Multi-Objective Multicast Routing based on Ant Colony Optimization

Diego Pinto^{*+} Benjamí n Barán^{*+} and Ramón Fabregat[±] * National Computing Center, National University of Asuncion - Paraguay + Science and Technology Department, Catholic University of Asunción -Paraguay {dpinto, bbaran}@cnc.una.py [±] Institut d' Informàtica i Aplicacions - Universitat of Girona. Girona, Spain {ramon.fabregat}@udg.es

Abstract. This work presents a new multiobjective algorithm based on ant colonies, which is used in the construction of the multicast tree for data transmission in a computer network. The proposed algorithm simultaneously optimizes cost of the multicast tree, average delay and maximum end-to-end delay. In this way, a set of optimal solutions, know as Pareto set, is calculated in only one run of the algorithm, without a priori restrictions. The proposed algorithm was inspired in a Multi-objective Ant Colony System (MOACS). Experimental results prove the proposed algorithm outperforms a recently published Multiobjective Multicast Algorithm (MMA), specially designed for solving the multicast routing problem.

Keywords: Evolutionary Algorithms, Traffic Engineering, Multicast Routing, Multiobjective Optimization, Pareto Front and Ant Colony Optimization.

1. Introduction

Multicast consists of simultaneous data transmission from a source node to a subset of destination nodes in a computer network. Multicast routing algorithms have recently received great attention due to the increased use of new point to multipoint applications, such as radio and TV transmission, on-demand video and teleconferences. Such applications generally have some quality-of-service (QoS) parameters as maximum end-toend delay and minimum bandwidth resources. Another important consideration in Traffic Engineering is the cost of the tree, understanding cost as other parameters to be minimized, such as: hop count, bandwidth utilization, and others. In this is way; the *Multicast Traffic Engineering Problem* should be treated as a Multi-Objective Problem (*MOP*) [13].

Ant Colony Optimization (ACO) is a meta-heuristic proposed by Dorigo et al. [4] inspired by the behavior of ant colonies. In the last few years, ACO has empirically shown its effectiveness in the resolution of several different NP-hard combinatorial optimization problems. ACO uses a colony of artificial ants, i.e. a set of simple agents that work in a cooperative way and communicate by means of artificial pheromone in the search of better

solutions. Several algorithms based on the *ACO* approach consider the multicast routing problem as a mono-objective problem, minimizing the cost of the tree under multiple constrains. In [8] Y. Liu and J. Wu propose the construction of a multicast tree, where only the cost of a tree is minimized. On the other hand, Gu et al. consider multiple parameters of Quality of Service as constrains while minimizing the cost of the tree [7]. These algorithms treat the Traffic Engineering Multicast problem as a mono-objective problem with several constrains. The main disadvantage of this approach is the necessity of an a priori predefined upper bound that can exclude good trees from the final solution.

This work proposes for the first time to solve the Traffic Engineering Multicast problem using the Multi-Objective Ant Colony System (*MOACS*), introduced in [9]. This algorithm optimizes several objectives simultaneously. Experimental results have recently demonstrated that *MOACS* is the best multi-objective *ACO* algorithm for the bi-objective Traveling Salesman Problem (*TSP*) [6].

Besides, to verify the results obtained with the proposed algorithm, it is compared to a Multi-objective Multicast Algorithm (*MMA*) [3]. *MMA* is based on the Strength Pareto Evolutionary Algorithm (*SPEA*) and it simultaneously minimizes three objectives functions for the static case in [1], while in [2] optimizes four objectives for the dynamic case. In summary, this work takes one the finest ant colony multi-objective algorithms, adapting it to the Traffic Engineering Multicast problem.

