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Abstract

Underwater surveys have numerous scientific applications in the fields of arche-

ology, geology and biology, involving tasks such as ancient shipwreck prospection,

ecological studies, environmental damage assessment, and detection of temporal

changes. When diving at extreme depths or during long periods of time, underwater

surveys are nowadays carried out by Underwater Vehicles (UV). These vehicles are

often equipped with advanced navigation sensors, including optical cameras. Optical

imaging provides short-range, high-resolution visual information of the ocean floor.

Scientists can benefit from these images as they provide, from the cognitive point of

view, the most precise and accurate representation of the areas surveyed, enabling

a detailed analysis of the structures of interest. The underwater medium adds

particular challenges to the image acquisition task, and phenomena such as light

attenuation enforce it to be performed as close to the seabed as possible. Hence,

optically mapping large seafloor areas can only be achieved by building image

mosaics from a set of reduced-area pictures, i.e., photo-mosaics. Unfortunately,

the seams along image boundaries are often noticeable, due to photometrical and

geometrical registration inaccuracies. Image blending is the merging step in which

those artifacts are minimized. Processing bottlenecks and the lack of medium-

specific processing tools have restricted underwater photo-mosaics to small areas

despite the hundreds of thousands of m2 that modern surveys can cover. Large

underwater photo-mosaics are in increasing demand for the characterization of the

seafloor for scientific purposes. Producing these mosaics is difficult due to the

challenging nature of the underwater environment and of the image acquisition

conditions, including extreme depth, scattering and light attenuation phenomena

and difficulties in vehicle navigation and positioning.



This thesis proposes strategies and solutions to tackle the problem of building

photo-mosaics of very large underwater optical surveys, i.e. Giga-mosaics, present-

ing contributions in the image preprocessing, enhancing and blending steps, and

resulting in an improved visual quality of the final photo-mosaic.

First, a comprehensive review of the current and most prominent state-of-the-art

mosaicing and blending techniques is provided in Chapter 3, in order to evaluate

their application in the underwater imaging context. A classification criterion for

the existing methods is presented, based on their main features and performance.

Second, a full approach for large scale underwater image mosaicing and blending

is proposed. In the image preprocessing step, a depth dependent illumination

compensation function is used to solve the non-uniform illumination appearance

due to light attenuation. Additionally, if depth information is not available, a depth

estimation based on the size of the image projection (once registered) is exploited in

different steps of the pipeline. Concerning image enhancement, the image contrast

variability due to different acquisition altitudes is compensated using an adaptive

contrast enhancement based on an image quality reference selected through a Total

Variation (TV) criterion. This criterion is also applied to give a higher priority to

the information coming from higher quality images, making the contribution from

sharper and more informative images higher than that of contrastless or poorly

detailed ones. In the blending step, a graph-cut strategy operating in the image

gradient domain over the overlapping regions is proposed. This approach allows

finding an adequate seam even if the overlapping images have been acquired with

different exposures. A smooth transition around the optimally selected seams is

performed in a narrow strip, ensuring the maximum possible sharpness and avoiding

double contouring problems. Finally, an out-of-core blending strategy for very

large scale photo-mosaics is presented and tested on real data, generating images



surpassing the giga-pixel order, and having, as its only limitation, the maximum

size of the tile that can be processed in the computer’s memory.

The performance of the proposed approach and the benefits of using blended giga-

mosaics for interpretation tasks are evaluated in Chapter 5. The results obtained

by the proposed method are discussed and compared with other state-of-the-art

approaches, using a series of challenging large-scale underwater datasets.





Resum

Els estudis submarins tenen nombroses aplicacions cient́ıfiques en els camps de

l’arqueologia, la geologia i la biologia, entre les quals s’inclouen la prospecció d’antics

naufragis, els estudis ecològics, l’avaluació de danys ambientals i la detecció de canvis

al llarg del temps. Quan es tracta de realitzar immersions a profunditats extremes o

durant llargs peŕıodes de temps, els estudis subaquàtics es duen a terme actualment

mitjanÃ§ant vehicles submarins. Sovint aquests vehicles estan equipats amb sensors

avançats, entre els que s’inclouen càmeres fotogràfiques o de v́ıdeo. Les imatges

òptiques adquirides a curta distància proporcionen informació visual d’alta resolució

del fons submaŕı. Els cient́ıfics poden treure profit d’aquestes imatges donat que

ofereixen, des del punt de vista cognitiu, la representació més precisa i acurada de

les àrees estudiades, permetent una anàlisi detallada de les estructures d’interès.

El medi subaquàtic afegeix reptes addicionals a la tasca d’adquisició d’imatges, i

fenòmens com el de l’atenuació de la llum provoquen que l’adquisició s’hagi de

realitzar a una distància molt propera al fons del mar. Per tant, la generació

de mapes òptics d’àrees extenses del fons maŕı només pot ser assolida per mitjà

de la construcció de mosaics d’imatges, a partir d’un conjunt de fotografies que

cobreixen una àrea redüıda, és a dir, de foto-mosaics. Malauradament, les unions

entre els ĺımits de les imatges són habitualment perceptibles, degut a imprecisions

en els registres fotomètric i geomètric. La fusió d’imatges és l’etapa del procés

d’unió a la qual aquests artefactes són minimitzats. Els colls d’ampolla en el

processament i la manca d’eines espećıfiques pel tractament del medi han restringint

els foto-mosaics submarins a àrees redüıdes, malgrat que els estudis actuals poden

cobrir centenars de milers de m2. Els foto-mosaics submarins de grans dimensions

tenen actualment una demanda creixent per a la caracterització del fons del mar



amb finalitats cient́ıfiques. La producció d’aquests mosaics és complexa donada

la naturalesa del medi subaquàtic i les condicions d’adquisició de les imatges, que

inclouen profunditats extremes, els fenòmens de dispersió i atenuació de la llum, i

dificultats en la navegació i el posicionament del vehicle.

Aquesta tesi proposa estratègies i solucions per fer front al problema de la

generació de foto-mosaics submarins de grans dimensions, que anomenarem Giga-

mosaics, i presenta contribucions en les etapes de preprocessament, realçat i fusió

de les imatges, donant lloc a una qualitat visual millorada del foto-mosaic final.

En el Caṕıtol 3 es proporciona una revisió exhaustiva de les tècniques actuals

i més destacades de l’estat de l’art per portar a terme la fusió d’imatges, avaluant

la seva aplicació en el context submaŕı. Aix́ı mateix, es presenta un criteri de

classificació dels mètodes existents, basat en les seves principals caracteŕıstiques

i en el seu rendiment. A continuació, es presenta una proposta completa per a

la generació de mosaics i la fusió d’imatges submarines a gran escala. A l’etapa

de preprocessament de les imatges, una funció de compensació de la il·luminació

dependent de la profunditat és utilitzada per a solucionar l’aparença no uniforme de

la il·luminació a les imatges deguda a l’atenuació de la llum. Addicionalment, si no

es disposa d’informació precisa de la distància entre la càmera i el fons del mar, una

estimació de la profunditat basada en la mida de les imatges projectades (un cop

registrades) és utilitzada en diferents etapes del processament. Pel que fa a la millora

de les imatges, la variabilitat en el contrast de les mateixes, deguda a les diferents

profunditats d’adquisició, és compensada mitjançant un realçat adaptatiu basat en

la utilització d’una imatge de referència de qualitat, seleccionada segons el criteri que

anomenarem de variació total. Aquest criteri també és aplicat per tal de donar una

prioritat més elevada a la informació provinent d’imatges amb més alta qualitat, fent

més gran la contribució de les imatges més ńıtides i informatives que no pas la de les



que presenten un contrast baix i escàs nivell de detall. A l’etapa de fusió, es proposa

una estratègia de tall de graf que opera en el domini del gradient de les imatges

sobre la regió de superposició. Aquest enfocament permet trobar una ĺınia d’unió

adequada fins i tot en el cas que les imatges hagin estat adquirides amb diferents

temps d’exposició. La nostra proposta realitza una transició suau al voltant d’una

ĺınia d’unió seleccionada de forma òptima, per tal d’assegurar la més alta nitidesa al

mateix temps que s’eviten problemes de dobles contorns. Finalment, es presenta una

estratègia de fusió per a foto-mosaics de molt grans dimensions. Aquesta estratègia

ha estat testejada sobre dades reals, donant lloc a imatges que sobrepassen l’ordre

del giga-pixel. La nostra proposta presenta com a única limitació, la mida màxima

de la sub-imatge que pot ser processada a la memòria de l’ordinador.

El rendiment de la solució proposada i els beneficis de l’ús de giga-mosaics per a

les tasques d’interpretació són avaluats en el Caṕıtol 5. Els resultats obtinguts pel

mètode proposat són comentats i comparats amb altres enfocaments de l’estat de

l’art, mitjançant un seguit de seqüències d’imatges subaquàtiques de grans dimen-

sions.





Resumen

Los estudios submarinos tienen numerosas aplicaciones cient́ıficas en los campos

de la arqueoloǵıa, la geoloǵıa y la bioloǵıa, entre las cuales se incluyen la prospección

de antiguos naufragios, los estudios ecológicos, la evaluación de daños ambientales

y la detección de cambios a lo largo del tiempo. Cuando se trata de realizar

inmersiones a profundidades extremas o durante largos periodos de tiempo, los

estudios subacuáticos se llevan a cabo actualmente mediante veh́ıculos submarinos.

Frecuentemente estos veh́ıculos están equipados con sensores avanzados, entre los

cuales se incluyen cámaras fotográficas o de v́ıdeo. Las imágenes ópticas adquiridas

a corta distancia proporcionan información visutal de alta resolución del fondo

submarino. Los cient́ıficos pueden sacar provecho de estas imágenes dado que

ofrecen, desde el punto de vista cognitivo, la representación más precisa y fidedigna

de las áreas estudiadas, permitiendo un análisis detallado de las estructuras de

interés. El medio subacuático añade retos adicionales a la tarea de adquisición

de imágenes, y fenómenos como el de la atenuación de la luz provocan que la

adquisición se tenga que realizar a una distancia muy cercana al fondo del mar. Por

lo tanto, la generación de mapas ópticos de áreas extensas del fondo marino sólo

puede ser conseguida mediante la construcción de mosaicos de imágenes, a partir de

un conjunto de fotograf́ıas que cubren un área reducida, es decir, de foto-mosaicos.

Desgraciadamente, las uniones entre los ĺımites de las imágenes son habitualmente

perceptibles, debido a imprecisiones en los registros fotométrico y geométrico. La

fusión de imágenes es la etapa del proceso de unión en la cual estos artefactos son

minimizados. Los cuellos de botella en el procesamiento y la falta de herramientas

espećıficas para el tratamiento del medio han restringido los foto-mosaicos a áreas

reducidas, a pesar de que los estudios actuales pueden cubrir centenares de miles



de m2. Los foto-mosaicos submarinos de grandes dimensiones tienen actualmente

una demanda creciente para la caracterización del fondo del mar con finalidades

cient́ıficas. La producción de estos mosaicos es compleja dada la naturaleza del

medio subacuático y de las condiciones de adquisición de las imágenes, que incluyen

profundidades extremas, los fenómenos de dispersión y atenuación de la luz, y

dificultades en la navegación y el posicionamiento del veh́ıculo.

Esta tesis propone estrategias y soluciones para hacer frente al problema de la

generación de foto-mosaicos submarinos de grandes dimensiones, que llamaremos

Giga-mosaicos, y presenta contribuciones en las etapas de preprocesamiento, re-

alzado y fusión de las imágenes, dando lugar a una calidad visual mejorada del

foto-mosaic final.

En el Caṕıtulo 3 se proporciona una revisión exhaustiva de las técnicas actuales

más destacadas del estado del arte para llevar a cabo la fusión de imágenes, eva-

luando su aplicación en el contexto submarino. Aśı mismo, se presenta un criterio

de clasificación de los métodos existentes, basado en sus principales caracteŕısticas

y en su rendimiento. A continuación, se presenta una propuesta completa para la

generación de mosaicos y la fusión de imágenes submarinas a gran escala. En la

etatapa de preprocesamiento de las imágenes, una función de compensación de la

iluminación dependiente de la profundidad es utilizada para solucionar la apariencia

no uniforme de la iluminación en las imágenes debida a la atenuación de la luz.

Adicionalmente, si no se dispone de información precisa de la distancia entre la

cámara y el fondo del mar, una estimación de la profundidad basada en la medida

de las imágenes proyectadas (una vez registradas) es utilizada en diferentes etapas

del procesamiento. En cuanto a la mejora de las imágenes, la variabilidad en el

contraste de las mismas, debida a las diferentes profundidades de adquisición, es

compensda mediante un realzado adaptativo basado en la utilización de una imagen



de referencia de calidad, seleccionada según el criterio que llamaremos de variación

total. Este criterio también es aplicado para dar una prioridad más elevada a la

información proviniente de imágenes de más alta calidad, haciendo más grande la

contribución de las imágenes ńıtidas e informativas que no la de las que presentan

un contraste bajo y escaso nivel de detalle. En la etapa de fusión, se propone una

estrategia de corte de grafo que opera en el dominio del gradiente de las imágenes

sobre la región de superposición. Este enfoque permite encontrar una ĺınea de

unión adecuada incluso en el caso que las imágenes que hayan sido adquiridas con

diferentes tiempos de exposición. Nuestra propuesta realiza una transición suave

alrededor de una ĺınea de unión seleccionada de forma óptima, con tal de asegurar

la más alta nitidez al mismo tiempo que se evitan problemas de dobles contornos.

Finalmente, se presenta una estrategia de fusión para foto-mosaicos de muy grandes

dimensiones. Esta estrategia ha sido testeada sobre datos reales, dando lugar a

imágenes que sobrepasan el orden del giga-pixel. Nuestra propuesta presenta como

única limitación, la medida máxima de la sub-imagen que puede ser procesada en

la memoria del ordenador.

El rendimiento de la solución propuesta y los beneficions del uso de giga-mosaicos

para las tareas de interpretación son evaluados en el Caṕıtulo 5. Los resultados

obtenidos por el método propuesto son comentados y comparados con otros enfoques

del estado del arte, mediante una serie de secuencias de imágenes subacuáticas de

grandes dimensiones.
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Chapter 1

Introduction

1.1 Background

Seafloor exploration is an ancient activity that started thousands of years ago

with human shallow diving [122]. Nowadays, underwater surveys have numerous

scientific applications in the fields of archeology [38], geology [145, 37] and biology

[102], involving tasks such as ancient shipwreck prospection [24], ecological stud-

ies [63, 77], environmental damage assessment [43, 76] or detection of temporal

changes [22], just to name a few.

Due to human limitations when diving at extreme depths or during long periods

of time, underwater surveys are nowadays carried out by Underwater Vehicles (UVs).

UVs can be either Autonomous Underwater Vehicles (AUVs) or Remotely Operated

Vehicles (ROVs), which are manually controlled by a pilot. These vehicles are often

equipped with advanced navigation sensors. Typical sensor suites may include an

Ultra Short Base Line (USBL), a Long Base Line (LBL), a Doppler Velocity Log

(DVL), accelerometers, inclinometers, acoustic imaging sensors and optical cameras,

among others, depending on the type, size and cost of the vehicle.

1
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Among the sensors listed above, optical imaging provides short-range high-

resolution visual information of the ocean floor. In the scientific scope, archeologists,

geologists and biologists can benefit from these images as they provide the most

precise and accurate representation of the areas surveyed, from the cognitive point

of view, enabling a detailed analysis of the structures of interest.

Figure 1.1: Illustration of an underwater vehicle acquiring images at low altitude due
to the constraints imposed by the medium. Poor lighting conditions require the use of
artificial lighting, which in addition to light attenuation leads to non-uniform lighting and
induced shadows in the acquired images. Scattering and moving objects, such as fish or
algae are some of the other specific challenges that appear due to the particularities of the
acquisition medium.

Nevertheless, the underwater medium adds particular challenges to the image

acquisition task (see Figure 1.1). When an underwater vehicle acquires images

in deep waters, light attenuation has a huge impact on the visibility range and

color reproduction, especially when the vehicle navigates at changing altitude (i.e.,

distance from the camera to the seafloor). Due to the light attenuation phenomenon,

image acquisition needs to be performed close to the seabed, considerably limiting
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the maximum area covered by a single photograph. Hence, optically mapping large

seafloor areas can only be achieved by building image mosaics from a set of reduced-

area pictures.

The history of large-scale, deep-sea optical mapping starts with the French-

American Mid-Ocean Undersea Study (FAMOUS) project [56], in 1974. In this

survey, the Alvin submersible explored the great rift valley of the Mid-Atlantic

Ridge, southwest of the Azores. The cruise was planned based on large sequences

of images supplied by the US Navy, which were manually aligned on a gymnasium

floor, i.e. a photo-mosaic.

Over the last decade, the relevance of photo-mosaicing has grown significantly.

As a clear example, numerous off-the-shelf still cameras now include built-in al-

gorithms to fuse several pictures from a panoramic sequence into a single wide-

angle view. Furthermore, gigapixel photo-mosaics [70] of the entire Earth are easily

available through the Internet, using a limited bandwidth connection. In most

cases, such large mosaics are created from terrestrial, aerial or space related imagery.

The common photo-mosaicing problems for this kind of image, comprehending the

compensation of different exposures and non-uniform illumination, have been treated

in the literature [135, 64, 78, 144, 19, 42, 111].

Unfortunately, performing underwater image surveys is a challenging task with a

much higher level of complexity than conventional terrestrial or aerial image photo-

mosaic generation. As stated in [40], and due to constrained image acquisition

conditions, both the navigation data and the images acquired have to be used to

recover an accurate estimate of the camera poses during the survey. This information

fusion is often performed by means of Global Alignment (GA) techniques [40, 31, 33,

32]. This is a mandatory step before generating precise visual maps of the seafloor.

In most cases, the short distance between the camera and the seafloor produces
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Figure 1.2: Underwater mosaic of a dam and zoomed detail before (top) and after
(bottom) the application of an image blending technique. In the blended mosaic, the
elements on the dam wall (mainly algae) are clearly visible, whereas in the non-blended
mosaic they are hardly distinguishable.

parallax effects (see Figure 1.3), which considerably affect 2D mosaicing approaches

due to the violation of the planarity assumption, i.e. the assumption of a flat scene,

which allows the computation of 2D transformations between images. Furthermore,

suspended particles causing the scattering phenomenon [117] are commonly present.

Moving elements, such as fish and algae, are examples of other common issues in

underwater image processing.
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Figure 1.3: Sequence corresponding to a straight trajectory of an AUV depicting the
parallax problems. It shows the side and camera views of the robot’s trajectory. One side
of the chest disappears from the frame while the other arises due to the parallax effect.

Using the navigation data collected by the UV allows us to estimate the camera

poses during the acquisition. Consequently, from these camera poses the vehicle

trajectory can also be recovered. Once an initial guess of this trajectory is obtained,

it can be refined through global alignment techniques by using the information from

the acquired images. As a result of this processing pipeline, the acquired images can

be projected and rendered into a single and common reference frame. Nevertheless,

it is necessary to perform one last step to give the heterogeneously appearing image

dataset a continuous and uniform appearance in the form of a single large mosaic.

