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Abstract
We present a rule-based Huet’s style anti-unification algorithm for simply-typed lambda-terms in
η-long β-normal form, which computes a least general higher-order pattern generalization. For
a pair of arbitrary terms of the same type, such a generalization always exists and is unique
modulo α-equivalence and variable renaming. The algorithm computes it in cubic time within
linear space. It has been implemented and the code is freely available.
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1 Introduction

The anti-unification problem of two terms t1 and t2 is concerned with finding their gener-
alization, a term t such that both t1 and t2 are instances of t under some substitutions.
Interesting generalizations are the least general ones. The purpose of anti-unification algo-
rithms is to compute such least general generalizations (lggs).

For higher-order terms, in general, there is no unique higher-order lgg. Therefore, special
classes have been considered for which the uniqueness is guaranteed. One of such classes is
formed by higher-order patterns. These are λ-terms where the arguments of free variables
are distinct bound variables. They have been introduced by Miller [25] and gained popularity
because of an attractive combination of expressive power and computational costs: There
are practical unification algorithms [28, 27, 26] that compute most general unifiers whenever
they exist. Pfenning gave the first algorithm for higher-order pattern anti-unification in the
Calculus of Constructions [28], with the intention of using it for proof generalization.

Since then, there have been several approaches to higher-order anti-unification, designing
algorithms in various restricted cases. Motivated by applications in inductive learning, Feng
and Muggleton [14] proposed anti-unification in Mλ, which is essentially an extension of
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higher-order patterns by permitting free variables to apply to object terms, not only to
bound variables. Object terms may contain constants, free variables, and variables which
are bound outside of object terms. The algorithm has been implemented and was used for
inductive generalization.

Anti-unification in a restricted version of λ2 (a second-order λ-calculus with type vari-
ables [4]) has been studied in [23] with applications in analogical programming and analogical
theorem proving. The imposed restrictions guarantee uniqueness of the least general gener-
alization. This algorithm as well as the one for higher-order patterns by Pfenning [28] have
influenced the generalization algorithm used in the program transformation technique called
supercompilation [24].

There are other fragments of higher-order anti-unification, motivated by analogical rea-
soning. A restricted version of second-order generalization developed in [15] has an appli-
cation in the replay of program derivations. A symbolic analogy model, called Heuristic-
Driven Theory Projection, uses yet another restriction of higher-order anti-unification to
detect analogies between different domains [18].

The last decade has seen a revived interest in anti-unification. The problem has been
studied in various theories (e.g., [1, 2, 9, 19]) and from different application points of view
(e.g., [3, 8, 18, 23, 31, 22]). A particularly interesting application comes from software
code refactoring, to find similar pieces of code, e.g., in Python, Java [6, 7] and Erlang [22]
programs. These approaches are based on the first-order anti-unification [29, 30]. To advance
the refactoring and clone detection techniques for languages based on λProlog, one needs
to employ anti-unification for higher-order terms. This potential application can serve as a
motivation to look into the problem of higher-order anti-unification in more detail.

In this paper, we revisit the problem of higher-order anti-unification, permit arbitrary
terms as the input and require higher-order patterns in the output, and present an algorithm
in the simply-typed setting. The main contributions can be briefly summarized as follows:

1. Designing a rule-based anti-unification algorithm in simply-typed λ-calculus (in Sect. 3).
The input of the algorithm are arbitrary terms in η-long β-normal form. The output
is a higher-order pattern. The formulation follows Huet’s simple and elegant style [17].
The global function for recording disagreements is represented as a store, in the spirit
of [1, 2].

2. Proofs of the termination, soundness, and completeness properties of the anti-unification
algorithm (in Sect. 4) and its subalgorithm, which computes permuting matchers between
patterns (in Sect. 3.2).

3. Complexity analysis (in Sect. 4): The algorithm computes a least general pattern gen-
eralization, which always exists and is unique modulo α-equivalence, in cubic time and
requires linear space. As it is done in related work, we assume that symbols and pointers
are encoded in constant space, and basic operations on them performed in constant time.

4. Free open-source implementation for both simply-typed and untyped calculi (Sect. 5).

An extended version of this paper appears as the technical report [5].

Related Work
Here we briefly compare our work with the existing results in higher-order anti-unification.
The approaches which are closest to us are the following two:

In [28], Pfenning studied anti-unification in the Calculus of Construction, whose type
system is richer than the simple types we consider. Both the input and the output was
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required to be higher-order patterns. Some questions have remained open, including
the efficiency, applicability, and implementations of the algorithm. Due to the nature of
type dependencies in the calculus, the author was not able to formulate the algorithm in
Huet’s style [17], where a global function is used to guarantee that the same disagreements
between the input terms are mapped to the same variable. The complexity has not been
studied and the proofs of the algorithm properties have been just sketched.
Anti-unification in Mλ [14] is performed on simply-typed terms, where both the input
and the output are restricted to a certain extension of higher-order patterns. In this
sense it is not comparable to our case, because we do not restrict the input, but require
patterns in the output. The paper [14] contains neither the complexity analysis of the
Mλ anti-unification algorithm nor the proofs of its properties.

Some more remotely related / incomparable to us results are listed below:

Anti-unification studied in [23] is defined in a restricted version of λ2. The restriction
requires the λ-abstraction not to be used in arguments. The algorithm computes a
generalization which is least general with respect to the combination of several orderings
defined in the paper. The properties of the algorithm are formally proved, but the
complexity has not been analyzed. As the authors point out, the orderings they define are
not comparable with the ordering used to compute higher-order pattern generalizations.
Generalization algorithms in [16] work on second-order terms which contain no λ-abstrac-
tions. The output is also restricted: It may contain variables which can be instantiated
with multi-hole contexts only. Varying restrictions on the instantiation, various versions
of generalizations are obtained. This approach is not comparable with ours.
The anti-unification algorithm in [18] works on λ-abstraction-free terms as well. It has
been developed for analogy making. The application dictates the typical input to be
first-order, while their generalizations may contain second-order variables. A certain
measure is introduced to compare generalizations, and the algorithm computes those
which are preferred by this measure. This approach is not comparable with ours either.
The approach in [15] is also different from what we do. The anti-unification algorithm
there works on a restriction of combinator terms and computes their generalizations (in
quadratic time). It has been used for program derivation.

2 Preliminaries

In higher-order signatures we have types constructed from a set of basic types (typically δ)
using the grammar τ ::“ δ | τ Ñ τ , whereÑ is associative to the right. Variables (typically
X,Y, Z, x, y, z, a, b, . . .) and constants (typically f, c, . . .) have an assigned type.

λ-terms (typically t, s, u, . . .) are built using the grammar

t ::“ x | c | λx.t | t1 t2

where x is a variable and c is a constant, and are typed as usual. Terms of the form
p. . . ph t1q . . . tmq, where h is a constant or a variable, will be written as hpt1, . . . , tmq, and
terms of the form λx1. ¨ ¨ ¨ .λxn.t as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn.