2. Problem Formulation

For this work, a network is modeled as a direct graph G=(V, E), where V is the set of nodes and E is the set of links. Let:

$(i,j) \in E$:	Link from node <i>i</i> to node <i>j</i> ; where $i, j \in V$.
$c_{ij} \in \mathfrak{R}^+$:	Capacity of link (<i>i</i> , <i>j</i>).
$d_{ij} \in \mathfrak{R}^+$:	Delay of link (<i>i</i> , <i>j</i>).
$s \in V$:	Source node of a multicast group.
$N_r \subseteq V - \{s\}$:	Set of destinations of a multicast group.
$\phi \in \mathfrak{R}^+$:	Traffic demand, in bps.
$T(s,N_r)$:	Multicast tree with source in s and a set of destinations N_r .
$p_T(s, n) \subseteq T(s, N_r)$:	Path connecting a source node <i>s</i> with a destination node $n \in N_r$.
$d(p_T(s, n))$:	Delay of path $p_T(s,n)$, given by the sum of the delays of the
path, i.e	9.:

$$d(p_T(s,n)) = \sum_{(i,j)\in p_T(s,n)} d_{ij}$$
(1)

Using the above definitions, a multicast routing problem may be stated as a MOP [13] that tries to find the multicast tree $T(s,N)^1$ that simultaneously minimizes the following objectives:

¹ For the rest of this work $T \equiv T(s, N_r)$ for further simplicity.

a. Cost of the tree: $f_1(T) = \phi \cdot \sum_{(i,j) \in T} c_{ij}$ (2)

b. Maximum end-to-end delay:
$$f_2(T) = \max_{n \in N_r} \left\{ d\left(p_T(s, n) \right) \right\}$$
(3)

c. Average delay:
$$f_3(T) = \frac{1}{|N_r|} \cdot \sum_{n \in N_r} d(p_T(s, n))$$
(4)

Considering two solutions T and T', for the same multicast group (s, N_r) :

 $x = \begin{bmatrix} f_1(T) & f_2(T) & f_3(T) \end{bmatrix}$ and $z = \begin{bmatrix} f_1(T') & f_2(T') & f_3(T') \end{bmatrix}$, only one of the following three conditions can be given:

 $\begin{array}{ll} x & z \ (x \ \text{dominates } z) & \text{iff} \quad x_i \le z_i \land x_i \ne z_i \ \forall i \in \{1,2,3\} \\ z & x \ (z \ \text{dominates } x) & \text{iff} \quad z_i \le x_i \land z_i \ne x_i \ \forall i \in \{1,2,3\} \\ x \sim z \ (x \ \text{and} \ z \ \text{are non-comparable}) & \text{iff} \quad x_i \ z_i \land z_i \ x_i \ \forall i \in \{1,2,3\} \end{array}$ (5)

Alternatively, for the rest of this work, x = z will denote that x = z or $x \sim z$. A decision vector T is non-dominated with respect to a set Q iff: T = T, $T' \in Q$. When T is non-dominated with respect to the whole domain of feasible solutions, it is called an optimal Pareto solution; therefore, the *Pareto optimal set* X_{true} may be formally defined as:

 $X_{true} = \{T \in X_f \mid T \text{ is non-dominated with respect to } X_f\}$ (6)

The corresponding set of objectives $Y_{true} = f(X_{true})$ constitutes the Optimal Pareto Front.

3. Multi-objective Ant Colony Optimization algorithm

The Multi-objective Ant Colony Optimization algorithm (*MOACS*), proposed in [9], is a generalization of the Ant Colony System (*ACS*) [5]. This approach uses a colony of ants for the construction of *m* solutions T at every generation. Then, the known Pareto Front Y_{know} [13] is updated, including all non-dominate solutions. Finally, the pheromone matrix τ_{ij} is updated. Figure 1 presents a *MOACS* general procedure.