This is achieved by means of image blending techniques (see Figure 1.2).

Apart from the visual appearance, blending techniques are also important for

proper interpretation and scientific exploitation of seafloor imagery (e.g. [4, 90]).

The structures and objects of interest may cover a wide range of scales, from a few
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centimeters, i.e. macrofauna or rocks which would appear in individual images, to

several tens or hundreds of meters, i.e. topographic scarps or fractures spanning

thousands of images. To correctly analyze such varying features, and to understand

the spatial relationships that may exist (e.g., faunal assemblages associated with

geological features), it is preferable to have a single, wide area photo-mosaic, in

which imaging artifacts are minimized, and identified features of interest may be

accurately represented regardless of their size and imaging conditions.

1.2 Challenges of underwater optical imaging

According to John F. Brown [10], the first underwater picture (Figure 1.4)

was taken by William Thompson in February 1856 in Dorset (England). The

photographer lowered a housed 5” × 4” plate camera to the seabed in Weymouth

Bay and operated the shutter from an anchored boat. The exposure time used to

acquire the picture was 10 minutes during which time the camera flooded, however

the film was salvaged. Scuba diving, which can be intuitively considered as a more

conventional way to acquire underwater images, did not exist as a common activity

until several years later.

Acquiring optical images underwater is significantly more difficult than perform-

ing conventional land photography. Submerging a camera underwater using an ade-

quate housing and maneuvering it appropriately is a complex task by itself. However,

the most important challenges are imposed by the underwater medium properties

affected by several phenomena which condition the acquisition procedure. The two

main underwater phenomena strongly affecting image quality and consequently the

acquisition task are light attenuation and scattering [42].

Apart from these two main phenomena, the camera parametrization is another
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Figure 1.4: The first underwater image in history taken by William Thompson in
February 1856 in Dorset (England) with an almost totally submerged photographic
camera. [source: Christian Petron, History of Underwater Image, Digital Edition, 2011]

key point affecting image quality. When acquiring images underwater using a still

camera, the automatic adjustment mechanism may try to slow the shutter speed

and increase the aperture in order to better deal with the low light conditions.

This setup is very sensitive to camera movement and thus, unsuitable for a camera

mounted on an AUV or ROV. When the acquisition is performed in shallow waters,

the ambient light can be sufficient to acquire quality images, but when performed

in deep waters high power artificial light sources are required. Using artificial light,

typically consisting of one or more directional sources, leads to another problem

affecting images, especially when registering them to build a mosaic, which is non-

uniform illumination of the scene. Finally, when using artificial lighting, the shadows

induced on the scene create an apparent motion which is opposite to the real motion

of the camera.

Light attenuation

Sunlight wavelengths in the visible spectrum for a typical human eye range from

390nm (violet tones) to 770nm (reddish tones) [123]. Light attenuation is due to the
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Figure 1.5: (Top-left) Example of backward scattering due to the reflection of rays from
the light source on particles in suspension, hindering the identification of the seafloor
texture. (Top-right) Example of forward scattering caused by the local inter-reflection
of light on the suspended particles, hiding the terrain behind them. (Bottom-left)
Image depicting the effects of light absorption in the underwater medium, where longer
wavelengths are first absorbed, causing the bluish appearance of the scene structures at a
lower depth. (Bottom-right) Effects produced by light attenuation of the water resulting in
an evident loss of luminance in the regions farthest from the focus of the artificial lighting.
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light absorption by water, which increases exponentially with depth and affects all

wavelengths to varying degrees, and depends on the different water bodies [140].

Therefore, sun light cannot penetrate to any great depth and artificial lighting

systems are required when acquiring images several meters below the surface (see

Figure 1.6). When using artificial light sources, such as continuous lights or strobes,

the acquired images show brighter and richer detail information in the region on

which these lights are focused, while rendering a darker and contrastless appearance

of the surroundings (Figure 1.5-bottom-right). This effect is accentuated due to the

vignetting caused by the camera optics. Light attenuation also leads to color loss

(Figure 1.5-bottom-left). The longer wavelengths corresponding to the reddish tones

are the first to be attenuated, while the shortest ones corresponding to the bluish

tones are the last. This loss is the reason for the greenish or bluish appearance of

objects in underwater scenes as the distance between object and camera increases.

Some organic particles, such as phytoplankton frequently found in coastal waters,
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Figure 1.6: Light attenuation in the visible spectrum range (from 390nm to 770nm)
prevents sun light wavelengths from reaching long distances below the water surface. The
longer wavelengths corresponding to the reddish tones are the first to be attenuated, while
the shortest ones corresponding to the bluish tones are the last.
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absorb light predominantly in the shortest wavelengths (corresponding to the blue

and violet tones), allowing only the greenish tones to persist. In order to deal with

light attenuation in seafloor mapping, high power and appropriately distributed

artificial light sources should be used, and image acquisition should be performed

as close to the seabed as possible.

Scattering

The presence of organic and inorganic particles suspended in the volume of

water intersected by the field of view of the camera and the illumination source (see

“scattering volume” in Figure 1.7) is the cause of the light scattering phenomenon.

This is illustrated in Figure 1.5-top. It can be strongly noticeable when caused by a

suspended sediment load (also known as turbidity). The degree of scattering depends

on the distance, the wavelength, and the characteristics of the particles (i.e. shape,

density and refractive index). There are two types of scattering. On the one hand,

backward scattering is an additive noise in the form of “marine snow” patterns which

appear due to the reflection of the light from a given natural or artificial source on

the suspended particles in the direction of the camera. On the other hand, forward

scattering appears due to the inter-reflections of local light among the particles,

Light
Source

Camera
(FOV)

Scattering
Volume

Figure 1.7: The scattering effect appears in the volume of water intersected by the field
of view of the camera and the illumination source.
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and becomes the most significant source of image degradation leading to a non-

uniform loss of contrast, definition and color fidelity. The scattering phenomenon

can significantly affect the acquisition of images at a short distance from seabed.

The vehicle carrying the camera may also cause the displacement of particles or soil

lying on the ground, increasing the probability of backward scattering.

1.3 Objectives

The numerous scientific applications of underwater optical imaging require pro-

viding experts with the most informative and visually pleasant representations possi-

ble of the seafloor. Underwater surveys carried out by both AUVs or ROVs generate

a large volume of navigation and optical imaging data. This information needs to

be post-processed and managed in such a way that makes its study by the scientists

(e.g. [4]) as easy as possible or even just feasible. In that sense, photo-mosaics are

an adequate way to manage, unify and consistently fuse all this optical imaging data

and unite it with the navigation data to generate georeferenced maps. Providing the

maps generated with a convincing and reliable appearance has not only aesthetic but

cognitive purposes. The interpretation of a given scene becomes more intuitive and

effective when its representation emphasizes its features and has a global smooth

and continuous overall appearance.

Building a photo-mosaic from a large set of underwater images is a challenging

task. The quality of every single picture might change considerably along the

sequence due to the underwater lighting phenomena described above. Furthermore,

the computational requirements to process this large amount of data from a given

imaging survey limit the maximum size of the map generated.

Consequently, the goal of this thesis is to propose a complete blending approach
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using state-of-the-art methods capable of generating and blending large scale optical

maps. The blending technique developed is focused on two main ideas. Firstly,

the richness of detail in the original images should not only be preserved but also

enhanced when possible. Secondly, the algorithms should be able to deal with

datasets of thousands of images covering large areas of the seafloor (to the order of

several hundreds of thousands of m2). Consequently, the processing strategy needs

to deal with underwater imaging while being well-suited for large input sequences.

1.4 Outline of the approach

A single, large image, i.e. a photo-mosaic, is easier to interpret than a long

sequence of consecutive pictures or even a video record, inasmuch as it offers a

spatially and photometrically consistent representation of the seabed. In order to

ensure this image consistency, blending techniques are required. These techniques,

which produce a seamless mosaic, enable the interpretation of the benthos by a

scientist (biologist, geologist, archeologist, etc.).

There are three main concerns guiding image blending algorithms. Firstly,

the effects of different illumination or exposure times between images should be

minimized. Secondly, an adequate seam should be found in order to reduce the

visibility of micro-registration misalignments and moving objects. Lastly, a smooth

transition along the selected seam must be applied to reduce the visibility of seams

between images.

The topology of a mosaic is initially estimated based on the navigation data and

a feature-based pair-wise image registration. After this initial estimation, a global

alignment strategy [40, 31] is required to reduce the cumulative error of a simple

sequential pair-wise registration. The strength of the global alignment arises from
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closing-loops, because they allow us to significantly improve the camera’s trajectory

estimate when re-visiting an already mapped area. In the absence of loop-closings,

and considering input sequences of thousands of images, the drift accumulated by

the pair-wise transformations leads to significantly inconsistent (missaligned) photo-

mosaics.

Aside from exposure variations, which are a common issue in terrestrial images,

the remaining problems are not directly addressed by conventional panorama gen-

eration software. To better deal with the inherent underwater imaging problems

(non-uniform illumination, light attenuation, scattering, exposure variations, etc.),

we perform image pre-processing, which, in our experience, is a key step, strongly

impacting the quality of the final photo-mosaic rendering. A depth adaptive inhomo-

geneous lighting compensation algorithm is proposed to deal with the non-uniform

distribution of the artificial light sources in the scene whose effects are emphasized

due to the light attenuation phenomenon. Concerning image detail enhancement, a

gradient based image enhancement depending on the distance from the camera to the

seabed, has also been proposed. Both scattering and light absorption phenomena

may lead to highly variable appearances for images depicting the same area but

acquired at significantly different depths. The aim of this enhancement is to bring

the closest appearance to the involved images in order to achieve a consistent fusion.

Once the images have been preprocessed, thus making them more suitable for an

adequate blending, an image selection algorithm based on image quality is applied,

with two main aims. Firstly, to reduce the number of images to be processed with

the next step algorithm and consequently reduce the computational cost. Secondly,

to avoid lower quality images negatively affecting the appearance of the regions also

covered by higher quality ones.

Next, a hybrid luminance-gradient graph-cut based optimal seam finding algo-
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rithm is proposed to locate the seams which minimize the photometric and mor-

phological differences in the image boundaries. The proposed algorithm is able to

robustly deal with differently exposed images, thanks to the gradient term, especially

when image preprocessing is not enough to palliate these differences.

Then, we apply a gradient blending strategy in a narrow region around the

optimally computed seams in order to ensure a smooth transition between the image

patches involved. Additionally, the gradient nature of the blending also allows us to

compensate eventual exposure differences between images.

Finally, a gigamosaic generation strategy is presented, based on the decomposi-

tion of the large-dimension mosaics into tiles of reasonable size that can be processed

in conventional computers without large amounts of resources.

1.5 Contributions

The main contributions of this thesis can be summarized as follows:

• A novel full mosaicing and blending pipeline optimized for underwater imag-

ing is proposed. The effects of underwater phenomena such as non-uniform

illumination and scattering are compensated for in an adaptive way, with the

main aim of not only preserving, but also emphasizing, image detail richness.

• An adaptive image enhancement algorithm has been developed to make fine

image details sharper, also providing a continuous and consistent appearance

to the whole mosaic image. The enhancement of a given image is determined

by the detail richness of the adjacent images, but avoids overemphasizing the

result.

• The optimal seam finding algorithm used to determine the most adequate
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path for the cut between images is based on both luminance and gradient

information. This domain combination allows us to ensure not only the lowest

photometric differences along the path but also to avoid cutting objects, even

in the case of significant exposure differences between images.

• In order to address the problem of processing large datasets, a strategy allowing

us to independently process different regions of the final mosaic is proposed.

The area corresponding to a large dimension mosaic is divided into a regular

grid of tiles, which are then individually processed, temporarily stored and

finally fused to obtain the final single image. The appearance consistency

between individual tiles is ensured thanks to an exposure equalization mech-

anism.

• The full processing pipeline has been devised to use parallel processing in

every step where possible in order to improve the overall performance of the

approach.

1.6 Thesis structure

The thesis is divided into the following chapters:

Chapter 2 presents an introduction to a feature-based 2D mosaicing framework.

The main concepts of planar motion estimation and global alignment are

introduced.

Chapter 3 reviews the state-of-the-art of image blending techniques, presenting

the two main principles guiding the algorithms. A classification of techniques

is also proposed, based on their main features. The benefits and drawbacks of
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the different methods are discussed, as well as their suitability for underwater

imaging purposes.

Chapter 4 details the proposed processing pipeline optimized for high resolution

underwater image blending. All the steps involved, including original image

preprocessing, image registration and global alignment, selection of image con-

tribution, optimal seam finding strategy and gradient domain image blending,

are described. Finally, a giga-mosaic blending strategy is presented.

Chapter 5 shows some experimental high-resolution results, based on large datasets,

which are also discussed and compared to results obtained by other state-of-

the-art approaches.

Chapter 6 presents the conclusions of this work, summarizes the contributions and

identifies some future research directions.



Chapter 2

Underwater 2D Mosaicing

Building a photo-mosaic is a task involving two main steps. Firstly, the images

should be geometrically registered and warped accordingly into a single common

reference frame. Secondly, the rendering of the mosaic should be performed through

blending techniques, which allow us to deal with photometric differences and re-

duce the visibility of registration inaccuracies between the images involved (see

Figure 2.1).

In the context of large-scale underwater photo-mosaicing, deep-ocean surveys

are typically composed of hundreds to hundreds of thousands of images. These

images are affected by several underwater phenomena, such as the aforementioned

scattering and light attenuation, and the sequences may present small or even

nonexistent overlaps between consecutive frames. For these reasons, navigation data

coming from acoustic positioning sensors (USBL, LBL), velocity sensors (DVL),

inclinometers or gyroscopes might be used to estimate the trajectory of the vehicle.

This trajectory can be later refined by computing pair-wise alignment and applying

a global alignment method [130, 115, 15, 45, 40, 31, 32].

17
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Input Sequence Navigation Data

Mosaic Rendering

Topology Estimation

Global Alignment New Overlap ?

No

Yes

Image Registration

Figure 2.1: Underwater mosaicing pipeline scheme. The Topology Estimation, Image
Registration, and Global Alignment steps can be performed iteratively until no new
overlapping images are detected.

2.1 Topology estimation

When lacking sensor positioning data, such as USBL, LBL or DVL, using time-

consecutive image registration, assumed to have an overlapping area, may become

the only strategy to estimate the trajectory of the robot and, thus, the motion

of the camera. This dead-reckoning estimate suffers from a rapid accumulation of

registration errors, leading to drifts from the actual trajectory, but it does provide

useful information for non-time-consecutive overlapping images. Matching non-

time-consecutive images is a key step in refining the trajectory followed by the

robot using global alignment methods. With the refined trajectory, new-non time-

consecutive overlapping images can be predicted and attempted to match. This

iterative matching and optimization process continues until no new overlapping im-

ages are detected. The procedure described is known as topology estimation [33, 35]

(see Figure 2.2). If navigation data is available, the topology estimation remains as

an indispensable step to obtain globally consistent mosaics and accurate trajectory

estimates, specially when dealing with sequences of a large number of images.
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Figure 2.2: Topology estimation scheme. (Top-left) Final trajectory obtained by the
scheme proposed in [33]. The first image frame is chosen as a global frame and all images
are then translated in order to have positive values in the axes. The x and y axes are
in pixels and the scale is approximately 150 pixels per metre. The plot is expressed in
pixels instead of metres since the uncertainty of the sensor used to determine the scale
(an acoustic altimeter) is not known. The red lines join the time-consecutive images while
the black ones connect non time-consecutive overlapping image pairs. The total number
of overlapping pairs is 5, 412. (Top-right) Uncertainty in the final trajectory. Uncertainty
of the image centres is computed from the covariance matrix of the trajectory [40]. The
uncertainty ellipses are drawn with a 95% confidence level. (Bottom) Mosaic built from
the estimated trajectory.
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Deep-ocean surveys composed of thousands of images make any kind of all-

to-all image pair matching strategy to perform a topology estimation unfeasible.

Therefore, more sophisticated approaches are needed to perform this task. Elibol

et al. [33] proposed an Extended Kalman Filter (EKF) framework, aimed at min-

imizing the total number of matching attempts and simultaneously obtaining the

best possible trajectory. Potential image pairs are predicted by taking into account

the uncertainty of the trajectory. Additionally, a different solution to the topology

estimation problem in a Bundle Adjustment (BA) framework was proposed in [36].

To obtain a tentative topology, a fast image similarity criterion combined with a

Minimum Spanning Tree (MST) solution are used. The topology is improved by

attempting image-matching with the pairs of images for which there is the most

overlapping evidence.

2.2 Image registration

Aligning in 2D two or more images taken from different viewpoints consists of

finding an appropriate planar transformation which allows overlaying them into a

single and common reference frame (see Figure 2.3). This step, essential in the

image mosaicing pipeline, is known as the image registration problem [11] and has

been greatly discussed in the literature [127, 20].

The geometrical registration can be performed by means of direct methods or

feature-based methods. Sections 2.2.1 and 2.2.2 present these two main groups of

image registration methods.
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Figure 2.3: Geometric registration of two different views of the same underwater scene
by means of a planar transformation.

2.2.1 Direct methods

This first group of algorithms, also known as feature-less methods, compute the

transformation between images by maximizing the photometric consistency over the

whole overlapping image regions, and are found to be useful for large overlapping

regions as well as small translations and rotations [57, 127, 119]. These methods can

be classified in turn into frequency domain based methods and optical flow methods.

Frequency domain

Methods based on the frequency domain originally used phase-correlation to

estimate the shifts (translations) between an image pair. Later, extensions to

account for rotation and scale transformations [106] and affine transformations [139]

using log-polar coordinates were also proposed. In practice, the number of authors

proposing the use of frequency domain methods for underwater image registration

is small [112, 113]. This group of methods are computationally expensive, as they

require Fast Fourier Transform (FFT) to be computed over all the images involved.
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Optical flow

Optical flow methods are based on the estimation of the disparity (i.e., apparent

motion) of pixels between image pairs. Generally, the optical flow estimates the

flow field using the Brightness Constancy Model (BCM), in which it is assumed that

the photometric properties of image pixels (luminance and color) remain constant.

There are two main groups of algorithms estimating the optical flow. On the one

hand, global methods such as Horn-Schunck [57] yield dense flow fields, while, on

the other hand, local methods such as Lucas-Kanade [81, 82] produce non-dense

regularized grid flow fields but are less robust to noise. Over the last years, some

authors have proposed more robust alternatives to BCM that assume linear changes

in illumination, using the Generalized Dynamic Image Model (GDIM) [96, 92] and

the color information [84, 93]. Due to the formulation of the problem, optical flow

methods are not suited for disparities that exceed 1 pixel. To overcome this issue,

multi-resolution approaches such as [95] have been proposed. In this case, the images

are gradually decimated and the optical flow is computed from coarse levels towards

fine levels. Unfortunately, the method also has some drawbacks. Firstly, it is slow

because the optical flow has to be computed at each level. Secondly, the maximum

pixel disparity has to be known a priori in order to set the number of decimation

levels. Furthermore, multi-resolution approaches are very sensitive to noise, since

errors in the estimation of optical flow at coarse levels propagate to the fine levels.

