater treatment plants, injec-

tion moulding process.
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Introduction

This thesis summarizes the e↵ort of combining statistical and case based reasoning

methods for fault diagnosis purposes of batch processes. Both fields are mature areas

with large number of applications and methodological refinements to deal with fault

detection and diagnosis under di↵erent assumptions. Thus, main contribution reported

in the thesis is on defining a formal framework to build hybrid solutions that exploit

modeling capabilities of multivariate statistical methods and at the same time the

representativeness of isolated observations collected during abnormal, faulty or simply

significant situations useful for supervision purposes. The thesis aims to provide a for-

mal methodology but at the same time it is strongly oriented to real world applications.

This chapter introduces the main motivations, objectives and background of the

work thesis, as well as it outlines the main contributions of the chapters.

1.1 Introduction: General approach for data driven pro-

cess supervision

Process supervision is the set of tasks oriented to guarantee the operation of processes,

even under the presence of faults (fault tolerant). This means that, in a general senses,

a supervision system is capable to assess the process behaviour, detect faults, diagnose

them and propose reconfiguration actions. This thesis focuses on fault diagnosis in

a general sense. Formally, fault diagnosis is the ask that follows fault detection and

consists in inferring information useful to isolate (locate) and identify (quantify) faults

1



1. INTRODUCTION

using some logical procedure to analyse discrepancies between observed data and the

process model. In this thesis, a data driven approach is followed, so process models are

not describing physical laws but data relations, but at the same time we can exploit

additional information contained in the historical registers, useful to classify or di↵eren-

tiate faults according to some simple description related to causes or origin for instance.

Thus, we consider diagnosis tasks as the capability to infer information related to fault

location (a↵ected component/s, fault direction, fault isolation), identification (magni-

tude or quantification of the fault) and origin (identification of possible causes).

Fault detection and diagnosis is strongly dependent on the a priori knowledge avail-

able (Venkatasubramanian et al., 2003c). This usually consists of a description of the

normal operating conditions (NOC) and some additional information useful to guide

analysis of inconsistent observations given by abnormal operating conditions (AOC) .

Depending on the available knowledge to describe the normal operating conditions, the

fault diagnosis techniques can be divided into two groups: model-based (physical mod-

els, from first principles) methodologies and process history, also known as data-driven

methods or model-free methods (Milne, 1987). At the same time, the model-based

approach can be divided into qualitative and quantitative. Qualitative models are

high level models that describe the influence among variables (causality for example).

For example, they can describe functions and/or structural properties of the systems.

On the other hand, the quantitative models rely on mathematical relationships, typi-

cally mathematical equations describing the process with ordinary di↵erential equations

(ODE) and algebraic relationships representing system dynamics, physical behaviours

or simply mass or energy balances. Figure 1.1 represents this classification, and de-

rived approaches. For a brief introduction to each method and further references follow

Venkatasubramanian et al. (2003c), Venkatasubramanian et al. (2003a) and Venkata-

subramanian et al. (2003b).

This work focuses on batch processes; these usually have complex dynamics con-

ducted by a “recipe”that drives the production of a finite quantity of end product

by combining and processing finite quantities of raw material. Typically, batch pro-

cesses operate at several working points and conditions according to the recipe, and the

representative variables usually experience characteristic non-linear trajectories whose

2



1.1 Introduction: General approach for data driven process supervision

Figure 1.1: Classification of diagnosis methodologies according to the a priori knowledge

strategy

evolution has a direct cause-e↵ect with the quality of the final product. Batch process

are common in the chemical and pharmaceutical industry (autoclaves, reactors) but

they can also be found in the manufacturing (e.g. injection, assembling, etc.) and

food industry (ovens, breweries, driers, etc.). Usually, di↵erent phases can be distin-

guished in the operation of a batch process and product evolution depends on the

final conditions reached at the previous stage and on characteristics of input materials.

This dependency on not always observable conditions (input materials and intermedi-

ate states) and presence of non linear behaviours makes di�cult to obtain analytical

models, based on first principles, useful for supervision tasks (Yao and Gao, 2009).

Therefore, data-driven methods based on historical data have been used to model their

normal operating conditions, especially by means of multiway principal component

analysis (MPCA) (Nomikos and MacGregor, 1994, 1995b). The general scheme when

using data-driven methods for process monitoring is depicted in Figure 1.2.

As it can be seen in Figure 1.2, process monitoring based on data-driven meth-

ods, and consequently also statistical methods, is divided into two main stages: model

building, performed o↵-line using historical data collected during normal operating

conditions; and, the on line exploitation of such a model for fault detection and diag-

nosis purposes. Di↵erent approaches can be used to build the model, the goal is to

identify and relations among observed variables during normal operating conditions.

In this work we selected multivariate statistical methods because they provide a solid

theoretical background and at the same time they have been proved to perform quite

3



1. INTRODUCTION

Figure 1.2: General scheme for data-driven process monitoring

well with real processes (statistical process control). Control charts based on statistics

representing the normal operating conditions are simple plots of some statistics that

represents process evolution and allows to detect deviations from the model (fault detec-

tion) and to identify the variables responsible for that (fault diagnosis) (Woodall, 2000).

Common tasks when following a data driven strategy follow the Data Mining ap-

proach. So, the data set used to build or train the model usually known as training set,

is submitted to a cleansing process in order to remove outliers, corrupted and blank

data or other wrong and non representative observations. Pretreatment also includes

data transformation oriented to remove non-linearities and enhance the significance of

the features. Multivariate statistical methods usually apply a centring (zero mean) and

scaling preprocessing (unit variance) to the observations.

Once the data has been pre-treated, an initial model of the process is built and val-

idated. Usually a testing data set with a known distribution is used for that purpose.

The objective is to check both the capabilities to detect faults and recognise normal

operating conditions. Performance indices as false alarms/missed detections ratios, ac-

curacy or the receiver operating curve (ROC) are used to evaluate the quality of the

model for the pursuit objective. This o↵-line analysis may pinpoint discrepancies in

the observations collected during normal operating conditions due to previous process

4
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Figure 1.3: Three-dimension data matrix associated with historical records of batch

processes

misbehaviours (not always known a priori), as well as it improves the process under-

standing and the inherent relationships between measured variables, causes of faults or

the quality of the “product” being produced (Ferrer, 2007).

After the validation of the obtained model (from data), the resulting model can

be applied on-line (while the process operates) to detect misbehaviours or deviations

on the process operation or in the quality of the product. This new stage is usually

referred as on-line monitoring. Discrepancies between the model, obtained with histor-

ical data, and the current state of the process alerts of a possible misbehaviour on the

process operation due to components (sensors, actuators, devices machines), materials

(di↵erent quality of raw material, mixing proportions, etc.) or interaction among them.

As stated before, batches vary along a finite time according to the “recipe” driving

the process. Therefore, batch monitoring extends for periods of time that depends on

the “recipe” along the batch cycle. As a result, historical records of batches are usually

represented using three-dimensional matrices as depicted in Figure 1.3.

In this work, we propose the combination of multivariate statistical methods, to per-

form fault detection, with a case based reasoning strategy to improve diagnosis based

on past experiences and give learning capacities to the advanced monitoring system for

batch processes.

This thesis formalises in a single framework the results of a research line in the

eXiT group at the Universitat de Girona (UdG) and it is funded on previous works

developed on the Ph. D. Thesis (Ruiz, 2008) that explored the applicability of the com-
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1. INTRODUCTION

bination of MPCA and case-based reasoning (CBR) to improve diagnosis performance

of a sequencing batch reactor (SBR) , and two Master Thesis that further developed

this procedure (Berjaga, 2008; Burgas, 2013) and contribute to support the formalism

presented in this thesis by means of a Matlab Toolbox implementing the required al-

gorithms. With respect these previous works, this thesis contributes in the following

aspects:

• The neighbourhood concept has been formalised using latent structures. This

formalisation is consistent with previous works in the field and with Ruiz (2008),

as well. Additionally, it has been related to the fault direction concept, allowing

to diagnose faults in batch processes based on a similarity concept. The di↵erent

retrieve criteria and neighbourhoods are formulated in section 3.3 in chapter 3.

• New reuse procedures based on latent structures have been defined with the

purpose of overcoming the limitations of the simple voting procedure initially

proposed in Ruiz (2008). These methods are detailed in section 3.4 in chapter 3.

• A new update policy to retain cases has been defined. It has a lower computa-

tional cost than traditional strategies such as decremental reduction optimisation

procedure 4 (DROP4) or instance-based learner 3 (IB3). Further details in all

these methods can be found in section 3.6 in chapter 3. Additionally, Appendix B

compares the computation time for all methods detailed in this thesis to demon-

strate the lower computation time of the proposed algorithm.

• n-Fold Cross-Validation is proposed in the validation step in order to take ad-

vantage of all available batch processes for training and testing purposes. Addi-

tionally, the methodology performance evaluation is now based on the confusion

matrix and its associated statistics. This also allows us to identify the best con-

figuration of the CBR using the area under the receiver operating curve (AUC).

Details of all these methods and procedures can be found in section 3.5 in chapter

3.

• Di↵erent domains for validation purposes have been indtroduced. Injection mould-

ing machines have been used to test the generality of the methodology. Further

details of the results in this domain can be found in chapter 5. Additionally, the
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1.2 Motivation of the work: improving multivariate statistical methods

principles used to build statistical models of batch processes have been applied

to finite duration processes (such as voltage sags or to locate the impact location

in a commercial flap wing). However, these results have not been included in this

thesis is focused in batch processes. Further details regarding this point can be

found in section 2.5 in chapter 2.

1.2 Motivation of the work: improving multivariate sta-

tistical methods

As stated in the previous section, batch processes present a series of characteristics not

found in continuous processes, such as di↵erent variable relations depending on the stage

the process is in, di↵erent duration based on some indicator variable, non-linearities,

etc. As a result, conventional data-driven methods cannot be directly applied to his-

torical records of batches. Given the great importance of batch processes in industry,

several works discussed the way to adapt traditional multivariate statistical methods

to monitor batch processes, such as Lohmöller and Wold (1980), Wold et al. (1987),

Geladi (1989) or Smilde and Doornbos (1991). However, the procedure devised by

Nomikos and MacGregor in Nomikos and MacGregor (1994) for batch process moni-

toring was the one that caught the practitioners eye: multiway principal component

analysis (MPCA) . The basis of this procedure of this method are detailed in chapter

2, but it presents a series of limitations that are the constant focus of research.

The main problem of using only statistical methods makes di�cult to develop e�-

cient strategies for diagnosis. Thus, diagnosis is reduced to strategies oriented to infer

the most probable variables that explain a faulty situation (Kourti, 2005). Because in

most cases this information is insu�cient to determine the fault a↵ecting the process

(several faults can a↵ect the same subset of variables), additional procedures are re-

quired for this task. On the one hand, clustering techniques such as k-means can be

applied to group observations into di↵erent clusters (either in the projection or residual

subspaces), and then relate the misbehaviours with their root cause like in Ding and He

(2004) and Napoleon and Pavalakodi (2011). On the other hand, series of observations

with the same misbehaviour can be used to estimate the fault direction inherent to the

fault as in Valle et al. (2001). However, both approaches require a su�ciently large and
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1. INTRODUCTION

rich set of faulty observations for each fault to diagnose, which is not the usual case

when monitoring within the production line.

To overcome this limitation in the number of observations available for any given

faulty situation to diagnose, this thesis proposes a combination of multiway principal

component analysis (MPCA) and case-based reasoning (CBR) , denoted as case-based

diagnosis (CBD) for the automatic diagnosis of batch processes. MPCA is used to

model the normal operating conditions of the batch process, while CBR is used to ei-

ther relate the di↵erent faulty observations with their root or to track the operating

point of the process. Moreover, the inherent reasoning procedure behind the CBR (new

problems are solved based on solutions previously known) facilitates the interaction be-

tween the monitoring procedure and the process operator, because it can indicate the

steps followed in previous situations to solve the current problem. Note that in order

to do so, the aid of process experts is required in order to identify the root cause of the

defective product with the batch measurements.

Regarding the interactions between both procedures, note that the information pro-

vided by MPCA is used to characterise the cases (representation of a problem and its

solution: a diagnosed batch) in the CBR. More specifically, MPCA provides uncorre-

lated attributes (scores) to the CBR, which is enough to guarantee that adding new

attributes adds new information, as well as to grants a simpler implementation and a

good performance (Jakulin and Bratko, 2003). On the other hand, the CBR reduces

the necessity for a large number of examples since the case base can help identify rare

situations (with few examples). Therefore, this methodology first, builds a statistical

model of the process studied; and then the CBR is used as the diagnosis tool.

1.3 Objectives

The final objective of this thesis is to develop a general methodology for the diagnosis of

batch processes based on the combination of multivariate statistical methods and case

based reasoning (CBR). Multivariate statistical model built on the basis of principal
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component analysis will be used for both, fault detection and as a projection tech-

nique to obtain improved case representation. Historical cases (faulty and non-faulty)

projected into the PCA space will be used to implement diagnosis tasks following a

CBR strategy giving and providing (lazy) learning capacities to the monitoring system

(every time a new fault or misbehaviour occurs it can be preserved in the case base,

once diagnosed, for further reuse).

In order to obtain this final goal, the following partial (sub)objectives have been

envisioned to improve the performance of multivariate statistical methods:

• Formalise a representation of cases in the projection space capable to represent

batch process and exploit such representation for diagnosis.

• Define neighbourhoods on the latent structures (principal component space) use-

ful for diagnosis based on similarity principles.

• Reduce the e↵ect of noisy instances when reusing the information extracted from

neighbourhoods based on latent structures.

• Specify new case base maintenance and updating policies to minimise the case

base, while keeping its diagnosis performance.

The methodology has been tested in di↵erent fields to guarantee its generality. Two

main domains, wastewater treatment plants (WWTP) and injection moulding machines

(IMM) have been selected to illustrate the methodology and quantify performance in

this text:

• Waste water treatment plants (WWTP). In this case, the methodology was ap-

plied to predict changes in the behavior on the granularity of the active sludge

with two di↵erent goals. On the one hand, the methodology was used to find the

best set-up for di↵erentiating two granulation states (floccular and granular), as

well as to identify for which variable(s) and process stage(s) this di↵erentiation

was most observable. On the other hand, an on-line application was carried out

for which only a subset of the initial observations was available. Therefore, the

methodology had to detect and learn about the new situation, in this case, a

granulation change. Results presented in this field were partially published in

9
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Berjaga et al. (2013a) and Berjaga et al. (2013b). Additionally, a study indicat-

ing the applicability of the methodology in this field was published in Ruiz et al.

(2011).

• Injection moulding machines (IMM). Like in the previous field, two di↵erent sce-

narios were considered. The first scenario considers an o↵-line monitoring appli-

cation to di↵erentiate between normal operating conditions from four di↵erent

fault causes (early switch-over, no holding pressure, and late switch-over with or

without holding pressure). The objective of the second experiment was oriented

to test the methodology in an a production system. In this case the CBR engine

was in charge of proposing corrections to overcome the diagnosed problem in fur-

ther injections. Additionally, mechanisms to automatically update the statistical

model and case base were added to track the current state of the process and its

performance. Results of the methodology application in this field were partially

published in Berjaga et al. (2008a), Berjaga et al. (2009c), Berjaga et al. (2009a)

and Berjaga et al. (2009b).

1.4 Statistical methods for batch process monitoring: re-

lated work

As stated in section 1.1, data-driven methods are used for batch process monitoring.

And from the di↵erent strategies detailed in Figure 1.1, the statistical branch is the

most used for this purpose. Statistical techniques have been used for process monitor-

ing from the earlies 20’s. A set of tools known as Statistical Process Control (SPC) has

been developed for this purpose. This methodology was firstly introduced by Walter

Shewhart in the 1920s and was based on the usage of SPC control charts to adapt

the management processes (Hare, 2003). This would allow the creation of profitable

situations for both consumers and producers. As time passed, the usage of the SPC

was more than only the application of control charts and eventually became used in

the manufacturing process. This evolution was also reflected in the change of the orig-

inal idea of basing the control limits in economic limits to use the process history to

compute statistical control limits based on the probability of group variations.
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Batch processes present non-linear time variations and working points dependent

on the “recipe” governing the process. Because of this, several measurements have to

be taken along time on batch processes in order to register the evolution of the process

throughout the batch duration. Since the final quality of the product also depends

on the reactions taking place, several variables have to be measured for each sample.

Finally, in order to find the normal operating conditions of the batch process, a histor-

ical pool of batches is required to obtain the expected behaviour of normal operating

condition (NOC) processes. As a consequence, batch processes are represented using

a three-dimensional matrix (batches ⇥ variables ⇥ samples). Considering that tra-

ditional SPC methods, such as principal component analysis (PCA) or partial least

squares (also denoted as projection to latent structures, PLS) were designed to work

with two-dimensional matrices, they cannot be directly applied to monitor and diag-

nose this kind of process. However, Nomikos and MacGregor (1994) and Nomikos and

MacGregor (1995a) developed an extension of these methods to deal with the three-

dimensional matrices associated with batch processes: multiway principal component

analysis (MPCA), also denoted as unfold-PCA, and multiway partial least squares

(MPLS), which is also referred as unfold-PLS, which were later on applied on industrial

batch and semi-batch polymerisation processes, and the development of new method-

ologies such as multiblock extensions of both PCA (MB-PCA) and PLS (MB-PLS) like

the ones reported in Kosanovich and Piovoso (1994), Kourti et al. (1995), MacGre-

gor and Kourti (1995), Nomikos and MacGregor (1995a) and Nomikos and MacGregor

(1995b).

The main points that facilitated the implementation and integration of these meth-

ods can be summarised in the following points described in Kourti (2005):

• The operator has to check a reduced set of control charts (based on the latent

structure that govern the process).

• These control charts are easily interpretable.

• The utilisation of these methods makes possible the early detection of faults since

they look for correlation changes and/or extreme observations that do not follow

the process statistical model, which is not possible to do when using univariate

statistical control methods.
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Because of the information compression inherent to both PCA and PLS (and conse-

quently of their extensions), as well as their visual-oriented process monitoring indices

(further detailed in chapter 2), these methods have been applied in several fields in

the recent years. Some of the fields these techniques have been directly applied with

good results are: wastewater treatment plants (Rosen and Lennox, 2001), (Aguado

et al., 2007), autobody assembly process (Ferrer, 2007), voltage sag relative location

(Khosravi et al., 2008), ceramic industry (Zahid and Sultana, 2009), electronic devices

assembling (Reis and Delgado, 2012), among others.

As the title of this thesis indicates, its main concern is the diagnosis of a batch

processes. As has been indicated in previous sections, and further explained in chapter

2, MPCA models only indicate the subset of variables a↵ected by a certain (detected)

fault. This means that the root cause that triggered the fault is not pointed out, and

thus, additional steps (outside of the model building process) have to be carried out.

Within the literature, two main strategies can be identified: 1) build specific statistical

models capable of relating variables and root causes; or 2) use the information provided

by the MPCA model with other artificial intelligence (AI) methods to relate faults with

the variables they a↵ect. Note that both strategies require a rich and su�ciently large

set of observations for each fault to diagnose. Moreover, we assume that observations

of a given fault misbehave in a similar way (low intra-class variation) and they project

in a di↵erent subspace than other faults and the normal operating conditions (high

inter-class variation).

When building statistical models of the faults, one can take into account the set

of faults to build the statistical model. This is the starting point of the variance of

the reconstruction error method described in Dunia and Qin (1998). More specifically,

this method builds a statistical model capable of detecting and correcting faulty val-

ues associated to any of the known fault directions. This work served as basis of the

work in Alcala and Qin (2009), which guarantees that the resulting statistical model is

tolerant (can operate normally even when certain faults are present) to simple sensor

faults (see section 2.1 for an insight in types of faults). The other option when building

statistical models of the faults is to compare the faulty observations for each fault with

the normal operating conditions of the process. The main idea is to determine which
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variables present the most important variations for a given fault, and thus, relates root

causes (faults) with the variables they a↵ect (the subset of variables whose behaviour

has been mostly modified due to the fault). This is the strategy behind works such as

Cedeño Viteri et al. (2012), which states a new way to estimate the variables a↵ected

by a fault based on the contribution to the T 2 index of the closest in-control neighbour;

or Valle et al. (2001), which determines the subset of faulty variables by using a sin-

gular value decomposition and compare the resulting model with the normal operating

conditions. However, this approach requires the recalibration of the model whenever a

new fault is discovered, since the statistical model takes into account either the projec-

tion of faulty observations into the statistical model (Cedeño Viteri et al., 2012) or are

used to select the variables and number of principal components (Dunia and Qin, 1998).

In cases where new faults can appear throughout the process monitoring, the pre-

vious approach is not a viable option. Because of this, the task of relating faults with

the faulty variables and simplify the fault diagnosis procedure, a viable alternative is

the combination of the information provided by the statistical model with “external”

clustering methods. The idea is that the clustering method will look for a combination

of the information provided by the statistical model such that the diagnosis task is

reduced to a classification problem, and thus, the e↵ects of faults and variables a↵ected

are related indirectly (similar misbehaviours are close in the monitoring space, and thus,

clustering techniques look for this correlation to group them). Based on this princi-

ple, two new methods were devised in order to classify observations in the monitoring

space according to their operating conditions: 1) soft independent modelling of class

analogy (SIMCA) (Wold et al., 1984); and 2) partial least squares with discriminant

analysis (PLS-DA) (Sjöstrom et al., 1985). The former builds a statistical model for

each situation in such a way that the NOC region is defined by the modelled situa-

tion and the AOC region is related to the rest of observations (other faulty or normal

operating conditions). The latter the projection in the monitoring space to guarantee

that observations within a certain operating point are close among them (minimises

the intra-class variability thanks to the PLS) while at the same time separates each

situation from the rest (maximises the inter-class variability due to the discriminant

analysis). Note that both approaches use linear combinations to guarantee this, but

if this is not the case for the current set of observations, then non-linear techniques
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have to be applied for this matter. This was the case for example in Guo et al. (2006),

where a moving window generalised regression neural network (GRNN) was used over

the stage-divide MPCA model to determine the quality at the end of each batch stage

in an injection process. Another example is the one presented in Mujica et al. (2008),

where MPCA and MPLS where combined with a CBR to locate the impact zone in a

commercial flap wing. Hidden Markov models were applied in conjunction with MPCA

in order to track the progress and diagnose any misbehaviours in two benchmarks in

Chen and Chen (2006); and later on in Chen and Jiang (2011) the procedure was ex-

tended for multiphase batch processes.

Since in this thesis the diagnosis relies on the CBR, a hybrid solution capable to

integrate statistical and instance based methods, major information can be contained in

the case representation for diagnosis purposes. Since CBR is a non-linear classification

method, we tackle two problems inherent to fault-dependant statistical models (the

ones that use the set of faults to build the statistical model):

• We can relate faults with the variables they a↵ect even in case of non-linear

relationships, which is a problem when using the set of known faults to build

the statistical model since faults have to be linearly separable in the monitoring

space.

• We do not have to rebuild the statistical model when new faults appear in the

process, contrarily to the fault-dependant statistical models. Moreover, given the

learning capabilities of the CBR, this combination reduces the necessity of large

and representative observation pools for new faults, allowing an earlier detection

and diagnosis than the fault-dependant statistical models.

1.5 Outline of the thesis

This thesis document is organized in six chapters. This first chapter served as an in-

troduction and contained some of the fundamentals of the thesis.

Chapter 2 introduces the basic notions of principal component analysis (PCA) and

its extension to deal with batch processes (MPCA). The chapter serves to introduce the
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background on multivariate statistical process control and revises the state of the art of

batch process monitoring using MPCA. A first approach of using MPCA based solely

on the information provided by sensors installed in an injection moulding machine was

presented in Berjaga et al. (2008a) and will be used to illustrate the characteristics

of batch process and MPCA models. This will be the basis of the diagnosis strat-

egy presented in the following chapter. Additionally, these techniques can be applied

to finite-duration events, i.e. to locate the impact in a commercial flap wing as was

demonstrated in Mujica et al. (2009) and in Ruiz et al. (2013), provided that the data

is organised in a batch-way. Further details on how other processes can be adapted to

work with these methods will be detailed in this chapter.