Other standard notions of the simply typed λ-calculus, like bound and free occurrences
of variables, α-conversion, β-reduction, η-long β-normal form, etc. are defined as usual
(see [12]). By default, terms are assumed to be written in η-long β-normal form. Therefore,
all terms have the form λx1, . . . , xn.hpt1, . . . , tmq, where n,m ě 0, h is either a constant or
a variable, t1, . . . , tm have also this form, and the term hpt1, . . . , tmq has a basic type.

RTA’13



116 A Variant of Higher-Order Anti-Unification

The set of free variables of a term t is denoted by Varsptq. When we write an equality
between two λ-terms, we mean that they are equivalent modulo α, β and η equivalence.

The depth of a term t, denoted Depthptq is defined recursively as follows: Depthpxq “
Depthpcq “ 1, Depthphpt1, . . . , tnqq “ 1`maxi Depthptiq, and Depthpλx.tq “ 1`Depthptq.

For a term t “ λx1, . . . , xn.hpt1, . . . , tmq with n,m ě 0, its head is defined as Headptq “ h.
Positions in λ-terms are defined with respect to their tree representation in the usual

way, as string of integers. For instance, in the term fpλx.λy.gpλz.hpz, yq, xq, λu.gpuqq, the
symbol f stands in the position ε (the empty sequence), the occurrence of λx. stands in the
position 1, the bound occurrence of y in 1.1.1.1.1.2, the bound occurrence of u in 2.1.1, etc.

The path to a position in a λ-term is defined as the sequence of symbols from the root to
the node at that position (not including) in the tree representation of the term. For instance,
the path to the position 1.1.1.1.1 in fpλx.λy.gpλz.hpz, yq, xq, λu.gpuqq is f, λx, λy, g, λz.

A higher-order pattern is a λ-term where, when written in η-long β-normal form, all
free variable occurrences are applied to lists of pairwise distinct (η-long forms of) bound
variables. For instance, λx.fpXpxq, Y q, fpc, λx.xq and λx.λy.Xpλz.xpzq, yq are patterns,
while λx.fpXpXpxqq, Y q, fpXpcq, cq and λx.λy.Xpx, xq are not.

Substitutions are finite sets of pairs tX1 ÞÑ t1, . . . , Xn ÞÑ tnu where Xi and ti have
the same type and the X’s are pairwise distinct variables. They can be extended to type
preserving functions from terms to terms as usual, avoiding variable capture. The notions
of substitution domain and range are also standard and are denoted, respectively, by Dom
and Ran.

We use postfix notation for substitution applications, writing tσ instead of σptq. As
usual, the application tσ affects only the free occurrences of variables from Dompσq in t.
We write #»xσ for x1σ, . . . , xnσ, if #»x “ x1, . . . , xn. Similarly, for a set of terms S, we define
Sσ “ ttσ | t P Su. The composition of σ and ϑ is written as juxtaposition σϑ. Yet another
standard operation, restriction of a substitution σ to a set of variables S, is denoted by σ|S .

A substitution σ1 is more general than σ2, written σ1 ĺ σ2, if there exists ϑ such that
Xσ1ϑ “ Xσ2 for all X P Dompσ1qYDompσ2q. The strict part of this relation is denoted by
ă. The relation ĺ is a partial order and generates the equivalence relation which we denote
by ». We overload ĺ by defining s ĺ t if there exists a substitution σ such that sσ “ t.

A term t is called a generalization or an anti-instance of two terms t1 and t2 if t ĺ t1 and
t ĺ t2. It is a higher-order pattern generalization if additionally t is a higher-order pattern.
It is the least general generalization, (lgg in short), aka a most specific anti-instance, of t1
and t2, if there is no generalization s of t1 and t2 which satisfies t ă s.

An anti-unification problem (shortly AUP) is a triple Xp #»x q : t fi s where

λ #»x .Xp #»x q, λ #»x .t, and λ #»x .s are terms of the same type,
t and s are in η-long β-normal form, and
X does not occur in t and s.

The variable X is called a generalization variable. The term Xp #»x q is called the general-
ization term. The variables that belong to #»x , as well as bound variables, are written in the
lower case letters x, y, z, . . .. Originally free variables, including the generalization variables,
are written with the capital letters X,Y, Z, . . .. This notation intuitively corresponds to the
usual convention about syntactically distinguishing bound and free variables.

An anti-unifier of an AUP Xp #»x q : t fi s is a substitution σ such that Dompσq “ tXu
and λ #»x .Xp #»x qσ is a term which generalizes both λ #»x .t and λ #»x .s.

An anti-unifier of Xp #»x q : t fi s is least general (or most specific) if there is no anti-unifier
ϑ of the same problem that satisfies σ ă ϑ. Obviously, if σ is a least general anti-unifier of
an AUP Xp #»x q : t fi s, then λ #»x .Xp #»x qσ is an lgg of λ #»x .t and λ #»x .s.
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Here we consider a variant of higher-order anti-unification problem:

Given: Higher-order terms t and s of the same type in η-long β-normal form.
Find: A higher-order pattern generalization r of t and s.

The problem statement means that we are looking for r which is least general among
all higher-order patterns which generalize t and s. There can still exist a term which
is less general than r, generalizes both s and t, but is not a higher-order pattern. For
instance, if t “ λx, y.fphpx, x, yq, hpx, y, yqq and s “ λx, y.fpgpx, x, yq, gpx, y, yqq, then
r “ λx, y.fpY1px, yq, Y2px, yqq is a higher-order pattern, which is an lgg of t and s. However,
the term λx, y.fpZpx, x, yq, Zpx, y, yqq, which is not a higher-order pattern, is less general
than r and generalizes t and s.

Below we assume that in the AUPs of the form Xp~xq : t fi s, the term λ~x.Xp~xq is a
higher-order pattern.

3 The Algorithm the Higher-Order Anti-Unification Variant

3.1 The Rules
The higher-order anti-unification algorithm is formulated in a rule-based manner working on
triples A;S;σ (systems). Here A is a set of AUPs of the form tX1p

# »x1q : t1 fi s1, . . . , Xnp
# »xnq :

tn fi snu where each Xi occurs in A Y S only once, S is a set of already solved AUPs (the
store), and σ is a substitution (computed so far) mapping variables to patterns.
§ Remark. One assumption we make on the set AY S is that each occurrence of λ binds a
distinct name variable (in other words, all names of bound variables are distinct).

Dec: Decomposition
tXp #»x q : hpt1, . . . , tmq fi hps1, . . . , smquŸA; S; σ ùñ
tY1p

#»x q : t1 fi s1, . . . , Ymp
#»x q : tm fi smu YA; S; σtX ÞÑ λ #»x .hpY1p

#»x q, . . . , Ymp
#»x qqu,

where h is a constant or h P #»x , and Y1, . . . , Yn are fresh variables of the corresponding types.