2.2.2 Feature-based methods

The second group of methods rely on the computation of a transformation

between images using a sparse set of points [54, 99, 75, 79, 5] and correspondences.

Contrarily to direct methods, feature based methods do not require a high frame-

rate to ensure a high percentage of overlap between consecutive images. For these
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reasons, feature-based methods are the most widely used in the literature to perform

image registration, and are also used in the work presented, as described in the

following sections.

There are two main strategies concerning feature-based pair-wise image align-

ment (see Figure 2.4). The first strategy consists of locating the interest points in one

image of the pair using some feature detector, such as Harris [54], Laplacian [99]

or Hessian [75], and identifying these in the other. The correspondence problem

is solved using cross-correlation or a Sum of Squared Differences (SSD) measure,

which is computed using the information of the pixels surrounding the feature, and

compared to the value of this measure for a given window of pixels in the other image.

The procedure has the advantage of obtaining highly accurate correspondences when

changes in rotation and scale are moderate. As a drawback, this strategy requires

some prior knowledge to determine the estimated translation between images and

the size of the search window, in addition to not being suitable for large changes in

rotation and scale. For these reasons, this approach might be used as a refinement

step of certain feature-based image alignment strategies [40], after an appropriate

warping of the image in which the features found should be identified.

The second strategy is based on the detection of features in both images using in-

variant feature descriptors, such as SIFT [79], its faster variant SURF [5] (which uses

an approximation of the Laplacian and Hessian detectors respectively) or others, and

performing the matching, comparing their descriptor vectors. The SIFT descriptor

is based on Histograms of Gradient (HOGs) computed in the area surrounding the

detected interest points, while SURF describes a distribution of Haar wavelet [52]

responses within the neighborhood of the interest point. These feature detectors

and descriptors are known to show invariance to a wider range of geometrical and

photometrical [116] transformations of the images than the detectors mentioned
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Outlier Rejection

I1

I 2

Motion Estimation

Feature Matching

I1 I2

Feature Extraction Image WarpingorFeature Extraction

Figure 2.4: Main steps involved in the pair-wise registration process. The Feature
Extraction step can be performed in both images of the pair, or only in one. In this last
case, the features are identified in the second image after an optional Image Warping based
on a transformation estimation.

above. Therefore, these detector and descriptor properties allow us to obtain very

robust results, even in the case of strong rotations or scale changes between frames

and significant illumination inhomogeneities.

2.3 Motion estimation

2.3.1 Planar homography

The planar transformation between two different views of the same flat scene can

be described by means of a planar homography matrix [55, 83]. This homography is
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able to describe a motion with up to eight Degrees of Freedom (DOF).

Let us consider a point p, belonging to a 2D plane Π in 3D space. Then, the

projections of p into two different images I1 and I2 are given in x1,x2 ∈ R3 in

homogeneous coordinates. Also let the coordinate transformation between the two

frames be

X2 = RX1 + T (2.1)

where X1,X2 ∈ R3 are the 3D coordinates of p relative to camera frames 1 and 2,

respectively, taken at times t1 and t2. The two projections x1,x2 of p in images I1

and I2 satisfy the epipolar constraint [55]

xT
2Ex1 = xT

2 T̂Rx1 = 0 (2.2)

where E is the essential matrix, containing information about the relative position

T and orientation R between the two camera frames 1 and 2, and T̂ is the skew-

symmetric matrix codifying position T [83].

However, for points on the same plane Π, their images will share an extra

constraint that makes the epipolar constraint alone no longer sufficient.

Let N = [n1, n2, n3]
T ∈ S2 be the unit normal vector of the plane Π with respect

to the first camera frame, and let d > 0 denote the distance from the plane Π to the

optical center of the first camera. Then we have

NTX1 = n1X + n2Y + n3Z = d ⇔ 1

d
NTX1 = 1, ∇X1 ∈ Π (2.3)



Chapter 2: Underwater 2D Mosaicing 26

Substituting equation (2.3) into equation (2.2) gives

X2 = RX1 + T = RX1 + T
1

d
NTX1 =

(
R +

1

d
TNT

)
X1 (2.4)

Then matrix H is defined as follows

H = R +
1

d
TNT ∈ R3x3 (2.5)

where H is the (planar) homography matrix, since it denotes a linear transformation

from X1 ∈ R3 to X2 ∈ R3 as

X2 = HX1 (2.6)

Note that the matrix H depends on the motion parameters R, T as well as the

structure parameters N, d of the plane Π. Due to the inherent scale ambiguity in

the term 1
d
T in equation (2.5), one can at most recover from H the ratio of the

translation T scaled by the distance d.

From

λ1x1 = X1, λ2x2 = X2, λ2x2 = HX1 (2.7)

we have

λ2x2 = Hλ1x1 ⇔ x2 ∼ Hx1 (2.8)

where we recall that ∼ indicates equality up to a scale factor. Often, the equation

x2 ∼ Hx1 (2.9)
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itself is referred to as a (planar) homography mapping induced by a plane Π.

The homography matrix H encodes information about the camera motion and

the scene structure, a fact that facilitates establishing correspondence between points

in the first and second images. H can be computed in general from a small number

of corresponding image pairs.

2.3.2 Planarity Assumption

The homography matrix allows the description of 2D transformations between

images. This motion estimation assumes that the scene is planar (i.e. flat), but

this scenario is rare in practice. Nevertheless, it is possible to apply a homography

matrix to register different views of the same scene, even if it is not planar, under

certain conditions.

On the one hand, it is possible to use a homography matrix to model the

transformation between images when the camera only describes a rotation or change

in scale around the same optical center. On the other hand, it can also be assumed

that a scene is planar when the camera describes a translation but the magnitude of

the scene relief is negligible compared to the distance between the camera and the

scene. In any other cases images show the parallax effect, i.e. the difference in the

apparent position of an object viewed along two different lines of sight, measured

by the angle of inclination between those two lines.

The parallax effect impacts both the registration and blending steps. When

registering a pair of images showing parallax, the computed homography will try

to encode the dominant motion between both views. In that case, if the structures

causing the parallax are large enough with respect to the image size, errors in the

motion estimation may arise. Furthermore, if two images suffering from parallax

are successfully registered, i.e., the dominant motion has been correctly estimated,
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evident misalignments may appear when overlying both views. This scenario is com-

mon in underwater imagery, where the distance between the camera and the scene

is not always as important as desired, and consequently image blending techniques

have to deal with this problem.

2.3.3 Outlier rejection

The homography accuracy [94] is strongly tied to the quality of the correspon-

dences used for its calculation. The homography estimation algorithms assume

that the only source of error is the measurement of the locations of the points,

but this assumption is not always true inasmuch as mismatched points may also

be present. There are several factors that can influence the goodness of the corre-

spondences detected. Images can suffer from several artifacts, such as non-uniform

illumination, sun flickering (in shallow waters), shadows (specially in the presence

of artificial lighting) and digital noise, among others, which can make matching

fail. Furthermore, moving objects (including shadows) may induce correspondences

which, despite being correct, do not obey the dominant motion between the two

images. These correspondences are known as outliers. Consequently, it is necessary

to use an algorithm able to discern right and wrong correspondences. There are

two main strategies to reject outliers widely used in the bibliography [60]: Random

Sample Consensus (RANSAC) [41] and Least Median of Squares (LMedS) [109].

LMedS efficiency is very low in presence of Gaussian noise [110, 74]. For this reason,

RANSAC has been selected as outlier rejection method in the presented framework.

RANSAC is a robust estimator intended to fit a model to experimental data

and is able to smooth data containing a significant percentage of gross errors.

This feature makes the approach suitable for image processing applications, where

error-prone data is quite frequent. As stated in [41], contrary to other smoothing
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techniques, instead of using as much data as possible to obtain an initial solution and

then attempting to eliminate the invalid data, RANSAC uses a small set of data as

a point of departure and enlarges this set with consistent data when possible. When

there is enough data, RANSAC can use a smoothing technique, such as least squares,

to compute an improved estimate for the parameters of the model with the mutually

consistent data which has been identified. The RANSAC paradigm is tuned up by

three parameters: the error tolerance used to determine the compatibility of a given

data point to the model, the number N of subsets Si with size s used to instantiate

the model and the threshold T that determines the number of points required to

consider that a correct model has been found. RANSAC tries to compute a model

candidate based on a set of s data points from S selected randomly. The model

is next applied to the rest of the data in order to determine the set of points

Si that are within a distance of a defined threshold. If the size of Si is greater

than any predefined threshold T , the model can be re-estimated with the points in

Si. Otherwise, if the size of Si is lower than T , a new subset is selected and the

process is repeated. After N trials, the largest consensus set Si is selected and the

model is re-estimated. Reliable RANSAC estimates requires that at least one of the

candidate models contains the correct parameter values, otherwise the estimator

loses its effectiveness.

2.4 Global alignment

Pair-wise registration of images acquired by an underwater vehicle equipped with

a down-looking camera cannot be used as an accurate trajectory estimation strategy.

Image noise, illumination issues and the violation of the planar assumption may

unavoidably lead to an accumulative drift. Therefore, detecting correspondences
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between non-consecutive frames becomes an important step in order to close a loop

and use this information to correct the estimated trajectory.

The homography matrix 1Hk represents the transformation ot the kth image with

respect to the global frame (assuming the 1st frame frame as a global frame) and

is known as absolute homography. This 1Hk matrix is obtained as a result of the

concatenation of the relative homographies k−1Hk between the kth and k−1kth images

of a given time-consecutive sequence. As mentioned above, relative homographies

have limited accuracy and computing absolute homographies by cascading them

results in cumulative error. This drift will cause, in the case of long sequences,

the presence of misalignments between neighboring images belonging to different

transects (see Figure 2.5).

The main benefit of global alignment techniques is the use of the closing-loop

information to correct the pair-wise trajectory estimation by reducing the accumu-

lated drift.

2.4.1 Global alignment methods

There are several methods in the literature intended to solve the global alignment

problem [129]. Global alignment methods usually require the minimization of an

error term based on the location of the image correspondences. These methods can

be classified according to the domain where this error is defined, leading to two main

groups: image frame methods [130, 16, 85, 40] and mosaic frame methods [21, 115,

66, 14, 102, 45].

Concerning the group of image frame based methods, Davis [21] faced the prob-

lem of a camera rotating around its optical axis without translation. The absolute

homography was obtained as an accumulation of relative homographies (see Equa-
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Figure 2.5: Example of error accumulation from registration of sequential images.
The same benthic structures appear in different locations of the mosaic due to error
accumulation (trajectory drift).

tion 2.10), and computed solving a sparse linear systems of equations.

1Hi =
i∏

j=2

j−1Hj i ≥ 2 (2.10)

Any image i of a given sequence can be projected to another image space j

or to the global frame using the absolute homography of image j, i.e. 1Hi =

1Hj ·j Hi, where 1Hi and 1Hj are unknown and jHi is a relative homography.

When a closing loop happens, the number of relative homographies becomes greater

than the number of images, leading to an over-determined system. Unfortunately,
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the over parameterization of the system might lead to overfitting if an adequate

parametrization of the resolution method is not used.

Another image frame based method was proposed by Shum [120], who defined

the error function as:

min
1H2,1H3,...,1HN

∑
k

∑
m

n∑
j=1

∥kxj −1 H−1
k ·1 Hm ·m xj∥2 (2.11)

where kxj and mxj are the jth correspondence between images k and m having

an overlap area, n the number of correspondences and ∥ · ∥2 the Eculidean norm.

Calculating the solution by means of a non-linear least squares minimization has a

drawback: the gradients with respect to the motion parameters are quite compli-

cated and have to be provided for the minimization method chosen, e.g. Levenberg-

Marquadt.

In the group of mosaic frame based methods, Sawhney et al. [115], proposed a

method based on the following error function:

E1 = min
1H2,1H3,...,1HN

∑
k

∑
m

n∑
j=1

∥1Hk ·k xj −1 Hm ·m xj∥2 (2.12)

Nevertheless, this solution suffers from what is known as scaling effect of a mosaic-

based cost function if no constraints are imposed. This is due to the fact that the

cost function has lower values when the image size is smaller, and consequently

the function tends to reduce this image size. For that reason, Sawhney et al. [115]

extended the method by introducing another term for controlling the scaling effects:

E2 =
N∑
i=1

(
∥1Hi · xtr − 1Hi · xbl − (xtr − xbl)∥2 + ∥1Hi · xtl − 1Hi · xbr − (xtl − xbr)∥2

)
(2.13)
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where xtr, xbl, xtl and xbr denote the top-right, bottom-left, top-left and bottom-

right coordinates of the image corners. E2 tries to minimize the difference in the

diagonal length between the original image size and the image size once projected

on the mosaic frame. Nevertheless, this constraint may lead to image misalignments

because it violates the distance minimization between correspondences. A weighting

factor for this penalization is used, which can be fixed or proportionally grow along

the sequence due to error accumulation. The final error function E is the result

of the addition of both E1 and E2 terms, i.e. E = E1 + E2. The minimization of

this function leads to solutions related by a common translation and rotation that

have the same minima [91]. Therefore, Sawhney et al. [115] proposed a new term

H1 · (0, 0, 1)T to be added to the error function, in order to fix the problem with the

translation of the first image and find only a single solution set. Another solution

for this issue has been proposed by Gracias et al. [45], who fixed one of the image

frames as the global mosaic frame and aligned all the images with respect to this

one.

Sawhney et al. [115] proposed a graph-based representation of the mosaic for

closed loop trajectories. In this case, each node of the graph represents an image

whilst each edge represents overlapping areas between the images. Initially, the

graph is built only with edges between consecutive images. Edges between non-

consecutive images can be added by measuring the distances between the image

centers. The goal of this graph is to reduce the total number of products by

searching for the optimal path while computing absolute homographies through

relative homographies [66, 85], with the aim of reducing the accumulated drift and

image distortions.

In the graph representation context, Kang et al. [66] presented an approach to

solve the global alignment problem also based on graphs to define the temporal and
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spatial connectivity between images. Initially, a regular grid of the global frame is

defined. Each node of the graph contains a list of corresponding grid points and

several lists with the correspondences between these grid points and the points in

other images. The correspondences are computed by means of normalized corre-

lation, and the error function is defined as the photometric luminance differences

between the points in the mosaic and their projection in other images:

E =
∑
i

(Im(p)− Ii(p
′))2 (2.14)

where Im(p) is the luminance value of p in the mosaic and Ii(p
′) is the luminance of

the projection p′ =m Hi · 1p in the ith image. This error function is used to find all

the correspondences of each point in the initial grid. The global registration of the

different frames is performed by searching for the optimal path connecting each frame

to the reference frame. This path, in its turn, is computed by the geometric distance

and correlation score between each grid point and its correspondences. Once the im-

ages have been registered to the global frame, the location of grid points is adjusted

using as a weighting average factor the correlation score between correspondences.

Finally, the absolute homographies computed from the accumulation of the relative

ones can be recomputed by means of an adjustment transformation, using a linear

transformation between the refined grid points and their correspondences.

Marzotto et al. [85] presented a solution close to their of Sawhney et al. [115],

which adds another measure to the overlap measure in:

dij =
max(|xi − xj| − |ri − rj|/2)

min(ri, rj)
(2.15)

where xi and xj are warped image centers and ri and rj are warped image diameters.
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This additional measure is defined as:

βij =
δij
∆ij

(2.16)

where δij is the overlap measure and ∆ij is the cost of the shortest path between

nodes i and j. The optimal path is found by using β values, and the cost is calculated

from the weights, d, on the edges. The absolute homographies are obtained as a

result of the product of relative homographies through the optimal path. The main

advantage of this method to compute the optimal path is that the homographies are

less affected by cumulative errors. Similarly to [115], the error function used in the

global alignment is defined over a set of grid points, being the error of a given grid

point xk:

Ek =
1

n

∑
i

∑
j

∥xk − mHi ·i Hj ·H−1
j xk∥2 (2.17)

where n is the number of edges between images containing the grid point xk and

mHi and
mHj denote absolute homographies. The error function is defined as:

minE =
m∑
i

E2
i (2.18)

where m is the total number of grid points. Unfortunately, there are two main

drawbacks to this approach. The first is that point locations have to be carefully

selected to ensure enough grid points in both images and overlapping regions in

order to compute the homography. The second is that arbitrarily distributed points

may fall into textureless areas, making the location of matchings difficult.

With the aim of minimizing both the homography elements and the position

of features in the mosaic, Capel [15] proposed a method based on the tracking of

features, which requires identifying the same feature in all the different views. Lets
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consider txi as the coordinates of a given ith point defined in the coordinate system of

image t and the projection of point mxj in the mosaic, which is called the pre-image

point and is usually projected in different views. All image points corresponding

to the projection of the same pre-image point are called N -view matches. This

approach proposes the following cost function to be minimized:

ε1 =
M∑
j=1

∑
txi∈ηj

∥txi − tHm · mxj∥2 (2.19)

where M is the total number of pre-image points, nj is the set of N -view matches

and tHm is mosaic-to-image homography. Knowing that the homographies and the

pre-image points are unknowns, the total number of unknowns can be be obtained

as n = nDOF ×nview+2×npoints, where nDOF are the number of Degree Of Freedoms

(DOFs) of the homography, nviews is the total number of views and npoints is the total

number of pre-image points. The fact of measuring the error term ε1 in the image

frame but being parameterized with points defined in the mosaic frame, allows us to

avoid image an scaling bias that appears when measured in the mosaic frame. As a

drawback, the number of unknowns increases significantly as the size of the dataset

grows, making it unsuitable for datasets with thousands of images.

BA is a technique to solve the problem of refining visual reconstruction to

produce jointly optimal 3D structure and viewing parameter estimates (camera pose

and/or calibration) [134, 8]. The solution is intended to be optimal with respect to

both structure and camera variations. BA minimizes the reprojection error between

the image correspondences. This minimization is defined as the sum of squares of

a large number of nonlinear, real-valued functions, and is achieved using nonlinear

least squares methods. Concerning image mosaicing, the target of BA is to find

optimal camera motion parameters in order to compute absolute homographies [86].
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Gracias et al. [49] presented an approach based on the minimization of the following

cost function:

E =
∑
i,j

n∑
k=1

(
∥ixk −i Hj ·j xk∥2 + ∥jxk −i H−1

j ·i xk∥2
)

(2.20)

where n is the number of matches between images i and j. The total number of

unknowns is 6× (nviews− 1)+2. The method requires knowing the intrinsic camera

parameters and has high computational requirements due to the use of nonlinear

optimization algorithms.

For further details of advantages and disadvantages of the different GA methods

the reader is addressed to [34].

2.5 Conclusions

Building photo-mosaics of underwater image surveys is a complex task that faces

medium-specific challenges not present in terrestrial or aerial panorama generation.