Chapter 3 introduces the concepts related to case-based reasoning (CBR), and how

it can be combined with the information provided by statistical methods for the mon-

itoring of batch processes. More specifically, this chapter will present several neigh-

bourhoods based on the latent structures and will relate them with several process

monitoring concepts (partially published in Berjaga et al. (2009a) and in Berjaga et al.

(2009b)); and two new reuse procedures are defined to take into account the distri-

bution of batches within the monitoring space (partially published in Berjaga et al.

(2013a) and Berjaga et al. (2013b)). Additionally, these neighbourhoods were also ap-

plied to voltage sags in order to locate their relative origin in Meléndez et al. (2008b),

Meléndez et al. (2008a) and Barrera et al. (2008). Note that although voltage sags

are not batch processes, they are finite-duration events, and based on the principles

depicted in chapter 2, MPCA can be used on them.

Chapter 4 presents the results of applying the CBD methodology to the WWTP

field. Both an o↵-line analysis and on-line application to determine the granulation state

(floccular or granular) of the activated sludge of a sequencing batch reactor (SBR) are

detailed. Additionally, the o↵-line application was also used to indicate the variable(s)

and stage(s) for which the di↵erence between states was most observables. Results in

this field were partially submitted as a journal paper in Berjaga et al. (2013b) and a

conference paper in Berjaga et al. (2013a).
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Chapter 5 details the results of applying the CBD to the IMM field. Again, an

o↵-line analysis of the process and an on-line application are explained, for which the

methodology indicates the final quality of each injected part at the end of the batch.

Additionally, the CBD proposes a series of steps to correct the quality defect for future

injected parts. Results in this field were partially published in (Berjaga et al., 2009b).

Chapter 6 presents the main conclusions and futures applications of this thesis. A

first approximation to the problem of fault reconstruction (one of the future works

detailed in this chapter) was presented in Berjaga et al. (2010), which established the

basis for the application of the methodology into batch processes. Finally, an appendix

explaining the multiway partial least squares with discriminant analysis is included,

which can be used to classify observations based on their projection in the principal

component subspace (PCS) .
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2

Batch process diagnosis based on

latent structures

This chapter presents the basic concepts used for monitoring batch processes using

latent structures (LS). Firstly, the basic concepts associated with process monitoring

are introduced in section 2.1. Then, the fundamentals of principal component analysis

(PCA) and its extension to proceed with the monitoring of batch processes (unfold-

PCA, also denoted as multiway principal component analysis (MPCA)) are presented

in section 2.2. The next two sections in this chapter present the procedures for fault

detection (2.3) and diagnosis (2.4) when working with LS. Finally, section 2.5 indi-

cates how MPCA can be applied to finite-duration processes and the information the

statistical model provides about the process.

2.1 Concepts

The definitions of the basic concepts related with fault detection and diagnosis of pro-

cesses are introduced in this section. Since methods considered within this thesis are

discrete (only used the values gathered from sensors), all equations within this section

are based on the available sample k at a given time instant.

Definition 2.1. Process. A process (or system) is defined as a function that depends

on the input vector (~u(k)) at a given time and the current state of the process (s(k)),

at the same time, the output of the system (~y(k)) at that instant is a function of the
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Figure 2.1: Example of a general process relating the input vector (~u), the state of the

process (~s) and the output of the system (~y)

input vector and the current state of the process (s(k)) (Figure 2.1) expressed as:

~̇s(k) = f (~u(k),~s(k)) (2.1)

~y(k) = g(~s(k), ~u(k)) (2.2)

Definition 2.2. Batch process. A batch process is a finite-duration process con-

sisting of three main steps: 1) charge the batch vessel following a specific recipe of

materials; 2) process it under controlled conditions during which process variables such

as temperatures, pressures, agitation, and feedrates are varied according to specified

time trajectories; and 3) discharge of the product (Nomikos and MacGregor, 1995b).

In order to track the variations of the monitored variables, several samples have to

be taken for each run, and consequently, a single batch can be described as a series of

observation vectors (a two-dimensional matrix), and a historical record of batch process

is contained in a three-dimensional matrix, as depicted in Figure 2.2. Further details

regarding batch process and these two- and three-dimensional matrices are explained

in subsection 2.2.2.

Definition 2.3. Process monitoring. Process monitoring is a continuous real-time

task of determining the state of the physical system, by gathering information, and

from it, recognise and indicate any anomalies in its behaviour (Isermann and Ballé,

1997).

In order to check the state of the process, process monitoring identifies the relation-

ships between the variables (either measured or estimated) and the respective outputs
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Figure 2.2: Example of an injection batch process: relation between 1 single batch (two-

dimensional matrix) and the historical record (three-dimensional matrix)

of the process. Whenever these relationships do not hold, the process is considered

to be under abnormal operating conditions (AOC), which is usually associated with

the appearance of a fault. Since only the input and output vector of the process are

available to check the state of the process, their information is usually grouped for each

sample and labelled as observation vector (~x(k)) in this way:

~x(k) =
⇥
~u(k) ~y(k)

⇤
(2.3)

This means, that only those faults that alter the observation vector (denoted as

observable faults) can be detected, and consequently, diagnosed.

Definition 2.4. Fault. A fault is a non-allowed deviation of part of the system,

which causes the system to not accomplish the function it was originally designed for

(Isermann and Ballé, 1997).

One way to classify faults is based on how they a↵ect the process parameters

(Gertler, 1998), and results in the following types:

• Additive faults. They are unknown sources to the process that cause a variation

to either (or both) the input and/or the output vector of the process that cause
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Figure 2.3: E↵ect of an additive fault (red-shadowed elements) over the general system

representation

a variation of the normal behaviour of the process. They are independent of the

process, and thus provoke a variation of the outputs, modifying (2.2) in this way:

~̇sf (k) = f (~u(k) +�~u,~s(k)) (2.4)

~yf (k) = g(~sf (k), ~u(k) +�~⇠f) (2.5)

= ~y(k) +�~y(k) (2.6)

were ~sf (k) and ~yf (k) are the state and output vectors after the fault appearance,

and �~u(k) and �~y(k) is the e↵ect the fault has over the input and output vectors

respectively. The e↵ect of an additive fault over the system depicted in Figure

2.1 is represented in Figure 2.3.

Finally, from an observation vector point of view, an additive fault can be de-

scribed in this way:

~xf (k) = ~xo(k) + ~⇠ifi =
⇥
~u(k) +�~u ~y(k) +�~y

⇤
(2.7)

where ~xo is the fault-free values of the observation vector; ~⇠i is the fault direction;

and fi is its magnitude.

Definition 2.5. Fault direction. A fault direction (~⇠i) is a vector indicating

which input and/or output variables are a↵ected by the appearance of a fault.

Throughout this thesis, this vector is assumed to be a unit vector (norm equal to

one).
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Additive faults can be confused with disturbances, which are an unknown and

uncontrolled input acting on the system (Isermann and Ballé, 1997), since they

cause an alteration of the input vector. Model-based techniques model them

specifically (and thus, they can distinguish between them), while data-driven

methods include continuous disturbances as part of the model. In case of uncor-

related disturbances (noise), statistical techniques are capable of removing them

from the normal operating conditions of the process, as will be described in section

2.2 later on.

• Parametric faults. They are an alteration of one or more parameters that

drive the process. Consequently, parametric faults modify the relation between

the process inputs and outputs, altering the system in this way (and depicted in

Figure 2.4):

~̇sf (k) = ff (~u(k),~sf (k)) (2.8)

~yf (k) = gf (~sf (k), ~u(k)) (2.9)

= ~y(k) +�~y (2.10)

where ff and gf are the new relationships between input and output vectors due

to the parametric fault appearance with ff = f +�f and gf = g+�g; ~sf and ~yf

are respectively the process state and output vector under the parametric fault;

and �~y is the variation of the output vector due to the fault happening.

Finally, from an observation vector point of view, the parametric fault can be

described as:

~xf (k) = ~xo(k) + ~⇠i(k)fi(k) =
⇥
~u(k) ~y(k) +�~y

⇤
(2.11)

From the previous expression, it can be observed that the e↵ect of parametric faults

is observable as an additive fault at the system output. Consequently, from this point

onwards, a faulty observation (~xf ) for a given sample k will be described as an additive

fault in this way:

~xf (k) = ~xo(k) + ~⇠i(k)fi(k) (2.12)
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Figure 2.4: E↵ect of a parametric fault (red-shadowed elements) over the general system

representation

where ~xo refers to the fault-free values of the observation, which are unknown in

presence of faults; ~⇠i is the fault direction a↵ecting the observation and indicates the

variables whose behaviour have been modified due to the fault appearance; and fi is the

fault magnitude for the given fault direction. Since batch processes consist of a series of

measurements along time k = [1,], the previous fault definition has to be extended to

take into account that faults may occur within a certain time window kf = [kini, kend],

and assuming that faults are persistent within this time period, in this way:

xf (k) =

8
<

:

xo(k) 1  k < kini
xo(k) + ~⇠i(k)fi(k) kini  k  kend
xo(k) kend < k  

(2.13)

Based on these definitions, faults can be categorised based on the number variables

the fault is observable on in this way:

• Simple faults. This kind of faults only alter a single variable in the observation

vector. As a result, fault direction vectors (~⇠i) for simple faults only present a

non-zero element (the variable altered) with a value equal to 1. Consequently,

only one fault direction (~⇠i) is detected, and thus (2.12) can be used to define

directly this kind of faults.
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• Multiple fault. Multiple faults are observable on more than one variable, and

thus, they can be defined as a subset of simple faults that occur at the same time.

Therefore, the fault direction (~⇠i) and magnitude (fi) in (2.12) are defined as a

sum of NF (orthogonal) simple faults (~⇠j) in this way:

~⇠i(k)fi(k) =
NFX

j=1

~⇠j(k)fj(k) (2.14)

Depending on the physical redundancy of the system, multiple faults can either

be related to a single element with physical redundancy, or to several elements

misbehaving at the same time with no physical redundancy.

If no information regarding the process structure is available, then additive and

parametric faults cannot be distinguished between, since the only indicators of a fault

is a series of variables whose behaviour have been altered. This is a common problem

with data-driven methods, since structural information is not contained in the historical

data of a process. In this thesis, this information can be incorporated as part of the

diagnosis structure contained in the CBR, as will be exposed in chapter 3.

2.2 Latent structures: methods and concepts for batch

process monitoring

The more sensors are installed in a process, the more redundancy of information is

captured. In such situations the use of multivariate statistical techniques, based on the

existence of correlations among measured variables, provides a very powerful framework

for fault detection based on well proved theoretical background. Principal Component

Analysis (PCA) or Partial Least Squares (PLS), also known as Projection to Latent

Structures are fundamental techniques that support fault detection and isolation strate-

gies commonly used in chemical industries.

This section introduces the basic idea of PCA (subsection 2.2.1), as well as indicates

how this procedure can be extended to work with batch processes (subsection 2.2.2)

which defines a series of unfolding procedures (subsection 2.2.3) and scaling methods

(2.2.4). Finally, sections 2.3 and 2.4 presents the methods for fault detection and

diagnosis based on the PCA information.
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2.2.1 Principal component analysis (PCA)

Principal Component Analysis (PCA) is a technique for data compression and informa-

tion extraction. PCA is used to find combinations of variables or factors that describe

major trends in a data set (Wise et al., 1999). This is, PCA is concerned to explain the

variance-covariance structure through a few linear combinations of the original vari-

ables.

Processes involving a large number of variables can be monitored using this tech-

nique. Observations during normal operation conditions (NOC) are used to build a

data model. Then, this NOC statistical model is used to assess the behaviour of the

process by checking new observations against this model in the principal component

subspace (fault detection).

Multivariate data (NOC observations) are expected to be organised in a matrix

structure, X, with m variables/columns and n observations/rows. Variables are as-

sumed to be centred (zero mean) and standardised (unit variance).

X =

2

6664

x1,1 x1,2 · · · x1,m
x2,1 x2,2 ... x2,m
...

...
. . .

...
xn,1 xn,2 · · · xn,m

3

7775
(2.15)

The sample covariance matrix (S) can be computed with the following expression:

S =
1

n� 1
XTX (2.16)

And solving an eigenvalue decomposition of the sample covariance matrix S, the

loading vectors for this sample can be obtained:

S =
1

n� 1
XTX = V ⇤V T (2.17)

The orthonormal column vectors in the matrix V are commonly known as loading

vectors, and the standard deviation of the training set projected along the direction

described by the ith column of V , i.e. �i, corresponds to the root square of the ith

element of the diagonal matrix ⇤. That is, the diagonal matrix ⇤ contains the non-

negative real eigenvalues in decreasing magnitude (�1 > �2 > · · · > �m � 0) with
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�i = �2
i .

One of the most important characteristic when applying PCA is the dimensionality

reduction in the number of variables. This reduction is attained by selecting the first r

columns of the loading matrix to build the matrix P 2 Rm⇥r; i.e. the loading vectors

(eigenvectors) associated with the first r eigenvalues (r < m). The projections of the

observations in X into the lower dimensional space are contained in the score matrix,

T , computed as follows:

T = XP (2.18)

and the score vector for a single auto-scaled observation vector ~xi can be computed

in this way (refer to 2.2.4.2 for further details):

~ti = ~xiP (2.19)

And the projection of scores, T , back into the m-dimensional observation space (X̂)

can be computed with:

X̂ = TP T (2.20)

and for the case of the score vector in (2.19) its projection into the original space

is computed in this way:

~̂xi = ~tP T (2.21)

The di↵erence between X and X̂ is the residual matrix X̃ (Russell et al., 2000).

It contains a vector for each observation orthogonal to the scores and resumes the

variance not captured for the r components selected in the projection subspace (see

Equation 2.22). The principal components represent the selection of a new coordinate

system obtained by rotating the variables after pre-processing and projecting them

into the reduced space defined by the first r few principal components, where the data

are described adequately and in a simpler and more meaningful way. The principal

components are ordered according to a variance criterion in such a way that the first

one describes the largest amount of variation in the data, the second one the second

largest amount of variation, and so on (Nomikos and MacGregor, 1994). By retaining
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Figure 2.5: 3D data matrix associated with finite duration processes

only the first r principal components, the X matrix is decomposed into two parts, the

projection (X̂) and residual matrix (X̃) according to (2.22) (MacGregor, 2003). Thus,

the complete PCA model can be mathematically expressed as follows:

X = TP T + E = X̂ + X̃ (2.22)

2.2.2 Multiway principal component analysis (MPCA)

The PCA methodology presented before can be directly applied on two-dimensional

matrices (observations ⇥ variables). This is the case for example of continuous pro-

cesses, where observations correspond to time samples. However, batch processes that

operates during a finite time to obtain the desired product, require a di↵erent repre-

sentation capable to contain the trajectories of variables during the execution of the

process during the whole batch. Usually a three dimensional matrix is used to repre-

sent the data (observations ⇥ variables ⇥ time) as shown in Figure 2.5. This added

complexity implies to perform a two steps pre-processing before applying the PCA

methodology: unfolding and scaling. In this figure, ◆ indicates the number of measured

batches, � refers to the number of monitored variables and  corresponds to the sam-

plings considered for each batch.

2.2.3 Unfolding the data

From the six feasible unfolding directions, only 2 of them are meaningful for monitoring:

unfold in the process direction (batch-wise or Nomikos-MacGregor approach (Nomikos

and MacGregor, 1994)) and unfold in the variable direction (variable-wise or Wold ap-

proach (Wold et al., 1998)). Additionally, a third unfolding procedure was introduced

in Chen and Liao (2002): the batch-dynamic unfolding, which can be considered as a
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Figure 2.6: Batch-wise unfolding of the original 3D matrix, grouping by time samples

(upper branch, XBWt) and grouping by variable (lower branch, XBWv)

generalised notation for both batch-wise and variable-wise unfoldings.

The batch-wise approach redistributes the time samples of the three-dimensional

matrix in the variable axis obtaining a two-dimensional matrix, where each row con-

tains all the samples of every variable (variable ⇥ time) for a given batch (Figure 2.6),

and a column represents a time instant of a given variable for each process. This ap-

proach can only be applied whenever all data of the process is available, this is, when

all the samples of the process are available. However, the loading matrix can be used to

complete the missing samples as described in Garćıa-Munoz et al. (2004) which uses the

expected behaviour of the process under normal operating conditions. This means that

this unfolding can be applied for monitoring running processes by filling the “missing”

values. Since this unfolding procedure represents batches as single points in the projec-

tion and residual subspace (as depicted in Figure 2.7), this facilitates the comparison

between batches using simple distance and clustering techniques. This property is used

in chapter 3 to define neighbourhoods useful for process monitoring, and later on, ex-

ploited to di↵erentiate the operating conditions of a sequencing batch reactor (chapter

4) or the final quality of injected parts (chapter 5).

When the standardisation step is carried out with this approach, variations observed
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Figure 2.7: Projection of a historical record of batch-wise unfolded batches and relation of

two close cases of di↵erent operating conditions in a three-dimensional projection subspace

in the unfolded matrix represent variations with respect the mean trajectory (Kourti,

2003). There are two di↵erent and complementary unfolded matrices as depicted in

Figure 2.6: BWt , which groups variables along time (the first  columns address the

first variable, from  + 1 up to 2 the second variable along time is presented, and

so on) and was the one proposed initially in Nomikos and MacGregor (1994); whereas

BWv , which groups each measured sample for all variables (the first � columns indi-

cate the values of all samples at sample = 1 for all batches, from � + 1 up to 2� the

values of all variables and batches for the second sample are displayed, and so on) and

was initially proposed in Westerhuis et al. (1999). Although both matrices contain the

same information with the only di↵erence being a di↵erent column sorting, BWt di-

rectly presents the evolution of each variable throughout time (more easily interpretable

by the process operators); and BWv is more appropriate for on-line monitoring, since

concatenates all the measurements of all variables at each sample (whenever a new

sample is available).

On the other hand, variable-wise approach (Figure 2.8) fixes the variables axis (kept
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Figure 2.8: Variable-wise unfolding of the original 3D matrix

as columns) and the product processes ⇥ time are the rows. In this case, one row rep-

resents a time instant of a given process and the columns are the values of one variable

for all processes at every time instant. This approach does not require any prediction

to be applied at every time instant, but has the drawback of leaving the non-linear

time variations in the standardised data matrix (Kourti, 2003) and assumes that the

correlation structure does not change along time, which for most multi-phase batches

is not true. Note that the former can be solved by removing the mean trajectory prior

to applying this unfolding, but this does not guarantee a constant correlation struc-

ture throughout all time samples. Contrarily to the batch-wise unfolding, variable-wise

unfolded batches are represented with a series of  points in the projection and resid-

ual subspaces. Consequently, comparing two batches within this unfolding procedure

requires the comparison of the dynamic between all  samples of both batches (this dy-

namic is associated with the average trajectory of a batch) as time-series. This means

that auto- and cross-correlation are not considered when building the model (like in the

batch-wise approach) and thus, these relationships have to be identified externally. As

a result, points in the residual space are linked to both a batch and a sample within this

batch. This circumstance is illustrated in Figure 2.9, where the two batch processes in

Figure 2.7 are projected into a variable-wise unfolded model.

Finally, the batch dynamic unfolding (Figure 2.10) only uses a subset of mea-
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Figure 2.9: Projection of two variable-wise unfolded procedures into the three-

dimensional subspace

surement (`, denoted as lagged measured variables (LMV)) to estimate the state of

the process. The main idea is that the process dynamic is only contained within

the ` contiguous samples, which defines a process window for monitoring the process.

As a result, the three-dimensional matrix X is decomposed in an augmented matrix

Xi,` ((� `)⇥ (�(`+ 1))) for each batch process, where  is the number of samples

measured for each batch and � indicates the number of measured variables for every

batch. Finally, this unfolding procedure can be seen as a generalisation of both the

variable- and batch-wise unfoldings in the following way:

• If no LVMs are retained (` = 0), this procedure is equivalent to the variable-wise

unfolding.

• If  - 1 LVMs are retained (` = �1), the resulting augmented matrix is equivalent

to the batch-wise unfolded matrix.
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Figure 2.10: Batch dynamic unfolding of the original 3D matrix using l LVMs

2.2.4 Scaling of the data

The PCA methodology requires the data to be mean-centred, this is, the axis origin

of the new projection space will be the mean value. But there are cases where some

variables present di↵erent value range or deviations. In this case, the data not only

has to be centred, but it also has to be scaled. This subsection presents the three main

normalisation procedures when dealing with finite duration processes.

2.2.4.1 Continuous scaling (CS)

The continuous scaling procedure assumes that variables in the data matrix share the

same distribution. So, it will compute one mean and one standard deviation for each

of the original variables (�) in this way:

µj =

P◆
i=1

P
k=1 xijk

◆⇥ 
�j =

sP◆
i=1

P
k(xijk � µj)2

◆⇥ 
(2.23)

This type of normalisation is not usually used because during the process it is not

mandatory that variables follow the same distribution, especially if the process can be

divided in phases. Another point to note is that this procedure does not remove the
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mean trajectory of the variables along time (the same drawback of VW), which can

lead to a bad performance of the monitoring model.

2.2.4.2 Auto scaling (AS)

AS tries to overcome the previous problem by computing one mean for each variable for

all time instants, so the mean trajectory is eliminated. Additionally, AS assumes that

the variability changes during the process, and thus, computes one standard deviation at

every time instant. This means that AS computes �⇥ means and standard deviations,

which are computed in this way:

µjk =

P◆
i=1 xijk

◆
�jk =

rP◆
i=1(xijk � µjk)2

◆
(2.24)

2.2.4.3 Group scaling (GS) or block scaling (BS)

AS gives the same importance to all samples and variables throughout the whole pro-

cess. However, let us assume that the batch process can be divided into several stages,

each having a di↵erent duration. Additionally, suppose that one of the divisions lasts

two times the durations of the rest stages. Consequently, dominance in this stage im-

plies that small variations in other stages will be masked and the system will only be

able to detect large faults occurred in other stages.

In order to solve this, GS/BS gives the same importance (in terms of variance) to

all stages (or blocks) the process can be divided into. To do so, GS/BS groups the

auto-scaled values (zijk) into the di↵erent stages the process can be divided into, and

then rescales each value by the root square of samples within the current stage (kl) in

this way:

gijk =
zijkp
kl

(2.25)

This means that although AS and GS/BS have the same mean, they define di↵erent

projection subspaces since their standard deviations di↵er.
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2.3 Fault detection based on latent structures

Two complementary control charts are usually used for fault detection in multivariate

process monitoring using PCA. The purpose is to assess new observations against a

PCA model built during normal operating conditions using the T 2 and the square

prediction error (SPE) statistics. This section details how they are computed and

what information they provide (subsection 2.3.1 for the T 2 index and subsection 2.3.3

for the SPE index), as well as the detectability criteria for both indices (subsection

2.3.2 for the T 2 index and subsection 2.3.4 for the SPE index). Finally, subsection

2.3.5 discusses how false alarms and missed detections can be considered when building

the statistical model of a process.

2.3.1 Faults in the projection subspace: T 2

Control charts based on T 2 and the first r principal components can be plotted as

follows (MacGregor, 2003):

T 2
~x =

rX

i=1

ti
2

�i
(2.26)

where ti is the projection of an observation ~x into the ith principal component (ith

score) computed using (2.18). This expression can be rewritten using the score vector

~t, which is a row vector containing the scores for the r retained principal components

of ~x in this way:

T 2
~x = ~t⇤�1~tT (2.27)

with ⇤�1 being a diagonal matrix defined as:

⇤�1 =

2

6664

1
�1

0 · · · 0
0 1

�2
· · · 0

...
...

. . .
...

0 0 · · · 1
�r

3

7775
(2.28)

and by substituting (2.18) in (2.27) the relation of the original (standardised) ob-

servation with the T 2 index can be identified in this way:
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T 2
~x = ~xP⇤�1P T~xT (2.29)

= ~xD~xT (2.30)

with D = P⇤�1P T . If data have been auto-scaled, this is a Mahalanobis distance

measure of each observation to the centre of the model. A graph, or control chart, built

with such data is useful for detecting variations in the projection space, defined by

the r principal components, greater (with respect to the centred data) than common-

cause variations, while preserving the structure correlation gathered by the PCA model.

