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Abstract. This work presents a new multiobjective algorithm based on ant colonies,
which is used in the construction of the multicast tree for data transmission in a
computer network. The proposed algorithm simultaneously optimizes cost of the
multicast tree, average delay and maximum end-to-end delay. In this way, a set of
optimal solutions, know as Pareto set, is calculated in only one run of the algorithm,
without a priori restrictions. The proposed algorithm was inspired in a Multi-objective
Ant Colony System (MOACS). Experimental results prove the proposed algorithm
outperforms a recently published Multiobjective Multicast Algorithm (MMA), specially
designed for solving the multicast routing problem.

Keywords: Evolutionary Algorithms, Traffic Engineering, Multicast Routing, Multi-
objective Optimization, Pareto Front and Ant Colony Optimization.

1. Introduction

Multicast consists of simultaneous data transmission from a source node to a subset of
destination nodes in a computer network. Multicast routing algorithms have recently
received great attention due to the increased use of new point to multipoint applications,
such as radio and TV transmission, on-demand video and teleconferences. Such
applications generally have some quality-of-service (QoS) parameters as maximum end-to-
end delay and minimum bandwidth resources. Another important consideration in Traffic
Engineering is the cost of the tree, understanding cost as other parameters to be minimized,
such as: hop count, bandwidth utilization, and others. In this is way; the Multicast Traffic
Engineering Problem should be treated as a Multi-Objective Problem (MOP) [13].

Ant Colony Optimization (ACO) is a meta-heuristic proposed by Dorigo et al. [4]
inspired by the behavior of ant colonies. In the last few years, ACO has empirically shown
its effectiveness in the resolution of several different NP-hard combinatorial optimization
problems. ACO uses a colony of artificial ants, i.e. a set of simple agents that work in a
cooperative way and communicate by means of artificial pheromone in the search of better



solutions. Several algorithms based on the ACO approach consider the multicast routing
problem as a mono-objective problem, minimizing the cost of the tree under multiple
constrains. In [8] Y. Liu and J. Wu propose the construction of a multicast tree, where only
the cost of a tree is minimized. On the other hand, Gu et al. consider multiple parameters of
Quality of Service as constrains while minimizing the cost of the tree [7]. These algorithms
treat the Traffic Engineering Multicast problem as a mono-objective problem with several
constrains. The main disadvantage of this approach is the necessity of an a priori predefined
upper bound that can exclude good trees from the final solution.

This work proposes for the first time to solve the Traffic Engineering Multicast
problem using the Multi-Objective Ant Colony System (MOACS), introduced in [9]. This
algorithm optimizes several objectives simultaneously. Experimental results have recently
demonstrated that MOACS is the best multi-objective ACO algorithm for the bi-objective
Traveling Salesman Problem (TSP) [6].

Besides, to verify the results obtained with the proposed algorithm, it is compared to a
Multi-objective Multicast Algorithm (MMA) [3]. MMA is based on the Strength Pareto
Evolutionary Algorithm (SPEA) and it simultaneously minimizes three objectives functions
for the static case in [1], while in [2] optimizes four objectives for the dynamic case. In
summary, this work takes one the finest ant colony multi-objective algorithms, adapting it
to the Traffic Engineering Multicast problem.

2. Problem Formulation

For this work, a network is modeled as a direct graph G=(V, E), where V is the set of
nodes and E is the set of links. Let:

(i,j) ∈ E: Link from node i to node j; where i, j ∈ V.
cij ∈ :+ℜ Capacity of link (i, j).
dij ∈ :+ℜ Delay of link (i, j).
s ∈ V: Source node of a multicast group.
Nr ⊆ V-{s}: Set of destinations of a multicast group.