Due to the lack of natural light in deep waters, the UVs should integrate artificial

lighting systems. The power of the light sources is limited, specially due to autonomy

reasons, and typically does not allow uniform illumination of the whole area covered

by a picture. The effects of this lack of power are accentuated by the underwater

phenomenon of light attenuation, which leads to a noticeable non-uniform illu-

mination in the images, and constrains the acquisition to a few meters from the

seabed. The scattering phenomenon [117], due to suspended particles, is another

phenomenon affecting underwater images, and is also affected by artificial lighting

inasmuch as light rays collide with the suspended particles. As a result of these

phenomena, underwater images suffer from poor and non-uniform illumination and

frequently present bright spots due to backward scattering, and lack of sharpness due
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to forward scattering. The images affected by these problems make the detection of

features and consequently the pair-wise registration difficult, giving rise at this point

to the importance of the navigation data. The short distance between the camera

and the seafloor favours the presence of parallax, which affects the 2D mosaicing

approach due to the violation of the planar assumption. The parallax effects, in

addition to any moving elements in the scene, also impact image registration, and

have consequences in the image rendering step. All these factors make the topology

estimation and the global alignment [40, 31, 33, 32], in conjunction with the use of

the available navigation data, very relevant steps to achieve accurate photo-mosaics

when dealing with thousands of images.

Given the heterogeneous appearance of the acquired images, and problems such

as the planar assumption violation or the presence of moving objects, the use of

image blending techniques is required. Apart from the visual appearance, blending

techniques are also important for proper interpretation and scientific exploitation

of seafloor imagery (e.g. [4, 90]). The structures, objects and areas of interest may

cover a wide range of scales, from a few centimeters, i.e. microfauna or rocks, which

would appear in individual images, to several hundreds of meters, i.e. topographic

scarps or fractures, spanning several frames. The relevance of image blending arises

at this point so that the photo-mosaics generated with these techniques present a

consistent and uniform appearance (see Figure 2.6). The blended photo-mosaic,

where imaging artifacts have been minimized, allows us to analyze the features of

interest, regardless of their size and imaging conditions.

Summarizing, the use of blending techniques in underwater 2D mosaicing is a

crucial step when generating high-quality large-scale photomosaics. Preprocessing

the images in order to correct non-uniform illumination and enhance their detail also

becomes a key step in the mosaicing procedure. Enhanced images are best suited
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Figure 2.6: Small area of a mosaic generated from an image set corresponding to a
shipwreck in Pianosa (Italy). In the initial mosaic (left), before the application of a
blending technique, the amphoras and white labels laying on the seafloor appear truncated.
In the blended mosaic (right), the scene is easily understandable and the discontinuities
have disappeared. Images courtesy of Pierre Drap (LSIS, CNRS).

for the feature detection and correspondence finding steps. Providing the images

with a good appearance is relevant not only from the aesthetical point of view but

also from a functional one.

The problems of image blending and image quality enhancement are treated in

the next chapters.
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Chapter 3

State-of-the-Art of Image

Blending Techniques

Stitching two or more images together to create a photo-mosaic that enables the

interpretation of the benthos by a scientist (biologist, geologist, archeologist, etc.)

requires the use of a blending technique to obtain a seamless mosaic (see Figure 3.1).

Building a photomosaic requires performing a geometrical registration to align

the images involved as well as a photometrical registration to equalize color and

luminance appearances [15]. Both kinds of registrations may lead to image incon-

sistencies in the mosaic. The visibility of such inconsistencies should be minimized

in order to provide the mosaic with a homogeneous appearance, which is important

from not only the aesthetical but also the cognitive point of view. Geometrical mis-

alignments result in distinguishable object discontinuities and incongruence, while

photometrical misalignments make the visibility of seams more evident, reducing

the consistency of the global appearance of the mosaic.

Due to the above stated reasons, there are three main concepts guiding image

blending algorithms. Firstly, the effects of different illumination or exposure times

41



Chapter 3: State-of-the-Art of Image Blending Techniques 42

Figure 3.1: Photo-mosaic built from six images of two megapixels. The mosaic shows
noticeable seams in (Left), where the images have only been geometrically transformed
and sequentially rendered on the final mosaic canvas, the last image on top of the previous
one. After applying a blending algorithm, the artifacts (image edges) disappear from the
resulting mosaic (Right). Images courtesy of Dan Fornari (Woods-Hole Oceanographic
Institution).
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between images should be minimized. Secondly, an adequate seam should be found

in order to reduce the visibility of micro-registration misalignments and moving

objects. Lastly, a smooth transition along the selected seam must be applied to

reduce the prominence of transitions between images.

The basic principles of image blending where established four decades ago [87]

and include two main concepts which lead to two groups of algorithms [73]: tran-

sition smoothing and optimal seam finding. On the one hand, transition smoothing

methods (also known as feathering [135] or alpha blending methods [104]) attempt

to minimize the visibility of seams by smoothing the common overlapping regions

of the combined images. On the other hand, optimal seam finding methods place

the seam between images where photometric differences in their joining boundaries

are minimal [21, 28]. Image blending methods often combine the benefits of both

groups of algorithms (e.g. [87, 3]) in order to produce more plausible results and to

reduce to an even higher degree the noticeability of the joining regions. A smooth

transition between the fused images is applied, but along an optimally selected seam,

a combination which helps to avoid double contours and blurring effects when image

registration is not accurate enough. This group of methods will be called from now

on hybrid methods.

This chapter provides a review of the most relevant blending techniques in the

literature since 1975. The methods listed are divided into three different groups,

corresponding to its main principle: transition smoothing methods, optimal seam

finding methods and hybrid methods. A classification of the approaches according to

several features and properties is also proposed in order to highlight their benefits

and drawbacks in different scenarios.
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3.1 Transition smoothing methods

The main concern of transition smoothing methods is to produce a non-perceptible

transition between two images over a given overlapping region (see Figure 3.2).

The information of this common area is fused in such a way that the boundaries

of the images involved become invisible. Even though a totally indistinguishable

transition may be achieved, the content and coherency of the overlapping region is

not guaranteed, as the information is fused without taking into account the content

of the scene.

Transition Smoothing

I1 I2

I1

I2

Figure 3.2: Example of the application of a transition smoothing method on the
overlapping area of two images. The images show different exposures and significantly
different sizes once registered. As a result of the blending algorithm, the transition between
both images is smooth though noticeable.

In the early 70’s, D. Milgram [87] addressed the problem of the seamless com-

bination of two satellite images. The approach was intended to deal with only one

pair of images horizontally registered, which is a limiting factor for the application
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of the method to different and more complex scenarios. This constraint lead to

a method which searches for the smoothest transition in a row-wise manner. An

arbitrary surrounding range is defined at each row around a given selected seam

pixel, allowing to smooth the transition in that direction using a weighted average

of the luminance values. Consequently, the method achieves a smooth transition in

the horizontal direction, but this smoothness cannot be guaranteed in the vertical

direction. The weighted average of luminance values (of grayscale images) became

the first approach to the transition smoothing problem and a basic principle used

by several methods that arose in the following decades.

Still in the context of low-scale (order of mega-pixels) aerial photo-mosaicing, the

limitation of using only two overlapping images was addressed in the first instance by

Peleg [101], who introduced the concept of Seam-Eliminating Function (SEF). The

SEF is based on a luminance smoothing function (i.e. a weighting map), obtained

using a computationally expensive iterative relaxation algorithm, which is used to

smooth the transition from an arbitrary number of overlapping images (although the

overlapping information is not used and the seams used are not optimal), setting the

intensity differences along the seams at zero. The main advantage of the method is

that the gradual, smooth change does not affect the detail nor the picture near the

seams. Nevertheless, in lack of an optimal seam finding strategy, images suffering

from vignetting may lead to mosaics with noticeable illumination artifacts.

In 1983 Burt and Adelson [13] introduced the concept of image spline to obtain a

smooth transition among several images. The approach was multipurpose, extending

its fields of application to any imaging scenario, as opposed to Milgram’s [87] who

focused on satellite imaging. It was also the first approach to image compositing, i.e.,

the first method able to seamlessly fuse several images from different and unrelated

scenes. The images to be fused are decomposed into a set of band-pass component
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images, and a separate spline with an appropriate transition width is applied to each

band. The goal is to fuse the features from the same scale at each band-pass level.

Finally, the splined band-pass components are recombined into the desired mosaic

image using a simple addition. The method suppresses the visibility of the seams

and reduces the noticeability of the misalignments when registration is imperfect.

However, it leads to double contouring and ghosting effects when the misalignment

is significant (see Figure 3.3). In 1996, Hsu and Wu [58] extended the idea of Burt

and Adelson [13] by applying the method to wavelet subspaces with the aim of

avoiding the undesired oversampling nature of the Laplacian pyramid. Although

the improvement on the results obtained is negligible, similar results are obtained

despite the higher computational cost.

In 2003, Pérez et al. [105] proposed a generic interpolation machinery based

on solving Poisson equations for seamless editing and cloning of selection regions.

Despite the main focus of that framework being image composition, it may also

have applications in the underwater photo-mosaicing context when combined with

an appropriate optimal seam finding strategy. The approach allows us to suppress

the visibility of the seams along the joining regions. Beyond luminance and wavelet

domains, this is the first important approach to image mosaicing in the gradient

domain. The method is based on the idea that, through suitably mixing the gradient

of a given image with that of another, it becomes possible to convincingly fuse

image regions (namely objects) with a transparent appearance. The framework

is based on the partial differential equation with Dirichlet boundary conditions

which specifies the Laplacian of an unknown function over the domain of interest,

along with the unknown function values over the boundary of the domain. As an

extension of the technique presented by Bertalmio in [6], Pérez et al. proposed to

modify the problem of image interpolation through Poisson equation by introducing
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Figure 3.3: Sample photo-mosaic region with (a) and without (b) ghosting and double
contouring in the transition region due to registration inaccuracies. Seabed structures 1
and 2 are noticeably blurry in (a) while having a sharp appearance in (b). (c) shows
two overlapping images of a given photo-mosaic (I1 and I2) represented in the red
(I1) and green (I2) channels. Consequently, perfectly registered regions should appear
in yellow, while the regions affected by misalignments present a reddish or greenish
appearance. The image without ghosting and double contouring has been obtained using
the blending approach proposed in this thesis. Images courtesy of Dan Fornari (Woods-
Hole Oceanographic Institution).



Chapter 3: State-of-the-Art of Image Blending Techniques 48

further constraints in the form of a guidance field. In the same context, Levin et

al. [73] proposed a method based in several cost functions for the evaluation of the

quality of the stitching defined in the gradient domain. Levin et al. named GIST

(Gradient-domain Image STitching) the framework developed based on this method.

GIST provides two main approaches to image stitching. In the first one, images

are combined in the gradient domain, reducing global inconsistences between the

stitched parts due to illumination changes and variations in the camera photometric

response. The stitched image is computed by minimizing a cost function evaluating

the dissimilarity measure between the derivatives of the stitched image and the

derivatives of the input images. In the second one, the mosaic image is inferred

by optimization over image gradient, reducing seam artifacts and edge duplications.

In this case, the stitching is performed using feathering, pyramid blending [1] or

optimal seam [29]. The drawbacks of the methods working exclusively on the

gradient domain are the important computational resources required to deal with

large datasets.

Following the idea of gradient domain image blending, Agarwala et al. proposed

a technique in 2004 that combined methods belonging to the two main classes of

blending algorithms [3]. Firstly, graph-cut optimization [9, 71] was used to find

the optimal place for the seam within the overlapping region. Secondly, gradient-

domain fusion [105] was applied to reduce or remove any remaining visible arti-

facts along the image seams. The method has multiple applications in the image

photomontage field and achieves convincingly seamless results. The framework

developed was mainly intended to require user guidance to select the interest image

regions, thus being unsuited for the automatic generation of photo-mosaics. In

2007, Agarwala [2] presented a hierarchical approach to improve the efficiency of

gradient-domain compositing. The efficiency increase was achieved by observing
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that the difference between a simple color composite and its associated gradient-

domain composite is largely smooth, and the pattern of this smoothness can be

predicted a priori. This difference is solved by adaptively subdividing the domain

using a quadtree hierarchical structure [53]. Unfortunately, the increases in efficiency

with this method only occur if the problem can be transformed into a space where

the solution is mostly smooth, and the pattern of this smoothness can be predicted

a priori. Consequently, when the number of overlapping images increases and the

overlapping regions become smaller, the performance of the methods also decreases.

In 2011 Szeliski et al. [132] presented a technique for fast Poisson blending and

gradient domain compositing which associates, to each input image, a separate low-

resolution offset map, that can be represented using a low-dimensional spline. The

resulting linear system is much smaller than either the original Poisson system or

the quadtree spline approximation of a single offset map. Since each of the offset

fields is represented using a low-dimensional spline, the resultant representation is

called multi-spline.

Still in the context of gradient domain blending, Su et al. [125] proposed a

method based on the minimization of a blending energy function, considering not

only gradient values but also luminance. Within this blending energy function,

indented to combine low-level image properties, two variation terms are measured

and minimized: image value variation and first derivative variation. Image value

variation measures the difference between corresponding pixel values of the images

to be combined and the photo-mosaic itself. On the other hand, first derivative

variations measure the difference between the blended values of each respective

first derivative and the first derivative of the mosaic. The resultant image can be

effectively obtained by minimizing the blending energy function. Unfortunately, the

computational cost of the method (according to the authors, between six and eight
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times slower than [13]) makes it unsuitable for large image datasets.

The problem of stitching images in real time for online photo-mosaicing was

addressed by Zhao [144] in 2006. The author proposed an efficient image blending

method for creating good-quality and real-time dynamic image mosaics from an

arbitrary number of input images. There are three main advantages with the flex-

ible blending technique: a) good results and possible implementation in embedded

systems for real-time performance, b) comprehensive treatment of geometry, time

and user control and c) capability of handling exposure imbalance among frames.

Flexible blending has its basis in the sequential implementation of image blending

features. Unfortunately, there are some drawbacks preventing its application in large

scale underwater mosaicing. Firstly, the blending step is based on an improved

multi-resolution weighted average [13] which prioritizes pixels close to the image

centers, but does not offer good enough results when registration problems appear.

Secondly, the exposure correction mechanism takes as a reference the exposure of

the photo-mosaic built until a new image is added. This fact may lead to a global

exposure degeneration when some of the implied images are over or underexposed.

Lastly, the method is intended to deal with small input images, but its behavior

when confronted with large input images sequences is unknown.

Few approaches in the literature have specifically dealt with the problem of un-

derwater imagery mosaicing. Gu and Rzhanov [50], proposed as a blending step the

application, around an optimally found boundary, of a pure gradient domain fusion

of the boundary pixels only. The method claims to overcome the short comings of

gradient domain fusion, which produce blurring in the case of misalignment inasmuch

as is uses information from all the implied images to build the fused gradient field.

The authors do not define a criteria for selecting the contributing image in the case

where multiple images overlap the same region. Thus, [50] is limited to panoramic
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mosaics where only two images overlap over the same area. The color treatment is

not performed, being assumed that the method is gray-scale intended.

3.2 Optimal seam finding methods

The objective of optimal seam finding methods is to find an optimal placement

for a seam line through a given overlapping region between two images (see Fig-

ure 3.4). This seam should minimize the photometric differences on both sides of

the line and determine the contribution of the involved images to the final mosaic.

Unlike transition smoothing techniques, optimal seam finding approaches consider

the content of the scene in the overlapping region, allowing us to deal with problems

such as moving objects or parallax. In contrast, no information is fused, and the

step between the images can be easily noticeable when illumination conditions or

exposure times change from frame to frame.

D. Milgram [87] proposed a non-optimal seam definition strategy that searches

the seam pixel offering the smoothest transition in a row-wise manner, inasmuch as

it is intended to deal only with pairs of images horizontally registered. This random

positioning of the edge was referred to as “feathering”, and was claimed to help

reduce visual cues, but with the disadvantage of introducing discontinuities in the

vertical direction. In order to deal with this drawback, a restriction of the candidate

seam points, depending on the magnitude of the minimum edge difference, was

imposed. This restriction allows us to obtain a more continuous and consistent seam

line. The same author later proposed an improved approach, adding a pixel selection

criterion in the illumination compensation step in order to deal with shadows and

moving objects and considering only the most informative gray level values [88].

Furthermore, a cost function was included in the seam definition strategy, permitting



Chapter 3: State-of-the-Art of Image Blending Techniques 52

Optimal Seam Finding
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Figure 3.4: Example of the application of an optimal seam finding method on the
overlapping region between two images. The images show different exposures and
significant different sizes once registered. As a result of the blending algorithm, the
transition between both images is still noticeable due to the different exposures and
different sizes, which leads to a visible contrast concerning detail richness.

to control of the origin and the final pixel coordinates in the optimal seam path.

The problem of non-static objects in the overlapping regions was addressed by

Davis [21] in 1998, who found an optimal seam using Dijkstra’s algorithm [23]

through the photometric differences computed between two registered images. The

path obtained tends to cut around the moving object, leaving it either totally

in or out of the final mosaic image. As a drawback, at least one image must

contain a complete view of the moving object so as not to bisect it. Furthermore,

some photometric issues that can disturb the seam localization, such as automatic

exposure or vignetting, are not taken into account by the method.

Focusing mainly on the panoramic imaging context using a rotating camera,

Uyttendaele et al. [135] proposed, in 2001, a method to suppress the ghosting effect in
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mosaic images due to moving objects, along with a procedure to adjust the exposure

over multiple images to eliminate visible shifts in brightness and hue. The aim of the

method is to deal with the complicated problem of multiple overlapping regions with

moving objects. When confronted with ghosting artifacts, the authors proposed a

search for Regions of Difference (RODs) in the overlapping areas in order to use

information from only one image per ROD. Hence RODs are defined in different

images to be corresponding, i.e. to belong to the same scene object, if they have any

overlap at all. Region of Differences (RODs) are then used to build a graph in which

the minimum weight vertex cover [18] must be computed. However, this method is

not entirely robust and situations can appear where a wrong elimination of RODs

causes holes in the mosaic image. Nevertheless, according to the authors, conflictive

situations are rare in practice. Concerning the exposure artifacts, a block-based

exposure adjustment technique was applied. The exposure compensation solution

obtains smooth but still noticeable transitions between images in some cases.

In the context of image compositing, Agarwala et al. [3] proposed, in 2004, a

technique which combined methods belonging to the two main classes of blending

algorithms. Concerning the seam finding strategy allowing the selection of the image

regions which will contribute to the composite, a graph-cut optimization [9] was

used. This graph-cut was guided, depending on user preferences, by several features,

such as color, luminance or likelihood, among others. The method has multiple

applications in the image photomontage field and achieves convincingly seamless

results. The framework developed was mainly intended to require user guidance to

select the interest image regions, thus being unsuitable for the automatic generation

of photo-mosaics.

Regarding the computational and memory cost reduction of Dijkstra’s based op-

timal seam finding, Gracias et al. [47] proposed a method using watersheds and graph
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cuts intended to achieve execution speed when building large photo-mosaics. The

use of watershed segmentation to find possible cuts over areas with low photometric

differences allowed their algorithm to reduce the search to a smaller set of watershed

segments, at the cost of sacrificing a certain degree of precision of the computed

path, which is conditioned by the initial watershed segmentation. Furthermore,

the use of graph cuts over image pairs guarantees a globally optimal solution for

each intersection region. While the authors applied the algorithm developed to

underwater images, the method can be extended to other contexts.