The control limit for the T 2 statistic for a given significance level ↵ (⌧↵) can be

estimated using the following expression (Anderson, 1984; Johnson and Wichern, 1988):

⌧↵ =
(n2 � 1)r

n(n� r)
F↵(r, n� r) (2.31)

where n is the number of observations/rows of the data matrix X (in this case

batches); r is the number of principal components retained; and F↵(r, n � r) is the

critical point of the Fisher-Snedecor distribution for r and n � r degrees of freedom.

Typical values for the confidence level ↵ are 90%, 95% and 99%, where the closer to

100% the value is, the fewer false alarm rate. So any observation projected on the

principal component subspace, ~̂x, that surpasses ⌧↵ is labelled as faulty due to the T 2

index. Of course, there is a trade-o↵ between false alarms and missed detections and

consequently the selection of such confidence level is a decision to be made.

2.3.2 Fault Detectability in the projection subspace

In order to determine the detectability based on T 2 for a given PCA model, let us define

a faulty observation (~xf ) as an additive simple fault that only a↵ects the ith variable

(~⇠i) with a fault magnitude fi like previously defined in (2.12):

~xf = ~xo + fi~⇠i (2.32)

where ~xo are the fault-free measurement of the observation. As stated in the pre-

vious subsection, T 2
~x > ⌧↵ in order to be detectable due to the T 2 index, so if we

substitute the previous equation into (2.30):
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⇣
~xoP + fi~⇠iP

⌘
⇤�1

⇣
P T ~⇠Ti fi + P T~xTo

⌘
> ⌧↵ (2.33)

⇣
~̂xo + fi~̂⇠i

⌘
⇤�1

⇣
~̂⇠Ti fi + ~̂xTo

⌘
> ⌧↵ (2.34)

where ~̂⇠i = ~⇠iP and ~̂xo = ~xoP are the projections into the PCS of the fault direction

and fault-free values respectively. Assuming that the expected value of ~xo corresponds

to the centre of the model (T T
~xo

⇡ 0), then detectability on the PCS depends on the

following relation:

���~⇠iP⇤
�1
2

���
2
> ⌧↵ (2.35)

where ⇤
�1
2 is a diagonal matrix containing the root square of the eigenvalues asso-

ciated to the r retained principal components (�i) in this way:

⇤
�1
2 =

2

66664

1p
�1

0 · · · 0

0 1p
�2

· · · 0
...

...
. . .

...
0 0 · · · 1p

�r

3

77775
(2.36)

Thus, faults occurring in a direction orthogonal to the projection hyper-plane⇣���~̂⇠i
��� = 0

⌘
will never be detected with this criterion. This is the case for variables

with a low representation in the loading matrix.

2.3.3 Fault in the residual subspace: the SPE index

When a new event in the process, ~x, produces a large variation out of the hyperplane

described by the r principal components, this means that the data structure has been

broken. These types of events are detected in the residual subspace by computing

the squared prediction error (SPE) of the residual of each observation according to

(Nomikos and MacGregor, 1994):

SPE~x =
mX

i=1

(xi � x̂i)
2 (2.37)
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where ~̂x = (x̂1, · · · , x̂i, · · · , x̂m) is computed using (2.20). This expression can be

also rewritten as a square modulus in this way:

SPE~x = ~̃x~̃xT = k~̃xk2 (2.38)

where ~̃x = ~x
�
I � PP T

�
= ~xC̃ is the projection into the residual subspace (RS) of

the fault.

Assuming that after pre-processing the data (centring, scaling, aligning, etc.), NOC

observations can be modelled using a multivariate normal distribution, the SPE will

present very small values (typically associated with noise) close to zero, while T 2

presents a larger variation (associated with the variability of the normal operating

conditions). Consequently, the SPE will be much more sensitive than T 2 to variations

in the process structure, since they alter the correlation structure of the observed data.

Furthermore, these changes in the correlation structure are mostly projected in the

residual space, and thus, the SPE index is the one that presents the highest increase.

The SPE control limit can be computed using the approximation presented in Jackson

and Mudholkar (1979) for a given confidence level ↵ (assuming that observations were

auto-scaled and the correlation matrix has full rank):

�↵ = ✓1


h0c↵

p
2✓2

✓1
+ 1 +

✓2h0(h0 � 1)

✓21

� 1
h0

(2.39)

with:

✓j =
mX

i=r+1

�j
i h0 = 1� 2✓1✓3

3✓22
(2.40)

where c↵ is the value of the normal distribution for a significance level ↵ and m

is the number of variables in the original space. Whenever an observation has a value

greater than the SPE and/or T 2 control limit, it is labelled as faulty (fault detection).

2.3.4 Fault detectability in the residual subspace

In order to detect a fault in the RS, its projection in this subspace must be greater

than �↵. Using the faulty observation defined in (2.32) and substituting it in (2.38), a
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detectable fault must hold that:

���~̃xf
���
2

> �↵���~xoC̃ + fi~⇠iC̃
���
2

> �↵
(2.41)

As stated in subsection 2.3.2, fault-free situations mostly project into the PCS (~̂xo).

Consequently, their projection into the residual subspace (~̃xo) is approximately 0, and

thus SPE~xo ⇡ 0. As a result, the fault appearance is the one responsible for surpassing

the SPE limit, which allows us to simplify the previous expression in this way:

kfi~̃⇠ik2 > �↵ (2.42)

Furthermore, from a geometrical point of view, this means that in order to guarantee

that a fault will be detected in the residual subspace, its projection in this subspace

has to be twofold larger than the interval confidence used to compute the statistical

limits, so:

kfi~̃⇠ik2 > 2�↵ (2.43)

Finally, Figure 2.11 presents a graphical representation of the original space and

the space decomposition given by PCA, indicating the control limits for T 2(⌧↵) and

the SPE(�↵) indices and the principal component subspace for all NOC observations

(green points within the green ellipsoid delimited by ⌧↵). Additionally, two observations

are presented illustrating a faulty observation (red dot) whose SPE value surpasses �↵

and an unusual (or extreme) observation whose T 2 value surpasses ⌧↵ (orange dot).

2.3.5 False alarms and missed detections when evaluating the model

As stated in section 2.2.1, the statistical model of a process is built up from a series

of observations of the process under normal operating conditions (NOC) (denoted as

training set). Taking this model as a base, the acceptance limit of all the observations

is defined on the basis of the variability observed in the data used to build the model.

Subsections 2.3.1 and 2.3.3 presented the corresponding statistical limits for T 2 and the

SPE respectively, based on a certain confidence level ↵. Based on these distributions,

the number of false alarms and missed detections found in the training set can be de-

termined. In case that either the number of false alarms or missed detections within

37



2. BATCH PROCESS DIAGNOSIS BASED ON LATENT
STRUCTURES

Figure 2.11: Graphical representation of the PCA space decomposition

the training set is significantly di↵erent from the expected values, then the statistical

limits have to be computed based on the SPE and T 2 values within the training set.

Therefore, the first step when monitoring a process is to check the validity of the sta-

tistical limits used for fault detection.

Assuming that AOC observations are available, the detection capability of the model

can be computed according to the number of missed detections (AOC observations not

detected) and false alarms (NOC observations incorrectly labelled as faulty). Taking

this into account, the selection of the number of principal components can be defined as

a minimisation problem of the number of missed detection and/or false alarms. Since

this method is based on the initial set of NOC and AOC observations, whenever the

inner distributions of either AOC/NOC set change, the statistical model has to be

rebuilt from scratch, since the statistical limits are based on the number of principal

component. In order to have more flexible fault detection limits, this thesis proposes

the usage of the information related to the nearest neighbours to detect a fault appear-

ance, as will be described in chapter 3.

Now, let us suppose we want to distinguish between two operating conditions within

the studied process (C1 and C2) and that the correlation structure of both is di↵erent.

Consequently, when projecting observations from C2 into C1, and vice-versa, they will
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exceed the statistical limits, and thus, identifying the operating conditions of a process

can be as simple as checking the statistical limits. Moreover, if both C1 and C2 are

linearly separable, another viable option is to build a multi-class model with both

operating conditions, and then proceed to di↵erentiate between both depending on their

location in the projection subspace. This situation is detailed in chapter 4, in which

both single-class and multi-class model performances are compared when di↵erentiating

between two operating conditions of a wastewater treatment plant.

2.4 Fault diagnosis

Fault isolation on PCAmodels is usually conducted through the contribution analysis to

the statistical indices T 2 and SPE. The idea is to compute the influence of each original

variable in the total magnitude of SPE or T 2. Usually a graphical representation is

used to help identifying the larger values and consequently the variables that more

contribute to the out of control situation. Note that contribution plots only indicate

which of the variables are related to the fault, but they do not reveal the actual cause of

it (Kourti, 2005). Finally, note that the information contained in the contributions can

be used to determine both the fault direction and magnitude a↵ecting an observation,

which will be detailed in chapter 3.

2.4.1 Diagnosing in the projection subspace: the T 2 contribution

Since the idea is to relate the influence a faulty observation to the T 2 index, let us relate

both the fault detection index and its contribution in this way (Wise et al., 2006):

T 2
~x = ~cT

2

~x

⇣
~cT

2

~x

⌘T
(2.44)

= k~cT 2

~x k2 (2.45)

This means that the T 2 value is decomposed as the square modulus of the T 2

contribution, and consequently, when relating the contribution to the observation vector

~x we obtain the following expression:

~cT
2

~x = ~xP⇤
�1
2 (2.46)
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where ~cT
2

~x is composed of the contribution of each variable to the T 2 index, and thus,

we can relate the contribution of an observation (~cT
2

~x ) to the individual contribution of

each variable in the following way:

~cT
2

~x =
h
cT

2

1 cT
2

2 · · · cT
2

m

i
(2.47)

where cT
2

i is the contribution to the T 2 index of the ith variable, which can be

computed in this way:

cT
2

i =
⇣
~xP⇤

�1
2 ~vTi

⌘2
(2.48)

where ~vi is a row vector with as many elements as measured variables that is used

to indicate the variable whose contribution has to be computed. This is done by setting

to 1 the position of the observation vector associated with the variable to compute its

contribution, and the rest are set to 0. An example of the variable vector for the first

variable (~v1) of a process with three measured variables would be:

~v1 = [1 0 0] (2.49)

2.4.2 Isolability in the projection subspace

Let us assume that the we want to correctly diagnose the simple and additive fault in

subsection 2.3.2. This means that only variable ~vi is faulty, and thus, its contribution

(cT
2

i ) has to be the highest among all other measured variables (cT
2

j ). Therefore, the

following condition must hold (assuming the fault is detectable):

cT
2

i � cT
2

j (2.50)

When substituting (2.32) and (2.48) in the previous expression, the isolability con-

dition can be rewritten in this way:

h ⇣
~xo + fi~⇠i

⌘
P⇤

�1
2 ~vTi

i2
�

h⇣
~xo + fi~⇠i

⌘
P⇤

�1
2 ~vTj

i2
(2.51)
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And assuming that the fault-free values of the observation (~xo) are close to the

centre, then fi~⇠i is the one responsible for surpassing the T 2 limit. Consequently, the

previous expression can be simplified in this way:

⇣
fi~⇠iP⇤

�1
2 ~vTi

⌘2
�

⇣
fi~⇠iP⇤

�1
2 ~vTj

⌘2
(2.52)

and since ~⇠i is a simple fault, then the expression is left as:

h
P⇤

�1
2

i2
ii
f2
i �

h
P⇤

�1
2

i2
ij
f2
i (2.53)

where the subindex ii indicates the ith element in the diagonal from P⇤
�1
2 , and

ij refers to the element in the (ith, jth) position in this matrix. This means that any

simple fault is diagnosable if:
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This conditions imposes that the maximal value in the product P⇤
�1
2 is found on

the diagonal, otherwise, simple faults cannot be detected. Since this product can be

computed while building the statistical model, one can select the principal components

accordingly such that this condition holds. However, this only grants the isolability of

simple faults. Multiple faults add more restrictions to the values of the product P⇤
�1
2 ,

since they a↵ect more than one variable. As a result, the diagnosability of multiple

faults reduces (we impose more restrictions for each new variable) the more variables

they alter. In order to clarify this point, let us define a multiple fault a↵ecting two

di↵erent variables (~vi and ~vj) in this way:

~xf = ~xo + ~⇠ifi + ~⇠jfj (2.55)

This means, that when exploring a variable not associated with the fault, ~vk, and

assuming that the fault-free observation originally laid in the centre of the principal

component subspace, (2.52) must hold the following conditions when exploring both

variables ~vi and ~vj respectively:
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(2.56)
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Additionally, and as was stated in section 2.1, multiple faults can happen due to

the simultaneous fault of two independent elements, or due to a fault a↵ecting an

element with physical redundancy of measurements or due to the fault that a↵ecting

one of the latent structures that drive the process. In case of the simple faults a↵ecting

independent elements/variables of the process, the correlation between both variables in

the principal component subspace,
h
P⇤

�1
2

i

ij
, is close to zero
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⇡ 0

◆
, which

means that the previous expressions can be simplified in this way:
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Taking this into consideration, we can say that in order to correctly diagnose the

appearance of a multiple fault, we impose that the values within the diagonal of the

projection matrix into the principal component subspace greatly di↵er from the val-

ues outside the diagonal. This situation is usually given for processes with blocks of

variables highly correlated among them, and nearly non-correlated with the rest of

variables.

Although the problem with the diagnosability of multiple faults was exemplified

with a two-variable fault, one can imply that the more variables implied in a multiple

fault, the more easy it becomes to confuse this multiple fault with a simple fault a↵ecting

a variable not implied in the fault. This happens because for each new variable, we are

imposing a higher di↵erentiation between the elements in the diagonal with respect to

the elements outside of it.
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2.4.3 Diagnosing in the residual subspace: the SPE contribution

Likewise T 2, let us define the SPE as the square modulus of the SPE contributions

in this way:

SPE =
��~cSPE

��2 (2.60)

relating this expression to (2.37), then the contribution to the SPE index is defined

as:

~cSPE = ~̃x = ~xC̃ (2.61)

with C̃ = I � PP T and where I is the identity matrix with as many rows and

columns as measured variables. Therefore, the SPE contribution of ~vi can be defined

as:

cSPE
i =

⇣
~xC̃~vTi

⌘2
(2.62)

2.4.4 Isolability in the residual subspace

In order to identify that ~vi is the responsible for the simple fault described in (2.32)

the following expression must be true:

cSPE
i � cSPE

j (2.63)

for every variable j 6= i. By substituting (2.62) and (2.32) in the previous expression

it becomes:

h⇣
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⌘
C̃~vi

i2
�

h ⇣
~xo + fi~⇠i

⌘
C̃~vj

i2
(2.64)

And assuming that fault-free observations mostly project into the projection sub-

space, and thus, ~xoC̃ ⇡ 0, we can simplify the previous expression to:

⇣
fi~⇠iC̃~vi

⌘2
�

⇣
fi~⇠iC̃~vj

⌘2
(2.65)

Assuming that ~⇠i is a simple fault, the isolability of the fault is reduced to:

c̃2ii � c̃2ij (2.66)
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Like it happened with the diagnosability of faults in the projections subspace (based

on the T 2 index), this condition imposes that the maximal value in C̃ has to be located

in the diagonal. Consequently, and since C̃ is known when building the statistical

model, the number of principal components to retain can be fixed such that simple faults

a↵ecting each measuring variable is diagnosable. However, this does not guarantee that

complex faults will be diagnosable, since they alter more than one variable, and thus,

they add more restrictions to the previous one. As a result, the more variables a multiple

fault a↵ects, the lower the probability to correctly diagnose it is. Let us clarify this

point with the same example presented in section 2.4.2. This is, a multiple fault that

a↵ects two variables, ~vi and ~vj like the one described in (2.55):

~xf = ~xo + ~⇠ifi + ~⇠jfj (2.67)

In order to correctly identify that only variables ~vi and ~vj are responsible for the

faulty situation, the following conditions must hold when exploring a variable ~vk not

related with the multiple fault for variables ~vi and ~vj respectively:

c̃2ik + c̃2jk + 2c̃ik c̃jk  c̃2ii + c̃2ij + 2c̃iic̃ij (2.68)

c̃2ik + c̃2jk + 2c̃ik c̃jk  c̃2ij + c̃2jj + 2c̃ij c̃jj (2.69)

And in case that the multiple fault is the result of several (in this case two) simulta-

neous simple faults, the correlation between both variables, c̃ij is close to zero (c̃ij ⇡ 0),

which allows us to simplify the previous expressions in this way:

c̃2ik + c̃2jk + 2c̃ik c̃jk  c̃2ii (2.70)

c̃2ik + c̃2jk + 2c̃ik c̃jk  c̃2jj (2.71)

This means that in order to correctly diagnose the appearance of multiple faults,

the values within the diagonal matrix must su�ciently di↵er with respect to the val-

ues outside of it (like it happened with the diagnosability in the principal component

subspace explained in subsection 2.4.2). Additionally, the more faults implied in the

multiple fault, the more easily the multiple fault will be misclassified as a fault a↵ecting

a variable not related to the fault appearance (we impose that the values outside of
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the diagonal are closer to zero). As was also mentioned in subsection 2.4.2, processes

whose variables can be divided in groups with high intra-group correlation (the corre-

lation between variables in the same group is close to 1 or -1) and with low inter-group

correlations (the correlation between variables of di↵erent groups is close to 0).

2.5 Model-free fault diagnosis based on finite duration re-

sponses

As was introduced in chapter 1, batch-monitoring techniques such as MPCA (described

in the previous section) and multiway partial least squares (MPLS, described in Ap-

pendix A) can be applied to finite-duration responses, such as the information gathered

from sensors installed into a commercial wing depicted in Mujica et al. (2009) and Ruiz

et al. (2013) or voltage sags (a reduction of the nominal voltage of one phase between

10% to 90% and with a duration time from 200 ms to 1 minute (Bollen, 2000)) as

described in Meléndez et al. (2008b), Meléndez et al. (2008a) and Barrera et al. (2008)

provided the following assumptions:

1. The system when under normal operating conditions does not present a su�cient

variation to build a statistical model with these signals. However, events that ex-

cite the process (like impacts in a flap wing or voltage sags in the power network),

with a perturbation that attenuates its e↵ects along time.

2. Faults a↵ecting these systems are short-term variations of the process (they are

not continuous). Consequently, given a su�ciently large process window, when

faults cease, their e↵ect disappears, and thus the process returns to the NOC

region.

3. This short-time perturbations can be gathered (from the first sample they are

detected until the e↵ect disappears) and grouped into a three-dimensional matrix

similar to the one used to represent batch processes.

4. The interest of the analysis is to characterise and di↵erentiate the di↵erent “faults”,

and thus, statistical models study variations between the di↵erent fault types that

a↵ect the process.
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Figure 2.12: Example of an impact reading (for a single sensor) in the commercial flap

wing studied in Mujica et al. (2009) and Ruiz et al. (2013)

5. The e↵ect of the fault must not permanently change the relationships between

variables, since the initial model is no longer valid, and thus, a new model has to

be built with the new relationships.

In order to study these variations using either MPCA or MPLS, one builds a pro-

cess window to gather the information of the faults that appear within the process.

Given that the e↵ect of the fault attenuates through time, the process will return to

its normal operating conditions, giving us a maximum number of samples that have

to be gathered. Additionally, one can sample NOC values of the process (previous

and posterior to the fault appearance) in order to compute the fault magnitude and

direction of the fault that appeared. An example of readings of the commercial flap

wing and voltage sags gathered in a HV/MV substation are presented in Figure 2.12

and Figure 2.13 respectively.

Regarding Figure 2.12, the impact initially produces an important variation from

the normal readings of the sensors. However, this variation reduces after a short period

of time, and thus, the sensor readings indicate that the flap wing is within the normal

operating conditions previous to the impact. This is the same situation with voltage

sags, as depicted in Figure 2.13, where the sag produces an important variation of the
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Figure 2.13: Example of upstream and downstream voltage sags gathered in an HV/MV

substation studied in Meléndez et al. (2008b), Meléndez et al. (2008a) and Barrera et al.

(2008)

Figure 2.14: Projection of upstream and downstream voltage sags into the two first

principal components of the statistical model built solely with upstream voltage sags

voltage value, and whenever the sag dissipates its e↵ect dilutes until the point that

the change is no longer visible. This means that the final objective of the statistical

model of this kind of processes is the diagnosis of the fault altering the signal instead of

modelling the normal operating conditions of the process. The statistical model associ-

ated built using only upstream voltage sags (HV sags) is depicted in Figure 2.14, which

shows the projection into the two-principal component subspace of both upstream (dark

dots) and downstream (red dots).
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3

Case-based diagnosis (CBD)

based on latent structures (LS)

The use of statistical methods for fault diagnosis is reduced to identify the variables

that better explain an out-of-control situation (fault detection). With the aim of im-

proving the diagnosis capabilities by including additional information in the description

of faults and, at the same time, reusing occurred faulty experiences; a formalisation

of case based reasoning strategies in the principal component space is proposed in this

chapter. Previous observations (faulty or not), conveniently diagnosed, projected in

the principal component space (defined by NOC observations) is proposed to identify

regions assignable to specific misbehaviours or faults.

The chapter is organised as follows. Firstly, the basic methodology of the CBR

are explained (section 3.1). Next, cases and case base definition are exposed (section

3.2), followed by the definition of the distance criteria and neighbourhoods based on

LS (section 3.3). Next, advantages and drawbacks of combining both approaches will

be commented (section 3.7). Finally, this chapter is closed with a discussion of the

requirements, contributions and considerations of applying CBD for the monitoring and

diagnosis of batch processes when determining the diagnosis scheme (o↵-line modelling)

and when exploiting the resulting model within the production stage of batch processes

(real-time release) in section 3.8.
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3.1 Case-based reasoning (CBR)

Case-based reasoning (CBR) is a reasoning approach to problem solving capable of us-

ing the knowledge acquired by previous experiences (de Mántaras and Plaza, 1997). It

has demonstrated to be a good option for solving problems in several domains (diagno-

sis, prediction, control, planning, etc.) (Aamodt and Plaza, 1994). The basic functions

that all CBR present are known as the 4-Rs (Aamodt and Plaza, 1994), and can be

organised in a cycle as depicted in Figure 3.1 consisting of the following steps:

1. RETRIEVE the most similar cases of the new case.

2. REUSE the information in these cases to solve the new problem.

3. REVISE the proposed solution.

4. RETAIN the new information of the new experience in order to solve new similar

problems.

This is, to solve a new problem, the most similar cases are retrieved from the ex-

periences previously stored. The information contained in these retrieved cases is then

reused to propose a possible solution. Once the solution is evaluated, the case is re-

tained, if necessary, for further classifications.

Like in many machine learning algorithms, the independence of attributes involved

in the retrieval of cases is usually assumed, i.e. when the Euclidean distance is used

to define the neighbourhood of a new observation. As exposed in Jakulin and Bratko

(2003), attribute independence also lets a classifier to collect the evidence for a class

from individual attributes separately. So, the contribution of an attribute to a class

can be determined independently from the other attributes. This requirement, not only

simplifies the learning algorithms but it also results in a robust performance and simpler

models. Given that LS information is uncorrelated (scores are orthogonal among them,

and T 2 and SPE also are orthogonal between them and when combined they describe

the whole process space), this partially fulfils this independence, in a sense that adding

an additional attribute adds new information.
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Figure 3.1: The CBR cycle

3.2 Case and case base definition

The basis of case-based reasoning is the case definition. A case (c) is the minimum

representation of a past experience and its solution Leake (1996). When several cases

are available, they can be grouped in a case base.