φ ∈ :+ℜ Traffic demand, in bps.
T(s,Nr): Multicast tree with source in s and a set of destinations Nr.
pT(s, n) ⊆ T(s,Nr): Path connecting a source node s with a destination node n∈Nr.
d(pT(s, n)): Delay of path  pT(s,n), given by the sum of the delays of the

path, i.e.:
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Using the above definitions, a multicast routing problem may be stated as a
MOP [13] that tries to find the multicast tree T(s,N)1 that simultaneously minimizes
the following objectives:

1 For the rest of this work T ≡ T(s,Nr) for further simplicity.
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Considering two solutions T and T’ , for the same multicast group (s,Nr):
[ ])()()( 321 TfTfTfx = and [ ])'()'()'( 321 TfTfTfz = , only one of the

following three conditions can be given:
x  z (x dominates z) iff xi ≤ zi ∧ xi ≠ zi ∀i∈ {1,2,3}
z x (z dominates x) iff zi ≤ xi ∧ zi ≠ xi ∀ i∈ {1,2,3} (5)
x ~  z (x and z are non-comparable) iff xi  zi ∧ zi xi ∀i∈ {1,2,3}
Alternatively, for the rest of this work, x  z will denote that x z or x  ~  z.  A

decision vector T is non-dominated with respect to a set Q iff: T  T’ , T’∈ Q.
When T is non-dominated with respect to the whole domain of feasible solutions, it
is called an optimal Pareto solution; therefore, the Pareto optimal set Xtrue may be
formally defined as:

Xtrue ={T ∈ Xf | T is non-dominated with respect to Xf} (6)
The corresponding set of objectives Ytrue=f(Xtrue) constitutes the Optimal Pareto

Front.

3. Multi-objective Ant Colony Optimization algorithm

The Multi-objective Ant Colony Optimization algorithm (MOACS), proposed in [9], is a
generalization of the Ant Colony System (ACS) [5]. This approach uses a colony of ants for
the construction of m solutions T at every generation. Then, the known Pareto Front Yknow

[13] is updated, including all non-dominate solutions. Finally, the pheromone matrix τij is
updated. Figure 1 presents a MOACS general procedure.

Read multicast group (s, Nr) and traffic demand φ
Initialize τij

while stop criterion is not verified
repeat for k=1 to m

          T = Build Tree (Algorithm 3)
          if (T {Tx | Tx ∈ Yknow}) then
               Yknow = Yknow ∪ T – {Ty | T T y} ∀Ty ∈ Yknow
         end if
     end repeat
     Update of τij

end while
Figure 1. General Procedure of MOACS (Algorithm 1)



The update of pheromone matrix τij depends on the state of Yknow. If Yknow was modified,
then τij is re-initialized (τij=τ0 ) to improve exploration; otherwise, a global update of τij is
made using the solutions of Yknow for a better exploitation, as shown in. Figure 2.

repeat for every T ∈ Yknow

     repeat for every (i, j) ∈ T
τij =(1-ρ).t0 +ρ.∆t

     end repeat
end repeat

Figure 2. Global Update of τij (Algorithm 2)
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where:
f1(T) Normalized cost of T, given by equation (2).
f2(T) Normalized average delay of T, given by equation (3).
f3(T) Normalized maximum end-to-end delay of T, given by equation (4).
ρ ∈ (0,1] Trail persistence.

An ant begins the construction of a solution in the source s. A non-visited node is
pseudo-randomly [9] selected at each step. This process continues until all desired
destinations are reached. Consider N as the list of possible starting nodes, Ni as the list of
feasible neighboring nodes to node i, Dr as the set of destinations already reached and ϕ as
another trail persistence parameter. Figure 3 shows the procedure to find a solution T.

Initialize T, N and Dr

Repeat until  (N = ∅ o Dr = Nr)
     Select node i of N and build set Ni

     if (Ni = ∅) then
N = N – i           /* erase node without feasible neighbor */

     else
          Select node j of Ni     /*pseudo-random rule */

T = T ∪ (i, j)
N = N ∪ j

          if (j ∈ Nr) then
               Dr = Dr ∪ j            /*node j is node destination*/
          end if
     end if

τij =(1-ϕ).τ0 +ϕ.τ0 /*update pheromone*/
end repeat
Prune Tree T        /* eliminate not used link*/

Figure 3. Procedure to Build Tree (Algorithm 3)



4. Multi-objective Multicast Algorithm

The Multi-objective Multicast Algorithm (MMA), proposed in [1], is based on the
Strength Pareto Evolutionary Algorithm (SPEA) [12]. This algorithm maintains an
evolutionary population P and an external set of Pareto solutions Pnd. Starting with a
random population, the individuals evolve to the desired solutions, as shown in Figure 4 [1].