Eden et al. [27] presented, in 2006, a blending approach that included a two-step

graph cut procedure to deal with both highly different exposures and misregistration

problems, and work on a global radiance space for all the images involved. This is

one of the first methods applied to the global radiance space domain. Firstly, the

positions of the moving objects in the scene are defined (manually or automatically).

Secondly, the entire available dynamic range is used to render the photo-mosaic.

Therefore, a High Dynamic Range (HDR) image can be obtained from the photo-

mosaicing process. Furthermore, two kinds of costs are introduced. Firstly, a data

cost is computed to insure consistency and a high signal-to-noise ratio. Secondly, a

seam cost is applied to favor smooth transitions. Nonetheless, such extreme exposure

differences are not common in underwater photo-mosaicing. The gradient blending

step is performed as in [3].

More recently, Mills and Dudek [89] presented a combination of techniques to

create good quality image mosaics despite the presence of moving objects in the

scene. The technique uses heuristic measures to determine the optimal seam, in

both intensity and gradient domains, combined with a multiresolution splining [13]

algorithm to refine the results around the selected seam. Concerning underwater

imagery, the strong differences in appearance between images and the sequential
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nature of the approach may prevent its application. The exposure compensation of

new added images is performed based on the already generated photo-mosaic, which

may lead to mosaic degeneration as the amount of stitched images grows. Further-

more, the blending method used by the approach may lead to double contouring,

specially in the presence of complex seabed structures.

In the underwater context, Gu and Rzhanov [50], similar to [73], proposed a

graph-cut technique in order to select the optimal seam between two images, and

the application of a pure gradient domain fusion around this boundary. The graph-

cut is performed in the gradient domain with the aim of correctly dealing with

images showing inhomogeneous illumination, but as opposed to [73], is performed

on the overall image values, being more flexible in defining the cut area according

to the authors.

3.3 Hybrid methods

The third group of methods, which we refer to as hybrid methods, is in fact

not composed of any novel blending method, but of a set of appropriate transi-

tion smoothing and optimal seam finding techniques combinations. This group of

approaches typically applies a transition smoothing method around an optimally

calculated (or selected by some criterion) seam in order to improve the quality of

the image regions joined reducing its noticeability to an even higher degree. As a

result of the combination, problems such as blurring or double contouring presented

by transition smoothing methods, and others such as different exposures presented

by optimal seam finding methods, can be reduced or even totally avoided. One of

the (evident) drawbacks of hybrid methods is their computational cost, inasmuch

as at least two different strategies should be sequentially applied.
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Figure 3.5: Example of the application of a hybrid method. A multiresolution spline [13]
is applied around a seam determined by the distance from the pixels to the corresponding
image centers in order to give more weight to the pixels close to the optical axis. The
images show different exposures and significantly different sizes once registered. As a
result of the blending algorithm, the transition between both images is smooth although
not perfect, and the difference in detail richness between them is still noticeable.

In fact, and as mentioned above, one of the pioneers in the image blending field,

Milgram [87, 88], had already proposed, in 1975 and later updated in 1977, a hybrid

approach based on the selection, in a row-wise manner, of an optimal seam (in terms

of photometric differences) and the application around this seam of a weighted

average, allowing a noticeable reduction of the image transition. Furthermore, a

“zero-order” adjustment to compensate illumination differences between images was

also used. This strategy was intended for satellite imaging and limited to grayscale

images registered horizontally (regardless of rotation or scale changes). Nevertheless,

it dealt with the most relevant concerns of image blending, i.e. the equalization of

image appearance over a sequence (a pair of images in that case), the selection of a
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seam that minimizes photometric differences at the boundary and the application of

a smoothing method around the seam to make the transition even less noticeable.

Agarwala et al. [3] proposed, as an optimal seam finding strategy, a graph-

cut optimization [9] guided by several parameters, such as color, luminance or

likelihood, among others. The transition smoothing in this case is performed in

the gradient domain [39, 105]. Using the same labeling obtained after the graph-

cut, the color gradients are used to form a composite vector field. The best-fit

image in a least-squares sense is thereafter calculated by solving a discretization

of the Poisson equations. Each color channel is processed independently, and in

order to keep color channel coherency, the color of a given pixel is added to the

Poisson equations to constrain the linear system. No overlap information around

the boundaries is used, and according to the authors, in case of high-gradient

edges, complications such as objectionably blurring artifacts may appear. In order

to solve this problem, the linear constraints corresponding to these problematic

pixels are removed. The gradient blending method acts in practice as an exposure

compensation mechanism when all the images of the composite belong to the same

scene. The approach of Agarwala is intended for image compositing, requiring

human intervention when selecting the image regions to be fused, and consequently,

is not suitable for automatic image mosaicing. Furthermore, performing the blending

in the gradient domain regardless of any pixel overlap information, even if the

equations corresponding to problematic pixels are dropped from the linear system,

cannot guarantee a smooth transition in all scenarios.

Similar to Agarwala et al. [3], Eden et al. [27] combined the benefits of both an

optimal seam finding strategy using a two-step graph-cut, and an optional transition

smoothing method on the gradient domain. The main novelties of this approach are

the use of a global radiance space for all the images involved, and the possibility
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of obtaining an HDR image as a result. In the first step of the graph-cut, the

optimal boundaries are found in the same way as in Agarwala et al. [3] but in

the radiance domain over a subset of geometrically and photometrically registered

images covering the full field of view. After this step, the position of moving objects

is defined, and can be manually changed or automatically selected. In the second

step, an image selection strategy is applied, which determines the best radiance

values in all the images of a given patch after the graph-cut in order to provide

more detail, if possible, to the final composite. A secondary labeling is performed

based on two cost functions; one determining the data cost of adding a given image

pixel to the composite, and another determining the seam cost over each neighbor

of this pixel. The goal of this second step of the image selection is to find the

labeling of the final composite that minimizes both data and seam costs. Finally,

the final composite can be obtained by either directly copying the corresponding

radiance values into the final HDR mosaic after the graph-cut labeling, or applying

a gradient blending of the original images using the Poisson equations [105, 73, 3].

Additionally, in order to visualize the final HDR image, a tone mapping algorithm

is used [25, 39, 108].

Gu and Rzhanov [50] proposed, as an optimal approach for underwater image

blending, a graph-cut strategy in the gradient domain in order to find the optimal

seam placement, and a gradient domain blending as a transition smoothing method.

The authors argued that performing a graph-cut on the gradient domain allows

dealing with different exposures and inhomogeneous illumination more robustly than

in the luminance domain, inasmuch as gradients are not affected by these factors.The

gradient domain transition smoothing is performed in a similar way as [39, 105,

3], but applying a weight to a few pixels around the seam in order to reduce the

artifacts caused by simple gradient blending, specially in presence of misalignments.
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In practice, the weighting leads to the usage of the average value of the gradients of

pixels around the chosen seam. Nevertheless, this weighting is not able to get fully

rid of ghosting artifacts around the image boundaries.

In 2009, Mills and Dudek [89] presented a full mosaicing approach to create

pleasant and physically consistent image mosaics despite the presence of moving

objects. The authors proposed performing a graph-cut along the differences between

the luminance of two registered images in order to find an optimal seam. This

graph-cut is computed, similarly to Davis [21], using Disjkstra’s [23] algorithm. As a

transition smoothing strategy, the multiresolutions splining of Burt and Adelson [13]

is applied, which, in contrast to some gradient domain methods, uses the common

overlapping pixels to smooth the transition. Inasmuch as the graph-cut is performed

in the luminance differences domain, it cannot appropriately deal with different

exposures or changes in the illumination conditions in the scene. On the other hand,

the multiresolution splining strategy may lead to ghosting and double contouring

in the case of misregistration, and cannot deal with different image exposures or

illuminations.

3.4 Classification

The list of papers that form the state-of-the-art of image blending is large,

and the main requirements for conventional image panorama generation have been

satisfyingly addressed by several of them. Unfortunately, blending in underwater

photo-mosaicing is a specific application that has not been deeply treated in the

literature. Consequently, not all the methods are appropriate for this context. In

order to highlight the properties, benefits and drawbacks of the current methods, and

to evaluate their suitability for underwater mosaicing, a classification is proposed.
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There are several criteria that determine the behavior and performance of a

given blending algorithm, including its capability of dealing with high resolution

underwater photo-mosaics. Table 3.1 provides a comprehensive comparison of the

most relevant blending techniques proposed in the literature. The specially im-

portant categories for underwater applications (mostly working with monochrome

images) are exposure correction and elimination of ghosting and double contouring,

concerning image quality, and scalability, concerning large scale photo-mosaicing.

3.4.1 Basic Principle

Two main groups of algorithms can be found in the literature in the context of

image blending [73]: transition smoothing methods (also known as feathering [135]

or alpha blending methods [104]) and optimal seam finding methods [21, 28]. The

benefits of both groups of algorithms are combined into a third group, the hybrid

methods [87, 3], in order to produce more plausible results and to reduce to an even

higher degree the noticeability of the joining regions. Additionally, those methods

avoid double contours and blurring effects when image registration is not accurate

enough.

Each method uses a basic approach (Principle): Transition Smoothing (TS); Op-

timal Seam Finding (OS); or an appropriate Hybrid combination (OS/TS). The first

set of methods (TS) often suffers from Ghosting, which concerns image blurriness of

the finest details (i.e. low frequency image components), and Double Contouring,

consisting in practice of a partial duplication of certain scene structures (i.e. high

frequency image components), if registration is not accurate enough or the scenario

considerably violates the planar scene assumption for 2D mosaicing. The second

set (OS) is not able to deal with images with different Exposures, as is often the

case in underwater imagery due to 3D relief, oblique terrain, variations in vehicle
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altitude, etc. Finally, Hybrid methods are able to compensate for these drawbacks

to a certain degree.

Concerning the main principle of the techniques, the combination of a transition

smoothing around an estimated boundary seems to be the most adequate approach

and has been the most popular methodology in the literature since 2004, independent

of the application context. The tolerance to moving objects is tied to this main

principle. Optimal seam finding based methods naturally deal with this problem.

In most cases, this tolerance is not actively treated, but is a result of the optimal

seam search, which tends to make the cut in areas where photometric differences

are small; overlapping areas with moving objects will thus be avoided.

3.4.2 Domain

The Domain in which the process is carried out (Luminance / Radiance, Wavelet

or Gradient), has a double effect on the blending process. On the one hand,

the image domain strongly influences the properties of the blending that will be

performed. As an example, Gradient blending methods are able to unify different

Exposures seamlessly and can lead implicitly to a high dynamic range from a set of

low dynamic range images. However, Gradient methods require solving large sparse

equation systems to recover the Luminance from the gradient vectors, and thereby

their computational cost is significant. In contrast, Luminance based methods

typically have lower computational requirements.

Luminance and gradient domains are widely used, and the second has become the

preferred method in the latest publications [131, 142, 89]. This is due to the nature

of the domain, which allows easy reduction of the exposure differences between

neighboring images. Nevertheless, methods actively applying an exposure correction

algorithm obtain more visually pleasant results. The ability to remove ghosting
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effects and the fact of presenting double contouring are complementary, and are

avoided jointly.

3.4.3 Scalability

A particularly important property of blending methods is the Scalability, which

we define as the ability to deal with more than two overlapping images. This

property might be constrained by two main factors. The first one is the nature

of the method itself, as in [87, 88] and [58], which cannot work with more than

two overlapping images. The second one is related to computational requirements:

non-optimized Gradient algorithms suffer from poor computational scalability when

the input dataset is extremely large, as in the case of Giga-Mosaics.

Leaving aside the first blending methods in the literature [87, 88, 13, 58], through-

out the last decade most of the approaches have been scalable up to a certain point.

Approaches such as [131] are intended to reduce computer requirements allowing the

efficient processing of high resolution photo-mosaics. Unfortunately, these benefits

only appear in the case of mosaics with images showing low overlap. In that case is

possible to avoid storage and computations for image regions that remain unchanged

after blending. This situation mainly happens in image panoramas, but not in

underwater mosaics, where image registrations are unpredictable and geometrically

non-uniform.

3.4.4 Color and Dynamic Range

Color is another critical factor when building visually plausible images. Colors

change significantly as a function of the distance between the camera and the seafloor

(known as robot altitude) due to the wavelength-dependent spectral absorption of

the media. Mosaic blending techniques generally use a Channel Wise approach,
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where three color channels are processed independently and later reunified into a

single color image. These methods have no control over perceptual color attributes.

Several approaches in the literature address the color balancing problem in the

image photo-mosaicing pipeline, based on exposure compensation in single [135, 12]

or multiple channels [133, 64], and based on color transfer techniques [107, 141].

Unfortunately, dealing with extremely large datasets to generate photo-mosaics of

large dimensions and keeping the consistency of the global image appearance is a

difficult task when using methods available in the literature.

The treatment of color channels is common to all the methods in the literature,

with the blending always being performed separately over each channel, indepen-

dently of the number of channels of the source images. Consequently, a different

smooth transition and location of the optimal seam are calculated for each channel.

In this sense, Agarwala et al. [3] requires user intervention to specify some preferred

color values, and [131] adds some constraints to the color variations in order to avoid

significant color shifting. These corrections are performed channel-wise and do not

treat the deep nature of the real colors. As a consequence, their performance when

dealing with images evidencing different appearances due to light attenuation and

illumination inhomogeneities is unpredictable.

The Dynamic Range of the image and the quantization of the data provided by

the camera sensor strongly influence the accuracy of the final scene representation.

Despite some of the methods reviewed being be able to work with high dynamic

range images (with more than the common 8 bits per pixel and channel), they are

not reported to do so. In fact, any High Dynamic Range blending method will

require a Tone Mapping algorithm in order to display the High Dynamic Range

mosaic image into a Low Dynamic Range device, such as conventional screens or

printers [27].
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Few blending methods claim to work with high dynamic range images. Nev-

ertheless, gradient based blending methods are able to intrinsically deal with this

kind of imagery, requiring the application of tone mapping algorithms to the mosaic

image generated in order to visualize the results. A high dynamic range should be

reduced so as to be displayed in low dynamic range devices.

3.4.5 Multiresolution

The use of a Multiresolution approach was first published in 1983 by Burt and

Adelson [13]. Its main advantage is the significant reduction, but not suppression,

of the noticeability of Double Contours due to registration inaccuracies. Under this

approach, the images are decomposed into a set of band-pass components. For each

different band, an appropriately selected width for the transition region T is applied,

ensuring a smooth fusion at this spatial frequency band. An important shortcoming

is that the method requires keeping several representations of the same image in

memory, increasing memory requirements. The price of the seamless appearance is

the loss of high frequency details. The multiresolution approach, based on the idea

of Burt and Adelson [13], is applied by Su et al. [125] to the wavelet domain, but is

the only variation of this idea in the literature.

3.4.6 Local / Global and Real-Time Operation

With respect to the Locality of the methods, Global methods require knowing

all the final mosaic information a priori in order to perform the blending procedure,

while Local methods can work on small parts of the final photo-mosaic, joining

them together upon completion. Obviously, Global methods often require higher

computational resources than Local ones, while Local methods may not be able

to solve some problematic situations, such as loop closing, i.e. visiting twice or
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more a given scene region, or exposure compensation during a pair-wise sequential

processing.

Methods that are able to deal with most of the mosaicing and blending issues

in Real Time [144], though uncommon, are optimized towards high performance

for large sequences. The results obtained are not as accurate as those from off-line

approaches, but acceptable when on-line feedback is required. Real-time techniques

are typically based on the Sequential Processing of the input data. Some methods,

like Milgram (1975) [87] or Hsu and Wu (1996) [58], can process the images pair-wise

and add the result to a final mosaic canvas. The pair-wise processing is a limiting

factor for the scalability of these methods, which are not appropriate for sequences

where a given place is visited more than once as the drift accumulated due to the

sequential registration, without a global alignment correction, results in inconsistent

overlapping regions. Methods that do not perform a sequential processing are better

positioned to deal with problems like exposure compensation and ensure global

appearance consistency.

3.4.7 Relevant Visual Performance Criteria

Different exposures between images are especially common in underwater imag-

ing. Frequently, the AUV or ROV cannot keep a perfectly constant altitude (distance

to the seafloor) during the survey, requiring the automatic adjustment of the expo-

sure time between frames. The exposure correction might be performed actively,

by preprocessing the image sequence to be blended, but may also be corrected by

means of gradient domain techniques, inasmuch as this domain is not sensitive to

time exposure.

As already pointed out above, ghosting and double contouring are mainly due

to geometrical registration inaccuracies. When two overlapping images are not
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properly aligned, non-coincident features are smoothed, and thereby ghosted, when

fused, while strong contours appear twice in the blended photo-mosaic. Underwater,

the forward scattering phenomenon is responsible for loosing contrast [62] and,

therefore, ghosting appears when merging images with significantly different depths

(see Figure 3.6). Double contouring underwater is sometimes unavoidable due to

the limited camera distance to the seabed leading to parallax.

Moving objects often appear in underwater imaging, e.g. fish, algae, crustacea

and other life forms or floating objects. Most of the Optimal Seam Finding algo-

rithms are able to deal with moving objects, actively or passively, and cut them out

of the overlapping regions, keeping a single representation of each object in the final

map.

Finally, the parallax robustness determines the ability of a given blending algo-

rithm to deal with a sequence where the 2D assumptions were considerably violated.

Underwater scenarios are characterized by frequent seabed depth-changes, as well as

the direction of shadows produced by the artificial lighting systems of the AUV or

ROV. Optimal Seam Finding techniques are typically the most indicated methods

to deal with this problem.

The parallax robustness is strongly related to its tolerance toward moving objects,

and methods able to deal with moving objects are often able to handle parallax. In

fact, parallax robustness can be considered in practice as the ability of a method to

avoid repeated objects or shapes.

3.5 Conclusions

The generation of terrestrial and aerial photo-mosaics from a set of images is a

problem widely treated in the literature. The number of approaches confronting this
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Figure 3.6: Registration of two images acquired at significantly different altitudes. The
image acquired at higher altitude shows strong light attenuation and scattering. These
effects cause a noticeable different appearance between the two images.
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problem is large and the main imaging issues, such as exposure variations, vignetting

effects and the presence moving objects, have been mainly solved.

Nevertheless, the underwater medium presents additional problems which tend

to make the common approaches fail when applied in this context. The problems of

extreme non-uniform illumination, backward and forward scattering and parallax, in

addition to significant exposure variations and frequent moving objects, are specific

to the medium, and few approaches have been presented in that direction.

Consequently, a different processing pipeline is required to deal with all the

problems affecting underwater imagery. This pipeline should also be computation-

ally efficient to allow processing large data sets, whose images might be affected

to various degrees by the underwater phenomena presented. Obtaining consistent

high-resolution large-scale geo-referenced photomosaics is the goal of the developed

pipeline, comparable in terms of visual agreeability to terrestrial and common aerial

photo-mosaics.
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Chapter 4

Proposed Framework

A full photo-mosaicing pipeline has been developed, conceived to address the

most relevant specific problems of underwater imaging. Nevertheless, the application

field of the proposed approach can be extended to the generation of conventional

panoramas or maps from terrestrial or aerial images. Figure 4.1 shows the sequence

of steps that are performed by our approach, which are intended to build high

resolution blended photo-mosaics of the deep-seafloor.