Since the final objective of the CBR is the diagnosis of the batch process, a basic

structure containing the information associated to each batch observation (Obs) and

the information related to the batch diagnosis (Diag) is proposed:

c = {Obs,Diag} (3.1)

Regarding the observation structure Obs, it can be divided into two basic subdivi-

sion: the batch measurements (~xBWv) and the information associated to their projec-

tion into the MPCA model (Projection):

Obs = {~xBWv, P rojection} (3.2)

Note that we propose the usage of the batch-wise unfolded observation for the

following reasons:
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• Qualitative variables from batch processes are usually collected at the end of

the batch (when releasing the contents from the batch vessel), and thus, these

qualitative variables and batch evaluations are related to the whole process.

• As stated in subsection 2.2.3, auto-scaling batch-wise unfolded batches removes

the average trajectory of variables. As a result, the statistical model resulting

from these observations takes into account the variation within the di↵erent NOC

batches used to build the statistical model.

• As indicated in subsection 2.2.3, batch-wise unfolded batches are represented

as single points in the projection and residual subspaces, which facilitates the

comparison between batches and their clustering.

And between both batch-wise unfold procedures, we propose the usage of the

variable-grouped matrix (BWv) since is more comprehensible for process operators.

Note that in case of applying this methodology to still running batches, this only re-

quires a change in the sorting order of the unfolded matrix as stated in subsection 2.2.3.

The Projection structure is composed of the information related to the projection

into the batch-wise unfolded MPCA model of the process as its name indicates. There-

fore, the information contained in this structure is the score vector of the observation

(~t) and the T 2 (T 2
~x ) and SPE (SPE~x) indices:

Projection = {~t, T 2
~x , SPE~x} (3.3)

Finally, regarding the diagnosis structure (Diag), it contains the fault direction

(~⇠i) and magnitude (fi), and the Cause that originated the fault (when applicable)

obtained from an accurate analysis of the batch and the process conditions:

Diag = {~⇠i, fi, Cause} (3.4)

Therefore, the information necessary for each case in the case base is the following:

c = {~x,~t, T 2
~x , SPE~x, ~⇠i, fi, Cause} (3.5)
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3.3 Similarity and neighbourhood based on latent struc-

tures: the retrieve function

According to the CBR methodology, case retrieval is based on a nearest neighbours

criterion. Consequently, neighbourhoods based on distance or similarity criteria have

to be defined. This section defines and interprets several similarity criteria using the

information of LS for monitoring and diagnosis purposes (subsection 3.3.2); and then, in

subsection 3.3.3 they are combined to identify appropriate neighbourhoods for diagnosis

purposes. Both distance criteria and neighbourhoods were published in Berjaga et al.

(2009c).

3.3.1 Retrieval and distances: finding the most similar situations

The first step of the CBR is to find the most similar situation(s) to a new problem in

order to provide a plausible solution. This means that the retrieve step has to compare

the new problem with each case in the case base in order to find this/these situation/s.

In order to do so, the retrieve step of the CBR consists in computing the similarity of

cases by comparing the di↵erent attributes (information that characterises a case) of

cases in the case base and the new problem using a distance criterion. The lower the

distance between a stored case and the new problem is, the more similar two observa-

tions are. Contrarily, the greater the distance is, the more di↵erent the stored case and

the new case are.

Once the distance between the new case and cases in the case base is known, then

the pruning procedure to finding the most similar situation(s) starts. There are two

main approach for determining the set of nearest cases to the new one:

• Fix a distance/similarity threshold (✓). This approach keeps all stored cases (ci)

that satisfy that their distance to the new case (cnew) is lower or equal to this

maximal distance (or minimum similarity). Therefore, the subset of nearest cases

to the new case (NC(cnew)) is defined according to this expression:

NC(cnew) = {ci/d (cnew, ci)  ✓} (3.6)
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Figure 3.2: Retrieve step limiting the distance between the new case to the stored cases

with ✓

Figure 3.3: Retrieve step forcing the number of similar cases to k = 5

Or from a geometrical point of view, limit the radius of the distance circle around

of the new observation as depicted in Figure 3.2.

Note that this strategy does not guarantee the retrieval of a similar instance for

those situations that the new case is far from the set of stored instances.

• Retrieve a fixed k number of neighbours. This strategy sorts stored cases in the

case base according to their distance to the new observation in ascending order

(from lowest to largest), and then only keeps the k nearest. Because of this, this

strategy is usually known as the k-nearest neighbour (k-NN) approach. Regarding

the previous approach, we can say that the maximum distance between the new

case (cnew) and the furthest case (ck) is fixed such that:

✓ = d(cnew, ck) (3.7)

And from a geometrical point of view, this means that the retrieve space is altered

such that the number of retrieved cases is equal to k, as depicted in Figure 3.3

(with k = 5).

54



3.3 Similarity and neighbourhood based on latent structures: the retrieve
function

Contrary to the distance-limited approach, k-NN guarantees that k cases will be

retrieved. However, note that the larger the value of retrieved cases k, the greater

the distance between new case and the furthest case (d(cnew, ck)), and thus, this

can eventually cause the retrieval of completely di↵erent instances (with maximal

distance and minimum similarity).

This thesis uses the k-NN approach for retrieving observations. Consequently, a

series of mechanisms to deal with not too similar retrieved cases (due to large k values)

have been developed and presented later on in section 3.4. This also means that the

di↵erent representations shown in the next section fix the distance threshold ✓ according

to (3.7).

3.3.2 Distance criteria and latent structures

Four basic similarity criteria are proposed. The first one is simply an Euclidean distance

in the principal component subspace (PCS), whereas the second and third consider the

distance to the model in terms of SPE and T 2 respectively. Finally, the fourth method

takes into account both SPE and T 2 indices at the same time based on the combined

index described in Yoon and MacGregor (2001).

3.3.2.1 Distance between observations in the principal component space

Taking advantage that the application of PCA results in new r uncorrelated compo-

nents, the space defined by the scores will be appropriate to compute an Euclidean

distance between observations projected into it:

dt(ca, cb) =

vuut
rX

i=1

(tca,i � tcb,i)
2 (3.8)

Nevertheless, remember that principal components are ordered according to the

variance captured in each direction (�i). Consequently, it is better to weight each score

according to its variance. This is known as Mahalanobis distance, which results in the

following expression:

dt(ca, cb) =

vuut
rX

i=1

(tca,i � tcb,i)
2

�i
(3.9)
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Figure 3.4: Similarity based on the Mahalanobis distance within a three-dimensional

PCS (dt)

Where r stands for the number of retained principal components, tca,i is the ith

score of a case ca, for example a new observation, and tcb,i could represent the same for

an observation in the case base. A geometrical interpretation of this distance is shown

in Figure 3.4, where t0i refers to the normalised scores (ti/�i).

As stated in 2.3.1, the PCS depicts the normal variation of the process, conse-

quently, two NOC observations close in the PCS present the same traits, as depicted

in Figure 3.5a). However, since this distance criterion does not take into account the

SPE index, faults mostly projected into the residual subspace, and thus with
���~̂⇠i

��� ⇡ 0,

can be retrieved as nearest neighbours of NOC observations as depicted in Figure 3.5b).

Regarding faults mostly projected in the projection subspace (
���~̃⇠i ⇡ 0

���), nearest

neighbours based can be divided into: 1) batches with similar fault-free values (~xo),

and thus, the distance between cases is due to a small variations in the projection of

the fault direction into the PCS (case cb in Figure 3.6) or due to di↵erences in the fault

magnitude (case ca in Figure 3.6); or 2) di↵erent batches, but due to the e↵ect of the

fault, they lay close within the PCS (case cc in Figure 3.6).
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Figure 3.5: Examples of retrieval processes based on dt in which two NOC observa-

tions present similar characteristics (a) and a faulty observation is retrieved as the nearest

neighbour of a NOC observation (b)

Figure 3.6: Example of relations between nearest neighbours based on dt in terms of

fault direction and magnitude: ca is a case with the same fault free-values of cnew and the

distance is due to the di↵erences in fault magnitude; cb is a batch with small di↵erences

in the projection of the fault direction; and cc is a batch with completely di↵erent fault

free-values, but due to the pair f̂c ~̂⇠c is a neighbour of cnew
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3.3.2.2 SPE Similarity

As exposed in section 2.3, the SPE index is related to the projection error. Conse-

quently, observations with a low value of SPE are consistent with the projection model

(obtained with observations gathered during normal operation conditions) and they are

close to the hyperplane defined by the r retained principal components. On the other

hand, observations with a large SPE are expected to be inconsistent with the model

structure and consequently they are candidates for being faulty situations.

Therefore, observations with a similar SPE can be used to identify similar operating

conditions (normal or abnormal). A simple (absolute) di↵erence can be used to compute

this similarity:

dSPE(ca, cb) = |SPEca � SPEcb | (3.10)

Since this distance uses the SPE values, di↵erences in the fault directions are omit-

ted (the distance imposes that the fault direction of cases is the same as the SPE an

orthonormal vector to the PCS). As a result, di↵erences only take into account varia-

tions in the fault magnitude seen in the residual subspace (f̃i). A possible geometrical

interpretation of this distance is showed in Figure 3.7.

As can be seen in Figure 3.7, similar values of SPE can be find far from the new

case when looking into the PCS. The main reason is that dSPE only takes into account

the projection into the residual subspace, which fixes the same fault direction to all

cases. Based on this, we can rewrite dSPE in this way:

dSPE (ca, cb) =

����f
2
a

���~̃⇠a
���
2
� f2

b

���~̃⇠b
���
2
���� (3.11)

=
���f̃2

a � f̃2
b

��� (3.12)

with f̃new = fnew

���~̃⇠new
��� and f̃i = fi

���~̃⇠i
���.
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Figure 3.7: Similarity based on the SPE statistic distance (dSPE)

3.3.2.3 T 2 Similarity

In section 2.3 the statistic T 2 was presented as a measure of the (Mahalanobis) dis-

tance of an observation to the centroid of the model. In fact, it is a square distance and

represents the dispersion from the mean of the model since the scores are normalised

(unit variance) prior to compute the T 2 index.

Low values of T 2 represent observations close to the mean whereas high values of

T 2, over the control limits, are evidences of an abnormal behaviour; although it does

not necessary imply that the correlation structure has been broken (this will depend

on the SPE).

Similarity between two cases, ca and cb, according to the statistic T 2 can be com-

puted as follows:

dT 2(ca, cb) =
��T 2

ca � T 2
cb

�� (3.13)

Like it happened with the SPE, dT 2 fixes the same fault direction to all cases,

consequently, the distance between cases depends solely on the di↵erence between the

projection into the PCS of the fault magnitude (f̂i). A geometric interpretation of this
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Figure 3.8: Retrieval space using the T 2 statistic (dT 2)

distance criterion is depicted in Figure 3.8.

As can be seen in Figure 3.8, observations with a low dT 2 may be far away from

one another, like is the case of c1. The main reason is that dT 2 fixes the same fault

direction to all cases, and as a result, only takes into account the projection of the

fault magnitude into the PCS. Additionally, note that this distance does not take

into account the SPE of the observations, and thus, nearest neighbours can present

completely di↵erent behaviours since divergences between fault directions is not taken

into account. As a result, dT 2 can be rewritten in this way:

dT 2 (ca, cb) =

����f
2
a

���~̂⇠a
���
2
� f2

b

���~̂⇠b
���
2
���� (3.14)

=
���f̂2

a � f̂2
b

��� (3.15)

with f̂a = fa

���~̂⇠a
��� and f̂b = fb

���~̂⇠b
���.

3.3.2.4 Distance in the SPE � T 2 space

The main problem when using either dSPE or dT 2 is that they only consider the in-

formation contained in the residual subspace and the principal component subspace

respectively. As a result, observations with completely di↵erent natures, like c3 in Fig-

ure 3.8, which is an observation with a low SPE projection is retrieved as the nearest
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neighbour of the new case, which presents a large SPE value. In order to avoid these

situations, and considering that both the SPE and T 2 indices are complementary (the

residual and principal component subspace are orthogonal), we can combine the infor-

mation of both indices to retrieve cases with similar projections to both spaces at the

same time. However, something to take into account is that during normal operating

conditions both indices present di↵erent variances. On the one hand, NOC, observa-

tions are consistent with the statistical model, and thus, their SPE values are close

to 0. On the other hand, T 2 presents a larger variance, associated with the working

conditions of the NOC region window. As a result, T 2 outweighs SPE during normal

operating conditions. However, the inverse situation is given whenever a fault appears.

This is, the SPE value of a faulty observation usually presents a larger value than the

T 2 index, and thus, in this situation, SPE governs the fault detection procedure.

In order to give the same importance to both indices, the absolute normalised

distance (d�) using their respective statistical control limits is proposed when comparing

two cases (ca and cb) using this combined index:

d� (ca, cb) =

�����
T 2
ca � T 2

cb

⌧↵

�����+
����
SPEca � SPEcb

�↵

���� (3.16)

where T 2
ca and T 2

cb
are the T 2 values for case ca and case cb respectively; SPEca

and SPEcb are the SPE values for ca and cb; ⌧↵ is the T 2 statistical limit; and �↵

is the SPE limit. A graphical representation of this criterion is shown in Figure 3.9.

Note that for this representation, the SPE and T 2 values have been scaled using the

respective control limits �↵ and ⌧↵

⇣
SPEo =

SPE~x
�↵

and T 2
o
T 2
~x

⌧↵

⌘
.

3.3.3 Neighbourhoods based on latent structures

Definition 3.1. Neighbourhood. The neighbourhood of an observation ca computed

with any of the distance criteria d explained in the previous subsection can be designed

by the observations closer than a threshold ✓ as the following relation suggests:

Nd(ca, ✓) = {ci / d(ca, ci)  ✓} (3.17)
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Figure 3.9: Retrieval based on the weighted fault detection index. SPE and T 2 indices

shown in this figure have been normalised using the corresponding control limits �↵ and ⌧↵

Based on this definition, several combinations of the distance criteria presented in

the previous subsection can be used to retrieve a set of observations useful for process

diagnosis. For example the neighbourhood of NOC observations are expected to be

around the origin in the principal component space. Therefore, they would be retrieved

as the neighbours of a representative theoretical case located in the origin of coordinates,

c0, with a confidence level ↵ by selecting an appropriate value for the thresholds based

on the statistical limits ⌧↵ and �↵ as depicted in Figure 3.10):

NNOC = NdT2 (c0, ⌧↵) \NdSPE
(c0, �↵) (3.18)

Note that \ indicates the intersection of both subsets. Operating in a similar way,

it is possible to select the nearest observations with a similar deviation with respect

to the projection model, in terms of SPE or T 2 using the following relations. Once

an observation ca has been projected, and the resulting SPE evidences that it is not

consistent with the model structure, then a focalised search among neighbours with the

same dissimilarity (based on their score projection) can be useful for diagnosis purposes:

NSPE^t(ca) = Ndt(ca, ✓t) \NdSPE
(ca, ✓SPE) (3.19)

A graphical representation of this neighbourhood is depicted in Figure 3.11. Both

simple retrieval spaces (dt and dSPE) are represented using a black circumference and

a black cylinder respectively, while the NSPE^t is represented with an orange cylinder.
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Figure 3.10: NOC neighbourhood (NNOC) of a case placed in the centre of the statistical

model (c0) based on the statistical limits of the model ⌧↵ and �↵

On the one hand, if dSPE had been used, cases c1 and c2 would have been retrieved,

although they lay in a di↵erent region in the PCS. On the other hand, if only dt had

been used, both c6 and c7 would have been retrieved, although they present significant

di↵erences with respect the SPE values of cnew. Two of these cases are represented

in Figure 3.11 in order to exemplify this problem in a graphical way. In case of c1, it

can be seen that its behaviour is significantly di↵erent, however, due to the threshold

fixed when retrieving cases in the residual subspace (✓SPE), this case would have been

retrieved as a similar cases, although variables pH and O2 present completely di↵erent

behaviours. In the same way, but this time in the principal component subspace, c7

would have been retrieved as a nearest neighbour due to the threshold retrieval in the

PCS (✓t). Although this cases behaves in a similar way than cnew, it presents slight

di↵erences in the pH readings, which are projected in the residual subspace, but with

a smaller scale than the SPE values of cnew. However, by using NSPE^t, only cases

with similar operating conditions (SPE values) and with the same misbehaviour (t)

have been retrieved.

In practical terms, this neighbourhood can be interpreted as a two-stage retrieval

procedure that works as described in Algorithm 3.1:
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Figure 3.11: Retrieval space based on NSPE^t (orange cylinder) confronted to the single

retrieval processes of dSPE (black cylinder) and dt (black circumference)

Algorithm 3.1 Two-step retrieval for NSPE^t
Input: A case base (CB) with all stored cases to compare the new case; the information of the new

case to retrieve (cnew) described in 3.5; the threshold to retrieve within the RS (✓SPE); and the

threshold to retrieve cases based on dt (✓t).

Output: The kt nearest cases to the new retrieved case based on their dissimilarity to the model.

1: function NSPE^t(CB, cnew, ✓SPE , ✓t)

2: for i = 1 to qCB do . qCB is the number of cases in the whole case base.

3: Compute the distance between cnew and ci using (3.10):

dSPE,i = |SPEci � SPEcnew |

4: end for

5: Sort in ascending order (from lowest to highest) the distances in the RS (dSPE).

6: Keep all cases with dSPE  ✓SPE , which are the nearest cases to the new one in the residual

space, CBSPE (kSPE).

7: for i = 1 to kSPE do

8: Compute the distance between ci to cnew using (3.9): . ci is the i-th case in CBSPE

dt,i =

vuut
rX

j=1

(tci,j � tcnew,j)2

�j

9: end for

10: Sort in ascending order the distances in the PCS (dt).

11: Keep only those cases with dt  ✓t (kt), which are the nearest cases to the new one in the PCS.

12: return The kt nearest cases to cnew in the PCS.

13: end function
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Note that when computing the di↵erent distances, for example, at line 3, this means

that the necessary information from the case is retrieved in order to compute this dis-

tance. In this example, the SPE values from the new case (cnew, which is SPEcnew)

and the ith case retrieved (ci, which is SPEci) are obtained.

In a similar way, a neighbourhood can be restricted to the observations in the hy-

perplane defined by scores and with a similar value of the T 2 index using the following

expression and depicted in Figure 3.12:

NT 2^t(ca) = Ndt(ca, ✓t) \NdT2 (ca, ✓↵) (3.20)

Although both retrieval processes combined in this neighbourhood (dt and dT 2)

look within the same subspace (the principal component subspace), dt is used to focus

the search on subtle di↵erences within the PCS. As stated in 3.3.2.3, dT 2 compares

the projection of faults into the PCS, but only considering the di↵erence between fault

magnitudes in this subspace (f̂), and consequently, it can confuse faults that alter dif-

ferent (single) score vectors, like c1 in Figure 3.12 with a di↵erent fault direction than

the one associated with cnew. The same can be applied to c7, however, in this case

happens that the fault direction a↵ects di↵erent scores and causes a significant increase

in the T 2 value su�cient to surpass ✓T 2 .

Like it happened with NSPE^t, this neighbourhood can be seen as the two-step

retrieval process described in Algorithm 3.2.
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Figure 3.12: Neighbourhood of a new case based on similarity in the T 2 hyperplane

Algorithm 3.2 Two-step retrieval for NT 2^t
Input: A case base (CB) with all stored cases to compare the new case; the information of the new

case to retrieve (cnew) described in 3.5; the threshold to retrieve observation based on the T

2 index

(✓T2); and the threshold to retrieve the nearest cases based on the Mahalanobis distance in the

projection subspace (✓t).

Output: The kt nearest cases to the new retrieved case based on their similarity to the model.

1: function NT2^t(CB, cnew, kT2 , kt)

2: for i = 1 to qCB do . qCB is the number of cases in the whole case base.

3: Compute the distance between cnew and ci using (3.13):

dT2,i =
��
T

2
ci � T

2
cnew

��

4: end for

5: Sort in ascending order (from lowest to highest) the T

2 distances for all cases (dT2).

6: Keep the all cases with dT2 < ✓T2 (the nearest cases to the new one based on their T

2 value,

CBT2 , kT2).

7: for i = 1 to kT2 do

8: Compute the distance between ci to cnew using (3.9): . ci is the i-th case in CBT2

dt,i =

vuut
rX

j=1

(tci,j � tcnew,j)2

�j

9: end for

10: Sort in ascending order the distances in the PCS (dt).

11: Keep only those cases with dt < ✓t (the nearest cases to the new one in the PCS, kt).

12: return The kt nearest cases to cnew in the PCS.

13: end function
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Figure 3.13: Neighbourhood of a new case included in the NOC region

Another possibility when retrieving cases is to locate the set of nearest neighbours

within the NOC region. For example, retrieving the nearest subset of in-control neigh-

bours of a faulty observation (ca) can be useful to determine the set of out-of-control

variables, and thus, identify the fault direction and magnitude a↵ecting the observation.

Assuming that the new (faulty) observation and the retrieved ones are close enough, the

di↵erence in their projection is all due to the e↵ect of the fault. This means that (2.52)

and (2.64) can be used to determine the fault directions in the projection and residual

subspaces respectively, and when combining both fault direction vectors, obtain the

fault direction of the new case. Such neighbourhood can be defined as a refinement of

the one in (3.17) by adding the similarity within the PCS in this way: (Figure 3.13).

NNOC^t(ca) = NNOC \Ndt(ca, ✓t) (3.21)

And a graphical representation of the in-control neighbours of a faulty observation

is depicted in Figure 3.13.

Or in case of focusing on the observations close to ca and out of the NOC region:

N¬NOC^t(ca) = Ndt(ca, ✓t)�NNOC^t(ca) (3.22)

Note that in this case the set di↵erence (cases retrieved that are not included in the

NOC region) “-” is proposed.
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3.4 Classifying observations with latent structures: the

reuse step

As introduced in section 3.1, the retain stage of the CBR proposes a solution for the

new problem. Moreover, in section 3.2 it was indicated that this stage for diagnosis

applications usually is reduced to a classification problem where a class assignment

corresponds with a fault type. Therefore, all methods described in this section are

focused on determining the class of a new observation based on the classes of the k-

NN retrieved using a distance criterion. Three di↵erent procedures have been used

throughout this thesis to determine the class (fault diagnose) of a detected fault based

on the classes of retrieved neighbours: simple voting, a distance-weighted voting, and a

weighted voting based on both the distance and class frequency. These three methods

are described in more detail in the following three subsections.

3.4.1 Simple voting (SV)

The simple voting is the most simple and common method used for determining the

class of a new observation/case. In order to determine the new class of an observation,

the method groups the di↵erent retrieved cases based on their classes. Then, the class

for the new observation is the one with the highest frequency (number of cases within a

class). Bringing this approach to fault diagnosis as a classification problem, the di↵er-

ent classes will be linked to the di↵erent faults we want diagnose. Let us exemplify this

concept in a graphical way. Let us suppose that our process only presents two di↵erent

types of faults we want to diagnose: squares (fault type 1, ~⇠1) and circles (fault type

2, ~⇠2). Now, suppose that the information retrieved for the five nearest cases (k = 5,

c1, .., c5) to a new case (cnew) and their distribution is the one shown in Figure 3.14.

The simple voting determines that the fault a↵ecting cnew is ~⇠1 because this is the

most common fault among the five nearest neighbours, even though two out of the

three ~⇠1 observations are quite far from the observation, since simple voting does not

take into account the distance of the retrieved cases with respect the new case. In order

to avoid this problem, one can reduce the number of nearest neighbours retained (k),

or add a threshold to limit the distance of the retrieved cases.
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Figure 3.14: Example of a retrieval procedure for a new case (cnew) and its five nearest

neighbours (k = 5)

3.4.2 Distance-weighted voting (DW)

The weighted voting uses the distance of each retrieved observation (ci) to the new

observation case (ci) in order to weight its influence in the determination of the final

class. This means that each case is given a voting weight (wi) computed as:

wi =
1

di
(3.23)

where di is the distance of the ith retrieved case to the new observation using a

certain distance criterion. Then, these values are accumulated and grouped according

to the di↵erent classes the problem can be divided into, and denoted as similarity ratio

(sj):

sj =

qjX

l=1

wl (3.24)

where j indicates the class for which the similarity ratio is being computed; and qj

is the number of cases retrieved for this class. The class with the highest similitude

ratio is the class assigned to the new observation.