 $\begin{array}{l} \mbox{Read multicast group (s, N_r) and traffic demand φ} \\ \mbox{Initialize τ_{ij}} \\ \mbox{while stop criterion is not verified} \\ \mbox{repeat for $k=1$ to m} \\ \mbox{T = Build Tree (Algorithm 3)} \\ \mbox{if (T } \{T_x \mid T_x \in Y_{know}\}) \mbox{then} \\ \mbox{Y}_{know} = Y_{know} \cup T - \{T_y \mid T \mid T_y\} \end{tabular} \forall T_y \in Y_{know} \\ \mbox{end if} \\ \mbox{end repeat} \\ \mbox{Update of τ_{ij}} \\ \mbox{end while} \\ \mbox{Figure 1. General Procedure of $MOACS$ (Algorithm 1)} \end{array}$

The update of pheromone matrix τ_{ij} depends on the state of Y_{know} . If Y_{know} was modified, then τ_{ij} is re-initialized ($\tau_{ij}=\tau_0$) to improve exploration; otherwise, a global update of τ_{ij} is made using the solutions of Y_{know} for a better exploitation, as shown in. Figure 2.

Figure 2. Global Update of τ_{ij} (Algorithm 2)

repeat for every
$$T \in Y_{know}$$

repeat for every $(i, j) \in T$
 $\tau_{ij} = (1-\rho).t_0 + \rho.\Delta t$
end repeat
end repeat

with:

$$\Delta \tau = \frac{1}{\sum_{\substack{\forall T \in Y \\ know}} (f_1(T) + f_2(T) + f_3(T))}$$
(7)

where:

 $f_I(T)$ Normalized cost of T, given by equation (2). $f_2(T)$ Normalized average delay of T, given by equation (3). $f_3(T)$ Normalized maximum end-to-end delay of T, given by equation (4). $\rho \in (0, I]$ Trail persistence.

An ant begins the construction of a solution in the source *s*. A non-visited node is pseudo-randomly [9] selected at each step. This process continues until all desired destinations are reached. Consider *N* as the list of possible starting nodes, N_i as the list of feasible neighboring nodes to node *i*, D_r as the set of destinations already reached and φ as another trail persistence parameter. Figure 3 shows the procedure to find a solution *T*.

```
Initialize T, N and D_r
Repeat until (N = \emptyset \circ D_r = N_r)
   Select node i of N and build set N_i
   if (N_i = \emptyset) then
                                 /* erase node without feasible neighbor */
       N = N - i
   else
       Select node j of N_i
                                 /*pseudo-random rule */
       T = T \cup (i, j)
       N = N \cup j
       if \ (j \in \ N_r) \ then
          D_r = D_r \cup j
                                 /*node j is node destination*/
       end if
   end if
   \tau_{ij} = (1 - \phi) \cdot \tau_0 + \phi \cdot \tau_0
                               /*update pheromone*/
end repeat
Prune Tree T
                               /* eliminate not used link*/
             Figure 3. Procedure to Build Tree (Algorithm 3)
```

4. Multi-objective Multicast Algorithm

The Multi-objective Multicast Algorithm (*MMA*), proposed in [1], is based on the *Strength Pareto Evolutionary Algorithm* (*SPEA*) [12]. This algorithm maintains an evolutionary population P and an external set of Pareto solutions P_{nd} . Starting with a random population, the individuals evolve to the desired solutions, as shown in Figure 4 [1].

Read multicast group (s,N_r) and traffic demand ϕ Build routing tables Initialize P and P_{nd} while until stop criterion is not verified Discard identical individuals Evaluate individuals of PUpdate non-dominated set P_{nd} Compute fitness Selection Apply crossover and mutation end while

Figure 4. General Procedure of MMA (Algorithm 4)

Build routing tables is a procedure that builds possible paths from a source *s* to each destination of a multicast group. It usually selects the R shortest, and R cheapest paths, where R is a parameter of the algorithm. A chromosome is represented by a string of length |Nr| in which an element (gene) g_i represents a path [1], as shown in Figure 5.

Figure 5. Relationship among a chromosome, genes and routing tables.

Initialize P and P_{nd} . generates |P| chromosomes, where P is an evolutionary population. The best non-dominated solutions found so far is saved in an external set P_{nd} . Procedure *Discard identical individuals of* P replaces duplicated solutions with new randomly generated solutions, while procedure *Evaluate individuals of* P calculates the 3 objectives for each individual.