4.1 Input sequence preprocessing

Inherent underwater optical imaging problems have already been described in

Section 1.2. Aside from exposure variations, which are a common issue in terres-

trial images, other important problems are not directly addressed by conventional

panorama generation software. To deal with these, image pre-processing is required,

and is becoming a key step with a strong impact on the quality of the final photo-

mosaic rendering.

71
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Figure 4.1: Full processing pipeline of the proposed underwater photo-mosaicing
approach. Some of the processing steps can be executed using parallel computing
techniques to increase the performance of the algorithm.
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4.1.1 Inhomogeneous lighting compensation

The lighting inhomogeneity problem in deep waters is mainly due to the lack

of natural global lighting, and to the necessary use of artificial light sources with

limited power. Illumination systems are often rigidly attached to the AUV or ROV

and light sources typically concentrate the rays into a given area where the camera is

focused. The acquired image borders suffer from darkening due to light attenuation,

principally induced by the light absorption of the water. The effect is similar to

vignetting, although the phenomenon is not produced by the camera lens but by the

medium itself. All images from a given sequence are affected, to some degree, by

this factor. The illumination distribution from artificial light sources changes with

the distance from the camera to the seafloor. Colors are also affected due to light

absorption, resulting in depth-dependant color profiles of the images acquired.

Imaging conditions hinder the application of a single compensation function

on all the images acquired in absence of precise information about the placement

and nature of the light sources, the distance from the camera to the seabed, and

the 3D structure of the scene. This circumstance results in the loss of a global

terrain perception, which is a cognitive sensation factor highly dependant on lighting

coherency [44].

A feasible correction of lighting inhomogeneity and vignetting-like artifacts in a

single step consists of the application of a 2D “inverse illumination distribution” to

the original input images [42, 15, 111, 48]. The main aim of this operation is to

enhance the luminance of the darkened image borders in order to obtain uniform

illumination throughout the image. If a high sensitivity camera with a high pixel

depth (> 8bpp) is available, not only the luminance but also the richness of detail

can be enhanced in the region affected by the light absorption.

The illumination pattern describing the “inverse illumination distribution” func-
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Average of
Selected Images

Gaussian
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Depth Image Subset (n)d

Selected Images (n / 2)

Figure 4.2: Lighting pattern compensation procedure. The images of a sequence are
classified into depth subsets, and a different lighting pattern compensation function is
computed for each one. The figure shows a given set of n images from which the n/2
images having the lowest TV value have been selected. Next, the images are averaged
and the result normalized and smoothed using a Gaussian filter with an adaptively selected
σ.

tion can be estimated from a subset of images showing low texture and reduced 3D

structure (i.e., flat, sedimented terrain). As this function changes with the distance

from the light source to the seabed, a three-step approach is proposed (Figure 4.2)

to correct the lighting artifacts. It is based on two main ideas: (1) the application of

a depth dependant inverse illumination distribution, and (2) the automatic selection

of the images to compute this pattern in a given depth-range based on the Total

Variation (TV ) metrics [17], as described below.
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Quasi-altitude Estimation

Underwater image acquisition platforms often record not only image sequences

but also other synchronized data like heading, acoustic positioning, surface Global

Positioning System (GPS) positioning and altitude, among others. Unfortunately,

camera altitude is not always available for every data set. Consequently, as a first

step, the images of a given sequence should be classified according to altitude in

order to apply a different lighting correction function to each one, but assuming

that precise information about distance from the camera to the seafloor may not be

available. In order to solve that issue, a quasi-altitude estimation is now proposed

to be used instead.

Given a sequence of images and its corresponding registration parameters onto

the photo-mosaic frame, it is possible to determine which ones were acquired closer

to the seabed and which ones further away by computing the size or scale of the

image once registered to the 2D photo-mosaic coordinate system. Specifically, it is

possible to consider only the diameter of the transformed pictures (i.e. the size of

the longest diagonal) since this scale and the altitude are highly correlated when

the focal length of the camera is assumed constant. Once an image list has been

built and sorted according to their diagonal length, the images can be classified in

subsets of similar altitudes.

Depth Sliding Window Strategy

The “inverse illumination distribution” changes with the distance from the cam-

era to the seafloor, inasmuch as the light sources are rigidly attached to the UV.

Consequently, this distribution should dynamically vary to compensate for depth

fluctuations. In that sense, a depth sliding window strategy can be used. Given all

the images of a given data set, the first step consists of sorting them by altitude,
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using sensor-acquired depth information or the quasi-depth estimation measure.

The second step consists of opening a window centered on a given reference image

in the sorted set with and arbitrary size depending on the frequency of the depth

changes. The images in this window will be used to compute the “inverse illumina-

tion distribution” to be applied to the image on which the window is centered. With

this strategy, a smooth variation of the function is ensured. Nevertheless, to avoid

excessive computations, the step between reference images can be set to N instead

of one image, and the function can be applied not only to the reference image but

also to a small temporal neighbourhood determined by the value of N . In any case,

this strategy will obtain an acceptably smooth variation of the function, in contrast

with other strategies using a single function for all the images in the sequence, or

those determining an arbitrary number of image depths.

Image Selection

For each image window, a distinct compensation function for the light distribu-

tion should be computed from images with a low texture content and homogeneous

appearance. Low textured images are the best suited for this estimation due to their

low average gradient length. An adequate ranking metric for the selection of these

images is the TV.

TV =
1

W ·H

W−1∑
x=1

H−1∑
y=1

∥g(x, y)∥ (4.1)

Equation 4.1 shows the computation of the normalized TV for a given image,

where W and H are the width and height sizes and ∥g∥ notates the L1 or L2 norm

of the g gradient vector. The TV values for the last row and column of a given

image are set to 0.

Equation 4.1 can be used with both L1 or L2 norms. In our experiments, we
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have selected the L2 norm, i.e. Euclidean metrics, to evaluate the homogeneity of

the images, because it allows characterizing the magnitude of the neighboring pixel

variations (i.e., gradient vectors). Once the TV measure has been computed for all

the images of a given altitude subset, an image subset of low TV is used to estimate

the light distribution. The aim of the measure is to identify images containing

structures rich in details. The presence of high frequency noise, mainly due to

scattering on macroscopical particles in suspension of scattering (see Figure 4.3),

may skew the image quality evaluation. The TV magnitude of the image may

inappropriately increase leading to scenarios where the dominant part of the metrics

comes from high frequency noise. Nevertheless, the unwanted effects of the high

frequency components can be avoided by building lower resolution images from the

originals with N × N super-pixels. This simple approach significantly reduces the

effects of the high frequency components in both the image and the TV measure. In

practice, 8×8 linearly averaged super-pixels may produce good results for images of

1024×1024 pixels, which are reduced to 128×128 pixels. The images obtained save

every important seabed feature but cancel the effects of the scattering phenomena,

allowing the use of the TV as an image quality evaluation metrics. For each depth-

range, the images with a TV value below the median can be used to compute the

illumination correction function. To obtain this function, the selected images are

averaged and the result is smoothed by a low-pass filter to reduce the remaining

high frequency components, as explained below.

Compensation of Lighting Inhomogeneities

In order to compensate the light attenuation problems and obtain an image with

a homogeneous illumination lH , the acquired luminance values are divided by a given
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compensation mask as shown in Equation 4.2

lH(x, y) =
l(x, y)

lG(x, y)
(4.2)

where l is the image luminance values, lG corresponds to the illumination pattern

and lC is the lighting compensation pattern before the Gaussian smoothing.

lC(x, y) =
1

N

N∑
k=1

lk(x, y) (4.3)

Equation 4.3 computes the average value for every pixel position given a stack of

N images. Finally, the compensation mask lC obtained is smoothed with a low-pass

Gaussian filter to obtain the illumination distribution lG function. This distribution

is then used for the lighting inhomogeneity compensation, as per Equation 4.4, where

⟨⟩ denotes Gaussian smoothing.

lG(x, y) = ⟨lC⟩ (4.4)

(a) (b) (c)

Figure 4.3: (a) Example of back-scattering due to the reflection of rays from the light
source on particles in suspension, hindering the identification of the seafloor texture. (b)
Example of forward scattering caused by the local inter-reflection of the light suspended
particles, hiding the terrain behind them. (c) Effects produced by light absorption of the
water resulting in an evident loss of luminance in the regions farther from the focus of the
artificial lighting.
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The value for σ used in the Gaussian convolution is selected adaptively for

each altitude subset. Starting from the average image lC in Equation 4.3, a set

of increasing values σ1, σ2, ..., σk will be sequentially applied to it until the smoothed

TV value is under a threshold V (lG(σ)) < ε. Values in the range of d
256

, d
128

, ..., d
32
,

where d is the shortest dimension of a given image, offer good results in practice.

With this threshold condition the appropriate smoothness and uniformity of the

blurred image are ensured.

4.1.2 Gradient-based image enhancement

As the altitude of the robot increases, the effects of the previously mentioned

back-scattering, forward scattering and light absorption phenomena become more

evident. The strategy proposed to enhance the high frequency details affected by

these phenomena is a simple and global approach, selecting the highest quality

image in a given surrounding region from the whole set, and using it as a con-

trast or gradient reference. To avoid unpredictable visual effects, the non-global

approaches of homomorphic filtering [51, 26], Contrast Limited Adaptive Histogram

Equalization (CLAHE) [103] (Figure 4.4) and histogram specification [107] are not

used, due to the following reasons. On the one hand, homomorphic filtering may

lead to an excessively homogeneous appearance of the filtered image and to a loss

of global consistency in the appearance of the photo-mosaic. The suppression of

low frequencies performed by this kind of filter may provide some advantages in

the visibility of local details, but in giga-mosaicing, depending on the zoom factor,

every spatial frequency can be important to recognize and understand the nature

and morphological attributes of the seabed structures. On the other hand, histogram

specification is highly dependent on the reference image, and therefore the modified

image may often loose its realistic appearance. Therefore a simple but robust local
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contrast stretching can be applied to equalize a given sequence of images.

Image Quality Estimation

There is not a single and objective criterion to identify the image with the

highest visual quality from a given set because the concept of “quality” involves

different cognitive aspects. However, phenomena affecting image detail richness

and sharpness, such as scattering and light absorbtion, are known to grow with the

distance from the camera to the seabed.

This simple and fast approach may lead to poor results when the selected image

presents an over-exposed region, for example, due to being acquired too close to the

seabed under strong illumination. A more robust selection of the reference image is

to use TV to rank image quality also. Thus, the image with the highest TV may

be selected as the reference image while ensuring that over-exposed regions do not

affect this selection. According to our experimental validation, the image with the

highest TV coincides in most cases with the closest one to the seabed on a given

survey, and with the second or the third closest images in the few remaining cases.

Global Contrast Stretching

The TV value of the reference image selected is used to compute the stretching

factors that will be applied for a global contrast (or gamma amplification) on all the

other images. This stretching factor should be selected below a given threshold Ts to

avoid overamplification of areas of poor contrast, e.g. textureless sediment-covered

regions. Ts depends on the Signal-to-Noise Ratio (SNR) of the image, which can

vary highly according to water quality, lighting intensity, and/or the camera sensor.

Despite the application of these gradient corrections, the merging of images from

highly different depth categories will unavoidably produce noticeable seams due to
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Figure 4.4: (Top-left) Image lacking contrast on its left side. (Top-right) Image processed
with a CLAHE algorithm, showing enhanced details in the originally lower-contrast
regions. The appearance of the processed image is less realistic than the original due
to an aggressive level of local filtering. (Bottom-left) Image processed with a Butterworth
homomorphic filter. The image evidences a generalized lack of contrast. (Bottom-right)
Image resulting from the histogram specification of an apparently uniformly illuminated
image into the test image. The image obtained has better contrast than the original, but
still evidences problems in the darkest areas.
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their distinct blurring levels. The stretching factor
TV reference

TV (k)
is applied to enhance

the x and y gradient components of the k-th image.

4.2 Image registration with global alignment

While image registration is not directly related to the blending procedure and,

therefore, is not at the core of the work presented here, the accuracy of image

registration will significantly affect the final quality of the photo-mosaic rendered.

Even when navigation data (such as USBL positioning, heading, depth, etc.)

are available, pair-wise image registration is still required to ensure a precise cam-

era motion estimation. Pair-wise registration can be performed using a feature-

based approach, involving the well known image feature detectors and descriptors

of Harris [54], SIFT [80] and SURF [5], among others. When building a 2D photo-

mosaic from a set of images acquired by a camera close to the seabed, the planar

assumption of the scene can be violated due to the microbathymetry of the seafloor.

As already stated in Section 2.3.2The 3D geometry of the scene, in addition to the

short camera distance, results in parallax. This problem increases the difficulty of

estimating the 2D planar transformation between consecutive images, often leading

to misregistrations, resulting in double contour effects during blending.

A global alignment strategy [40, 31] is required to reduce the inaccuracies of a

simple sequential pair-wise registration, as explained in Section 2.4. The strength

of the global alignment arises from closing-loops because they allow a significant

improvement of the camera trajectory estimate when re-visiting an already mapped

area. In absence of loop-closings, and considering input sequences of thousands of

images, the drift accumulated by the pair-wise transformations leads to significantly

inconsistent (missaligned) photo-mosaics.
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4.3 Image contribution selection

The parallax effect will influence both image registration and image blending

procedures. On the one hand, image panorama software often fails to register

sequences with strong parallax since they assume camera rotation only. On the

other hand, and even using the best possible registration, the double contouring

problem will appear when merging two or more images if the vehicle (and the

camera) translates and the scene is not perfectly planar.

The solution to avoid ghosting artifacts is the use of information from a single

image for each pixel of the final photo-mosaic whenever possible. Blending is per-

formed in a narrow region around the optimally computed seams, and consequently

information from more than one image is fused only in a small fraction of the

final photo-mosaic. Ghosting may occur in those regions, but its noticeability is

significantly localized and dependent on the width of the transition region.

4.3.1 Image discarding

Each pixel of the photo-mosaic is obtained from a single image pixel whenever

possible. To maximize the quality of the final photo-mosaic, the contribution from

sharper and informative images should be prioritized. Image blending algorithms

take into account the information of all the available images. Unfortunately, this may

lead to unnecessary contributions of low quality images even when higher quality

information is available in a given area. Therefore, discarding low quality images will

ensure that their information is not taken into account in any sense. Furthermore,

ignoring these images will also impact the optimal seam finding step, reducing the

number of paths to be computed, and consequently speeding up the process. The

developed discarding procedure is described below.
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(a) (b) (c)

Figure 4.5: (a) First closest map and (b) second closest map corresponding to the
registered images finally blended into the (c) photo-mosaic.The blue level of every pixel in
the closest maps represents the index of the image having the closest and second closest
image centers. The distance measure gives more priority to pixels belonging to images
which have been acquired at a lower altitude, consequently showing a higher level of
detail.

First, the frames of the original images are mapped into the global photo-mosaic

frame using the image registration parameters in order to know their shape and

area coverage in the final photo-mosaic coordinate system. The depth estimation is

computed, assuming that depth information is not available in the navigation data.

It is possible to discard low quality images covering a region of the scene if higher

quality ones are available for that area. The discarding procedure is performed

using logical operations on the polygons describing the images, which is an efficient

approach requiring few resources.

Each image is defined as a trapezoid described by four vertices corresponding to

the four image corners once registered to the photo-mosaic frame. Additionally, the
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polygons are sorted decreasingly according to their corresponding image TV value.

At each step of the iterative process, a new image trapezoid of the sorted list is

added to the final photo-mosaic polygon using simple binary operators. If the area

covered by the new trapezoid has already been fully covered by the photo-mosaic

polygon (i.e. the trapezoid does not intersect the photo-mosaic polygon and lies

inside this one), the image is discarded because this same region is supposed to have

already been covered by higher quality images. Otherwise, if the image to be added

contains information from a non-covered area, the photo-mosaic polygon is updated

and the image is accepted.

4.3.2 Pixel-level first-closest and second-closest maps

The proposed blending methodology determines the first and second closest maps

at pixel level. The first closest map contains, for each pixel coordinate of the photo-

mosaic, the index of the image whose center is closest (see Figure 4.5). The second

closest map does the same, but with the second closest image indices. Similar to [47],

the overlap of these two maps will use a graph-cut algorithm to compute the seam-

strips for blending. For every seam pixel two image indices are selected. Therefore,

every pixel outside the seams (most of the photo-mosaic) is associated to a single

image.

The Euclidean distance between a pixel IM(x, y) in the photo-mosaic frame and

the center of a given n-th image In(x, y) is weighted by a factor wn(s), as shown in

Equation 4.5:

dnM(x, y) = wn(s) ·
√
(xM − xM)2 + (ym − yn)2 (4.5)

where the scalar factor wn(s) is a size-ratio between the n-th image and the image
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having the smallest area once registered. For time efficiency reasons, the ratio is

not computed based on the area of the warped images, but on the length of their

diameters, as explained in Section 4.1.1, to obtain a rough but fast approximation,

as shown in Equation 4.6:

wn(s) = smin/sn (4.6)

where smin is the diameter of the smallest image for a given set and sn is the diameter

of a given n-th image.

This weighting prioritizes pixels from images acquired at low altitudes, close

to the seabed, and consequently less affected by underwater imagery artifacts.

This weighting also maximizes the contribution of ”higher-quality” images to the

final photo-mosaic image. Therefore, in cases like the one shown in Figure 3.6,

only a small percentage of the pixels from the smaller overlapping image are lost

while computing the smooth transition, while the most significant percentage of the

original image is preserved.

4.3.3 Regions of Intersection

The overlap between the first and second closest maps determines the regions

where the pixel level graph cut should be performed. Therefore, for each overlapping

patch, the texture from the two best-quality images is available, and the graph cut

is used to find the optimal boundary seam, determining the contribution of each one

in the final photo-mosaic. Each region of intersection ROIi,j between the two images

i and j, where i is the closest image, j is the second closest image, and Ri,j denotes

the photo-mosaic region where i and j coincide, is defined as ROIi,j = Ri,j ∪Rj,i.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Example of a pixel level graph-cut performed between two overlapping images
acquired at different altitudes, and consequently evidencing differences in appearance. (a)
Result of the graph cut performed on the images without enhancement, (b) depicts, in
white, the narrow strip (20 pixels on each side of the cut) where the gradient domain
blending is performed and (c) shows the blended image pair. (d) is the result of the graph
cut performed on the images after being enhanced according to the proposed neighboring
based enhancement approach, (e) depicts, in white, the narrow strip where the gradient
domain is performed and (c) shows the blended image pair. Notice that the results
of the pixel-level graph-cuts are different before and after the application of the image
enhancements.