Abs: Abstraction
tXp #»x q : λy.t fi λz.suŸA; S; σ ùñ
tX 1p #»x , yq : t fi stz ÞÑ yuu YA; S; σtX ÞÑ λ #»x , y.X 1p #»x , yqu.

where X 1 is a fresh variable of the appropriate type.

Sol: Solve
tXp #»x q : t fi suŸA; S; σ ùñ A; tY p #»y q : t fi su Y S; σtX ÞÑ λ #»x .Y p #»y qu,

where t and s are of a basic type, Headptq ‰ Headpsq or Headptq “ Headpsq “ Z R #»x , #»y is a
subsequence of #»x consisting of the variables that appear freely in t or in s, and Y is a fresh
variable of the corresponding type.

Mer: Merge
A; tXp #»x q : t1 fi t2, Y p

#»y q : s1 fi s2uŸS; σ ùñ
A; tXp #»x q : t1 fi t2u Y S; σtY ÞÑ λ #»y .Xp #»xπqu,

where π : t #»xu Ñ t #»y u is a bijection, extended as a substitution, with t1π “ s1 and t2π “ s2.
One can easily show that a triple obtained from A;S;σ by applying any of the rules

above to a system is indeed a system: For each expression Xp #»x q : t fi s P AY S, the terms
Xp #»x q, t and s have the same type, λ #»x .Xp #»x q is a higher-order pattern, s and t are in η-long

RTA’13



118 A Variant of Higher-Order Anti-Unification

β-normal form, and X does not occur in t and s. Moreover, all generalization variables are
distinct and substitutions map variables to patterns.

The property that each occurrence of λ inAYS binds a unique variable is also maintained.
It guarantees that in the Abs rule, the variable y is fresh for s. After the application of the
rule, y will appear nowhere else in AY S except X 1p #»x , yq and, maybe, t and s.

Like in the anti-unification algorithms working on triple systems [1, 2, 19], the idea of
the store here is to keep track of already solved AUPs in order to reuse in generalizations
an existing variable. This is important, since we aim at computing lggs.

The Mer rule requires solving a matching problem tt1 Ù s1, t2 Ù s2u with the substi-
tution π which bijectively maps the variables from #»x to the variables from #»y . In general,
when we want to find a solution of a matching problem P , which bijectively maps variables
from a finite set D to a finite set R, we say that we are looking for a permuting matcher of
P from D to R. The sets D and R are supposed to have the same cardinality.

Note that a permuted matcher, if it exists, is unique. It follows from the fact that there
can be only one capture-avoiding renaming of free variables which matches a higher-order
term to another. Since P is a matching problem for higher-order terms with free variables
from D and their potential values from R, it can have at most one such matcher. By
matchpD,R, P q, we denote such a permuting matcher of P from D to R, when it exists.
Otherwise, matchpD,R, P q “ K. An algorithm that computes it is given in Sect. 3.2 below.

To compute generalizations for terms t and s, we start with tX : t fi su;H;H, where
X is a fresh variable, and apply the rules as long as possible. We denote this procedure by
P, to indicate that we compute patterns. The system to which no rule applies has the form
H;S;ϕ, where Mer does not apply to S. We call it the final system. When P transforms
tX : t fi su;H;H into a final system H;S;ϕ, we say that result computed by P is Xϕ.

§ Example 3.1. A couple of examples illustrating the generalizations computed by P:

Let t “ λx, y.fpUpgpxq, yq, Upgpyq, xqq and s “ λx1, y1.fphpy1, gpx1qq, hpx1, gpy1qqq. Then
P performs the following transformations:

tX : λx, y.fpUpgpxq, yq, Upgpyq, xqq fi λx1, y1.fphpy1, gpx1qq, hpx1, gpy1qqqu;H;H
ùñ2

Abs tX
1px, yq : fpUpgpxq, yq, Upgpyq, xqq fi fphpy, gpxqq, hpx, gpyqqqu;H;

tX ÞÑ λx, y.X 1px, yqu

ùñDec tY1px, yq : Upgpxq, yq fi hpy, gpxqq, Y2px, yq : Upgpyq, xq fi hpx, gpyqqu;H;
tX ÞÑ λx, y.fpY1px, yq, Y2px, yqq, . . . u

ùñSol tY2px, yq : Upgpyq, xq fi hpx, gpyqqu; tY1px, yq : Upgpxq, yq fi hpy, gpxqqu;
tX ÞÑ λx, y.fpY1px, yq, Y2px, yqq, . . . u

ùñSol H; tY1px, yq : Upgpxq, yq fi hpy, gpxqq, Y2px, yq : Upgpyq, xq fi hpx, gpyqqu;
tX ÞÑ λx, y.fpY1px, yq, Y2px, yqq, . . . u

ùñMer H; tY1px, yq : Upgpxq, yq fi hpy, gpxqqu

tX ÞÑ λx, y.fpY1px, yq, Y1py, xqq, . . . , Y2 ÞÑ λx, y.Y1py, xqu

The computed result is r “ λx, y.fpY1px, yq, Y1py, xqq. It generalizes the input terms t
and s: rtY1 ÞÑ λx, y.Upgpxq, yqu “ t and rtY1 ÞÑ λx, y.hpy, gpxqqu “ s. These substitu-
tions can be read from the final store.
For λx, y, z.gpfpx, zq, fpy, zq, fpy, xqq and λx1, y1, z1.gphpy1, x1q, hpx1, y1q, hpz1, y1qq, P com-
putes their generalization λx, y, z.fpY1px, y, zq, Y1py, x, zq, Y1py, z, xqq
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For λx, y.fpλz.Upz, y, xq, Upx, y, xqq and λx1, y1.fpλz1.hpy1, z1, x1q, hpy1, x1, x1qq, P com-
putes their generalization λx, y.fpλz.Y1px, y, zq, Y2px, yqq.

As one can see, the computed results are higher-order pattern generalizations of the input
terms. Below we will prove it formally, when we establish soundness of P. The computed
results are, in fact, pattern lggs. The Completeness Theorem in the Section 4 states this.

From the examples one can notice yet another advantage of using the store (besides
helping in the merging): In the final system, it contains AUPs from which one can get the
substitutions that show how the original terms can be obtained from the computed result.

3.2 Computation of Permuting Matchers
In this section we describe the algorithm M to compute permuting matchers. It is a rule-
based algorithm working on quintuples of the form D; R; P ; ρ; π (also called systems) where
D is a set of domain variables, R is a set of range variables,D andR have the same cardinality
and are disjoint, P is a set of matching problems of the form ts1 Ù t1, . . . , sm Ù tmu,
and ρ and π are substitutions (computed so far) mapping variables to variables. Here ρ is
supposed to keep bound variable renamings to deal with abstractions, while in π we compute
the permuting matcher to be returned in case of success. The rules are the following:

Dec-M: Decomposition
D; R; th1pt1, . . . , tmqÙ h2ps1, . . . , smquŸP ; ρ; π ùñ
D; R; tt1 Ù s1, . . . , tm Ù smu Y P ; ρ; π,

where each of h1 and h2 is a constant or a variable, and h1 R D or h2 R R, and h1π “ h2ρ.
These conditions make this rule disjoint from the Per-M rule.