Update non-dominated set P_{nd} . include in P_{nd} non-dominated solutions of P, and it erases any dominated solution of P_{nd} . Then, fitness is computed as in [12]. The selection operator is later applied over the set $P \cup P_{nd}$, to generate a new population P. Finally, *crossover* and *mutation* operators are applied using 2-point crossover and changing some genes in each chromosome of the new population.

5. Experimental Results

Experimental tests were carried out using the NTT network [10] consisting of 55 nodes and 144 links. Four tests were performed for the 4 groups presented in Table 1. Each test consists of 3 runs for 40, 160 and 320 seconds. Both algorithms, *MOACS* and *MMA*, have been implemented on a 350 MHz AMD-K6 computer with 128 MB of RAM. The compiler used was Borland C++ V 5.02.

Table 1. Multicast Group used for the tests

	s	Nr	/N _r /
Group 1	{5}	$\{0, 1, 8, 10, 22, 32, 38, 43, 53\}$	9
Group 2	{4}	$\{0, 1, 3, 5, 9, 10, 12, 23, 25, 34, 37, 41, 46, 52\}$	14
Group 3	{4}	$\{0, 1, 3, 5, 6, 9, 10, 12, 17, 22, 23, 25, 34, 37, 41, 46, 47, 52, 54\}$	19
Group 4	{4}	$\{0, 1, 3, 5, 6, 9, 10, 11, 12, 17, 19, 21, 22, 23, 25, 33, 34, 37, 41, 44, 46, 47, 52, 54\}$	24

5.1. Comparison Procedure

The comparison procedure used for each multicast group was the following:

- a) Each algorithm was run five times to calculate an average.
- b) For each algorithm, five sets of non-dominated solutions were obtained $(Y_1, Y_2..Y_5)$ and an overpopulation Y_T was calculated as the union of the five sets.
- c) Dominated solutions were deleted from Y_T , forming the Pareto set of each algorithm: Y_{MOACS} (Pareto Front obtained of the 5 runs using *MOACS*)
 - Y_{MMA} (Pareto Front obtained of the 5 runs using *MMA*)
- d) A set of solutions \hat{Y} was obtained as follows: $\hat{Y} = Y_{MOACS} \lor Y_{MMA}$ (8)
- e) Dominated solutions were eliminated from $\stackrel{\wedge}{Y}$, to obtain an approximation of Y_{true} , called Y_{apr}^2 . Table 2 presents the number of solutions $T \in Y_{apr}$ found for every multicast group.

Table 2. Amount of Optimal Solutions for each Multicast Group.

	-				
	Group 1	Group 2	Group 3	Group 4	
$ Y_{apr} $	9	18	24	18	

5.2. Results

The odd tables of each test present the average number of solutions of each algorithm that are in Y_{apr} , denoted as $[\in Y_{apr}]$. The set of solutions that are dominated by Y_{apr} is denoted as $[Y_{apr}W]$. The number of found solutions is $[|Y_{alg}|]$ and the percentage of solutions present in Y_{apr} is $[\%(\in Y_{apr})]$. The following steps explain how to read Table 3 considering *MMA*.

- a) Row Y_{MMA} , column [\in Y_{apr}] indicates that 5.8 solutions in average belongs to Y_{apr}.
- b) Row Y_{MMA} , column $[Y_{apr}W]$ indicates that 0 solutions are dominates by Y_{apr} .

² Note that for practical issues $Y_{apr} \approx Y_{true}$, i.e. Y_{apr} is an excellent approximation of Y_{true} .

- c) Row Y_{MMA} , column [|Y_{alg}]] indicates that in average 5.8 solutions were found by MMA.
- d) Row Y_{MMA} , column [%(\in Y_{apr})] indicates that *MMA* finds 64% of Y_{apr} solutions.