4.4 Gradient domain blending

4.4.1 Pixel-level graph-cut

The proposed blending strategy uses an optimal seam finding algorithm to com-

pute the best boundaries in the overlapping image areas. A pixel level graph cut is

performed on the regions of intersection determined by the first and second closest

maps. In contrast to [47], the graph-cut is performed at the pixel level in order to

guarantee maximum accuracy of the cut, given that the main aim of the algorithm
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is to achieve a high image quality. The algorithm searches for the boundary that

minimizes the cost of the transition from one side to the other of the border line for

every pair of pixels. The function has three weighted terms controlling the behavior

of the cut:

C = µ1 · f(I1, I2) + µ2 · s(g1, g2) + µ3 · L (4.7)

The first term µ1 ·f(I1, I2) measures the intensity differences between overlapping

pixels. The second term µ2 · s(g1, g2) measures the gradient vector differences along

the boundary B seam. Finally, the third term µ3 · L measures the length L of the

seam. The three weighting factors µ1, µ2 and µ3 control the behavior of the cut. The

gradient term, which is not been used in such a way in the literature [47], allows us

to deal with differently exposed overlapping regions. Here an intensity-based graph

cut will consider that the differences between neighboring pixels are large even if

the registration is accurate, and thereby avoid those regions where the cut should

be performed. Instead, if the difference between the gradient vectors along the seam

path is used, the optimal seam will be found independently of the differences of

image exposure. In the case of misregistration of moving elements in the scene, the

term µ2 · s(g1, g2) avoids bisecting those elements by having the seam line by-pass

them. This is due to the fact that even a large value of L in the by-pass has less

cost than crossing a double contour with large gradients of a given structure. The

gradients are also less sensitive to other illumination issues, such as those caused by

artificial lighting and non-uniform lighting. Furthermore, working in the gradient

domain compensates the exposures when recovering the luminance images from the

gradient vectors. Despite the benefits of the gradient term, the intensity term is kept

in order to favor low photometric differences when registration is highly accurate.

Therefore, a weighted addition between both intensity and gradient domain terms
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is proposed.

The effects of parallax and registration inaccuracies are minimized since the

graph cut tends to place the seam in textureless regions where morphological differ-

ences are low. For the same reason, cuts over moving objects tend to be avoided,

thus benefiting the visual consistency of the blended results.

Performing a graph cut, especially at pixel level, is usually a computationally

expensive operation when the size of the region to process is significantly large.

Nevertheless, the regions on which the graph cut is working, determined by the

intersection between the first and second closest maps, are rarely large. Furthermore,

this process can be parallelized, taking advantage of recent multi-core processors, to

speed up the execution in one of the main bottlenecks of the processing pipeline.

4.4.2 Gradient blending over seam strips

Once an optimal seam has been estimated, a smooth transition between neighbor-

ing regions needs to be performed. Even for sequences where the images have been

preprocessed to solve non-uniform illumination problems such exposure artifacts

and contrast level equalization, the graph cut result may lead to an image with

noticeable seams. Therefore, smoothing the transition between the image patches

is required. The image fusion around the computed seams should be performed in

a limited region, being both wide enough to ensure a smooth transition and narrow

enough to reduce the noticeability of ghosting and double contouring. According to

our experience, a transition strip of 10 pixels at each side of the seam (i.e., a 20

pixels transition region) has been demonstrated to be appropriate for sequences of

1-Mpixel images.

A new transition smoothing approach is proposed in this thesis. The applied

method is a weighted average around the seams in the gradient domain, as shown
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in Equation 4.8, where g1x, g
1
y, g

2
x and g2y are the x and y gradient fields for the two

involved images, ĝx and ĝy are the x and y gradient fields after the blending and µ

is the smoothing transition function. Concretely, a 3rd order Hermite function is

applied. The advantage of performing the weighted average in the gradient domain

is the automatic compensation for different exposures between neighboring images

when the luminance image is integrated from the gradients as a final step.

gx(x, y) =µ · g1x(x, y) + (1− µ) · g2x(x, y)

gy(x, y) =µ · g1y(x, y) + (1− µ) · g2y(x, y)
(4.8)

4.5 Luminance recovery from gradient fields

After independently processing each overlapping strip region around the seams,

the resulting patches need to be unified into a single, larger image. Each patch

processed should be updated on the final photo-mosaic image, while information

which belongs to regions without overlap should be recovered from the corresponding

original images.

Once the final gradient domain photo-mosaic has been composed after the “strip-

blending”, a non-integrable or inconsistent gradient field is obtained. In order to

recover the luminance values from the gradient fields, a multigrid Poisson solver [67]

is used.
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4.6 Tone mapping

The solution provided by the gradient solver is defined up to a free additive

term on the recovered intensity value. Consequently, a mapping algorithm such as

Minimum Information Loss [97] should be applied to determine this factor. The

main goal of the mapping algorithm is to appropriately manipulate the dynamic

range of the computed image in order to make it fit into the limited range of a

display device while keeping the maximum amount of detail information.

4.7 Giga-mosaic unification

The photo-mosaicing pipeline described is currently implemented in MatlabTM,

using Matlab EXecutable (MEX) files and parallel computing when possible. This

allows the efficient blending of photo-mosaics up to 60 Mpixels in a standard personal

computer with 4 GB of RAM in less than 5 minutes. Nevertheless, this mosaic size

(i.e. < 0.1 Gpixels) is small at the gigapixel scale in which this work is interested,

and a solution should be used to reach the desired 5-15 Gpixels required to process

the currently available data sets.

The amount of RAM may become a limitation when dealing with gigapixel

images, especially if the images have more than 8 bpp (e.g., 16-bpp grayscale images

or 24/48-bpp color images). The strategy proposed to reduce the computer require-

ments consists of decomposing the problem into sub-problems (i.e. rectangular tiles)

in order to sequentially solve them and finally unify them into the final mosaic image.

The price of this decomposition is the need of a second level of blending of the

tiles. This one is similar to the “strip-blending” presented in Section 4.4.2 applied

to the optimal seams, but is performed in the intensity domain. This second level

of blending is performed only in the intensity domain for computational reasons.
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Figure 4.7: Tiling scheme for the Giga-photo-mosaic blending. Each tile is processed as
an independent photo-mosaic and blended with previously processed neighboring ones in a
given global-strip (i.e., a row of blended tiles), using a weighted average in the luminance
domain. Next, each two neighboring rows are blended using the same approach. The
Giga-photo-mosaic is the result of joining all the global-strips.
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When compared with gradient domain operations, intensity blending is inexpensive

and can deal with large amounts of data. Furthermore, this method does not lead

to loss of quality due to the particular conditions in which it is applied. There are

two reasons for the need of a blending step between neighboring tiles. The first is

the different free factor of every tile after the luminance recovery using the Poisson

solver since this factor is multiplicative when working with log I values. The second

is the nature of the Poisson solver which spreads the inconsistency of the gradient

fields along the whole area recovered. After multiplying the pixel intensities of

every tile with the corresponding constant factor, a tile-overlap intensity blending

has to be performed. This kind of blending will compensate the gradient differences

of overlapping tiles coming from different Poisson solutions. The decomposition

necessarily differs from the theoretically exact Poisson solution, given that the errors

due to gradient inconsistencies will be differently spread by the solver in both cases.

Nevertheless, these differences are negligible in practice.

Although the tile-level pipeline described above is straightforward, its technical

implementation deserves further clarifications owing to the need to manage available

computational resources with such large problems (i.e. gigapixel photo-mosaics).

The rectangular “canvas” of the full photo-mosaic is divided into a regular grid of

overlapping tiles in order to process it using an out-of-core algorithm [137]. The size

of the tiles depends on the available RAM. For time efficiency, the space required to

store a single tile and a full global-strip (i.e., a row of tiles) is allocated to memory,

avoiding an excessive amount of slow hard drive sequential accesses.

A weighted average smoothing in the intensity domain is used to join neighboring

tiles in a given rectangular overlapping region. In our experiments, the size of the

overlapping regions varied between 15% - 25% of the tile size depending on the

initial spatial image arrangement. Once a tile has been processed, it is stored in the
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current global-strip, performing a blending with the previously processed one (when

available). When a single global-strip has been processed, it is stored in the hard

drive to save RAM space and the same procedure is repeated on the next one. The

strategy used to blend two neighboring tiles is also used to blend two neighboring

global-strips. Performing the blending in this structured way avoids the problem

of simultaneously fusing more than two images of a given region, which may make

the computation of a transition function of the overlapping areas more complex.

Figure 4.7 shows the giga-mosaic unification strategy described above.

4.8 Conclusions

The main underwater imaging issues affecting underwater photo-mosaicing have

been treated by the approach presented. For each one of the specific underwater

imagery problems, a working solution has been presented and a new processing

pipeline has been defined. In the preprocessing stage, an adaptive non-uniform

illumination compensation based on a sliding window on the depth sorted image

sequences has been proposed. This function allows not only giving an homogeneous

appearance to a sequence of images, but also enhances hidden details in the case of

high dynamic range images. Concerning exposure variations, the blending strategy

based on the image gradients allows the avoidance of dealing with this problem, inas-

much as gradient methods are not sensitive to exposure variations. In the context of

gradient domain methods, a novel hybrid luminance and gradient based graph-cut

strategy has been presented, allowing the avoidance of problems concerning exposure

variations and moving objects in the scene. Light attenuation and forward scattering

lead to loss of contrast and poor detail in the images. In order to solve this issue,

an adaptive image enhancement, based on the selection of the highest quality image
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in a given surrounding as the image sharpness reference, has been presented. The

approach allows giving an homogeneous appearance to the images involved, and to

enhance, up to a reasonable level, the sharpness of the original images. Finally,

and aiming to efficiently generate high-resolution large-scale mosaics, a method to

subdivide the mosaic into smaller and easily processable tiles has been presented.
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Chapter 5

Results

The algorithms making up the proposed processing pipeline have been conceived

to address several specific underwater imagery problems. These problems are present

in the various underwater sequences used to test the performance of the approach.

Some of the main sequence properties are the large number of images (from hundreds

to tens or hundreds of thousands), the image acquisition using artificial light and

at frequently changing depths, the presence of particles in suspension and moving

objects (mainly fishes and algae, but also warm water outflow) and the significant

relief changes inducing parallax effects.

In the following sections, the datasets used for testing purposes are described

and their main properties are pointed out. The problems present in each are

listed as well, and the performance of the approach developed is evaluated. Given

the nature of the datasets, a comparison of the results obtained with a known

groundtruth is not feasible. Consequently, a numerical evaluation of the results

cannot be provided. Therefore, the goodness of the results is measured based on

several aspects such as the consistency of the appearance of the mosaic obtained

over the area covered, the avoidance of double contours or structures and the ability

97
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to keep the most informative data in those areas where images of different quality

overlap. Furthermore, comparisons with some of the most widely used [13] and best

performing [129] state-of-the-art methods are also presented.

5.1 Testing Datasets

The developed processing pipeline has been tested in two different kinds of

datasets. Firstly, the algorithms have been applied to several extensive image

surveys intended to characterize and monitor the evolution of hydrothermal sites

along the Mid-Atlantic Ridge. Secondly, a very-high resolution color image dataset

belonging to the seventeenth century LaLune shipwreck (Toulon, France) prospec-

tion has been also used, to verify the performance of the proposed approach when

dealing with color images.

Hydrothermal activity along mid-ocean ridges accounts for ∼ 30% of the Earth’s

oceanic heat flux, a third of which takes place on or near the mid-ocean ridge

axes [124, 30]. As explained in [4], photo-mosaics of large seafloor areas in repeated

surveys can be used for temporal studies of active processes. Imagery provides

constraints of temporal variability at two time-scales. On the one hand, based upon

changes in individual outflow features identified in mosaics acquired in different

years, it is possible to monitor the evolution of diffuse outflow throughout the vent

field over time. On the other hand, photo-mosaics reveal broad patches of seafloor

which can be interpreted as fossil outflow zones owing to their association with

extinct chimneys and hydrothermal deposits. The structures are not recognizable

from video imagery alone, or from photomosaics with less efficient removal of arti-

facts (e.g. ghosts and seams). Repeated image surveys with adequate processing

can be routinely performed to characterize and study the temporal variability of a
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broad range of sites hosting active processes (e.g., cold seeps, hydrothermal fields,

gas outflows, etc.), opening the possibility of better understanding the dynamics of

fluid flows in the sub-seafloor as well as quantification of fluxes, among many active

processes occurring at the seafloor.

Over the last 14 years, numerous surveys of the Lucky Strike hydrothermal

field on the Mid-Atlantic Ridge south of the Azores Islands have been performed.

During this period, the three major vent fields, Menez Gwen (average depth 850m),

Lucky Strike (average depth 1650m) and Rainbow (average depth 2300m) were

discovered along the Mid-Atlantic Ridge and extensively studied from the biological

and geological points of view. Lucky Strike mosaics, generated from> 56, 000 images

acquired in 1996, 2006, 2008 and 2009, reveal the distribution and type of diffuse

outflow throughout the field and their association with high-temperature hydrother-

mal vents. The 1996 and 2008 surveys were the most extensive for the Lucky Strike

field giving a detailed characterization of actively venting areas, including the spatial

distribution of outflow zones, their type, as well as their relationship to substrate and

structure [4]. Nevertheless, the 1996 survey, which optical imagery was acquired by

a different camera than the subsequent ones, is not taken into account hereinafter,

given the aggressive level of local filtering that suffer all its images.

The datasets presented below were collected by the Victor-6000 ROV [121]

(Figure 5.1) deployed by the oceanographic vessel Pourquoi pas? from IFRE-

MER, during the various MoMAR (Monitoring the Mid-Atlantic Ridge) cruises

(IFREMER/CNRS, France). The acquisition was performed with a grayscale, high

sensibility camera system (OTUS) installed in the geophysical mapping payload

(Module Route) at an altitude of ∼ 5− 10m from the seafloor. The OTUS camera

features a Thompson MPP CCD grayscale sensor with a resolution of 1 Mpixel and

14 bits per pixel. The frequency of the acquisition was 1 image every 5 seconds and
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the optical data was stored in TIFF format. The payload also included 4 Flashes

(1200 joules), a RESON Seabat 7125 multi-beam echo sounder and a SIMRAD

EK60 echo sounder altimeter. The onboard navigation system also included an

RDI Doppler Velocity Log (DVL), an iXSEA OCTANS fiber-optic gyrocompass

and a Paroscientific depth sensor. A calibration to obtain the intrinsic parameters

of the OTUS camera was performed based on the Bathyluck 2009 images, with a

calibration pattern deployed at the seafloor, and then used for the 2006, 2008 and

2009 mosaics.

Figure 5.1: VICTOR ROV being deployed during one of the surveys on the MOMAR08-
Leg1 Cruise. Copyright: CNRS/IFREMER.
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5.2 MoMARETO’06 (dataset #1)

The dataset consists of 4,628 grayscale images of 1 Mpixel with 14 bits of color

depth and stored in 16-bit TIFF format. During the cruise the three major vent

fields (Menez Gwen, Lucky Strike and Rainbow) were visited. The images suffer

from non-uniform illumination, depict frequent slopes that emphasize the effects of

light attenuation, and present sporadic moving fishes (see Figure 5.2). Despite the

fact that the area covered by the exploration was extensive (larger than 1km2), the

acquisition was very sparse, and rarely more than two parallel transects overlap.

The resulting blended mosaic for the Lucky Strike hydrothermal field was ren-

dered with a resolution of 10mm/pixel, resulting in an image of 117, 836 × 85, 924

pixels stored using 16-bit per pixel (≈ 9.4 GPixels), i.e. 18.8 GBytes of RAW data

(see Figure 5.3). The benefits of the blended version of the mosaic when compared

with the non-blended one are evident (see Figure 5.4). Blending does not only allow

obtaining a more visually agreeable, continuous and consistent representation of the

seafloor, but also emphasizes several structures and details in the scene. Thanks

to the prioritization carried out by both the image discarding mechanism and the

image weighting performed during the pixel level graph cut, the images with higher

quality also have a higher contribution to the final rendering than the lower and less

informative ones.

From a cognitive point of view, the proposed pipeline emphasizes fine details,

in contrast to other state-of-the-art methods, such as [129], as can be seen in

Figure 5.5. In this case, although both methods obtain very convincing results, the

proposed approach helps the interpretation task by keeping small structures visible

and selecting the most contrastful view of the scene’s elements, better defining small

details on the seafloor.
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Figure 5.2: Subset of 9 images belonging to the MoMARETO’06 cruise dataset. The
dataset consists of 4628 grayscale images of 1 Mpixel with 14 bits of color depth and stored
in 16-bit TIFF format. During the cruise the three major vent fields (Menez Gwen, Lucky
Strike and Rainbow) were visited.
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Figure 5.3: MoMARETO’06 blended full mosaic at the Lucky Strike vent field. The
mosaic contains 4628 grayscale images of 1Mpixel with 14 bit of color depth and has been
rendered at 10mm/pixel, resulting in an image of 117, 836× 85, 924 pixels.
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Figure 5.4: MoMARETO’06 detailed region 1. The left image shows the mosaic region
rendered by drawing one image on top of the previous one (Last In approach). The
image boundaries are obvious, especially due to their darker corners. Moreover, the
global appearance of the photo-mosaic is not consistent, presenting regions with more
contrast than others. The right image shows the mosaic region rendered when using the
proposed approach. In this case, the image boundaries are not visible and the appearance
is consistent throughout the whole area. Furthermore, some details obfuscated in the
Last In rendering show clearly in the blended version, thanks to the quality based image
selection mechanism.
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Figure 5.5: MoMARETO’06 detailed region 2. The left image shows the result obtained
by Szeliski’s method [129] and the right image shows the result of the proposed pipeline.
Despite both being very convincing, it can be seen that the quality based image selection
mechanism of the proposed method has allowed highlighting some of the details in the
murky regions as well as sharply defining the features with higher contrast in the rest of
the image.
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5.3 MoMAR’08 - Lucky Strike (dataset #2)

The dataset consists of 21,635 images of 1 Mpixel with 14 bits of color depth

and stored in 16-bit TIFF format. A 3-day survey of the Lucky Strike hydrothermal

field was performed in order to acquire all the optical data. As with dataset #1, the

images suffer from non-uniform illumination, depict frequent slopes that emphasize

the effects of light attenuation, and present sporadic moving fishes (see Figure 5.6).

Nevertheless, in this case, the density of the acquisition in the interest area (larger

than 1km2) is considerably high, presenting common overlaps between two or more

parallel transects.

The resulting blended mosaic was rendered with a resolution of 10mm/pixel,

resulting in an image of 78, 651 × 62, 722 pixels stored using 16 bits per pixel

(≈ 4.6 GPixels), i.e. 9.2 GBytes of RAW data (see Figure 5.7). As in dataset #1,

the blended version of the mosaic shows a consistent appearance throughout the

whole area surveyed. When compared with state-of-the-art methods, the proposed

approach shows several advantages. On the one hand, it hides any visible seams

when the appearance of neighboring images is significantly different, which is the

common case when images acquired at different distances from the seafloor are

combined. In that case, methods based on setting the gradient values around the

optimal seam boundary to zero [141] lead to clearly noticeable seams and result in

a non-continuous image (see Figure 5.8-left). On the other hand, the presented

pipeline avoids ghosting and double contouring effects when image registration

or parallax happen, as opposed to some transition smoothing methods such as a

weighted average in the gradient domain performed on all the available overlapping

pixels [105] (see Figure 5.8-center).

Differences in appearance beetween neighboring images are specially frequent

when a given area is surveyed twice or more times in a given exploration. Concerning
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this problem, not only bringing a similar appearance to all the involved images but

also selecting the higher quality, most informative one is a relevant task. The pipeline

proposed prioritizes these images in order to use these pixels in the final mosaic. An

example of the difference between the obtained results by the presented method and

other state-of-the-art methods can be seen in Figures 5.9, 5.10, 5.11.