Abs-M: Abstraction
D; R; tλx.tÙ λy.suŸP ; ρ; π ùñ D; R; ttÙ su Y P ; ρty ÞÑ xu; π.

Per-M: Permuting
txuŸD; tyuŸR; txpt1, . . . , tmqÙ yps1, . . . , smquŸP ; ρ; π ùñ
D; R; tt1 Ù s1, . . . , tm Ù smu Y P ; ρ; πtx ÞÑ yu,

where x and y have the same type.

Like in the rules for anti-unification above, also here each occurrence of λ binds a
unique variable. The input for M is initialized in the Mer rule, which needs to compute
matchpD, R, tt1 Ù s1, t2 Ù s2uq. The algorithm has the following steps:

1. Domain/range separation: To make sure that they do not share elements, we rename
the domain variables with fresh ones, if necessary. It is not a restriction: If ν is such a
renaming substitution, then µ is a permuting matcher of ts1ν Ù t1, s2ν Ù t2u from Dν

to R iff pνµq|D is a permuting matcher of ts1 Ù t1, s2 Ù t2u from D to R.
2. Next, we create the initial system Dν; R; ts1ν Ù t1, s2ν Ù t2u; H; H and apply the

rules Dec-M, Abs-M and Per-M exhaustively. If no rule applies to a system D; R; P ; ρ; π
with P ‰ H, then it is transformed into K, called the failure state. The system
D; R; H; ρ; π is called the success state. No rule applies to it either.

3. When M reaches the success state, we say that M computes π. From it, we can return
the permuting matcher pνπq|D. When M reaches the failure state, we say that it fails.
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120 A Variant of Higher-Order Anti-Unification

§ Example 3.2. To compute the permuting matcher of txpy, zq Ù xpz, yq, Xpy, λu.uq Ù

Xpz, λv.vqu from tx, y, zu to tx, y, zu by M, first, we separate the domain and the range
with ν “ tx ÞÑ x1, y ÞÑ y1, z ÞÑ z1u, obtaining the initial system tx1, y1, z1u; tx, y, zu;
tx1py1, z1q Ù xpz, yq, Xpy1, λu.uq Ù Xpz, λv.vqu;H;H. Applying the rules of M, we ob-
tain the success state H;H;H; tv ÞÑ uu; tx1 ÞÑ x, y1 ÞÑ z, z1 ÞÑ yu. Composing ν and the
computed substitution we obtain tx ÞÑ x, y ÞÑ z, z ÞÑ yu, which is the permuting matcher
we were looking for.

The algorithm M maintains the following invariants: (Justifications can be found in [5].)

Invariant 1: For each tuple D; R; P ; ρ;π in a derivation performed by M, the sets D and
R are disjoint and have the same number of elements.

Invariant 2: For each tuple D; R; tt1 Ù s1, . . . , tm Ù smu; ρ; π in a derivation performed
by M, D Ď Ymi“1Varsptiq and R Ď Ymi“1Varspsiq.

Invariant 3: For each tuple Di; Ri; Pi; ρi; πi in a derivation performed by M starting from
D; R; P ; ρ; π, the following equalities hold: DiŸDompπiq “ D and RiŸRanpπiq “ R.

§ Theorem 3.3. M is terminating, sound, and complete.

Proof. Termination. Termination of M is straightforward: Each rule strictly reduces the
multiset of sizes of matching problems in the tuples it operates on. Since each tuple
D; R; P ; ρ; π with P ‰ H can be transformed by one of the rules or leads to failure,
the final state in the derivation is either the success or the failure state.

Soundness. Soundness of M means that if for a given tuple D; R; P ; H; H it computes
a substitution π, then π is a permuting matcher of P from D to R. Obviously, π maps
variables from D to R. It follows from the way how the Per-M rule constructs π. The fact
that π is a matcher is straightforward: Dompπq X Ranpπq “ H, the differences between t

and s for tÙ s P P are either repaired by the bindings from π constructed by Per-M, or the
differences are α-equivalences repaired by the bindings from ρ constructed by Abs-M, or the
failure occurs since no rule can be applied. The bijection property is more involved: The
Per-M rule (namely, the fact that it removes x and y from D and R) and the first invariant
guarantee that there is an injective mapping from a subset of D onto a subset of R. Since
all variables of D (resp. R) appear freely in the left (resp. right) hand sides of equations in
P (the second invariant), each derivation either stops with failure, or eventually reduces D
and R to H by applications of Per-M (see the first invariant, the same number of elements
in D and R). The latter, by the third invariant, means that there is an injective mapping
from D onto R, expressed by π. Hence, π is a bijection from D to R and M is sound.

Completeness. Recall that for each D, R, and P , if there exists a permuting matcher of
P from D to R, then it is unique. Since we have already proved soundness of M, we have
only to show that if there exists a permuting matcher of P from D to R, then M does not
fail for D; R; P ; H; H. Let µ be such a matcher. Then tµ “ s for all t Ù s P P . This
means that, if t has a form h1pt1, . . . , tnq, then s should be h2ps1, . . . , snq and h1µ “ h2,
tiµ “ si for all 1 ď i ď n. If t has a form λx.t1, then s should be of the form λy.s1 and
t1µ “ s1ty ÞÑ xu.

Assume by contradiction that M fails. That means that there exists the system Dk; Rk;
tt Ù suŸPk; ρk; πk to which no rule applies. Since the steps performed by M before it
either decompose the terms argumentwise (Dec-M and Per-M), or remove abstraction (Abs-
M), by the definitions of matcher and substitution application we should have tµ “ sρk.
This equation means that t and s have the same types. Hence, the only case why no rule
in M applies to the system is that t and s should be, respectively, of the form h1pt1, . . . , tnq
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and h2ps1, . . . , smq with h1πk ‰ h2ρk, where h1 R Dk or h2 R Rk. Because of the uniqueness
of the matcher, πk “ µ|DzDk

. On the other hand, h1µ “ h2ρk, because µ matches t to sρk.
Hence, we have h1µ|DzDk

‰ h2ρk where h1 R Dk or h2 R Rk, and h1µ “ h2ρk. The latter
means that either h1 P D and h2 P R, or h1 R D and h2 R R, because D and R are disjoint,
the permuting matcher µ bijectively maps D to R, and ρk does not affect R.

Case 1: h1 P D and h2 P R. Because of h1µ|DzDk
‰ h2ρk, we have h1 P Dk. If h2 R Rk,

then there exists some x P D, such that x ‰ h1 and xµ “ h2, which contradicts
the fact that µ is injective. If h2 P Rk, we get a contradiction with the condition
h1 R Dk or h2 R Rk. Hence, the case with h1 P D and h2 P R is impossible.