The even tables of each experiment present the covering figure among algorithms [11]. Only results for group 1 and group 4 are presented.

Experiment 1. Results for multicast group 1 (see Table 1)

- a) In Tables 3, 5 and 7 MOACS finds almost all solutions of Y_{apr} , overcoming MMA.
- b) All found solutions belong to Y_{apr} ; therefore, the coverings are 0 in Tables 4, 6 and 8.

Table 3. Comparison with respect to 1	Y_{apr}
---------------------------------------	-----------

	Run time 40 s.						
	$\in Y_{apr}$	$Y_{apr}W$	$ Y_{alg} $	$\% (\in Y_{apr})$			
Y_{MOACS}	8.8	0	8.8	98%			
Y_{MMA}	5.8	0	5.8	64%			

Table 4. Covering among algorithms

	Y_j	
Y_i	Y _{MOACS}	Y_{MMA}
Y _{MOACS}		0
Y _{MMA}	0	

Table 5. Comparison with respect to Y_{apr}

	Run time 160 s.						
	$\in Y_{apr}$	$Y_{apr}W$	$ Y_{alg} $	$\% (\in Y_{apr})$			
Y _{MOACS}	9	0	9	100%			
Y_{MMA}	5.2	0	5.2	57%			

Tal	ole	6.	Covering	among	algorithms
-----	-----	----	----------	-------	------------

	Y_j	
Y_i	Y _{MOACS}	Y_{MMA}
Y _{MOACS}		0
Y _{MMA}	0	

Table 7. Comparison with respect to Y_{apr}

	Run time 320 s.						
	$\in Y_{apr}$ Y_{aprW} $/Y_{alg}$ $\% (\in Y_{apr})$						
Y _{MOACS}	9	0	9	100%			
Y _{MMA}	5.8	0	5.8	64%			

Table 8. Covering among algorithms

	Y_i	
Y_i	Y_{MOACS}	Y_{MMA}
Y_{MOACS}		0
Y _{MMA}	0	

Experiment 4. Results for multicast group 4 (see Table 1)

- a) In this last experiment characterized for a larger number of destinations multicast group, the MOACS also demonstrated to be better than the MMA. In fact, MOACS obtained a larger number of solutions belonging to Y_{apr} , for all run times.
- b) Notice that MOACS solutions dominate more solutions than the MMA on average for 160 and 320 seconds (Tables 12 and 14); although not at 40 seconds.

Та	ble	9.	Com	parison	with	respect	to	Y_{apr}
----	-----	----	-----	---------	------	---------	----	-----------

Table 10. Covering among algorithms

	$\in Y_{apr}$	$Y_{apr}W$	$ Y_{alg} $	$\% \in Y_{apr}$
Y _{MOACS}	4	7.6	11.6	22%
Y _{MMA}	2.6	0.6	3.2	14%

Run time 40 s.

4.2

 Y_{MOACS} Y_{MMA}

Y_i	Y _{MOACS}	Y_{MMA}
Y _{MOACS}		0.2
Y_{MMA}	1.6	

Table 11. Comparison with respect to Y_{apr}

0.6

Run time 160 s.					
$\in Y_{apr}$	Y_{apr} W	$ Y_{alg} $	$\% (\in Y_{apr})$		Y_i
12.2	0.6	14.8	67%		Y_{MOAC}

4.8

23%

Table 12. Covering among algorithms

	Y_j	
Y_i	Y _{MOAC}	Y_{MMA}
Y_{MOAC}		0.4
Y	0.2	

Table 15. Comparison with respect to T_a	Table 1	rison with respect	Comparison	Y_{apr}
---	---------	--------------------	------------	-----------

9.9

```
Table 14. Covering among algorithms
```

0.2

	Run time 320 s.					Y_j	
	$\in Y_{apr}$	$Y_{apr}W$	$ Y_{alg} $	$\% (\in Y_{apr})$	Y_i	Y_{MOACS}	Y _{MMA}
OACS	14	2.6	16.6	77%	Y_{MOAC}		0.8
MA	4.4	1.2	5.6	24%	Y_{MMA}	0.2	

General averages of the experiments.