Continuing with the example depicted in Figure 3.14, the distance values (di) for

each retrieved case ci and the weighted distance for each observation wi are presented
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Table 3.1: Reuse example: distance (di) and weighted voting (wi) between the new case

cnew and each retrieved case ci

d1 d2 d3 d4 d5

0.10 0.12 0.15 0.50 0.75

w1 w2 w3 w4 w5

10 8.33 6.66 2 1.33

Table 3.2: Reuse example: similarity ratio for both squares (class 1) and circles (class 2)

s1 s2

13.33 14.99

in Table 3.1. From these values, the reuse step indicates that the new observation is

a circle because it has the highest similarity ratio (s2 > s1). Consequently, this reuse

procedure favours groups of observations close to the new observation.

3.4.3 Distance and class frequency weighted voting (DFW)

A single retrieved case can bias the class prediction given that the rest of observations

are far enough from a new observation when using DW. To solve this problem, the

class frequency (the number of cases for each class among the retrieved cases) is taken

into account for this method. And thus, (3.24) becomes the following expression to

compute the similarity ratio (sj) for the jth class:

sj = qj

qjX

l=1

wl (3.25)

where qj is the number of cases retrieved from class j and wl is the weighted voting

for the lth retrieved observations from class j, computed using (3.23).

Finally, note that the three reuse methods presented in this section are sensitive

to the presence of clustered “noisy” instances, which are explained in section 3.6 since
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they a↵ect the case base maintenance policies. Whenever this happens, one has to

study the optimal number of retrieved neighbours to minimise this.

3.5 Validation procedure using latent structures: the re-

vise step

Once a solution for a new case has been proposed, the CBR has to evaluate the goodness

of the proposal. This section presents the di↵erent methods used for determining the

best retrieve and reuse strategies during the o↵-line training procedure. In this case,

the validation procedure a↵ects both the case base constitution (to guarantee that all

available observations are used) and the study of how the reuse process misbehaves

(which classes are confused among them). More specifically, the case based division is

carried out using the n-fold cross-validation procedure (detailed in subsection 3.5.1),

the classification performance is checked using the confusion matrix and its associated

statistics (presented in subsection 3.5.2) and the best classification scheme is found

based on the area under the receiver operating curve (AUC), which is explained in

subsection 3.5.4).

3.5.1 Cross-validation and case base building

In n-fold cross-validation, the available data is divided into n folders containing approx-

imately the same number of examples. The stratified version of this technique takes

into account the several ratios among classes present in the original set. Once the data

is divided, one of the n folds of samples is retained for validation of the model formed

by the remaining n � 1 data fold. This process is repeated n times (once for each

fold) (Kohavi, 1995) and the average results indicate the performance of the method.

Finally, Figure 3.15 presents this methodology in a graphical way.

3.5.2 Confusion matrix and its associated statistics

The classification performance will be evaluated based on the confusion matrix. A

confusion matrix is a form of contingency table showing the di↵erences between the

true and predicted classes for a set of labelled examples, as shown in Table 3.3 (Bradley,

1997).
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Figure 3.15: n-Fold Cross Validation graphical procedure

Table 3.3: Confusion Matrix elements

Real Class

Ref No Ref

Predicted

Class

Ref TP FP

No Ref FN TN
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Table 3.4: Extended Confusion Matrix elements

Real Class

Class 1 Class 2 . . . Class N

Predicted

Class

Class 1 TP (1, 1) FP (1, 2) . . . FP (1, N)

Class 2 FP (2, 1) TP (2, 2) . . . FP (2, N)

...
...

...
. . .

...

Class N FP (N, 1) FP (N, 2) . . . TP (N,N)

These labels stand for:

• TP : refers to true positives and are cases correctly predicted that belong to the

reference class.

• FP : refers to false positives, which are observations predicted as from the refer-

ence when they are not.

• FN : refers to non-reference cases that are classified as from the reference class.

• TN : refers to non-reference instances correctly identified as such.

Note that fault detection and diagnosis fixes the reference class to NOC observa-

tions, false negative are associated to false alarms (NOC cases labelled as AOC) and

false positive are equivalent to missed detections (AOC instances not detected, or la-

belled as NOC).

In case of diagnosis, it is a multi-class problems (with more than two classes), the

confusion matrix has to be extended as shown in Table 3.4. In this case, TP (i, i)

stands for cases of class i correctly classified as i; while FP (i, j) refers to cases that

were classified as class i but their real class was j (false positive); and N is the number

of diferent classes.

Because the extended confusion matrix does not have all elements found in the

binary confusion matrix (TN and FN), the di↵erent statistics associated with the con-

fusion matrix, which are explained afterwards, cannot be computed directly. The easiest
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way to tackle this problem is to binarise the extended confusion matrix (Sokolova and

Lapalme, 2009), which consists in fixing one class as the reference class, and aggregate

the other N � 1 classes as non-reference, grouping observations in the four cells TP ,

FN , FP and TN . This procedure is repeated N times (once for each class), while

keeping each of the binary matrices. When all matrices are available, there are two

di↵erent approaches to measure the classifier performance:

• Macro-averaging. This procedure computes the performance indices for each

binary matrix and then averages these values among all classes to indicate the

global classifier performance.

• Micro-averaging. This procedure accumulates all binary matrices into one, and

then computes the performance indices from this accumulated table.

Note that macro-averaging treats all classes equally (by averaging the di↵erent per-

formance indices), while micro-averaging benefits larger classes (by accumulating the

values and then computing the indices).

Other statistics commonly used to evaluate performance of classifiers based on the

confusion matrix are the followings: accuracy (subsubsection 3.5.2.1), precision (sub-

subsection 3.5.2.2), sensitivity (subsubsection 3.5.2.3) and specificity (3.5.2.4).

3.5.2.1 Accuracy (ACC)

Accuracy measure the proportion of correctly classified cases among all the cases used

for testing, and is computed as:

ACC =
TP + TN

TP + TN + FP + FN
(3.26)

3.5.2.2 Precision (PRE)

Precision measure the proportion of correctly classified cases from the reference class

from all cases that were predicted as the reference one, and is computed by:

PRE =
TP

TP + FP
(3.27)
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3.5.2.3 Sensitivity (SEN) or true positive rate (TPR)

Sensitivity measures the ratio between cases correctly classified as the reference class

among all cases that have been predicted as the reference class, and is computed by:

SEN/TPR =
TP

TP + FN
(3.28)

3.5.2.4 Specificity (SPF)

Specificity measures the ratio between cases correctly classified as non-reference class

among all cases that have been predicted as non reference class, and is computed by:

SPF =
TN

TN + FP
(3.29)

3.5.3 Receiver operating characteristic (ROC) curve

The ROC curve representation is a two-dimensional graph where the y-axis represents

TPR and the x-axis indicates the false positive rate (FPR) , or what is the same, 1-

specificity (Fawcett, 2006). Based on this, there are four main points in the ROC space,

which are:

• (0,0): this point represents a classifier that always misclassifies cases from the

reference class, but never misclassifies non-reference instances. This is equivalent

to classify all observation as non-reference instances.

• (0, 1): this point is related with the perfect classifier. This is, any classifier within

this location never misclassifies an observation, and thus, this is the ideal scenario.

• (1, 0): any classifier that lies in this zone always misclassifies, and thus, this is

the worst case scenario.

• (1, 1): this point refers to classifiers that cannot identify observations outside

of the reference class, which is equivalent to always classify new observations as

from the reference class.

Therefore, the closer a point is to (0, 1), the better the classifier is. Contrarily,

the closer a classifier is to (1, 0), the worse the classifier is. Finally, the line that
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Figure 3.16: Example of ROC curve

links points (0, 0) to (1, 1) represents the random classifier performance. Any classifier

has to lie in the upper triangular space above this line, and thus, this line serves as a

minimum performance reference. Finally, this information is presented in a graphical

way in Figure 3.16.

In order to build the ROC curve, several tests are carried out altering the parame-

ter(s) of a classifier, and the TPR and FPR pairs for each test are represented in this

space. Alternatively, the method devised in Fawcett (2006) can be used to represent

the performance of a single classifier. This method is based on the positive probability

(probability of correctly classifying each reference class instance) for that classifier.

3.5.4 Area Under the ROC Curve (AUC)

Because in some operating points sensitivity can be increased with a minor loses in

specificity and in others this is not possible, a non-ambiguous possible comparison of

performance can be achieved by computing the area under the ROC curve (AUC).

A simple way of computing this value is using the trapezoidal integration method

described in Bradley (1997).

AUC =
X

i

⇢
(FPR⇥�TPR) +

1

2
[�FPR⇥�TPR]

�
(3.30)

�FPR = FPRi � FPRi�1 (3.31)

�TPR = TPRi � TPRi�1 (3.32)
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Where FPRi represents the FPR value of the actual point (i), FPRi�1 repre-

sents the FPR value of the previous point (i � 1), TPRi represents the TPR value of

the actual point (i) and TPRi�1 represents the TPR value of the previous point (i�1).

The AUC ranges between 0 and 1, where 1 indicates a perfect classifier (classifiers

in the (0, 1) ROC region); 0 is related to a classifier that always misclassifies (classifiers

in the (1, 0) ROC region); and 0.5 is associated with the random classifier performance.

Therefore, the closer the AUC is to 1, the better the classifier is.

3.6 Case base maintenance: the retain step

The retain step is the last stage of a CBR and is the one that gives it the learning

capability. The main idea of the retain stage is to determine the set of new and stored

observations to carry out for further classifications. Two basic approaches can be used

for this task: 1) store every new observation; and 2) store each misclassified case. The

former has the drawback that all observations are stored, even if they were correctly

classified using the original/previous case base. The latter only focuses on storing

the wrongly classified observations to classify new observations. However, this second

approach does not take into account that keeping new observations can worse the clas-

sification ratio of the original or previous case base. Moreover, the larger the case base

is, the more time it takes to retrieve cases (there are more instances to compare new

observations with), and thus, the computational cost of the CBD constantly increases.

Since in our case, the CBR is used for diagnosing the cause of the fault (as will be ex-

emplified in chapter 5) or to determine the operating point of the process (depicted in

chapter 4), any reference to classes within this section refers to either of both situations.

In order to maintain the minimum case base possible while also accounting the

overall case base performance, three methods have been considered in this thesis: the

decremental reduction optimisation procedure (DROP) 4 (Wilson and Martinez, 2000),

the instance-based learner 3 (IB3) (Aha et al., 1991), and the instance-based learner

UdG (IBUdG) (Burgas, 2013). Both DROP4 and IB3 were identified in Ruiz (2008)

as the best methods for the case base maintenance when applied to WWTP, and thus

initially considered in this thesis, while IBUdG is a new maintenance policy that reduces
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Figure 3.17: Example of a noisy instance. c1 is considered as a noisy instance because it

is a single square instance surrounded by circle class cases (from c2 up to c6)

the computation cost when building the best case base for future classifications. Each

of them are detailed in the next three subsections.

3.6.1 Decremental reduction procedure (DROP) 4

The family of decremental reduction procedures are focused on reducing noisy instances

from a case base (Wilson and Martinez, 2000).

Definition 3.2. Noisy instance. A noisy instance is an observation surrounded by

cases from a di↵erent class, like it happens in Figure 3.17 with instance c1 (a square

class instance), which is surrounded by circle class instances (from c2 up to c6).

Based on this definition, DROP4 focuses on keeping the border points (the closest

instances of di↵erent classes) of the di↵erent class clusters. This means that DROP4

removes instances within the central cluster of a class cluster, since they are not critical

points when deciding the classification of a new instance. Let us explain this idea in a

more graphical way. Imagine that the cluster of observations in Figure 3.18 is a sub-

space of the classification problem. All observations in this cluster are from the same

case (circles), and thus, the central instances c1, c2 and c3 can be correctly predicted

using the border points c4, c5, c6, c7 and c8. As a result, DROP4 removes these in-

stances because they are not necessary to classify new observations of the same class

that lie within the border cases.

However, now let us suppose that the situation depicted in Figure 3.19 is another

subspace within the problem subspace. Both c1 and c2 (central cluster instances) are

from a di↵erent class (squares) than the class of the surrounding or border instances
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Figure 3.18: Example of DROP4 removing a set of central cases (c1, c2 and c3) since

the border cases (c4, c5, c6, c7 and c8) are capable of predicting any future new instance

within the cluster

Figure 3.19: Example of DROP4 keeping all instances since the central cluster (c1 and

c2) are from a di↵erent class (square) than the class from the border cluster (c3, c4, c5, c6
and c7, which are circles)

(c3, c4, c5, c6 and c7, which are circles). Since removing both central cases would

wrongly classify any new square instance within the circle’s border, DROP4 keeps both

instances for future classifications.

With respect to other versions of the algorithm, DROP4 incorporated a noise filter

in order to remove noisy instances before looking for the central and border clusters.

The main problem with noisy instances is that they initially misclassify the nearest

neighbours, and thus, keeping them only produces a lower performance. Considering

all of this, the pseudo-code for DROP4 is presented in Algorithm 3.3.
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Algorithm 3.3 DROP4 pseudo-code

Input: A case base (CB) with all stored cases to compare the new case; and the number of neighbours

to retrieve (k) when checking for noisy instances.

Output: The reduced case base RCB without noisy instances and the minimum number of instances.

1: function DROP4(CB, k)

2: Initialise the reduced case base using the initial case base: RCB = CB.

3: Find all associates to each case ci in RCB (A). . Associates are all cases that have ci as a

nearest neighbour

Careful noise filtering

4: for i = 1 to qCB do . qCB is the number of cases in the whole case base.

5: if ci is misclassified for its nearest neighbours then

6: Remove it if not necessary (removeIfNotHelping(ci, RCB)).

7: end if

8: end for

More aggressive noise filtering (centroids removal)

9: Sort instances based on their distance to the closest enemy (furthest ones first). . An enemy is

a case of a di↵erent class than the case we are looking at.

10: for i = 1 to qRCB do . qRCB is the number of cases in the reduced case base.

11: removeIfNotHelping(ci, RCB).

12: end for

13: return The reduced case base RCB.

14: end function

Instance removal function (removeIfNotHelping)

Input: A case instance (ci) whose influence to other observations has to be checked; and the case base

(CB) where the influence of ci has to be checked.

Output: The resulting case base (RCB) does not have ci if is not necessary to improve the classification

ratio of CB. The initial case base CB otherwise.

15: function removeIfNotHelping(ci, CB)

16: RCB = CB.

17: Compute the number of associates of ci (ai) that are correctly classified when ci is included in

CB (with).

18: Compute the number of associates of ci (ai) that are wrongly classified when ci is removed from

CB (without).

19: if without � with then

20: Remove ci from RCB.

21: for a = 1 to qa do . qa is the number of associates to ci

22: Remove ci from all its associated cases (ai).

23: Get a new nearest neighbour for a in RCB.

24: end for

25: end if

26: return The resulting case base RCB.

27: end function
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3.6.2 Instance-based learner 3 (IB3)

Contrary to the decremental family of algorithms, which start from the whole case base

and check which instances can be removed; the instance-based learning procedures start

with an empty case base, and the appropriateness of adding a new instance is evaluated

at each iteration. IB3 is a noise-tolerant extension of its predecessor IB2, which only

adds a new instance ci to the training set if it is misclassified by its k nearest neighbours.

IB3 adds two features to IB2:

• A classification record of each instance in the case base computed as the number

of correct classifications divided by the times the instance has been retrieved.

This record is used to predict the future performance of each instance.

• Uses the significance test described in (3.33) to determine what instances are

good classifiers, which are kept for further classifications; and what cases are

noisy, which are discarded from the case base.

⇢ =
b+ ↵2

2qCB
± ↵

q
b 1�b
qCB

+ ↵2

4qCB

1 + ↵2

qCB

(3.33)

where b is the classification performance of the instance computed as successful

classifications divided by the number of attempts; ↵ is the confidence interval;

and qCB is the number of instances stored in the case base.

The main idea of IB3 is working with acceptable instances when building the reduced

case base, while dropping those instances with a poor performance. An acceptable

case is an observation whose performance record is significantly above the overall class

performance. On the other hand, an observation with a poor classification is an instance

with a significantly poor performance record. The usual values for both adding a new

acceptable instance is ↵ = 0.9, while the confidence limit for dropping a poor instance

is set to ↵ = 0.75 (values proposed in Aha et al. (1991)). The main idea is to di�cult

the acceptance of new instances (performance over the 90% of the class record), while

the latter value is designed to drop instances with moderate poor classification. The

pseudo-code describing the IB3 procedure is presented in Algorithm 3.4.
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Algorithm 3.4 IB3 pseudo-code

Input: A case base (CB) with all stored cases to compare the new case. Note that we use the default

values confidence level ↵ for determining acceptable and poor instances.

Output: The reduced case base RCB with only acceptable instances.

1: function IB3(CB)

2: Initialise the reduced case base as an empty set: RCB = ;.
3: for i = 1 to qCB do . qCB is the number of cases in the whole case base.

4: for j = 1 to qRCB do . qRCB is the number of cases in the reduced case base RCB.

5: Compute the distance between ci and cj using a given distance criterion (d (ci, cj)).

6: end for

7: Look for the closest acceptable instance (ca) to ci.

8: if there are no acceptable cases then

9: Initialise ca with a random instance in RCB.

10: end if

11: if class(ci) = class(ca) then

12: classification = correct

13: else

14: classification = incorrect

15: Add ci to the reduced case base (RCB = RCB [ ci).

16: end if

17: for j = 1 to qRCB do

18: if d(cj , ci)  d(ca, ci) then . cj is at least as close as ca to ci

19: Update the classification record of cj .

20: Remove cj from RCB if its classification record is poor (⇢ < 0.75).

21: end if

22: end for

23: end for

24: Remove all non-acceptable instances in RCB (⇢  0.9).

25: return the reduced case base RCB.

26: end function
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3.6.3 Instance-based learner UdG (IBUdG)

Although than in Ruiz (2008) it was demonstrated that a combination of both DROP4

(initially applied to remove the noisy instances in the case-base) and IB3 (applied

whenever the retain function was called) gave the best results, this procedure has an

important computational cost. Based on the incremental methodology (start with an

empty case base and then add new instances), the IBUdG algorithm is proposed. Its

main idea is to track the nearest enemies (cases from a di↵erent class of the one being

studied) in order to keep the cases closest to the border line (like DROP4) but starting

with an empty case base (like IB3). By doing so, the method only keeps the minimum

number of instances to determine the frontier between the di↵erent classes. The pseudo-

code for the IBUdG is described in Algorithm 3.5. As a final note, consider that for

multi-class (more than two classes) problems, the method looks for the nearest enemy

to each of the other classes.

Algorithm 3.5 IBUdG pseudo-code

Input: A case base (CB) with all stored cases to compare the new case; and the number of nearest

enemies to retrieve (k).

Output: The reduced case base RCB with only acceptable instances.

1: function IBUdG(CB, k)

2: Initialise the reduced case base as an empty set: RCB = ;.
3: for i = 1 to qCB do . qCB is the number of cases in the whole case base.

4: Find the nearest enemy to ci (nei).

5: if nei is not in RCB then

6: Add nei into RCB (RCB = RCB [ nei).

7: end if

8: end for

9: return the reduced case base RCB.

10: end function

A comparison between three retain strategies is presented in chapter 4 in section

4.3.4 in terms of correct classification, as well as in terms of stored cases in the final case

base. These results were partially published in Berjaga et al. (2013b). Additionally,

Appendix B includes a computational time comparison between the three strategies for

a binary classification problem, where both classes completely overlap (the worst-case-

scenario for a classifier).
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3.7 Benefits, drawbacks and assumptions of CBRs based

on LS

This chapter proposed the combination of a CBR methodology using LS in order to

complement the limitations of using both methodologies (MPCA and CBR) indepen-

dently. On the one hand, LS statistical models are capable to determine if a process

is under normal operating conditions or not (fault detection), and in case of an

AOC observation, the statistical method can determine the subset of variables associ-

ated with the fault, but the model is not capable of identifying the root cause of the

fault. On the other hand, machine learning algorithms like CBR can relate a series of

evidences to their root cause, given that the appropriate rules have been defined, or

in the CBR case, some previous experiences have been stored to propose a new solution.

In order to have a good statistical model, a large and rich database is required,

which sometimes is not the case for certain batch processes. Moreover, the limits for

the fault detection indices (T 2 and SPE) are statistical limits, and thus, a series of

false alarms, and even missed detections, are expected to happen. When combining the

statistical model with a CBR, past situations can be used to reduce this false alarm

ratio, and at the same time, reduce the number of observations required to have a

representative model for all in-control situations.

Nonetheless, machine learning methods require that their input parameters (at-

tributes) are independent among them in order to guarantee a superior performance

and simpler implementation (Jakulin and Bratko, 2003). Although MPCA (or unfold-

PCA) does not grant the independence among principal components (they are un-

correlated), it does guarantee that adding a new attribute (for example keeping one

more principal component) adds new information for solving a problem. Moreover, if

each faulty observation/case in the case base has the information regarding the root

cause (indicated by a process expert), then analysing the information of the nearest

neighbours can be used to relate how variables misbehave for a given root cause. By

combining both methodologies, the operator can interpret and identify the problem in

a more natural way, since CBR works with analogies, like the human brain.
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Table 3.5: Extended Confusion Matrix elements

Real Class

Class 1 Class 2 Class 3

Predicted

Class

Class 1 95 0 5

Class 2 0 100 0

Class 3 0 0 100

But the combination of both techniques also presents some drawbacks. The first

one, and most significant, is that past situations and its solutions has to be correctly

classified to build the initial case base and consequently, to apply the methodology.

Also related with the case base, a CBR can only classify observations with the current

set of typologies. This means, that when a new problem type appears, the CBR either

misclassifies it, or indicates that is not capable to assign a cause/known state for the

new case. In order to overcome this problem, novelty discovery techniques could be

applied to indicate the user that a new pattern has been discovered. This would lead

to assign a new label to these new situations, and consequently, any new observation

can be identified. The last problem related with CBD is that is a supervised learning

algorithm. This means that in order to check if the proposed solution is correct (the

revise step), it requires an external opinion (the operator or the process expert) to vali-

date the appropriateness of the solution. However, the user feedback can be reduced to

a subset of observations (or problem typologies) based on the confusion matrix. Let us

exemplify how this can be done with the extended confusion matrix shown in Table 3.5.

For the case being, class 2 is not confused with any other class, so the revise step

does not require the validation of class 2 instances. The same can be applied to obser-

vations classified as class 3, since they are never classified as neither class 1 nor class 2.

However, five observations were identified as class 3 situations although they were class

1. Consequently, only observations classified as class 3 have to be checked in order to

disregard a misclassified class 1 observation.

Up until now, all drawbacks have been pointed out to the CBR, and thus, problems

85



3. CASE-BASED DIAGNOSIS (CBD) BASED ON LATENT
STRUCTURES (LS)

with the MPCA/unfold-PCA model have been omitted. Two main concerns a↵ect the

statistical model of a process: 1) modifying the working point of the process studied;

and 2) the deviation of the process throughout time. The former can be corrected,

or at least attenuated thanks to the CBR, while the latter is further discussed in the

next section (section 3.8). Let us focus on that the process can operate within several

working points (like most of batch processes). Additionally, suppose that there are as

many statistical models as working points the process can operate into, and thus, there

is as many case bases as working points (cases bases use a single statistical model to

project observations). Now, let us suppose that the model and case base associated

with the ith working point is being employed. A new batch is analysed and when

retrieving the k nearest observations, most of them are tied to the jth working point.

Because of this, the reuse step determines that the working point has been switched,

and thus, the model to use for the next batch release is automatically changed. At the

same time, the current batch is classified according to the jth case base. Consequently,

the CBR can be used to recognise these operating points and switch monitoring or

control strategies according to it. Related with this point, and as stated in the previous

chapter, data-driven methods do not usually incorporate structural information about

the process. Therefore, they are not able to distinguish between process faults or

measurement faults. However, the CBR can incorporate this information within the

diagnosis structure presented in section 3.2, and thus, based on the information of

previous cases, indicate the type of the fault (simple/multiple/complex), and even

present the fault direction and magnitude. This information could be used, for example,

to reconstruct misreadings in sensors, and thus, avoid stopping the production line.