Read multicast group (s,Nr) and traffic demand φ
Build routing tables
Initialize P and Pnd
while until stop criterion is not verified
     Discard identical individuals
     Evaluate individuals of P
     Update non-dominated set Pnd
     Compute fitness
     Selection
     Apply crossover and mutation
end while
Figure 4. General Procedure of MMA (Algorithm 4)

Build routing tables is a procedure that builds possible paths from a source s to each
destination of a multicast group. It usually selects the R shortest, and R cheapest paths,
where R is a parameter of the algorithm. A chromosome is represented by a string of length
|Nr| in which an element (gene) gi represents a path [1], as shown in Figure 5.
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Figure 5. Relationship among a chromosome, genes and routing tables.

Initialize P and Pnd. generates |P| chromosomes, where P is an evolutionary population.
The best non-dominated solutions found so far is saved in an external set Pnd. Procedure
Discard identical individuals of P replaces duplicated solutions with new randomly
generated solutions, while procedure Evaluate individuals of P calculates the 3 objectives
for each individual.

Update non-dominated set Pnd. include in Pnd non-dominated solutions of P, and it
erases any dominated solution of Pnd . Then, fitness is computed as in [12]. The selection
operator is later applied over the set P∪Pnd, to generate a new population P. Finally,
crossover and mutation operators are applied using 2-point crossover and changing some
genes in each chromosome of the new population.



5. Experimental Results

Experimental tests were carried out using the NTT network [10] consisting of 55 nodes
and 144 links. Four tests were performed for the 4 groups presented in Table 1. Each test
consists of 3 runs for 40, 160 and 320 seconds. Both algorithms, MOACS and MMA, have
been implemented on a 350 MHz AMD-K6 computer with 128 MB of RAM. The compiler
used was Borland C++ V 5.02.

Table 1. Multicast Group used for the tests

s Nr |Nr|
Group 1 {5} {0, 1, 8, 10, 22, 32, 38, 43, 53} 9
Group 2 {4} {0, 1, 3, 5, 9, 10, 12, 23, 25, 34, 37, 41, 46, 52} 14
Group 3 {4} {0, 1, 3, 5, 6, 9, 10, 12, 17, 22, 23, 25, 34, 37, 41, 46, 47, 52, 54} 19
Group 4 {4} {0, 1, 3, 5, 6, 9, 10, 11, 12, 17, 19, 21, 22, 23, 25, 33, 34, 37, 41, 44, 46, 47, 52, 54} 24

5.1. Comparison Procedure

The comparison procedure used for each multicast group was the following:
a) Each algorithm was run five times to calculate an average.
b) For each algorithm, five sets of non-dominated solutions were obtained (Y1, Y2…Y 5)

and an overpopulation YT was calculated as the union of the five sets.
c) Dominated solutions were deleted from YT, forming the Pareto set of each algorithm:

YMOACS (Pareto Front obtained of the 5 runs using MOACS)
YMMA (Pareto Front obtained of the 5 runs using MMA)

d) A set of solutions
∧
Y was obtained as follows: MMAMOACS YYY ∨=

∧

(8)

e) Dominated solutions were eliminated from
∧
Y , to obtain an approximation of Ytrue,

called Yapr
2. Table 2 presents the number of solutions T ∈ Yapr found for every

multicast group.

Table 2. Amount of Optimal Solutions for each Multicast Group.