Case 2: h1 R D and h2 R R. Then h1 “ h2ρk should hold, because h1µ “ h2ρk and
h1 R Dompµq “ D. We again get the contradiction, this time with h1µ|DzDk

‰ h2ρk.

The obtained contradictions show that if there exists a permuting matcher of P from D

to R, then M does not fail for D; R; P ; H; H, which implies completeness of M. đ

§ Theorem 3.4. The algorithm M has linear space and time complexity.

Proof. For the input consisting of the sets of domain variables D, range variables R, and
matching equations P , the size is the cardinality of DYR plus the number of symbols in P .

The terms to be matched can be represented as trees in the standard way. The sets D
and R can be encoded as hash tables. These representations occupy space linear to the size
of the input. The space can grow at most twice by representing renaming and permuting
substitutions as hash tables. Hence, the space complexity is linear.

As for the time complexity, we can see that the algorithm visits each node of the trees
to be matched at most once. At the initial step, renaming all variables in D with fresh ones
can take only linear time with the help of the hash table for the renaming substitution.

After that, we perform the following linear time steps: Collecting the set of bound
variables Vr appearing in the right sides of matching equations in P , constructing the initial
hash tables TD and TR for (the renamed) D and R (we can assume that the hash functions
are perfect), and constructing two hash tables for substitutions. The one for permuting
substitutions is denoted by Tπ. Its set of keys is D. We can reuse the same hash function
as for TD. Each address in Tπ is initialized with null. Another table, Tρ, is designed for
renaming substitutions. Its set of keys is Vr. We assume a perfect hash function also here.

The operations performed at each node are the following ones: (Note that the substitu-
tion compositions in the rules, due to the disjointness of D and R, amounts to only adding
a new pair to the existing substitution.)
By Dec-M: First, look up the value for h1 in TD, to make sure that h1 R D. If D contains

the entry for h1, then look up the value for h2 in TR, to make sure that h2 R R. If the
latter test fails, the rule is not applicable.
Next, if either h1 R D or h2 R R, then look up the value for h1 in Tπ, look up the value
for h2 in Tρ, and compare them with each other. If the values of h1 or h2 are not found
in the tables, then just use the corresponding h (i.e., h1 or h2) in the comparison.

By Abs-M: Modifying an entry in Tρ: For a renaming substitution ty ÞÑ xu, we put x in the
table at the address corresponding to the hash index of y: Tρrhashpyqs “ x. Since all
bound variables are distinct, we will not have to modify the same entry in Tρ again.

By Per-M: Modifying an entry for x in Tπ: For a substitution tx ÞÑ yu, we put y in the
address corresponding to the hash index of x: Tπrhashpxqs “ y. As we destroy the entries
for x in TD and for y in TR, we will not modify the same entry again.
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All our hash functions are perfect. Searching, insertion and deletion in hash tables with
perfect hash functions are done in constant time. We assume that two alphabet symbols can
be compared in constant time. Hence, all the operations performed by M at each node of
the input trees are done in constant time. It implies that M has linear time complexity. đ

4 Properties of the Anti-Unification Algorithm

§ Theorem 4.1 (Termination). The procedure P, which uses M to compute permuting match-
ers, terminates for all input terms t and s.

Proof. We define the measure of A;S;σ as a pair of multisets pMpAq,MpSqq, where the
multiset MpLq “ tminpDepthptq,Depthpsqq | Xp #»x q : t fi s P Lu for any L. Measures are
compared lexicographically. Obviously, each rule in P strictly reduces it. The ordering is
well-founded. The procedure M in the rule Mer is terminating. Hence, P terminates. đ

§ Theorem 4.2 (Soundness). If tX : t fi su;H;H ùñ˚ H;S;σ is a derivation in P, then

(a) Xσ is a higher-order pattern in η-long β-normal form,
(b) Xσ ĺ t and Xσ ĺ s.

Proof. To prove that Xσ is a higher-order pattern, we use the facts that first, X is a higher
order pattern and, second, at each step A1;S1;ϕ ùñ A2;S2;ϕϑ if Xϕ is a higher-order
pattern, then Xϕϑ is also a higher-order pattern. The latter property follows from stability
of patterns under substitution application and from the fact that substitutions in the rules
map variables to higher-order patterns. As for Xσ being in η-long β-normal form, this is
guaranteed by the series of applications of the Abs rule, even if Dec introduces an AUP
whose generalization term is not in this form. It finishes the (sketch of the) proof of (4.2).

Proving (4.2) is more involved. First, we prove that if A1;S1;ϕ ùñ A2;S2;ϕϑ is one
step, then for any Xp #»x q : t fi s P A1 Y S1, we have Xp #»x qϑ ĺ t and Xp #»x qϑ ĺ s. Note that
if Xp #»x q : t fi s was not transformed at this step, then this property trivially holds for it.
Therefore, we assume that Xp #»x q : t fi s is selected and prove the property for each rule:

Dec: Here t “ hpt1, . . . , tmq, s “ hps1, . . . , smq, and ϑ “ tX ÞÑ λ #»x .hpY1p
#»x q, . . . , Ymp

#»x qqu.
Then Xp #»x qϑ “ hpY1p

#»x q, . . . , Ymp
#»x qq. Let ψ1 and ψ2 be substitutions defined, respec-

tively, by Yiψ1 “ λ #»x .ti and Yiψ2 “ λ #»x .si for all 1 ď i ď m. Such substitutions obviously
exist since the Y ’s introduced by the Dec rule are fresh. Then Xp #»x qϑψ1 “ hpt1, . . . , tmq,
Xp #»x qϑψ2 “ hps1, . . . , smq and, hence, Xp #»x qϑ ĺ t and Xp #»x qϑ ĺ s.

Abs: Here t “ λy1.t
1, s “ λy2.s

1, and ϑ “ tX ÞÑ λ #»x , y.X 1p #»x , yqu. Then Xp #»x qϑ “

λy.X 1p #»x , yq. Let ψ1 “ tX
1 ÞÑ λ #»x , y.t1u and ψ2 “ tX

1 ÞÑ λ #»x , y.s1u. Then Xp #»x qϑψ1 “

λy.t1 “ t, Xp #»x qϑψ2 “ λy.s1 “ s, and, hence, Xp #»x qϑ ĺ t and Xp #»x qϑ ĺ s.
Sol: We have ϑ “ tX ÞÑ λ #»x .Y p #»y qu, where #»y is the subsequence of #»x consisting of the

variables that appear freely in t or s. Let ψ1 “ tY ÞÑ λ #»y .tu and ψ2 “ tY ÞÑ λ #»y .su.
Then Xp #»x qϑψ1 “ t, Xp #»x qϑψ2 “ s, and, hence, Xp #»x qϑ ĺ t and Xp #»x qϑ ĺ s.