3.8 Case-based diagnosis of batch processes: discussion

Within this chapter, the basic idea of case-based diagnosis (CBD), benefits and draw-

backs have been presented. The main point behind combining both an MPCA/unfold-

PCA and CBR is to overcome the individual limitations of they independent use. In

fact, as stated in the previous section, the resulting combination gives rise to a simpler

diagnosis procedure than the direct application of the contribution plots. Moreover, the

learning capabilities of a CBR reduce the necessity of building new models whenever

a new problem typology appears, like it happens with PLS-DA (Sjöstrom et al., 1985)
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or SIMCA (Wold et al., 1984).

Moreover, since the diagnosis structure indicated in section 3.2 contains detailed

information from previous experiences/cases, the diagnosis aim can be changed to in-

dicate whatever the process operator needs at a time, which may include di↵erent

configurations for a better performance. This capacity is further detailed in the next

two chapters, which present o↵-line and on-line application of the CBD in two di↵erent

fields: chapter 4 presents how the CBD can be used to alert process operators of the

change in the granulation degree of a sequencing batch reactor (SBR); while chapter

5 details how the methodology can determine the final quality of injected parts at the

end of the batch.

The final objective of any monitoring procedure is its application during the pro-

duction chain in order to keep the desired product specifications. Nonetheless, and as

explained in section 1.2, data-driven methods are divided into two phases or stages:

the first one builds the statistical model of the process using historical data (Phase I or

o↵-line analysis); while the second stage applies this model for the on-line monitoring of

the process (Phase II or model exploitation). When in this second stage, the validity of

the model has to be checked continuously, and based on this performance, indicate the

applicability of the model. Usually, the operator output helps to validate the proposed

solution, at least, for each dubious observation, and based on this, the degradation of

the monitoring procedure can be estimated. One possible index is to define a temporal

window (the last k measurements) from within the classification rates must hold over a

certain ✓ threshold (i.e. for the last five batches the performance has to be at least 95%).

Whenever the monitoring scheme does not keep the expected performance, there

are two question that have to be answered:

• Is the process model still valid? Let us suppose that the performance constraints

were fixed based on the number of false alarms (NOC observations labelled as

AOC) or missed detection (AOC observations classified as NOC). Then, whenever

this quota is not satisfied, the process model has to be rebuilt. In order to take into

account the process drift, the last set of NOC observations have to be considered.
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The previous observation and model can be kept, just in case that the process

regresses to the previous operating conditions. A plausible cause of this situation

is a change in the working point of the process that was not initially considered.

• Is the diagnosis process reliable? This situation can happen whenever a new

problem typology appears, or the process model is changed. When this happens,

the proposed CBR configuration has to be reevaluated in order to find the best

configuration (retrieve, reuse, and retain strategies) to proceed with the diagnosis.

Note that in order to update the process model and/or the diagnosis procedure,

the process has to be stopped to avoid releasing out-of-specification products. As a

result, the process reconfiguration should be as short as possible in order to reduce

the time the production remains stopped. A common procedure is to define a series

of control points, where the process validity is checked. Whenever the specifications

at the current point are not met, the operator modifies the necessary parameters in

order to adjust the batch. This procedure is repeated for each control point until the

batch is released and the final quality product is estimated. If the procedures followed

by the operator corrected the misbehaviour, this information is stored in the CBR to

replicate the steps followed for future events. If the operator was not capable to solve

the problem, this knowledge can be used to extrapolate which steps were not su�cient

(when comparing with other retrieved observations) in order to guarantee that future

interventions will be satisfactory.

Apart from the appropriateness of the model and diagnosis scheme, the other im-

portant point is the computation time. This value should be strictly lower than the

batch release time, and at the same time, allow the operator to correct the process, if

the diagnosis is not part of the control loop. With the current hardware technology,

computation time is not as critical as was before, however, and thanks to the improve-

ments in networks, the monitoring process takes place in an external network element

(for example a computer connected to the process using a certain connection protocol).

This means that the transmission time and missing samples due to network overflow

have to be taken into account. Several works address the problem of missing data when

working with PCA models such as Nelson et al. (1996), Arteaga and Ferrer (2005) or

Sernells and Verdonck (2008) among others; and these solutions can be applied to deal
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with information dropping due to network problems (like they were missed measure-

ments). In fact, the CBR can be used to find the subset of closest observations to

the new batch (with incomplete samples), and based on the information of the nearest

neighbours, propose a more accurate approximation.
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4

Identification of the granulation

state in an SBR process

This chapter present the results of applying the CBD methodology exlained in chapter

3 into the WWTP field. In this case, the process studied presents two main operat-

ing points (floccular and granular) when treating wastewater, based on the size of the

sludge granules. Since the granulation state is a key parameter for the correct treat-

ment of wastewater, the main objective of the CBD is to inform the operator of a the

granulation change. In order to do so, two di↵erent strategies will be considered: use

the information of both states to build the statistical model of the process, and thus,

di↵erences between observations have to be found on the projection subspace (using

dt); or build single class models, and since the correlation structure of both methods

di↵er, look for di↵erences in the residual subspace (using dSPE). Results presented in

this chapter were partially published in Berjaga et al. (2013a) and Berjaga et al. (2013b).

In order to do so, this chapter is divided as follows. Firstly, a brief description

of the problem and process are carried out (sections 4.1 and 4.2 respectively). Next,

an o↵-line analysis is described (section 4.3) in which the final goal is to find the best

configuration to di↵erentiate between both states. To do so, the di↵erent approaches for

the automatic diagnosis of the granulation state are presented (subsection 4.3.1), and

then compared (subsection 4.3.2). Based on these results, the variable(s) and stage(s)

for which this di↵erence is most observable are identified and then used to estimate the

granulation from a floccular into a granular operating condition within the transition
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period. After this, an on-line application of the methodology is described in section 4.4

in which only floccular observations were initially available. The main objective in this

scenario is to inform of any granularity change in the process.

4.1 Problem description

Nutrient removal in WWTPs is usually accomplished in continuous systems in which

the biological treatment happens in a reaction basin and the sludge is separated from

the treated water in a settler. With the improvement of biological nutrient removal,

WWTP configurations have changed over the years with a consequent increase in the

land requirements of treatment facilities.

Sequencing batch reactor (SBR) technology is a fill-and-draw activated sludge sys-

tem where all reactions and sludge separation can take place in the same basin. An

SBR converts the conventional wastewater treatment process from space-course to time-

course, which substantially reduces space occupation (Tchobanoglous et al., 2003).

SBRs allow greater flexibility for adapting phases required for nutrient removal accord-

ing to the influent variations (EPA, 1999). However, more sophisticated equipment is

necessary for their operation and automation (Corominas, 2006). SBRs operate ap-

plying cycles that are repeated over time. A cycle is built with a sequence of phases

according to the main objective desired. Given this cyclic nature repeated over time,

MPCA can be used to model the variations of the treatment procedure as will be stated

later on.

Aerobic granular sludge (AGS) is an alternative technology for wastewater treat-

ment that can handle high loading rates or large volumes of waste in small facilities

(Liu and Tay, 2002). The fast settling properties of the granules allow the treatment to

be more compact than conventional systems with floccular sludge. However, the major

challenge of this technology is the start-up of the process, as granulation conditions are

not yet fully understood. Several factors have been described for granular formation

such as substrate composition, but the major selection pressures have been identified

as short settling times and high volume exchange ratios (VERs) with the purpose of

selecting bioparticles according to their settling velocity (Liu et al., 2005). However, a
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high washout of biomass is usually obtained during the process (McSwain et al., 2004).

Furthermore, granulation of systems treating low-strength wastewater with lower load-

ing rates than 2 kg CODm�3d�1 takes longer to reach the steady state (Tay et al.,

2004) and the transition state, where a system becomes fully granulated, is sometimes

di�cult to detect. Some o↵-line analysis such as particle distribution may help in the

turning point detection, but they are expensive and time consuming.

Activated sludge systems are usually equipped with on-line sensors such as pH,

dissolved oxygen and oxidation-reduction potential (ORP) sensors, which have been

proven to give ample information regarding biological nutrient removal processes, through

their key parameters indicators (KPI) (Puig et al., 2005; Yuan et al., 2008). The in-

formation of these sensors has been demonstrated useful for controlling the reaction

and improving the process design. In this work, the o↵ line analysis of batch records

of this process (following the CBD strategy proposed in the previous chapters) has

demonstrated to be useful to identify variations in the process behaviour from floccular

to granular.

The objective is to automatically identify the status of the SBR reactor (floccular,

transient, granular) by means of the information provided by the sensing devices (pH,

DO, ORP and temperature sensors) and the case based diagnosis methodology for batch

process introduced in the previous chapters. Two di↵erent scenarios will be depicted:

one in which both granularities (floccular and granular) are present (section 4.3) and

the approach is applied o↵-line; and another one for which only floccular batches were

initially available (section 4.4) and CBD is used to launch a granulation change warning

(real-time release monitoring). For both scenarios, the CBD methodology is presented

as an alternative to an o↵-line analysis of the granules.

4.2 Process description

A 30L lab-scale sequencing batch reactor (SBR) located in the Laboratory of Chemical

and Environmental Engineering (LEQUIA- UdG) was used for granulation purposes.

93



4. IDENTIFICATION OF THE GRANULATION STATE IN AN SBR
PROCESS

The SBR was initially seeded with floccular sludge which was collected from a full-

scale domestic wastewater treatment plant (WWTP) located in Sils-Vidreres (Girona,

Spain). The SBR also treated 39 L of wastewater per day collected from the Quart

WWTP. An 8-h cycle with two feeding steps was implemented, introducing the wastew-

ater under anaerobic or anoxic conditions to enhance phosphorus removal and denitri-

fication as depicted in Figure 4.1. The pilot plant was equipped with a monitoring and

control system made of three parts: i) pH, ORP and DO-temperature probes; ii) data

acquisition and switch on/o↵ cards; and iii) interfaces developed in LabWindowsr. DO

setpoint during aerobic phases was fixed at 2 mg O2 L�1 by an air on/o↵ strategy. On-

line mean values were obtained every 5 s and stored in a simple ASCII file for further

processing giving 4320 samples. Considering that reactions in biological processes are

very slow, the number of samples will be reduced to a sample per minute, and thus,

480 samples for each variable and batch will be processed.

A 30L lab-scale sequencing batch reactor (SBR) was used for granulation purposes.

The SBR was seeded with floccular sludge from a full-scale domestic wastewater treat-

ment plant (WWTP) located in Sils-Vidreres (Girona, Spain). The SBR also treated

39 L of wastewater per day from the Quart WWTP. An 8-h cycle with two feeding

steps was implemented, introducing the wastewater under anaerobic or anoxic condi-

tions to enhance phosphorus removal and denitrification as depicted in Figure 4.1. The

pilot plant was equipped with a monitoring and control system made of three parts:

i) pH, ORP and DO-temperature probes; ii) data acquisition and switch on/o↵ cards;

and iii) interfaces developed in LabWindowsr. DO setpoint during aerobic phases was

fixed at 2 mg O2 L�1 by an air on/o↵ strategy. On-line mean values were obtained

every 5 s and stored in a simple ASCII file for further processing giving 4320 samples.

Considering that reactions in biological processes are very slow, the number of samples

will be reduced to a sample per minute, and thus, 480 samples for each variable and

batch will be processed.

The granular formation is based on a two-step process and similar to crystal growth.

Firstly, fine particles are induced; and then, on the surface of these particles, working

as carriers, bacteria develop mature granules (Jin et al., 2012). Therefore, a transition

state between the floccular and granular states occurs during the granulation process.

The detection of this turning point where the fine particles are colonized to form mature
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4.2 Process description

Figure 4.1: Stage configuration of the WWTP lab scale process. Each colour di↵erentiates

one of the di↵erent actions occurring during the batch. The value below each stage indicates

its duration, which add up to 480 minutes (the batch length).

granules is impossible to the naked eye. According to the physical parameters of the

sludge, batches between September 24th 2009 and March 24th 2010 were divided into

three classes: floccular (1); transition (2); and granular (3). Figure 4.2 presents the

mean size of the activated sludge and the classification obtained during the operation

and according to experimental observations.

The experimental observations determined that, at least until December 19th, the

system was fully floccular (class 1 and 249 batches). This statement was supported as

well by a mean size of flocs lower than 200 µm. When the mean size of the sludge rose

up to values over 500 m on February 26th, the sludge was classified as granular (class 3

and 184 batches) as depicted in Figure 4.2. However, the transition between floccular

and granular state is not instantaneous and it takes several days (more than two months

in this experiment and 87 batches), so we assigned “class 2” to these batches in order to

represent this transition state. Note that the granule morphology was investigated using

a stereomicroscope and to determine the size distribution of the particles in each SBR,

30 mL of mixed liquor were passed through a Beckman-Coulterr laser light scattering

instrument, suitable for the measurement of particle sizes in the range of 0.02-2000 µm.

Since the main objective is to determine the granulation state of the process (its op-

erating point) without considering the process state, both NOC and AOC observations

will be included when building the respective monitoring models. This means that the
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Figure 4.2: Experimental classification and mean size of the sludge (left); and stereomi-

croscope images from floccular (1) and granular (3) sludge (right) from the SBR

resulting models are not adequate for process monitoring, since they contain all operat-

ing conditions within a granulation state. This is a major di↵erence with the traditional

MPCA procedure, which uses only NOC observations to define the monitoring model.

4.3 O↵-line determination of granulation state

To di↵erentiate between floccular and granular batches, only experimentally well-classified

batches will be used. This means that batches within the transition period (class 2)

are initially discarded for this stage. Two di↵erent strategies will be applied to build

the MPCA model: 1) use all available information of both states (MPCAfg); or 2)

use only one state (either floccular (MPCAf ) or granular (MPCAg)). The former (all

information available) represents both states (floccular and granular) in the principal

component subspace. Since the variability between the two states (inter-class variabil-

ity) is greater than the variability within a state (intra-class variability), separability

between both states is attained in the projection subspace (based on the values of the

scores and T 2), rather than in the residual subspace.

The second approach (only one process state to build the model) intends to capture

correlation among variables when the process operates in the floccular (or granular)
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4.3 O↵-line determination of granulation state

state and study if this correlation su↵ers variations large enough to be detected. The

idea is to project new batches against this model and observe evolution of both statis-

tics, T 2 and SPE, in order to detect if this correlation change exists and how abrupt

it is.

Independently of the strategy, the number of principal components for each model

built will be selected based on the scree-plot criterion (Himes et al., 1994). Addition-

ally, and since the granulation is considered once the charge is released (at the end of

the batch), observations will be batch-wise unfolded and auto-scaled in order to give

the same weight to all variable and samples and remove the average trajectory of all

variables. Details in the di↵erent models are contained in their respective subsections.

4.3.1 Granularity diagnosis with a multiclass model (CBDfg)

As stated before, the multiclass model strategy consists in using all the available batches

when building the model and looking for separated distributions in the projection space

where di↵erent classes could be assigned. This means that MPCA will model the

di↵erences between both granulation states instead of the normal operating conditions

(as was described in chapter 2). And in order to test with all available observations,

floccular and granular batches will be divided in five folds (n = 5) using the n-fold cross-

validation procedure in chapter 3, which gives us the five di↵erent statistical models

detailed in Table 4.1, where Fold indicates the set of observations used to build the

ith MPCA model, r indicates the number of principal components retained for each

model, PV E is the percentage variance explained by the MPCA model, �↵ is the SPE

limit and ⌧↵ is the T 2 limit. Both �↵ and ⌧↵ are computed as the percentile 95 of

the respective indices, since NOC and AOC observation for each granulation state are

included in the model.

As can be seen in Table 4.1, all five models presents di↵erent number of principal

components, due to the presence of extreme observations. Usually, these observations

should be removed, however, in this case, they will be useful when classifying clusters of

“noisy” instances within each group (as will be depicted later on in Figure 4.5). More-

over, the fact that both NOC and AOC observations coexist within the model gives

rise to greater SPE values than T 2, as can observed by the respective statistical limits.
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Table 4.1: Properties of the statistical model of each fold (multi-class approach)

Fold r PV E (%) �↵ ⌧↵

MPCAfg

1 12 91.8116 356.173 23.2873

2 9 89.3931 467.711 19.8017

3 11 91.0385 378.379 22.5762

4 13 92.0008 321.502 28.547

5 6 81.6925 822.211 16.5421

This means, that di↵erences between floccular and granular observations are more eas-

ily found (due to a lower variance) within the projection subspace (as intended) rather

than in the residual subspace. Figure 4.3 presents the projection into the first three

principal components of all floccular (black dots) and granular batches (red triangles)

from the first fold to illustrate this fact.

As can be seen in Figure 4.3, the first and second principal components have the

highest discrimination power to di↵erentiate between floccular and granular observa-

tions as two main groups can be distinguished within the t1-t2 plot, as well as in the

3D representation, while some batches were coincident with the rest of the 2D plots.

Consequently, cases (cfg) have been characterised by a labelled vector consisting of

the score vector (t1, t2, · · · , tr) and the granularity class (class 1 (floccular) or class 3

(granular)) expressed as:

cfg = {t1, t2, · · · , tr, class} (4.1)

The retrieval process for this case base (CBDfg) will compare cases using the nor-

malised Euclidean score distance (dt) explained in 3.3.2.1 and previously presented in

(3.9) in this way:

dt (ca, cb) =

vuut
rX

i=1

(ti,a � ti,b)
2

�i
(4.2)

where ca is the new case and cb is one of the cases retrieved from the case base;

ti,a and ti,b are the ith score of case ca and cb respectively; and �i is the eigenvalue

associated to the ith principal component.
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4.3 O↵-line determination of granulation state

Figure 4.3: Projection into the first three principal components of all floccular (black

dots) and granular batches (red triangles)

4.3.2 Granularity di↵erentiation with single class models (CBDg and

CBDf )

As two process states are available, two di↵erent single-class MPCA models can be

built: one that focuses on floccular batches (MPCAf ); and another based on granular

observations (MPCAg). This strategy consists in identifying inconsistencies between

actual data and one of he previously computed models. Based on this, the retrieval

process is based on the SPE index. Likewise in the previous section, the n-fold cross-

validation procedure has been used to build five (n = 5) di↵erent MPCA models (using

the same divisions for all strategies) and presented in Table 4.2, which uses the same

notation than Table 4.1. Note that when building the ith MPCAf model, only floccular

observations within this fold were used, and vice-versa, when building the ith MPCAg

model, only granular batches within this fold were used.

Like it happened in with MPCAfg, each statistical model presents di↵erent num-

ber of retained principal components, especially, MPCAf. Moreover, the fact that the

first MPCA model based on floccular cases (MPCAf ) presents the lowest number of

principal components retained, while at the same time, the granular model of the first
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Table 4.2: Properties of the statistical model of each fold (single-class approach)

Fold r PV E (%) �↵ ⌧↵

MPCAf

1 8 87.593 496.044 18.2729

2 7 86.7722 529.729 20.1593

3 9 89.4041 502.494 22.9798

4 10 90.2813 430.77 20.8701

5 9 87.5078 509.824 20.5577

MPCAg

1 11 94.0477 296.457 34.6863

2 8 90.6597 522.052 20.9217

3 9 91.9452 427.209 22.0003

4 9 91.9073 460.794 26.2885

5 9 90.4178 532.782 25.5361

fold (MPCAg) presents the greatest value indicates that all extreme observations are

related to granular batches, and there are no extreme observations related to floccular

batches, or at least, they do not alter the model in a great measure. Aside from this

first fold, MPCAg presents a lower variation in both the number of principal compo-

nents and PVE, which means that its intra-class variability is lower to the one found

among floccular batches as depicted in Figure 4.4, which shows the SPE values of all

batches when projected into MPCAf (Figure 4.4A) and into MPCAg (Figure 4.4B).

Note that floccular batches are representd using black dots, while granular batches are

represented using red triangles.

As can be observed from both distributions in Figure 4.4, granular batches present

a lower intra-class variance (red triangles in Figure 4.4B were more cluttered than

black dots in Figure 4.4A), and thus, the separation using CBDg is expected to have

a better classification ratio. However, note that in both cases, projecting batches of a

di↵erent class results in all batches of this new class having a higher SPE value than

the respective SPE limit. Therefore, cases for this strategy (cs) are characterised as a

tuple of its SPE value (SPEi) and its granularity state (class 1 (floccular) or class 3
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4.3 O↵-line determination of granulation state

Figure 4.4: SPE values for all available batches when projected into a floccular PCA

model (A) and when projected into a granular model (B)
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(granular)) expressed as:

cs = {SPEi, class} (4.3)

And thus, the retrieval process for this strategy will use the SPE criterion presented

in 3.3.2.2 (3.10) in this way:

dSPE (ca, cb) = |SPEca � SPEcb | (4.4)

where ca is a new case and cb is one of the cases retrieved from the case base; and

SPEca and SPEcb are SPE values for case ca and cb respectively. Finally, note that

cases retrieved from CBDf will be noted as cf , while batches retrieved from CBDg will

be referred as cg.

4.3.3 Reusing and revising the retrieved information

Once the nearest neighbours have been retrieved (independently of the strategy used),

their information is reused to propose the granulation of a new observation. As could

be seen in Figure 4.3 and Figure 4.4, there are noisy instances for both states, and

thus, both distance-weighted (DW) (firstly introduced in (3.24)) and distance and class

frequency weighted reuse (DFW) explained in subsections 3.4.2 (3.24) and 3.4.3 (3.25)

will be compared when reusing information.

Regarding the performance evaluation of each strategy, an adapted confusion ma-

trix (shown in in Table 4.3) will be used in order to express the classification rate based

on both granulation states.

In Table 4.3 FF indicates floccular batches correctly predicted as floccular; FG

stands for floccular batches classified as granular; GF refers granular batches misclas-

sified as floccular; and GG labels granular batches correctly classified as such. NF

is the total number of floccular batches, while NG indicates the number of granular

batches available. And based on this new notation, two new performance indices can

be derived: the floccular ratio (FR) and the granular ratio (GR). The former indicates

the ratio of floccular batches correctly identified, while the latter accounts for the ratio
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4.3 O↵-line determination of granulation state

Table 4.3: Confusion Matrix elements within the WWTP field

Real Class

Floccular Granular

Predicted

Class

Floccular FF FG

Granular GF GG

TOTAL NF NG

of granular batches correctly classified. These new indices can be computed using the

following expressions:

FR =
FF

FF + FG
=

FF

NF
(4.5)

GR =
GG

GF +GG
=

GG

NG
(4.6)

Note that the closest to 1 these indices are, the better the classifier is in terms of

distinguish between floccular and granular observations. The three retain strategies

explained in section 3.6 (IB3 (3.4), DROP4 (3.3) and IBUdG (3.5)) will be used to find

the method that preserves the best case base in terms of AUC for discerning between

floccular and granular batches.

4.3.4 Results and discussion

This subsection presents the di↵erent results obtained from the o↵-line application of

the methodology. There are two objectives for this o↵-line analysis: 1) identify the

best configuration to di↵erentiate between both granulation states; and 2) find the

variable(s) and stage(s) for which this di↵erence is most observable.

Table 4.4 presents the performance of the three statistical models (subsections 4.3.1

and 4.3.2) and CBD configurations (4.3.3) for the o↵-line analysis. All batches whose

granulation state (class) is known are divided into five divisions using the n-fold cross-

validation procedure explained in subsection 3.5.1. FF, FG, GF, GG, NF and NG

were introduced in the previous subsection and are related to the di↵erent category

labels in the adapted confusion matrix. Finally, FR, GR and ACC are related to

103



4. IDENTIFICATION OF THE GRANULATION STATE IN AN SBR
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the performance indices floccular ratio (4.5), granular ratio (4.6) and accuracy (3.26)

previously described. AUCreuse computes the area under the ROC curve (AUC)

using the FR (as TPR) and GR (as FPR) of the three retain policies used for each

reuse procedure in every modelling strategy, while AUCall compute the AUC using

the six FR (as TPR) and GR (as FPR) for a given strategy. Finally, numbers in bold

indicate the best performance for each DW and DWF boxes for each CBD strategy.