Group 1 Group 2 Group 3 Group 4
| Yapr | 9 18 24 18

5.2. Results

The odd tables of each test present the average number of solutions of each algorithm
that are in Yapr, denoted as [∈Yapr]. The set of solutions that are dominated by Yapr is denoted
as [Yaprf]. The number of found solutions is [|Yalg|] and the percentage of solutions present
in Yapr is [%(∈Yapr)]. The following steps explain how to read Table 3 considering MMA.

a) Row YMMA, column [∈Yapr] indicates that 5.8 solutions in average belongs to Yapr.
b) Row YMMA, column [Yaprf] indicates that 0 solutions are dominates by Yapr.

2 Note that for practical issues Yapr ≈ Ytrue, i.e. Yapr is an excellent approximation of Ytrue.



c) Row YMMA, column [|Yalg|] indicates that in average 5.8 solutions were found by
MMA.

d) Row YMMA, column [%(∈Yapr)] indicates that MMA finds 64% of Yapr solutions.
The even tables of each experiment present the covering figure among algorithms [11].

Only results for group 1 and group 4 are presented.

Experiment 1. Results for multicast group 1 (see Table 1)

a) In Tables 3, 5 and 7 MOACS finds almost all solutions of Yapr, overcoming MMA.
b) All found solutions belong to Yapr; therefore, the coverings are 0 in Tables 4, 6 and 8.

Table 3. Comparison with respect to Yapr Table 4. Covering among algorithms

Run time 40 s. Yj

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOACS YMMA

YMOACS 8.8 0 8.8 98% YMOACS 0
YMMA 5.8 0 5.8 64% YMMA 0

Table 5. Comparison with respect to Yapr. Table 6. Covering among algorithms

Run time 160 s. Yj

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOACS YMMA

YMOACS 9 0 9 100% YMOACS 0
YMMA 5.2 0 5.2 57% YMMA 0

Table 7. Comparison with respect to Yapr Table 8. Covering among algorithms

Run time 320 s. Yj

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOACS YMMA

YMOACS 9 0 9 100% YMOACS 0
YMMA 5.8 0 5.8 64% YMMA 0

Experiment 4. Results for multicast group 4 (see Table 1)

a) In this last experiment characterized for a larger number of destinations multicast
group, the MOACS also demonstrated to be better than the MMA. In fact, MOACS
obtained a larger number of solutions belonging to Yapr, for all run times.

b) Notice that MOACS solutions dominate more solutions than the MMA on average for
160 and 320 seconds (Tables 12 and 14); although not at 40 seconds.

Table 9. Comparison with respect to Yapr Table 10. Covering among algorithms

Run time 40 s. Yj

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOACS YMMA

YMOACS 4 7.6 11.6 22% YMOACS 0.2
YMMA 2.6 0.6 3.2 14% YMMA 1.6

Table 11. Comparison with respect to Yapr Table 12. Covering among algorithms

Run time 160 s. Yj

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOAC YMMA

YMOACS 12.2 0.6 14.8 67% YMOAC 0.4
YMMA 4.2 0.6 4.8 23% YMMA 0.2



Table 13. Comparison with respect to Yapr Table 14. Covering among algorithms

Run time 320 s. Yj

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOACS YMMA

YMOACS 14 2.6 16.6 77% YMOAC 0.8
YMMA 4.4 1.2 5.6 24% YMMA 0.2

General averages of the experiments.

Tables 15 and 16 show that on average, the MOACS is clearly superior to MMA.

Table 15. Comparison with respect to Yapr Table 16. Covering among algorithms

∈ Yapr Yaprf |Yalg| %(∈Yapr) Yi YMOACS YMMA

YMOACS 14.1 3.5 17.8 69.9% YMOAC 0.4
YMMA 8.6 1.6 9.9 42.1% YMMA 0.2

6. Conclusions

Ant algorithms proved to be a promising approach to solve the multicast routing
problem. Considering the presented experimental results, MOACS is able to find 69,9% of
the best solutions in average, while MMA could only find 42.1 %. Besides, the YMOACS has a
better coverage then YMMA proving its capacity to treat this kind of problems.

As future work, we will consider other objective functions, as maximum link uses and
experiments with a dynamic environment and other ACO’s versions.
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