1.6

8.6

Tables 15 and 16 show that on average, the MOACS is clearly superior to MMA.

Table 15. Comparison with respect to Y_{app} Table 16. Covering among algorithms $\in Y_a$ $Y_{apr}W$ $|Y_{alg}|$ $\% \in Y_{apr}$ Y_i Y_{MOACS} Y_{MMA} 14.1 17.8 69.9% Y_{MOAC} 0.4 Y_{MOACS} 3.5 Y_{MMA}

42.1%

6. Conclusions

 Y_{MMA}

 Y_M Y_M

Ant algorithms proved to be a promising approach to solve the multicast routing problem. Considering the presented experimental results, MOACS is able to find 69,9% of the best solutions in average, while MMA could only find 42.1 %. Besides, the Y_{MOACS} has a better coverage then Y_{MMA} proving its capacity to treat this kind of problems.

As future work, we will consider other objective functions, as maximum link uses and experiments with a dynamic environment and other ACO's versions.

References

- [1] J. Crichigno, and B. Bará n. "Multiobjective Multicast Routing Algorithm", IEEE ICT 2004, Ceará, Brasil, 2004.
- J. Crichigno, and B. Bará n. "A Multicast Routing Algorithm Using Multiobjective Optimization", IEEE [2] ICT 2004, Ceará , Brasil, 2004.
- [3] J. Crichigno, and B. Batá n." Multiobjective Multicast Routing Algorithm for Traffic Engineering". IEEE ICCCN 2004, Chicago, US, 2004.
- [4] M. Dorigo, and G. Di Caro." The Ant Colony Optimization meta-heuristic". In D. Corne, M. Dorigo, and F. Glover, editors, New Ideas in Optimization, pp 11-32. McGraw Hill, London, UK, 1999.
- [5] M. Dorigo, and L. M. Gambardella." Ant Colony System: A cooperative learning approach to the traveling salesman problem". IEEE Transactions on Evolutionary Computation, 1: 1, pp 53-66, 1997.
- [6] C. Gará a-Marí nez, O. Cordó n, and F. Herrera, "An Empirical Analysis of Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP'. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada, and T. Stützle, editors, Proceedings of ANTS 2004 -Fourth International Workshop on Ant Colony Optimization and Swarm Intelligence. Volume 3172 of LNCS. Springer-Verlag, Bruselas, September 2004.
- [7] J. Gu, C. Chu, X. Hou, and Q. Gu." A heuristic ant algorithm for solving QoS multicast routing problem" . Evolutionary Computation, 2002. CEC '02. Volume 2, pp 1630-1635.
- Y. Liu, and J. Wu. "The degree-constrained multicasting algorithm using ant algorithm". IEEE 10th [8] International Conference on Telecommunications' . 2003.
- M. Schaerer, and B. Bará n." A Multiobjective Ant Colony System For Vehicle Routing Problem With Time [9] Windows' , IASTED International Conference on Applied Informatics, Innsbruck, Austria, 2003.
- [10] R. Sosa, and B. Bará n," A New Approach for Antnet Routing", (ICCCN 2000), US, 2000.

- [11] F. Zitzler, K. Deb, and L. Thiele. "Comparison of Multiobjective Evolutionary Algorithms. Empirical Results". Evolutionary Computation, 8(2): 173-195, Summer 2000.
 [12] E. Zitzler, and L. Thiele, "Multiobjective Evolutionary Algorithms: A comparative Case Study and the Strength Pareto Approach", IEEE Trans. Evolutionary Computation, Volume 3, No. 4, 1999, pp 257-271.
 [13] D. A. Van Veldhuizen. "Multiobjective Evolutionary Algorithms: Classifications, Analyses and New Innovations". Ph. D. thesis Air Force Institute of Technology, 1999.