If Mer applies, then there exists Y p #»y q : t1 fi s1 P S1 such that matchpt #»xu, t #»y u, t Ù

t1, s Ù s1q is a permuting matcher π, and ϑ “ tY ÞÑ λ #»y .Xp #»xπqu. Then Xp #»x qϑ ĺ t and
Xp #»x qϑ ĺ s obviously hold. As for the Y p #»y q : t1 fi s1, let ψ1 “ tX ÞÑ λ #»x .tu and ψ2 “ tX ÞÑ

λ #»x .su. Then Y p #»y qϑψ1 “ pλ
#»x .tqp #»xπq “ tπ “ t1, Y p #»y qϑψ2 “ pλ

#»x .sqp #»xπq “ sπ “ s1, and,
hence, Y p #»y qϑ ĺ t1 and Y p #»y qϑ ĺ s1.

Now, we proceed by induction on the length of derivation l. In fact, we will prove a more
general statement: If A0;S0;ϑ0 ùñ

˚ H;Sn;ϑ0ϑ1 ¨ ¨ ¨ϑn is a derivation in P, then for any
Xp #»x q : t fi s P A0 Y S0 we have Xp #»x qϑ1 ¨ ¨ ¨ϑn ĺ t and Xp #»x qϑ1 ¨ ¨ ¨ϑn ĺ s.
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When l “ 1, it is exactly the one-step case we just proved. Assume that the state-
ment is true for any derivation of the length n and prove it for a derivation A0;S0;ϑ0 ùñ

A1;S1;ϑ0ϑ1 ùñ
˚ H;Sn;ϑ0ϑ1 ¨ ¨ ¨ϑn of the length n` 1.

Below the composition ϑiϑi`1 ¨ ¨ ¨ϑk is abbreviated as ϑki with k ě i. Let Xp #»x q : t fi s

be an AUP selected for transformation at the current step. (Again, the property trivially
holds for the AUPs which are not selected.) We consider each rule:

Dec: t “ hpt1, . . . , tmq, s “ hps1, . . . , smq and Xp #»x qϑ1
1 “ hpY1p

#»x q, . . . , Ymp
#»x qq. By the

induction hypothesis, Yip #»x qϑn2 ĺ ti and Yip #»x qϑn2 ĺ si for all 1 ď i ď m. By construction
of ϑn2 , if there is U P VarspRanpϑn2 qq, then there is an AUP of the form Up #»u q : t1 fi s1 P Sn.
Let σ (resp. ϕ) be a substitution which maps each such U to the corresponding t1 (resp.
s1). Then Yip #»x qϑn2σ “ ti and Yip #»x qϑn2ϕ “ si. Since Xp #»x qϑn1 “ hpY1p

#»x q, . . . , Ymp
#»x qqϑn2 ,

we get that Xp #»x qϑn1σ “ t, Xp #»x qϑn1ϕ “ s, and, hence, Xp #»x qϑn1 ĺ t and Xp #»x qϑn1 ĺ s.
Abs: Here t “ λy1.t

1, s “ λy2.s
1, Xp #»x qϑ1

1 “ λy.X 1p #»x , yq, and A1 contains the AUP
X 1p #»x , yq : t1ty1 ÞÑ yu fi s1ty2 ÞÑ yu. By the induction hypothesis, X 1p #»x , yqϑn2 ĺ

t1ty1 ÞÑ yu and X 1p #»x , yqϑn2 ĺ s1ty1 ÞÑ yu. Since Xp #»x qϑn1 “ λy.X 1p #»x , yqϑn2 and
due to the way how y was chosen, we finally get Xp #»x qϑn1 ĺ λy.t1ty1 ÞÑ yu “ t and
Xp #»x qϑn1 ĺ λy.s1ty2 ÞÑ yu “ s.

Sol: We have Xp #»x qϑ1
1 “ Y p #»y q where Y is in the store. By the induction hypothesis,

Y p #»y qϑn2 ĺ t and Y p #»y qϑn2 ĺ s. Therefore, Xp #»x qϑn1 ĺ t and Xp #»x qϑn1 ĺ s.

For Mer, there exists Y p #»y q : t1 fi s1 P S0 such that matchpt #»xu, t #»y u, t Ù t1, s Ù s1q

is a permuting matcher π, and ϑ1
1 “ tY ÞÑ λ #»y .Xp #»xπqu. By the induction hypothesis,

Xp #»x qϑn1 “ Xp #»x qϑn2 ĺ t and Xp #»x qϑn1 “ Xp #»x qϑn2 ĺ s. These imply that Xp #»xπqϑn1 ĺ t1 and
Xp #»xπqϑn1 ĺ s1, which, together Y ϑn1 “ Xp #»xπq, yields Y p #»y qϑn1 ĺ t1and Y p #»y qϑn1 ĺ s1. đ

Hence, the result computed by P for X : t fi s generalizes both t and s. We call
Xσ, a generalization of t and s computed by P. Moreover, given a derivation tX : t fi

su;H;H ùñ˚ H;S;σ in P, we say that

σ is a substitution computed by P for X : t fi s;
the restriction of σ on X, σ|X , is an anti-unifier of X : t fi s computed by P.

§ Theorem 4.3 (Completeness). Let λ #»x .t1 and λ #»x .t2 be higher-order terms and λ #»x .s be
a higher-order pattern such that λ #»x .s is a generalization of both λ #»x .t1 and λ #»x .t2. Then
λ #»x .s ĺ λ #»x .Xp #»x qσ, where σ is an anti-unifier of X : λ #»x .t1 fi λ #»x .t2 computed by P.

Proof. By structural induction on s. We can assume without loss of generality that λ #»x .s

is an lgg of λ #»x .t1 and λ #»x .t2. We also assume that it is in the η-long β-normal form.
If s is a variable, then there are two cases: Either s P #»x , or s R #»x . In the first case, we

have s “ t1 “ t2. The Dec rule gives σ “ tX ÞÑ λ #»x .su and, hence, λ #»x .s ĺ λ #»x .Xp #»x qσ “ s.
In the second case, either Headpt1q ‰ Headpt2q, or Headpt1q “ Headpt2q R #»x . Sol is supposed
to give us σ “ tX ÞÑ λ #»x .X 1p

#»

x1qu, where
#»

x1 is a subsequence of #»x consisting of variables
occurring freely in t1 or in t2. But

#»

x1 should be empty, because otherwise s would not be just
a variable (remember that λ #»x .s is an lgg of λ #»x .t1 and λ #»x .t2 in the η-long β-normal form).
Hence, we have σ “ tX ÞÑ λ #»x .X 1u and λ #»x .s ĺ λ #»x .Xp #»x qσ, because sts ÞÑ X 1u “ Xp #»x qσ.