Remember that the retrieve procedure for CBDfg is based on dt (3.9), while retrieving

cases from either CBDf or CBDg uses dSPE (3.10).

With respect to floccular (FR) and granular (GR) ratio performance in Table 4.4,

FR is consistently higher than GR. On the one hand, there are more floccular obser-

vations than granular batches (NF > NG), and thus, misclassifying an observation

has a lower influence for floccular batches. On the other hand, there are more noisy

instances within granular batches than for the floccular ones. This means that noisy

granular observation have a lower influence over floccular batches because of their num-

ber. At the same time, these granular noisy instances, when misclassified have a higher

toll to GR, which worsens due to the presence of floccular noisy instances. Figure 4.5

presents the projection of all floccular and granular cases in one of the CBDfg folds

into the two first principal components. Floccular batches are represented using black

dots, while the granular ones are depicted using red triangles. A hypothetical class

division between floccular and granular batches is represented using a green line, while

floccular noisy instances are circled in blue and granular noisy cases are marked with

an orange circle. Note that for both classes, noisy instances are clustered together,

which influences the class prediction as will be commented later on.

This noisy instances also a↵ect the results obtained when using DW and DFW.

Because noise instances are grouped, DFW amplifies the influence of these noisy in-

stances to the frontier observations (of a di↵erent class). Consequently, AUCreuse

values under the DFW reuse procedure are always lower than the ones obtained with

DW. Among the three modelling strategies, CBDfg is the most a↵ected, since the

noisy cases for each class have to be also modelled in the PCS, while single class

MPCA models (used by CBDf and CBDg) only have to model the ones included in

their class (the others only appear in the case base). Consequently, values for those
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Figure 4.5: Projection into the two first principal components of all floccular and granular

batches in one fold of CBDfg

two approaches are higher, especially for CBDg, which is the strategy with the highest

performance. Finally, this di↵erences are magnified if all six configuration per mod-

elling strategies (two reuse procedures and three retain methods) to compute the AUC

(AUCall), indicating that CBDg is the most regular strategy.

Finally, regarding the three retain policies, results vary based on the strategy used.

IBUdG is the best retain policy for CBDfg in terms of FR and ACC (independently

of the reuse procedure used), while IB3 (followed by IBUdG) and IBUdG are the best

methods in terms of GR. With respect to the single class MPCA models (CBDf and

CBDg), IBUdG is the best approach again in terms of FR and ACC, while IB3 is

the best for DW and DROP4 is the best for DFW. And in terms of reduction carried

out by each method, the average results obtained with each strategy, reuse and revise

procedure are presented in Table 4.5. NFi and NGi indicate the average values of

floccular and granular among the five folds used to build the initial case base. NFo

and NGo refer to the average number of floccular and granular cases after reducing the

initial case base using the di↵erent retain policies (remember that the retain function

uses the same retrieve and reuse procedure of the case base). NFe and NGe is the
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4.3 O↵-line determination of granulation state

average number of floccular and granular cases after revising the proposed solutions for

each test set (in case of a misclassified observation, the faulty case is added to the case

base, and the maintenance strategy is applied in order to obtain the minimum case

base). NFi vs NFo and NGi vs NGo indicate the percentage of reduction for each

case base between the initial case base and the reduced case base. Finally, NFo vs

NFe andNGo vs NGe indicate the percentage of reduction for each case base between

the reduced case base and the final case base (once test observations have been revised).

Independently of the strategy and reuse procedure, IB3 is the procedure that re-

duces the most the case base in both, percentage and number of cases, followed by

DROP4 for floccular and granular observations and observables in NFi vs NFo, NGi

vs NGo (first reduction) and in NFo vs NFe and NGo vs NGe (second reduction).

IBUdG keeps the k-nearest “enemies” (case with a di↵erent case and close to the cur-

rent case) for each case in the case base. For the case being, the overlapping region

between both operating points is significant (as could be seen in Figure 4.3 for CBDfg

and Figure 4.4 for CBDf and CBDg), and thus, nearest enemies for each case in the

case base are sparse not allowing a significant reduction for this maintenance policy.

Additionally, IBUdG is the method that presents the lowest reduction in NFo vs NFe

and NGo vs NGe, which means that the test set requires most of the space covered

by the initial reduced case base. Both IB3 and DROP4 present a similar percentage

of reduction from the initial reduced case base to the final case base, which means

that the first reduced data set covered a much broad space than the required for the

case base. And with respect the reduction of cases bases as a function of the reuse

procedure used, there are no significant di↵erences when using either IB3 or DROP4.

However, this is not the case for IBUdG when using CBDf , which presents much

less cases when using DFW than when DW. This means that for this case, the near-

est “enemies” are more clogged, and thus, the method can greatly reduce the case base.

In order to improve these results, and because CBRg was the best classifier, the

contributions to the SPE index (cSPE , which evaluates the projection into the resid-

ual subspace) were studied in order to obtain what were the variables and stages that

contributed to better di↵erentiate between floccular and granular batches.
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4.3 O↵-line determination of granulation state

Figure 4.6: Mean SPE contribution for floccular (black) and granular (red) for each

on-line variable. Each vertical line indicates the phase division along a cycle

Table 4.6: Properties of the statistical model built using all granular batches

r PV E (%) �↵ ⌧↵

MPCAgAll 9 91.1391 433.546 20.9828

Figure 4.6 presents the mean SPE contribution for all floccular batches (continuous

black line) and all granular batches (continuous red line) when projected into a granu-

lar focused MPCA model built using all available granular observations (MPCAgAll).

The information associated with this new model is presented in Table 4.6 using the

same notation than Table 4.1 and Table 4.2. This figure shows the contribution of each

on-line variable (pH, O2, ORP and temperature) along time. It also takes into account

the mean contribution in each phase of the cycle (vertical dashed lines).

Granular sludge has the ability to di↵use nutrients and compounds such as oxy-

gen and protons inside the particles. Because of that, variations in on-line parameters

were expected to be smoother in granular rather than floccular sludge. This fact was

reflected in the pH sensor, as it presented the most significant di↵erences between
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Table 4.7: Results obtained with the CBD only focused on the anaerobic stage

FF FG GF GG NF NG FR GR ACC

CBDfgAna 243 6 16 168 249 184 0.9759 0.9130 0.9492

floccular and granular batches, i.e. the contributions of granular batches being lower

than floccular batches. Additionally, the first anaerobic stage (Ana-1) presented more

important di↵erences in all variables compared with the other phases along the cycle.

Based on this, only the information related to this stage was retained for all floccular

and granular batches to build a new multi-class PCA model and produce a new CBR

(CBRfgAna). Results obtained with this new configuration are presented in Table

4.7, which uses the same notation than Table 4.4.

Focusing only on the anaerobic phase of the cycle, both floccular and granular

classification rates increased when comparing the results obtained using the whole batch

(CBRg), for all three performance indices: ACC = 0.9492, FR = 0.9759 and GR

= 0.9130. This new approach only misclassified 6 floccular batches and 16 granular

batches, thus improving the prediction of the model.

4.3.5 Identification of the transition state from floccular to granular

Based on the best classification procedure (CBRgAna), batches between December

20th 2009 and February 11th 2010, which belong to the transition state of the reactor

(class 2), are projected into the multi-class model to date the transition from floccular

to granular. For the evaluation of class 2 batches, all available batches labelled as floc-

cular (class 1) and granular (class 3) are used to build the multi-class model (without

using the n-fold cross-validation procedure). Results obtained with these batches are

presented in Figure 4.7, where the green stem representation indicates the class pre-

dicted for each batch in this period of time. The continuous blue line indicates the mean

size of particles found in o↵-line analysis along the available dates within this period.

Note that between measurements, granules mean size is assumed to not significantly

vary, and therefore, it is a continuous line.
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4.4 On-line application for granulation prediction and case base evolution

Figure 4.7: Predicted class (green stem representation) versus mean particle size (con-

tinuous blue line) for batches in the transition state

As can be seen in Figure 4.7, there were two main transitions from a floccular

to a granular state. The first one occurred on January 11th 2010 and lasted until

January 19th 2010 (excluding a batch on December 13th classified as floccular). The

second transition happened on January 29 th 2010 and lasted for the rest of the batches

(again omitting two batches classified as granular on January 24th and 27th 2010). This

evaluation did not completely remove the classification of transition state, but it was

reduced from 53 to 10 days in which alternation of granular and floccular batches were

obtained. This fact was probably due to the formation of small particles that while

hardly influencing the performance of the process and the on-line variables, are the

starting point for granulation.

4.4 On-line application for granulation prediction and case

base evolution

The previous section presented an ideal case where all final classes were initially avail-

able (defined classes). However, this is not the most common situation when monitoring

a process. New faults appear while monitoring, and these situations have to be taken
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into account for future events. Based on the learning capabilities of the CBR, this

section presents a scenario where a new situation appears, in this case a granulation

change.

More specifically, only batches prior to the granulation change are considered to

build the initial case base (class 1). Consequently, only information of defined floccular

batches was available, and thus, the resulting statistical model only characterises a

subspace of the MPCAfg model described in the previous section. Thus, observations

of a new class (in this case granular batches) are eager to lie within the statistical limits

(SPE and T 2). Therefore, the CBR is proposed as an alternative to the usage of the

SPE and T 2 limits (when both classes are available). As a result, cases (cdiag) were

characterised as a label vector with its SPE (SPEci) and T 2 values (T 2
ci), with the

addition of the granularity state (class 1 (floccular) or class 3 (granular)) expressed as:

cdiag = {SPEci , T
2
ci , class} (4.7)

The retrieval process will be based on the normalised Euclidean distance d� ex-

plained in 3.3.2.4 and firstly introduced in (3.16) between the SPE values of the new

case (SPEca) and a retrieved observation (SPEcb) and their T 2 values (T 2
ca and T 2

cb

respectively) in this way:

d� = (ca, cb) =

����
SPEca � SPEcb

�↵

����+

�����
T 2
ca � T 2

cb

⌧↵

����� (4.8)

where �↵ and ⌧↵ are the SPE and T 2 statistical limits respectively for a given

confidence level ↵. In this case, both values were fixed as the percentile 95 of the ob-

servations used to build the MPCA model.

The reuse procedure was based on the distance-weighted method explained in sub-

section 3.4.2 (3.23) to compute the similarity to both the floccular (wf ) and granular

(wg) states in this way:
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Table 4.8: Classification performance and information related to the MPCA model for

the on-line granulation prediction

r PV E (%) FF FG GF GG NF NG FR GR ACC

CBDdiag 4 78.17 106 18 23 81 124 104 0.85 0.78 0.82

wf =

nfX

j=1

1

d�j

(4.9)

wg =

ngX

j=1

1

d�j

(4.10)

where nf and ng are respectively the number of retrieved floccular and granular

observations among the k-nearest neighbours; and d�j
is the jth retrieved floccular or

granular observation.

Regarding the revise procedure for this scenario, again the floccular and granular

ratio (FR (4.5) and GR (4.6) respectively) and the overall accuracy (ACC (3.26)) are

used. Note that batches will be shu✏ed in order to mimic the transition period of the

process. Finally, whenever a batch is misclassified, it is added to the case base in order

to help classifying new cases (retain step); and while there are no granular batches in

the case base, any observation with either SPEci > �↵ or T 2
ci > ⌧↵ will be labelled as

granular. In case of a false alarm (a floccular observation labelled as granular), the

observation is added to the case base to avoid future misclassifications, but the statis-

tical model will not be updated. Whenever a granular batch is available in the case

base, then the CBD will be used to diagnose the granulation of each discharged batch.

Results obtained within this scenario are presented in Table 4.8, which uses the same

notation that in Table 4.7. Note that observations used to build the initial case base

were not tested, and thus, the number of floccular observations (NF ) in this scenario

is lower than in the previous one.

As can be seen, using only the information of floccular classes reduced the per-

formance in comparison with when all information was used to monitor the process

113



4. IDENTIFICATION OF THE GRANULATION STATE IN AN SBR
PROCESS

(CBRfg and CBRfgAna). The main reason is that the initial MPCA model in this

scenario only covers a subspace of the whole monitoring space (even from MPCAf ). In

order to solve this problem, the MPCA model could be update whenever a new floccular

batch is available, and when enough observations from all classes are available, repeat

the training procedure, ending with the same information presented in the previous

section.

Despite the stability of granules being essential to maintain biological nutrient re-

moval, most of these reactors su↵er e�ciency disruptions due to granules losing com-

pactness and breaking into pieces or flocs. As has been demonstrated, the application

of the CBD can also be used to detect transition periods from granular to floccular

states with the model predicted state variability as on-line values are state dependent.

Therefore, disruption from these systems could be detected faster in order to modify

the operational conditions before losing nutrient removal. Thus, CBD can be used ei-

ther as a tool for prediction or prevention.

In terms of practical applicability, the methodology for building both the statistical

model and case base can be automated, which means that no specific knowledge about

MPCA and CBR are needed to use such a tool. The only requirement is that the

relation between sensor readings and typology/classes must be accurate, and thus, the

operator must be able to assign accordingly the granulation state of the plant in this

case. To simplify this task, a graphical representation of the typical behaviour of the

process under the di↵erent states can be displayed within the tool to facilitate the task

to the operator. This was the idea of the EMOLD project (COLL-CT-2006-030339),

which consisted in provide learning capabilities to injection moulds by sensing, and

share this knowledge with other network moulds. Results related with this project are

presented in the next chapter, and were partially published in Berjaga et al. (2009a),

Berjaga et al. (2009b) and Berjaga et al. (2009c).
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5

Case-based diagnosis for quality

Control of injected parts

This chapter presents an application of the CBD framework within the production stage

of injected parts. The main idea is to first build the normal operating conditions of the

injection process, and then identify the fault that originated the quality defect found

on an injected part. This means that the CBD will relate the type of defect found on

the piece (NOC, flashes, sink marks and locally oversized) with the problem with the

injection parameters (optimal parameters, switch-over too early, switch-over without

holding pressure, switch-over too late without holding pressure and switch-over too late

with holding pressure) using only the information provided by the sensors installed in

the mould cavity.

In order to do so, this chapter is divided as follows. Firstly, a brief introduction

to the problem is carried out (section 5.1). Next, the experimental set-up within this

field is detailed (section 5.2), followed by an o↵-line application of the methodology

to predict the final quality of an injected part is detailed and discussed (section 5.3).

Finally, a real-time release (when the batch ends) is explained and discussed in section

5.4.
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Figure 5.1: Complete injection cycle, including task division for each main phase.

5.1 Problem description

Injection moulding is the most commonly used process to produce plastic pieces due

to its low cost, ability to produce complex shapes with good accuracy and short cycle

times (Bozdana and Eyercioglu, 2002). It consists in a cyclic process (batch) that can

be divided into four main phases: filling, packing, cooling and ejection. The first stage

consists in filling the mould with hot polymer melt. In the packing stage, an additional

quantity of polymer melt is packed into the mould at a higher pressure in order to

compensate the shrinkage produced during solidification. Then, in the cooling stage,

the temperature inside the mould is decreased to solidify its content. Finally, in the

ejection stage, the mould opens, the product is ejected and the mould closes again

until the beginning of the next cycle. Fig. 5.1 presents a more detailed view of the cy-

cle, where the four main phases are divided in the respective tasks that happen in them.

Traditionally, quality control in the injection industry is based on sampling; this is,

only some of the injected parts are inspected. The exhaustiveness of the process varies

significantly depending on both, the duration of the cycle and the quality control poli-

cies. Sampling is a common practice in the manufacturing industry oriented to detect
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evolving faults and degradation in the process behaviour (wear, ageing, system over-

heating, etc.). Recently, the moulding industry started to incorporate sensors into the

moulds o↵ering the capability to know what is happening inside the mould during the

injection. This chapter explores this fact in order to propose a quality control method

to automatically evaluate any injected part using the CBD methodology presented in

chapter 3.

So, data collected by sensors embedded in the mould, during normal executions of

the batch (injection of pieces with good quality) are used to create a statistical model.

A single injection is represented by a matrix with as many columns as number of sen-

sors and as many rows as sample times. So, multiple registers (multiple injections or

batches) can be organised into a three dimensional matrix (injections ⇥ sensors ⇥ sam-

ples) as the one depicted in Figure 2.5 and described by (2.15). This representation is

the starting point to develop multiway statistical methods capable to obtain multivari-

ate models representing dependencies among variables at di↵erent time instants during

the injection. These models are suitable for on-line monitoring of batch process due to

their high performance in fault detection, diagnosis or quality control.

Previous works in the literature explored fault detection and diagnosis strategies

involving the principal component analysis (PCA) of injection parameters (machine

parameters) like in Kazmer and Westerdale (2008). Principal component analysis was

also proposed as a dimensionality reduction tool previous to feed a generalised regres-

sion neural network with the purpose of modelling dynamics and non-linearities in

Guo et al. (2006). Benefits of PCA were also used in Liu and MacGregor (2005) as a

preprocessing strategy for dimensionality reduction of texture images obtained from a

computer vision system for inspection of injected parts.

Instead of using the injection parameters (like in Kazmer and Westerdale (2008)),

the CBD uses the trajectories of the measured variables to build an automatic quality

control of the injection process. This makes possible to identify defective pieces in an

early stage of the production and also to correct any misbehaviour before the next

injection starts. Consequently, losses due to defective parts are significantly reduced.

Additionally, such monitoring strategy enables the traceability of all injected parts,
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adding a signature to every piece just after opening the mould.

This chapter extends the works in Berjaga et al. (2009a) (MPCA and k-means) and

Berjaga et al. (2009b) (MPCA and nearest neighbour (NN)), which reported a good

performance when identifying di↵erent defects on injected parts, and compares the

application of the CBD with respect a combination of multiway partial least squares

and discriminant analysis (MPLS-DA) . For further details on MPLS-DA, please refer

to Appendix A.

5.2 Experimental set-up

The injection mould used to test the methodology is a prototype equipped with nine

sensors installed in the mould cavity. These sensors measure temperatures and pressures

at di↵erent locations in the two sides of the mould and the speed and position of the

screw. The main idea is to estimate the quality of the injected parts at the end of

the injection cycle using the continuous information registered by the sensors during

the injection cycle. Quality of pieces has been divided in four categories according

to the most common defects (short shots, sink marks, flashes and locally oversized

injections) in the injection process. In order to test the performance of the method,

defects have been generated artificially using appropriate injection parameters (see

Table 5.1) that induce those defects in the injected pieces. Five di↵erent fault root

causes were identified that produced these defects, which resulted in the following data

sets:

• NOC: 54 injections with optimal parameters (normal operating conditions).

• ~⇠1: 51 injections with switch-over too early. This type of set-up produces short

shot injected parts.

• ~⇠2: 52 injections without holding pressure. This configuration produces parts

with sink marks.

• ~⇠3: 51 injections with switch-over too late without holding pressure, which causes

injections to present flashes and/or sink marks.
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Figure 5.2: Pressure curve for the five typologies: class 1 (normal operating conditions),

class 2 (switch-over too early), class 3 (no holding pressure), class 4 (switch-over too late

without holding pressure) and class 5 (switch-over too late with holding pressure)

• ~⇠4: 53 injections with switch-over too late with holding pressure. This last con-

figuration provokes locally oversized injected parts.

The switch-over is the injection instant when the injection pressure is increased

to compensate the shrinkage of the material due to the cooling e↵ect produced by the

lower temperature of the mould. Fig. 5.2 shows the trajectories of one of the monitored

pressures for the experiments described before and Table 5.1 details the configuration

parameters for the respective data sets collected during October 8th 2009.

5.3 O↵-line quality control of injected parts

This section presents the results obtained when applying CBD and MPLS-DA to auto-

matically determine the quality of injected parts o↵-line. Firstly, the CBD configuration

for this analysis is detailed in the next subsection (MPLS-DA only requires to unfold

the three-dimensional data and auto-scale the resulting two-dimensional matrix). Then,

both MPCA and MPLS statistical models are compared (subsection 5.3.2); and finally,

results for both methodologies are compared and discussed in subsection 5.3.3.
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Table 5.1: Configuration parameters for the five data sets.

Class

NOC ~⇠1 ~⇠2 ~⇠3 ~⇠4

Injection stroke (ccm) 12.5 9.7 12.5 13.3 13.3

Holding pressure (bar) 400 400 400 0 400

Holding pressure time (s) 4 4 0 0 4

Mould temperature (�C) 50 50 50 50 50

Cylinder temperature (�C) 250 250 250 250 250

Screw diameter (mm) 22 22 22 22 22

5.3.1 Final quality prediction using a CBD

In order to di↵erentiate between the di↵erent quality degrees, only normal operating

conditions (or fault-free observations) are used to build the statistical model. Then,

the other faulty observations (bad final quality) are projected into this model and are

stored in the case base as examples to predict the final quality of new injections. Fault

typologies are expected to present a low intra-class variability (observations within a

cluster present small di↵erences among them), and a high inter-class variability (obser-

vations of two di↵erent clusters behave in a completely di↵erent way).

When projecting faulty observations into a NOC-based MPCA model, the SPE

index usually presents a higher value than fault-free observations. However, for the

case being, this di↵erences were also observable in the PCS (through the score values)

as depicted in Figure 5.3, where the projection into the first three principal components

of each class are represented using di↵erent colours.

Based on this principle, the normalised score distance explained in subsection

3.3.2.1, and detailed in (3.9), is used to retrieve the nearest neighbour (k = 1) for

a new observation, whose class became the predicted quality for the new observation,

and thus, no reuse procedure is needed. Finally, given the large distance between the

di↵erent quality clusters, DROP4 was used to minimise the case base.
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Figure 5.3: Distribution of the five experiment sets in the principal component subspace

(first three principal components)

5.3.2 Model building

The original data set has been divided in five subsets (n = 5) or folds using the n-fold

cross-validation procedure explained in subsection 3.5.1. The MPCA models have been

built using only observations (time series of observed variables during injections) of

normal pieces (class 1) whereas for the MPLS models all the examples in the training

folds are used as quality identifiers to fill the matrix Y . Observations have been auto-

scaled and cross-validation (Himes et al., 1994) is applied to determine the number of

principal components to retain in the models. These results are presented in Table

5.2 where LV s and PCs refer respectively to the number of retained latent variables

(for MPLS) and principal components (for MPCA), PV (X) is the percentage of global

variance explained for the MPCA/MPLS model over the predictor matrix X, PV (Y )

is the percentage explained of global variability for the predicted variable Y and Fold

indicates which fold was used to build the MPCA/MPLS model. Finally, N/A stands

for not applicable, since MPCA does not take into account the predicted variable Y .

It can be seen that MPLS presents a higher compression rate. This is, it explains

more information, in terms of variance, contained in the X matrix (65.54%) than the

MPCA model (57%) using less latent variables (3 for MPLS and 5 for MPCA). However,

it has to be taken into account that the predictor matrix X and the objectives of both

methods are di↵erent:
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Table 5.2: Relation of principal components (PCs) and latent variables (LVs) retained,

as well as the percentages of variance explained for the predictor (X) and predicted (Y )

variables for each fold

Fold LVs/PCs PV(X) PV(Y)

MPCA

1 5 51.07 N/A

2 6 56.56 N/A

3 6 56.72 N/A

4 5 51.45 N/A

5 6 57.00 N/A

MPLS

1 3 64.19 70.53

2 3 64.61 71.46

3 3 65.64 70.55

4 3 64.70 71.13

5 3 65.02 72.16

• MPLS uses data from the five experiments described in section 5.2, and then

builds a regression model from the observed variables to predict the quality of

observations. Consequently, the model maximises the inter-class variance and at

the same time that minimises the intra-class variance.

• MPCA builds the statistical model using only normal operating conditions (class

1), and therefore, minimises the intra-class variance. As a result, the isolation has

to be carried out by an external procedure, which in this case is attained using

the CBD.