If s is a constant c, then t1 “ t2 “ c. We can apply the Dec rule, obtaining σ “ tX ÞÑ

λ #»x .cu and, hence, s “ c ĺ Xp #»x qσ “ c. Therefore, λ #»x .s ĺ λ #»x .Xp #»x qσ.
If s “ λx.s1, then t1 and t2 must have the forms t1 “ λx.t11 and t2 “ λy.t12, and s1 must

be an lgg of t11 and t12. Abs gives a new system tX 1p #»x , xq : t11 fi t12tx ÞÑ yuu;H;σ1, where
σ1 “ tX ÞÑ λ #»x , x.X 1p #»x , xqu. By the induction hypothesis, we can compute a substitution
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σ2 such that λ #»x , x.s1 ĺ λ #»x , x.X 1p #»x , xqσ2. Composing σ1 and σ2 into σ, we have Xp #»x qσ “

λx.X 1p #»x , xqσ2. Hence, we get λ #»x .s “ λ #»x .λx.s1 ĺ λ #»x .λx.X 1p #»x , xqσ2 “ λ #»x .Xp #»x qσ.
Finally, assume that s is a compound term hps1, . . . , snq. If h R #»x is a variable, then

s1, . . . , sn are distinct variables from #»x (because λ #»x .s is a higher-order pattern). That
means that s1, . . . , sn appear freely in t1 or t2. Moreover, either Headpt1q ‰ Headpt2q, or
Headpt1q “ Headpt2q “ h. In both cases, we can apply the Sol rule to obtain σ “ tX ÞÑ

λ #»x .Y ps1, . . . , snqu. Obviously, λ #»x .s ĺ λ #»x .Xp #»x qσ “ λ #»x .Y ps1, . . . , snq.
If h P #»x or if it is a constant, then we should have Headpt1q “ Headpt2q. Assume they

have the forms t1 “ hpt11, . . . , t
1
nq and t2 “ hpt21, . . . , t

2
nq. We proceed by the Dec rule, obtain-

ing tYip #»x q : t1i fi t2i | 1 ď i ď nu;H;σ0, where σ0 “ tX ÞÑ λ #»x .hpY1p
#»x q, . . . , Ynp

#»x qqu. By the
induction hypothesis, we can construct derivations ∆1, . . . ,∆n computing the substitutions
σ1, . . . , σn, respectively, such that λ #»x .si ĺ λ #»x .Yip

#»x qσi for 1 ď i ď n. These derivations,
together with the initial Dec step, can be combined into one derivation, of the form ∆ “

tXp #»x q : t1 fi t2u;H;σ0 ùñ tYip
#»x q : t1i fi t2i | 1 ď i ď nu;H;σ0 ùñ

˚ H;Sn;σ0σ1 ¨ ¨ ¨σn.
Let for any term t, t|p denote the subterm of t at position p. If s does not contain duplicate

variables free in λ #»x .s, then the construction of ∆ and the fact that λ #»x .si ĺ λ #»x .Yip
#»x qσi for

1 ď i ď n guarantee λ #»x .s ĺ λ #»x .Xp #»x qσ0σ1 ¨ ¨ ¨σn. If s contains duplicate variables free in
λ #»x .s (e.g., of the form λ # »u1.Zp

#»z1q and λ # »u2.Zp
#»z2q, where #»z1 and #»z2 have the same length) at

positions p1 and p2, it indicates that

(a) t1|p1 and t1|p2 differ from each other by a permutation of variables bound in t1,
(b) t2|p1 and t2|p2 differ from each other by the same (modulo variable renaming) permu-

tation of variables bound in t2,
(c) the path to p1 is the same (modulo bound variable renaming) in t1 and t2. It equals

(modulo bound variable renaming) the path to p1 in s, and
(d) the path to p2 is the same (modulo bound variable renaming) in t1 and t2. It equals

(modulo bound variable renaming) the path to p2 in s.

Then, because of (c) and (d), we should have two AUPs in Sn: One, between (renamed
variants of) t1|p1 and t2|p1 , and the other one between (renamed variants of) t1|p2 and t2|p2 .
The possible renaming of variables is caused by the fact that Abs might have been applied
to obtain the AUPs. Let those AUPs be Zp #»z1q : r1

1 fi r2
1 and Z 1p #»z2q : r1

2 fi r2
2. The

conditions (a) and (b) make sure that matchpt #»z1u, t
#»z2u, tr

1
1 Ù r1

2, r
2
1 Ù r2

2uq is a permuting
matcher π, which means that we can apply the rule Mer with the substitution σ11 “ tZ 1 ÞÑ
λ #»z2.Zp

#»z1πqu. We can repeat this process for all duplicated variables in s, extending ∆ to
the derivation ∆1 “ tXp #»x q : t1 fi t2u;H;σ0 ùñ tYip

#»x q : t1i fi t2i | 1 ď i ď nu;H;σ0 ùñ
˚

H;Sn;σ0σ1 ¨ ¨ ¨σn ùñ
˚ H;Sn`m;σ0σ1 ¨ ¨ ¨σnσ

1
1 ¨ ¨ ¨σ

1
m, where σ11, . . . , σ1m are substitutions

introduced by the applications of the Mer rule. Let σ “ σ0σ1 ¨ ¨ ¨σnσ
1
1 ¨ ¨ ¨σ

1
m. By this

construction, we have λ #»x .s ĺ λ #»x .Xp #»x qσ, which finishes the proof. đ

Depending which AUP is selected to perform a step, there can be different derivations
in P starting from the same AUP, leading to different generalizations. The next theorem
states that all those generalizations are equivalent.

§ Theorem 4.4 (Uniqueness Modulo »). Let tX : t fi su;H;H ùñ˚ H;S1;σ1 and tX :
t fi su; H;H ùñ˚ H;S2;σ2 be two maximal derivations in P from X : t fi s. Then
Xσ1 » Xσ2.

Proof. It is not hard to notice that if it is possible to change the order of applications
of rules (but sticking to the same selected AUPs for each rule) then the result remains the
same: If ∆1 “ A1;S1;σ1 ùñR1 A2;S2;σ1ϑ1 ùñR2 A3;S3;σ1ϑ1ϑ2 and ∆2 “ A1;S1;σ1 ùñR2
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A12;S12;σ1ϑ2 ùñR1 A
1
3;S13;σ1ϑ2ϑ1 are two two-step derivations, where R1 and R2 are (not

necessarily different) rules and each of them transforms the same AUP(s) in both ∆1 and
∆2, then A3 “ A13, S3 “ S13, and σ1ϑ1ϑ2 “ σ1ϑ2ϑ1 (modulo the names of fresh variables).

Decomposition, Abstraction, and Solve rules transform the selected AUP in a unique
way. We show that it is irrelevant in which order we perform matching in the Merge rule.

Let A; tZp #»z q : t1 fi s1, Y p
#»y q : t2 fi s2uŸS;σ ùñ A; tZp #»z q : t1 fi s1uŸS; σtY ÞÑ

λ #»y .Zp #»z πqu be the merging step with π “ matchpt #»z u, t #»y u, tt1 Ù t2, s1 Ù s2uq. If
we do it in the other way around, we would get the step A; tZp #»z q : t1 fi s1, Y p

#»y q :
t2 fi s2uŸS;σ ùñ A; tY p #»y q : t2 fi s2uŸS;σtZ ÞÑ λ #»z .Y p #»y µqu, where µ “ matchpt #»y u,

t #»z u, tt2 Ù t1, s2 Ù s1uq. But µ “ π´1, because of bijection.
Let ϑ1 “ σρ1 with ρ1 “ tY ÞÑ λ #»y .Zp #»z πqu and ϑ2 “ σρ2 with ρ2 “ tZ ÞÑ λ #»z .Y p #»y π´1qu.

Our goal is to prove that Xϑ1 » Xϑ2. For this, we have to prove two inequalities: Xϑ1 ĺ

Xϑ2 and Xϑ2 ĺ Xϑ1. To show Xϑ1 ĺ Xϑ2, we first need to prove the equality:

λ #»y .Zp #»z πqρ2 “ λ #»y .Y p #»y q. (1)

Its left hand side is transformed as λ #»y .Zp #»z πqρ2 “ λ #»y .Zp #»z πqtZ ÞÑ λ #»z .Y p #»y π´1qu “

λ #»y .pλ #»z .Y p #»y π´1qp #»z πqq. β-reduction of λ #»z .Y p #»y π´1qp #»z πq replaces each occurrence of zi P
#»z in Y p #»y π´1q with ziπ, which is the same as applying π to Y p #»y π´1q. Since #»y π´1π “ #»y ,
we get λ #»y .pλ #»z .Y p #»y π´1qp #»z πqq “ λ #»y .Y p #»y π´1πq “ λ #»y .Y p #»y q and (1) is proved.

Next, starting from Xϑ1ρ2, we can transform it as Xϑ1ρ2 “ Xσρ1ρ2 “ XσtY ÞÑ

λ #»y .Zp #»z πqρ2, Z ÞÑ λ #»z .Y p #»y π´1qu “by (1) XσtY ÞÑ λ #»y .Zp #»z πqρ2, Z ÞÑ λ #»z .Y p #»y π´1qu “

XσtY ÞÑ λ #»y .Y p #»y q, Z ÞÑ λ #»z .Y p #»y π´1qu “ XσtY ÞÑ λ #»y .Y p #»y qutZ ÞÑ λ #»z .Y p #»y π´1qu. At
this step, since the equality “ is αβη-equivalence, we can omit the application of the substi-
tution tY ÞÑ λ #»y .Y p #»y qu and proceed: XσtY ÞÑ λ #»y .Y p #»y qutZ ÞÑ λ #»z .Y p #»y π´1qu “ XσtZ ÞÑ

λ #»z .Y p #»y π´1qu “ Xσρ2Xϑ2. Hence, we got Xϑ1ρ2 “ Xϑ2, which implies Xϑ1 ĺ Xϑ2.
Xϑ2 ĺ Xϑ1 can be proved analogously. Hence, Xϑ1 » Xϑ2, which means that it is

irrelevant in which order we perform matching in the Merge rule. Therefore, no matter how
different derivations are constructed, the computed generalizations are equivalent. đ

Hence, for given terms t and s, the anti-unification algorithm P computes their gener-
alization, a higher-order pattern, which is less general than any other higher-order pattern
which generalizes t and s. The next theorem is about its complexity:

§ Theorem 4.5 (Complexity of P). The algorithm P, when using M to compute permuting
matchers, has space complexity Opnq and time complexity Opn3q, where n is the size (the
number of symbols) of input.

Proof. We can keep the substitutions in the systems in triangular form. Then the size of
systems is linear in the size of input. Only at the end we will apply the computed anti-
unifier to the corresponding generalization variable to return the generalization: Having the
substitution rX ÞÑ t0, Y1 ÞÑ t1, . . . , Yn ÞÑ tns, we need to compute t0tY1 ÞÑ t1u ¨ ¨ ¨ tYn ÞÑ tnu.
Its size does not exceed the size on the input. Hence, the space complexity is linear.

For proving the cubic time complexity, we can assume that the applications of the Mer
rule are postponed till the end. The number of application of the other rules is bounded by
the size of the input. Abs involves renaming which can be done in linear time. Sol requires
selection of variables that occur freely in terms, which also needs linear time. Composi-
tion of substitutions is just appending a new binding at the end of the existing triangular
substitution. As for the Mer rule, it can be called at most quadratic number of times. At
each application it calls M which itself requires linear time. Hence, the cubic complexity
of applications of Mer dominates the complexity of applications of the other rules. The
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last step, constructing the generalization t0tY1 ÞÑ t1u ¨ ¨ ¨ tYn ÞÑ tnu from the computed tri-
angular substitution, requires linear number of substitution applications. Each application
traverses the term, replaces all occurrences of Yi with ti, and performs β-reduction (i.e,
bound variable permutation). Traversal, replacement, and β-reduction can take at most
quadratic time. Therefore, the complexity of this last step is also cubic. It implies that P

has the Opn3q time complexity.
Note that if the input does not satisfy the condition each bound variable to be unique

(on which both P and M rely), we can rename the variables before calling P. It can be done
in linear time, using a “chained-like” hash table whose buckets are stacks (instead of linked
lists of chained hash tables) for variable renaming, and traversing the terms in preorder. đ

5 Final Remarks

One can observe that P can be adapted with a relatively little effort to work on untyped
terms (cf. the formulation of the unification algorithm both for untyped and simply-typed
patterns in [27]). One thing to be added is lazy η-expansion: The AUP of the form Xp #»x q :
λy.t fi hps1, . . . , smq should be transformed intoXp #»x q : λy.t fi λz.hps1, . . . , sm, zq for a fresh
z. (Dually for abstractions in the right hand side.) The expansion should be performed both
in P and M. In addition, Sol needs an extra condition for the case when Headptq “ Headpsq
but the terms have different number of arguments such as, e.g., in fpa, xq and fpb, x, yq.

The anti-unification algorithm has been implemented (both for simply-typed and untyped
terms, without perfect hashing) in Java. It can be used online or can be downloaded freely
from http://www.risc.jku.at/projects/stout/software/hoau.php.

As for the related topics, we would mention nominal anti-unification. Several authors
explored relationship between nominal terms and higher-order patterns (see, e.g., [11, 13,
20, 21] among others), proposing translations between them in the context of unification.
However, it is not immediately clear how to reuse those translations for anti-unification, in
particular, how to get nominal generalizations from pattern generalizations.

Studying anti-unification in the calculi with more complex type systems, such as the
extension of the system F with subtyping Fă: [10], would be a very interesting direction
of future work, because it may have applications in clone detection and refactoring for the
functional programming languages in the ML family.
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