The distribution of the training set observations in the latent variable space de-

scribed for the three first latent variables (MPLS) and principal components (MPCA)

are shown respectively in Fig. 5.4 and Fig. 5.3. As can be observed, MPLS select

latent variables in order to maximise the di↵erentiation among classes, at the same

time that clusters observations of the same class. On the other hand, MPCA focuses

on clustering normal operating conditions, and di↵erences with the rest of experiment
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Figure 5.4: Distribution of the five experiment sets in the latent variable subspace (first

three latent variables)

sets are due to di↵erences in the correlation structure. All in all, at this stage the visual

separability of classes of MPLS outperforms MPCA.

5.3.3 Performance of the quality control methods

The confusion matrix, extended to the five possible types of quality injection, has been

used to assess the performance of MPCA/MPLS models. Average values obtained

after applying the 5-fold cross-validation method have been used to quantify this per-

formance. True positive rates (in %) are in the diagonal of the confusion matrix,

whereas wrong injections classified as good are in the first column (excluding the first

element) and wrong classifications of good injections correspond to the first row (with

the exception of the first element). The same reasoning can be applied to results related

to each typology of injection just addressing rows and columns associated to each class.

Table 5.3 presents this average classification performance over the cross-validation

test-datasets for MPLS-DA and CBD respectively. Values from 1 to 5 identify the

five injection classes previously defined. It can be observed that the first 4 typologies

are perfectly classified for the CBD approach (the values in the diagonal are 100%)

while MPLS-DA presents a 2% of wrong classification of class 2 injections that are

being confused with normal injections (class 1). Class 5 injections also present some

misclassifcations for both approaches being confused with class 1 and 2 for the MPLS-
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Table 5.3: Classification results (%) using MPLS-DA and CBD

Predicted class

MPLS-DA

NOC ~⇠1 ~⇠2 ~⇠3 ~⇠4

Real

Class

NOC 100 0 0 0 0

~⇠1 2 98 0 0 0

~⇠2 0 0 100 0 0

~⇠3 0 0 0 100 0

~⇠4 4 2 0 0 94

Predicted class

CBD

NOC ~⇠1 ~⇠2 ~⇠3 ~⇠4

Real

Class

NOC 100 0 0 0 0

~⇠1 0 100 0 0 0

~⇠2 0 0 100 0 0

~⇠3 0 0 0 100 0

~⇠4 0 4 0 2 94

NN model; and with class 4 and 2 when using the CBD approach. Both methods have a

very good classification accuracy (MPLS-DA: 98% and CBD: 99%), but it is interesting

to remark that CBD never confuses a wrong injection with normal ones (class 1). So,

this one seems more robust to isolate good and bad injections and consequently more

appropriate for on-line quality control.

5.4 Real-time monitoring of an injection moulding ma-

chine

Given the good results presented in the previous section, the CBD was used for the

real-time release monitoring of an injection moulding machine within the European

project EMOLD (COLL-CT-2006-030339). Its aim was to convert a traditionally pas-

sive element like the mould into an active part of the production line with embedded

knowledge. This embedded knowledge comes from the CBD and its learning capa-
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bilities and thanks to the knowledge stored in other “intelligent” moulds within the

“mould network” proposed in this project.

The CBD described in the previous section was used to monitor the Krauss Maf-

fei injection machine depicted in Figure 5.5A using a prototype of the eBox system

(Figure 5.5B) developed in this project. One pressure and one temperature sensors

were attached to the mould to feed the CBD, which used this information to build the

statistical model and case base in this way:

• Injections were batch-wise unfolded and auto-scales in order to build the statisti-

cal model of the normal operating conditions of the mould (optimal parameters).

• The number of principal components was selected based on the cross-validation

method described in Himes et al. (1994).

• As stated before, faulty situation could be clearly separated within the PCS, and

thus, the normalised Euclidean distance dt described in 3.3.2.1 was used.

• The same defects explained in the previous section (NOC, flashes, sink marks

and locally oversized parts) and characterised using the same process configura-

tions (optimal parameters, switch-over too early, no holding pressure, switch-over

too late without holding pressure and switch-over too late with holding pressure)

were fed to the case base for predicting the final quality of an injected part. Ad-

ditionally, a series of corrective actions were added for each class in the diagnosis

structure to facilitate the defect correction.

• The information of the nearest neighbour was su�cient to indicate the final qual-

ity of the currently injected part, and thus, no reuse procedure was necessary.

• DROP4 was applied to minimise the case base. However, this was only applied

during the training stage.

• All injected parts received an ID to track the final quality of each injected part

and stored in a data base for future reference of other network moulds or to repeat

the training process in case of a performance degradation.
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Figure 5.5: Picture of the Krauss Ma↵ei injection moulding machine used during the

EMOLD project (A) and the eBox (B) used to collect data from the mould

• Based on the training results, each class was assigned a misclassification margin.

In case that any of this margins was surpassed, or the process operator observed

a drift from the production objectives (based on the visual tools provided), the

training process was applied (based on all stored observations) to update both

the statistical model and the case base used for the final quality prediction.

The projection into the two first principal components of all observations in the di-

agnosis case base (after applying DROP4) are depicted in Figure 5.6 (di↵erent colours

and shapes are used to represent each class). As can be seen, the first principal com-

ponent is able to di↵erentiate between the di↵erent clusters (gathers the inter-class

variability), while the second one shows the (intra-class) variability within the cluster.

In order to test the CBD performance, the parameters of the injection machine

were altered in such a way that the resulting part presented one of the defects the CBD

recognises. Results obtained are presented in Table 5.4, which presents the extended

confusion matrix for this scenario.

As it can be seen, in this case there are no misclassifications, and thus, there are

no elements outside the diagonal. The main reason of the perfect classification is

that cluster centres are so distant that projections in the first principal component of
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Figure 5.6: Picture of the Krauss Ma↵ei injection moulding machine used during the

EMOLD project (A) and the eBox (B) used to collect data from the mould

Table 5.4: Extended confusion matrix for the on-line application

Real class

NOC ~⇠1 ~⇠2 ~⇠3 ~⇠4

Predicted

Class

NOC 41 0 0 0 0
~⇠1 0 46 0 0 0
~⇠2 0 0 50 0 0
~⇠3 0 0 0 50 0
~⇠4 0 0 0 0 46
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di↵erent clusters do not overlap. Additionally, extreme observations for each group are

not far enough to be misclassified.
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6

Conclusions

This chapter summarizes the conclusions obtained as a result of this research. The

relevant conclusions are highlighted and discussed, as well as several ideas for future

work are proposed.

6.1 Conclusions

The final objective of this thesis was to develop a general CBD to automatically moni-

tor batch processes. More specifically, the CBD first builds the statistical model of the

process, and then feeds the information into a CBR to monitor the process. In order to

achieve this final goal, four subobjectives were fixed, which are presented and discussed

in the next paragraphs.

Formalise a representation of cases in the projection space capable to

represent batch process and exploit such representation for diagnosis and

define neighbourhoods on the latent structures (principal component space)

useful for diagnosis based on similarity principles. Section 3.3 defined a series

distance criteria based on the information provided by the MPCA model of the pro-

cess (scores, SPE and T 2 indices) to find similar cases. More specifically, three basic

distance criteria related to the information in the PCS (scores - dt - and T 2 - dT 2 - )

and the RS (SPE index - dSPE -) and a combined SPE and T 2 index (d�). These

distance criteria were later on combined to find neighbourhoods meaningful for process

monitoring. On the one hand, some of the distances were defined as two-step retrievals
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processes to firstly identify batches with the same degree of concordance with the sta-

tistical model (based on dT 2) or dissonance (found using dSPE) and then a focalised

search for the batches with the same behaviour in the PCS (determined using dt). On

the other hand, some neighbourhoods that restricted the search space to either the

normal operating condition (to find the nearest in-control neighbours for faulty obser-

vations) or to the abnormal operating conditions. For example, retrieving the nearest

in-control observations (within the NOC region) of a faulty observation can be used to

determine the fault direction a↵ecting the batch. In case of a sensor fault, this infor-

mation can be used to correct the sensor misreading without stopping the process, and

thus, avoiding the production halt associated costs and the down-time of the process.

These definitions were published in a conference paper in Berjaga et al. (2009c), and

the relation of these neighbourhood with fault directions and their diagnosability were

presented in chapters 2 and 3 from a theoretical point of view.

Reduce the e↵ect of noisy instances when reusing the information ex-

tracted from neighbourhoods based on latent structures. Two new reuse meth-

ods were defined in section 3.4: a distance-weighted voting (DW) that considered the

distance among nearest neighbours to define the likelihood of an observation within

all known fault classes; and a distance and class frequency weighted voting (DFW) to

overcome the limitation of DW when dealing with single noisy instances. Note that

both methods are less sensitive to the number of neighbours retrieved (k) than the tra-

ditional simple voting (SV). Both reuse methods were presented in a conference paper

(Berjaga et al., 2013a) and a journal paper (Berjaga et al., 2013b).

Specify new case base maintenance and updating policies to minimise

the case base, while keeping its diagnosis performance. A new retain method

(IBUdG) was detailed in subsection 3.6.3, which is less computationally complex than

the well-known methods IB3 and DROP4, especially for the on-line application of the

CBD. Its main idea is to retain the case observations that constitute the frontier be-

tween the di↵erent classes, by keeping the k-nearest enemies (observations from other

classes).
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To guarantee the generality of the approach, two di↵erent application fields were

used throughout this thesis: WWTP and IMM. In both cases, the CBD had a great

performance on determining the granulation point in an SBR plant (WWTP) and pre-

dicting the final quality of injected parts (IMM). Both an o↵-line analysis (to determine

the best statistical model and CBR configuration) and on-line application were stated

as well as two preliminary studies showing the applicability of these methods. On the

one hand, the CBD facilitated the task of identifying the variable (pH) and stages (first

anaerobic stage) for which the di↵erences between two granulation states (floccular and

granular) were most observable. Results within this field were partially published in

two journal papers (Berjaga et al., 2013b; Ruiz et al., 2011) and in a conference paper

(Berjaga et al., 2013a). On the other hand, CBD related the final quality of injected

parts (NOC, flashes, sink marks and locally oversized pieces) with its possible root

cause (optimal parameters, early switch-over, no holding pressure, switch-over too late

with and without holding pressures), and thanks to the experts knowledge, proposed

a series of steps to correct the defect found within the production line. Results within

this field were published in four conference papers (Berjaga et al., 2008a, 2009a,b,c).

Finally, thanks to a series of previous works carried out during the Master thesis (Bar-

rera et al., 2008; Meléndez et al., 2008a,b), it was demonstrated the applicability of

MPCA to finite duration processes. Based on these principles, a journal and a confer-

ence paper indicating how MPLS could be used to locate impacts in a commercial flap

wing was published in Ruiz et al. (2013) and Mujica et al. (2009) respectively.

6.2 Future work

Although the final objective of the thesis was achieved, new situations appeared during

this research, which proposed future challenges or topics of interest for the CBD. This

section details some future directions and discusses in more detail one application of

the methodology for fault sensor detection and reconstruction.

The main limitation of CBRs is that they can only “classify” or reason with the

di↵erent typologies found on the case base. However, the availability of all possible

faulty/problematic situations when training for the first time (to build the statistical

model and the case base) is not always an option. For example, let us suppose that no
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sensor faults have been detected within a process. However, due to external factors,

one of the sensors starts to misbehave, since the CBD did not have any previous in-

stance, and this situation was not initially considered, the following observations will

be incorrectly classified. However, and since this new case is far from all observations

in the case base, this new event can be detected. Some possible approaches to tackle

this problem are:

• Compute the average distance among cases and its nearest neighbours in the

case base. By doing so, any observation that surpasses this value is either an

example of an incipient event, or an extreme observation to any of the current

classes. However, note that this approach is sensitive to the inclusion of new

observations, since the more cases are in the case base, the lower the influence

an observation has to this average. Contrarily, the fewer cases in the case base,

the more e↵ect adding a new observation has to this “new situation alarm”.

Moreover, new trends and performance degradations may not be detected using

this approach.

• Use a process window to compute the average distance. This method is an al-

ternative to the previous one, which only uses the last n observations to detect

if a new situation, or process drift occurs. Since only the last observations are

accounted, one can track how the average distance behaves in order to identify a

process drift, which the previous strategy could not detect. However this situation

is more sensitive to the appearance of extreme observations because the inclusion

of these observation significantly alters the average along time (especially when

they appear and while they are kept in the process window). In order to reduce

the impact of this kind of observations, statistically robust methods, such as the

usage of the median value instead of the average or mean can be used to estimate

this threshold.

• Another alternative is to divide or assign subspaces to the di↵erent known classes.

Let us suppose that for all faulty situation, we know or we can estimate the fault

direction vector. Based on this, one can compare the current fault direction with

the ones stored in the case base, and that divide the problem space in di↵erent

and complementary subspaces, then based on the inter- and intra- class variance

one can decide if this new observation is an example of a new situation or not.
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Another aspect that influences the case base is the number of cases in the case base

and how the case base updates. This is the task done during the retain step of the CBR,

and depending on the internal distribution of classes on method or the other is more

appropriate. However, the retain step is also dependant on the number of observation

passed. Moreover, this situation is more critical when a dynamic change happens in

the process. Since the process is deviating from the a previously well-known state (the

one used to build the statistical model and case base), even by adding only one batch

in the retain stage may lead to a case base unable to monitor the current state of the

process. This problem can be solved by using any of the previous methods for detecting

new trends or situations in the process. For example, if a new trend in the process is

detected, the retain step can be paused until n misclassified or new observations are

given for this new process state, and then update the case base accordingly.

The last of the future works that the CBD can be oriented towards is the dif-

ferentiation of process and sensor faults, which statistical models cannot achieve by

themselves. As stated in section 2.1, in order to distinguish between additive and mul-

tiplicative faults or between simple and multiple faults, one has to take into account the

process structure and incorporate this information when building the statistical model

of the process. Although multiblock principal component analysis (MB-PCA) can be

used to divide the process into the di↵erent blocks that it can be divided into, addi-

tional rules of criteria have to be placed over each block in order to locate a sensor or

block fault (only one of the blocks observes the faults), and complex faults can only be

detected using the superscores. On the other hand, when using the CBD, this process

is simpler, since the combination of the fault direction vector (even along time) and

the fault diagnosis are su�cient to separate sensor faults (simple and multiple faults)

from process faults in one single step.

Related with the identification of sensors faults, a first approximation to the prob-

lem was presented in Berjaga et al. (2010) applied to the sensor readings of the Arianne

engine based on the variance of the reconstruction method devised by Dunia and Qin in

Dunia and Qin (1998) (continuous process). In this work, it was proposed the usage of a

“global” fault detection method (to detect the sensor fault appearance), while a “local”

reconstruction model is used to correct the sensor misbehaviour. Figure 6.1 presents a
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Figure 6.1: Comparison of the reconstruction using the global optimal number of principal

components (upper figure dark line) with respect the usage of the local optimum (lower

figure dark line). In both cases no normal operating conditions are available for the faulty

sensor, and the comparison is made with a redundant sensor placed near the faulty one.

visual comparison of the reconstruction obtained when using the global model (upper

figure) with respect the local reconstruction model (lower figure) with respect the NOC

expected behaviour of the variable. Additionally, two di↵erent approaches were devel-

oped in order to deal with multiple sensor faults: parallel and iterative reconstruction.

The former reconstruct each faulty sensor building a local model and discarding the

information of the other faulty sensors; while the latter add the information recon-

structed to correct the misbehaviours in later reconstruction iterations. Future works

within this line are oriented to extend these concepts and methods to batch processes.
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Appendix A

Multiway partial least squares

with discriminant analysis

(MPLS-DA)

A.1 Partial least squares (PLS)

PLS is a linear regression method that is based on identifying the relations between

the predictor matrix (X) and the predicted matrix (Y ). Like in PCA, the observation

matrix X contains a set of n observations (rows) with m measured variables (columns).

Y usually contains quality information associated to the observations in X represented

by a row vector of k variables for each observation. Consequently, Y has n rows (one for

each observation in X) and k columns. The main idea of PLS is to identify a reduced

subset of latent variables (r) that explain how changes in the predictor matrix X a↵ect

the predicted matrix Y . In order to avoid the problem of having correlated variables

in the observation matrix X (linear regression requires the predictor matrix to be non

singular), PLS defines the regression from latent variables extracted from X over the

latent variables of Y in this way:

Y = XB + E (A.1)

with B being the regression coe�cient matrix and E defined as a noise term. X

and Y are assumed to be auto scaled (zero mean and unit variance). The goal is to

compute the factor score matrix T = XW for an appropriate weight matrix W and
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then considers the linear regression model Y = TQ + E, where Q is the loading ma-

trix and E is the resulting error matrix for the regression. Once the Q loadings are

computed and considering that B = WQ, the previous regression model is equivalent

to Y = XB + E. PLS computes the weight matrix W reflecting the covariance struc-

ture between the predictor and response variables instead of gathering the covariance

structure between the predictor variables. The standard algorithm for computing PLS

regression factors is the algorithm NIPALS (nonlinear iterative partial least squares).

Finally, the estimation of the predicted variable (~̂ynew) for a new observation (~xnew)

is obtained in this way:

~̂ynew = ~xnewB (A.2)

A.2 Discriminant analysis based on latent variables

The main objective of PLS is to identify those variations in the predictor matrix, X,

that are responsible of major changes on the predicted variables Y . Consequently, one

can use Y in order to obtain a regression model, a PLS model, to distinguish among

several categories, or classes, of observations. Since, regression methods are usually

associated with continuous variables, PLS is combined with discriminant analysis (DA)

to constrain the regression to a finite set of classes in Y . The combination of both

techniques provides a sharp separation between groups of observations, by mixing the

latent variables in such a way that maximum separation among classes is attained, and

based on that observed variables carry the class separating information. Actually, PLS

components are built by trying to find a proper compromise between describing the set

of explanatory variables and predicting their response.

The main concern when using this approach is that whenever a new category has to

be added, a new PLS model has to be built; and considering that discriminant analy-

sis maximises the inter-class variation whilst minimising the intra-class variability, the

method requires enough observations to grant a reliable inter- and intra-class variation.
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A.2 Discriminant analysis based on latent variables

The only requirement to apply this methodology to batch processes is to unfold the

three-dimensional matrix using any of the methodologies described in chapter 2 and

then scale the variables accordingly.
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Appendix B

Comparison of computation time

of case base optimisation

algorithms

This appendix compares the time consumption for each maintenance policies consid-

ered within this thesis (DROP4 (subsection 3.6.1), IB3 (subsection 3.6.2) and IBUdG

(subsection 3.6.3)) and adds a new one: store any misclassified observation (also known

as Instance-Based learner 2 (IB2)). In order to do so, this appendix has been divided

into two main sections: section B.1 details the procedure to generate the data sets

used to evaluate the time consumption of each policy; and section B.2 presents the

results obtained with each maintenance policy and the conclusions extracted from this

comparison.

B.1 Data, model and case base generation for the test

In order to compare the computation time for each of the maintenance policies consid-

ered (IB2, IB3, DROP4 and IBUdG), we will generate a series of random batches based

on a polynomial function. The main idea is to generate each variable independent from

the others by selecting the order of the polynomial function as a random value between

3 and 20. The variability between batches is attained by modifying the independent

term of the characteristic equation (variations in the y-axis), as well as modifying some

of the variable values with a Gaussian noise generator (the number of points to mod-
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Figure B.1: Trajectory of all variables for all batches used to test the maintenance policy

methods (IB2, IB3, DROP4 and IBUdG)

ified is also selected randomly). This means that the pseudo-code for generating a set

of ◆ batches, with � variables and  samples is the one presented in Algorithm B.1.

Additionally, Figure B.1 presents the trajectory of a random set of 102 batches (◆ =

102), with 10 variables (� = 10) and with 100 samples for each variable ( = 100) to

illustrate the type of batch processes generated.

Algorithm B.1 Random generation of batch processes

Input: The number of batches (◆) to generate; the number of variables (�) and samples () for each

batch generated; and the number of classes batches will be divided into (nClasses).

Output: The three-dimensional matrix (X) filled.

1: function randomFill(◆, �, , nClasses)

2: Create the variable to store the three-dimensional matrix of random batches (X).

3: for j = 1 to � do

4: Generate the polynomial function of the j

th variable (polFj) with a random order 2 [3, 20].

5: for i = 1 to ◆ do

6: Alter the independent term of the polynomial function to add variability in the y-axis,

and generate  samples of the j

th variable for the i

th batch.

7: Modify a series of random points of the j

th variable in the i

th batch to add variability

in the x-axis.

8: Add the  samples for variable j of batch i in the three-dimensional matrix (X(i, j, :)).

9: Randomly assign the class of batch i (2 [1, nClasses]). . The class is only assign once

for each batch

10: end for

11: end for

12: return The three-dimensional matrix X filled.

13: end function
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Figure B.2: Projection into the T 2 � SPE space of 102 batches (◆ = 102) randomly

generated with 10 variables (� = 10) and 100 samples for each variable ( = 100)

In order to evaluate the time consumption for all maintenance polices, we divided

the randomly generated batches into two overlapping classes, which is the worst case

scenario for a classifier. The overlapping between the two classes (nClasses = 2) is

presented in Figure B.2, which presents the pair SPE � T 2 values of each batch gen-

erated.

B.2 Time comparison of maintenance policies

In order to compare the time consumption of IB2, IB3 (3.4), DROP4 (3.3) and IBUdG

(3.5) we will compute the time they destine to update a case base. More specifically,

we will count the time each strategy uses to retrieve the nearest cases from the case

base, propose a new solution based on this information (reuse), check the validity of the

solution (revise) and finally, update the case base whenever necessary (retain). Since

the CBR cycle is dependant on the number of cases in the case base, we will compute

these times from a case base with 100 (nIni) batches up to a case base with 10000

(nEnd) cases randomly generated using randomFill (Algorithm B.1). Regarding the

retrieve procedure, we will use the combined index criterion (d�), described in subsec-
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Figure B.3: Elapsed time to retrieve, reuse, revise and update the case base for each of

the maintenance policies considered (IB2, IB3, IBUdG and DROP4)

tion 3.3.2.4 (3.16) to consider the information in both the principal component and

residual subspace; and the reuse procedure will be the simple voting (SV) presented in

subsection 3.4.1, since we are classifying cases within the case base. Figure B.3 presents

the elapsed times for each maintenance policy (IB2, IB3, DROP4 and IBUdG). This

time includes the time required to retrieve, reuse, revise and update the case base for

every generated case base.

From Figure B.3 we can observe that IB2 is the policy that consumes most of the

time, followed by DROP4 and IB3, and where IBUdG is the one with the lowest time

consumption. Although IB2 is the simplest method (adds any misclassified case into

the case base), and thus, it should be the method consuming the lowest time when

compared to the other three methods. However, in our data set, both classes are com-

pletely overlapped, and consequently, the e↵ect of blindly adding new cases (like IB2

does), causes that cases that were initially correctly classified are now misclassified,

and thus, each iteration adds more and more cases. As a result, IB2 ends up being the
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method that consumes the most time among all four due to the increased time in the

retrieve procedure (it is the method that stores more cases).

On the other hand, IBUdG is the method that takes less time among the four be-

cause of its simplistic rule (add the nearest enemies to each case if they are not already

in the case base) when compared to IB3 and DROP4. In this case, DROP4 is hindered

by the initial case base (remember that DROP4 checks if each case in the case base is

necessary to classify its “associates”), and thus, most of the elapsed time for DROP4 is

destined to check the importance of each individual case. Regarding IB3, the situation

is completely opposite to DROP4: we start with an empty case base and we add new

cases. However, the problem is to decide whether a new case has to be added, and

since we check each of the cases originally in the case base, we have to explore all cases

that were originally in the case base. Finally, and as could be observed in Table 4.5 in

chapter 4, IBUdG keeps more cases than IB3 and DROP4, however, as can be deduced

from the results in Figure B.3, this increase in number of stored cases does not result

in a higher computation time.

All in all, we can say that for large case bases, the time elapsed to decide whether a

new case has to be added or not becomes more important than the time used to find the

nearest neighbours, even for incremental methods such as IB2 and IB3. Consequently,

the retain policy is a trade-o↵ between complexity of the inclusion (or removal) criterion

and the number of cases that are kept in the reduced case base.
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