The benefits of using blending techniques arise during the image interpretation

task performed by the experts. For example, darker seafloor areas visible in the final

gigamosaic are not recognizable in the original imagery (see Figure 5.12). These

structures have been interpreted as fossil hydrothermal areas, and provide a view

of the evolution of the hydrothermal system over long geological periods of time.

This imagery can thus be exploited to provide a comprehensive view of the different

kinds of hydrothermal outflow in the Lucky Strike area, their distribution, and their

relative abundances [4, 90]. The areas of active focused and diffuse hydrothermal

discharge, located within the areas of fossil outflow (dark seafloor), were identified

and manually marked (or digitized) in the blended photo-mosaic. Bacterial mats

are reliable indicators of zones of hydrothermal outflow, primarily diffuse, with fluid

temperatures as high as 150 ◦C locally, and thus reflect active venting. Actively

venting areas can be readily identified through visual inspection of photo-mosaics.

Using dedicated image-viewing software (see [37] for details), the limits of individual

features where digitized when possible, based on the full-resolution mosaic scenes

(areas ∼ 10 m wide, with a pixel resolution of 5-10 mm). Hydrothermal fluids may

outflow along individual fissures or networks of fractures, around which bacterial

mats and hydrothermal deposits concentrate. A kind of these fissures, called cracks,

can also be seen in Figure 5.15. The non-blended photo-mosaic suffers from uneven

illumination in the individual images as well as a lack of contrast. Moreover, some

images acquired from a far distance from the seafloor hide the information of others
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Figure 5.6: Subset of 9 images belonging to the MoMAR’08 cruise dataset. The dataset
consists of 21,635 grayscale images of 1 Mpixel with 14 bits of color depth and stored in
16-bit TIFF format.

acquired at a closer distance. These circumstances make the identification of the

interest image features difficult, whereas they are easily recognizable in the blended

photo-mosaic.
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Figure 5.7: MoMAR’08 - Lucky Strike blended full mosaic and detailed region. The
mosaic contains 21635 grayscale images of 1Mpixel with 14 bits of color depth and has
been rendered at 10mm/pixel, resulting in an image of 78651× 62722 pixels.
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Figure 5.8: Detail of a given overlapping region blended with three different gradient
approaches. (Left) shows the result of setting the gradient values around the optimal seam
boundary at zero [141] in order to enforce continuity through the joint. (Center) shows the
result of a weighted average gradient blending performed on all the available overlapping
pixels [105]. (Right) shows the result of the proposed approach, which only performs a
gradient blending on a narrow region around the optimal computed seam. The transition
is sufficiently smooth to provide a sensation of consistency in the image while avoiding
ghosting and double contours in the overlapping areas.
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Figure 5.9: (Left) Detail of an underwater photo-mosaic region generated with
Szeliski’s method [129] (direct result of Microsoft ICE software) without automatic image
enhancement, and (Right) the result obtained by our approach with adaptive contrast
enhancement. The global appearance of the image is uniform and the central part of the
photo-mosaic is perceptually more informative after the contrast improvement.
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Figure 5.10: (Left) Detail of an underwater photo-mosaic region using Szeliski’s method
and (Right) the result obtained by our approach with contributing image selection based
on a quality rank estimation. The approach proposed leads to an image richer in detail
and with higher contrast.
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Figure 5.11: Comparison of our approach with common state-of-the-art methods in
terms of graph-cut performance. (Left-top and bottom) Details of an underwater mosaic
region blended using an intensity based graph-cut algorithm and (Right-top and bottom)
the result obtained by the proposed gradient based graph-cut strategy. (Left-top) The
shadow in the top left corner region has been interpreted differently by both approaches,
leading, in the case of our graph-cut (Right-top), to an unshadowed valley. The highlighted
regions in image (Left-bottom) present object doubling that has been suppressed in image
(Right-bottom). The graph-cut shows a different behavior in both cases, leading to a
noticeable difference in the image contribution selection.
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Figure 5.12: Detail of the non-blended photo-mosaic of the southeastern part of Lucky
Strike hydrothermal field (Top) and identified hydrothermal features, both active and
inactive, in the blended photo-mosaic (Bottom) obtained from image mosaic interpretation
and in situ observations [4]. The appearance consistency and emphasized details of the
blended photo-mosaic facilitate the interpretation of the scene, and consequently the
identification of all the active focused and diffuse hydrothermal discharge located within
the areas of fossil outflow (dark seafloor). The seafloor imagery in the blended photo-
mosaic corresponds to the MoMAR’08 survey, complemented in the background by the
2006 and 2009 mosaics to reduce imaging gaps. TE symbolizes Tour Eiffel.
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5.4 BATHYLUCK’09 (dataset #3)

The dataset consists of 21,614 images also acquired with the OTUS camera (1

Mpixel resolution with 14 bits of color depth and stored in 16-bit TIFF format)

over the Luck Strike area. Similar to dataset #1 and dataset #2, the images suffer

from non-uniform illumination, depict frequent slopes that emphasize the effects of

light attenuation, and present sporadic moving fishes (see Figure 5.13). The density

of the acquisition in the interest area (larger than 1km2) is high in some regions

but sparse in others, presenting extensive areas where overlaps between two or more

parallel transects are sporadic.

The resulting blended photo-mosaic has been rendered with a resolution of

10mm/pixel, resulting in an image of 138, 502× 232, 626 pixels stored using 16 bits

per pixel (≈ 30.0 GPixels), i.e. 60.0 GBytes of RAW data (see Figure 5.14). As in

the previous cases, the blended version of the mosaic shows a consistent appearance

throughout the whole area surveyed.

In the areas which have been surveyed several times (i.e. zones covered by mul-

tiple images), the image quality assessment mechanism allows selecting and empha-

sizing information corresponding to the seabed structures. The improvement of the

results over a simple Last In rendering are demonstrated in Figures 5.15, 5.16, 5.17

and 5.18.
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Figure 5.13: Subset of 9 images belonging to the BATHYLUCK’09 cruise dataset. The
dataset consists of 21,614 grayscale images of 1 Mpixel with 14 bits of color depth and
stored in 16-bit TIFF format.
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Figure 5.14: BATHYLUCK’09 blended full mosaic. The mosaic contains 21614 grayscale
images of 1Mpixel with 14 bits of color depth and has been rendered at 10mm/pixel,
resulting in an image of 138, 502× 232, 626 pixels.
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Figure 5.15: BATHYLUCK’09 detailed region 1. The left image shows the mosaic region
rendered by drawing one image on top of the previous one (Last In). The image boundaries
are clearly visible, especially due to their darker corners, and the global appearance is not
consistent, evidencing lack of contrast in several regions. The right image shows the mosaic
region rendered by using the approach proposed. The image boundaries are not visible,
the appearance of the image is uniform, and the fine details of the seabed structures are
sharp in contrast and thereby easily distinguishable.



Chapter 5: Results 118

1 m

1 m

Figure 5.16: BATHYLUCK’09 detailed region 2. The top image shows the mosaic region
rendered by drawing one image on top of the previous one (Last In). The image boundaries
are clearly visible, especially due to their darker corners, and the global appearance is not
consistent, evidencing lack of contrast in several regions. The bottom image shows the
mosaic region rendered by using the approach proposed. The image boundaries are not
visible, the appearance of the image is uniform, and the fine details of the seabed structures
are sharp in contrast and thereby easily distinguishable.
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Figure 5.17: BATHYLUCK’09 detailed region 3. The top image shows the mosaic region
rendered by drawing one image on top of the previous one (Last In). The image boundaries
are clearly visible, especially due to their darker corners, and the global appearance is not
consistent, evidencing lack of contrast in several regions. The bottom image shows the
mosaic region rendered by using the approach proposed. The image boundaries are not
visible, the appearance of the image is uniform, and the fine details of the seabed structures
are sharp in contrast and thereby easily distinguishable.
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Figure 5.18: BATHYLUCK’09 detailed region 4. (Left-top) Wire-frame representation
of a mosaic generated from three pictures acquired at significantly different depths. (Right-
top) Last-In representation of the mosaic. The image acquired closer to the seabed is
significantly sharper than the others. (Left-middle) and (Right-middle) Photo-mosaics
generated using Szeliski’s method [129] and the approach proposed. (Left-bottom) and
(Right-bottom) Detail of the central part of the mosaics, where the three pictures overlap.
The result of the proposed approach keeps the information from the images acquired closer
to the seabed, resulting in a sharper and higher contrast representation than that obtained
by the other method.
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5.5 LaLune’12 (dataset #4)

The dataset consists of 845 very high-resolution color images (21 Mpixel with

8 bits of color depth and stored in 8-bit JPEG format). A survey covering the area

corresponding to the shipwreck of La Lune was performed in August 2012 by the

Girona 500 AUV (Figure 5.19). The shipwreck was discovered by chance in 1993

by Ifremer, in the context of the ESSAUV12-2 mission, during a IFREMER Nautile

submarine test dive, at a 90 m depth at the end of the roadstead of Toulon [61].

This three-masted vessel of Louis XIV’s fleet sank in 1664 with a crew of more than

800 hands. The aim of the survey was the detailed documentation of the finding

and scheduling of an excavation carried out in October 2012.

Figure 5.19: Girona 500 AUV autonomously performing an optical seafloor survey in
the Mediterranean sea.

The resulting blended mosaic was rendered with a resolution of 2.5mm/pixel,

resulting in an image of 23, 267 × 22, 751 pixels stored using 8 bits per pixel

(≈ 0.5 GPixels), i.e. 18.8 GBytes of RAW data (see Figure 5.21). The benefits
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of the blended version of the mosaic when compared with the non-blended one are

evident (see Figure 5.21). Blending does not only obtain a more visually agreeable,

continuous and consistent representation of the seafloor, but also picks out and

emphasizes several structures and details in the scene. Thanks to the prioritization

carried out by both the image discarding mechanism and the image weighting

performed during the pixel-level graph cut, the images with a higher quality have

also a higher contribution to the final rendering than the lower and less informative

ones.

From the cognitive point of view, the proposed pipeline emphasizes fine details

in contrast to other state-of-the-art methods, such as [129], as can be seen in Fig-

ure 5.22. In this case, even though both approaches obtain very convincing results,

the approach proposed helps the interpretation task by making small structures

visible and selecting the most contrasting view of the scene elements.
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Figure 5.20: Subset of 23 images belonging to the La Lune 2012 cruise dataset. The
dataset consists of 845 grayscale images of 21 Mpixel with 8 bits of color depth and stored
in 8-bit TIFF format.
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Figure 5.21: La Lune 2012 blended full mosaic. The mosaic contains 845 color images
of 21 Mpixel with 8 bits of color depth and has been rendered at 2.5mm/pixel, resulting
in an image of 23267× 22751 pixels.
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Figure 5.22: La Lune 2012 detailed region. (Left) Blended mosaic of two images obtained
by the Microsoft ICE software. (Center) Blended mosaic of two images using multiband
blending. (Right) Blended mosaic of two images obtained by the approach proposed.
The result obtained by the approach proposed shows a stronger contrast and sharper
appearance than that obtained by the Microsoft ICE software and the multiband blending
approaches. This is due not only to the adaptive image enhancement mechanism but also
to the quality based image selection in the overlapping area.
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5.6 Temporal Variations

As early stated, the use of blended Giga-mosaics allows an appropriate interpre-

tation of the benthos by the scientists. These large-scale, underwater mosaics are,

likewise, accurately geo-referenced. Consequently, these factors makes feasible to

monitor temporal variations among repeated surveys of the same interest areas, as

demonstrated in [4].

Thanks to the image quality equalization performed by the blending pipeline,

the comparison of optical imagery information along the time becomes an easier task

than a simple study of the original, non-preprocessed images. These images typically

show strongly uneven appearances between surveys, inasmuch as the acquisition

conditions such as depth and illumination conditions may change.

An example on temporal monitoring of four interest areas, corresponding to

four activity sites, and belonging to the previously presented MoMARETO’06,

MoMAR’08 and BARHYLUCK’09 surveys ,can bee seen in Figure 5.23. Observed

changes in the white areas (diffuse outflow) include an overall reduction or increase

of their size, changes in their continuity and intensity, or ultimately the appearance

or disappearance of active areas. Specifically, the first and second sites show a

decreasing hydrothermal activity along the three successive surveys, the third site

shows an increasing activity, and the fourth site depicts an stable area. Due to the

sparseness of the acquisition, the optical imagery for some interest areas is missing.
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MoMARETO’06 MoMAR’08 BATHYLUCK’09

Figure 5.23: Examples of temporal variability documented by three repeated image
surveys and for four selected sites of Lucky Strike. Observed changes in the white areas
(diffuse outflow) include an overall reduction or increase of their size, changes in their
continuity and intensity, or ultimately the appearance or disappearance of active areas.
The first and second rows represent sites with a decreasing activity along the years, the
third row shows a site with increasing activity, and the fourth row depicts an stable site.
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5.7 Summary

A summary of the main properties of the processed datasets is presented in

Table 5.1. Three of the four presented datasets consist of a large number of grayscale

1-Mpixel images, while the last one is composed of a smaller number but in color

and with a resolution of 21 Mpixels. Consequently, all the generated mosaics are in

the GPixel order, although the coverage percentage varies between datasets.

Table 5.1: Testing Datasets Details

Name # Images Image Size Bit Depth Mosaic Size Resolution Memory∗ Overlap Cov. Hrs. of Survey

MoMARETO’06 (dataset #1) 4,628 1, 024× 1, 024× 1 14 bpp 117, 836× 85, 924 10mm/pixel 18.8 GB Low 63 % ∼34 hrs

MoMAR’08 - LS (dataset #2) 21,635 1, 024× 1, 024× 1 14 bpp 78, 651× 62, 722 10mm/pixel 9.2 GB High 80 % ∼101 hrs

BATHYLUCK’09 (dataset #3) 21,614 1, 024× 1, 024× 1 14 bpp 138, 502× 232, 626 10mm/pixel 60.0 GB Medium 72 % ∼33 hrs

LaLune’12 (dataset #4) 845 5, 616× 3, 744× 3 8 bpp 23, 267× 22, 751 2.5mm/pixel 1.5 GB Full 100 % ∼1.5 hrs

∗ Memory usage in RAW format.

The approach proposed has demonstrated a consistent behaviour throughout all

the processed sequences, in both grayscale and color images. The high quality pixel

prioritization in combination with the automatic image discarding mechanism and

the context based image enhancement allows improving, in most cases, the results

obtained by the state-of-the-art methods. When dealing with images showing a

similar appearance, i.e. acquired at similar depths and with the same illumination

conditions, the improvement versus the state-of-the-art may be small. However,

when these acquisition conditions vary, which is common in underwater imagery,

and specially when the same area is imaged twice or more times, the benefits of the

proposed specific pipeline become obvious. In some cases, the number of images

overlapping in the same area is high, although this does not happen frequently.

Methods lacking from a pixel prioritization policy or an image discarding mechanism

lead to image degradation and smoothing when the information from all the images

is merged in the same area. This issue is avoided by the approach proposed.

Concerning the huge quantity of images in the datasets tested and the large di-
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mensions of the final mosaics, none of the softwares used to perform the state-of-

the-art tests have been able to process the whole sequence. These softwares are not

intended to deal with navigation data, becoming the registration step an impossible

task. For that reason, the comparisons presented, despite being representative, have

been performed only in selected areas involving a reduced number of images. The

improvement in terms of image understanding and interpretation are clear when

comparing the blended and non-blended versions of the same mosaic.
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Chapter 6

Conclusions

This chapter summarizes the contents and contributions of the thesis, and sug-

gests several directions for future work based on the current stage of the research

thus far carried out.

6.1 Summary

In this thesis a full approach for large scale underwater image mosaicing and

blending has been proposed. The presented pipeline extends the common photo-

mosaicing techniques to the more complex and challenging underwater medium.

The aim is the generation of giga-photo-mosaics over large areas (in the km2 range),

allowing the broad scale monitoring of seafloor extensions for geological, biological

and environmental purposes, among others.

Deep-ocean imaging suffers from specific problems that require the application of

specific solutions. The contributions of this thesis concern all the photo-mosaicing

steps (image preprocessing, enhancing and blending) that can significantly improve

the final image quality and visual pleasantness. Nevertheless, and without loss of

generality, this pipeline can also be applied to the generation of terrestrial or aerial

131
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image panoramas.

Image blending is conceived as a set of stages that can be inserted into a 2D

mosaicing pipeline in order to improve and enhance the quality of the final photo-

mosaic. In Chapter 2, the common steps of image mosaicing were described, focusing

on the particularities of their application in the underwater medium. Therefore,

the use of navigation data and a topology estimation method as key steps in the

registration process were also described. Furthermore, the proposed non-uniform

illumination compensation strategy can also be used as a preprocessing step, allowing

improvement of the quality in pair-wise image registration.

A comprehensive state-of-the-art on image blending techniques in 2D has been

presented in Chapter 3. The most relevant methods intended to deal with aerial

and satellite mapping, conventional terrestrial landscape panoramas and underwater

imagery have been described, pointing out their strengths and weaknesses concerning

their application in underwater photo-mosaicing. There are three main groups of

blending methods in the literature. On the one hand, transition smoothing methods

rely on fading the transition between neighboring images by appropriately fusing

the overlapping pixel information around an arbitrarily selected seam. On the

other hand, optimal seam finding methods are intended to find an optimally placed

seam that minimizes the photometric or gradient differences between neighboring

pixels around its path. Hybrid methods combine the benefits of both approaches

by smoothing the transition along an optimally placed seam, and become the most

adequate strategy to perform image blending in 2D, specially when dealing with

images acquired in the underwater medium.

This thesis contributes to the state-of-art in large area image mosaicing meth-

ods for underwater surveys, focusing on the visual consistency and the detail en-

hancement of the generated photo-mosaics. The proposed framework, presented in
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Chapter 4, includes several steps that are inserted into the 2D mosaicing pipeline.

In the preprocessing stage, a depth dependent illumination compensation function

is computed and applied to the original images in order to solve the non-uniform

illumination appearance due to light attenuation. This strategy uses a varying

illumination compensation function based on a spatial sliding window, ensuring

an appropriate compensation for images acquired at significantly different depths.

Additionally, if precise depth information is not available, an altitude estimation

based on the projection image size (once registered) has been proposed to be used

at different steps in the pipeline. Concerning image enhancement, the contrast

variability due to different acquisition altitudes has been compensated using an

adaptive contrast enhancement, based on an image quality reference selected through

a Total Variation (TV) criterion. This criterion has also been applied to prioritize

the information coming from the higher quality images when building the first and

second closest maps, which allows us to perform the graph cut on the overlapping

regions. Consequently, the contribution from sharper and more visually pleasant

images is higher than from contrastless or poorly detailed ones. In the blending step,

the proposed graph-cut strategy operates in both the image intensity domain and the

image gradient domain over the overlapping regions, in contrast with several state-of-

the-art [71, 47, 142] methods working only in the intensity domain image differences.

This approach allows finding an adequate seam even if the overlapping images have

been acquired with different exposures. For a given image region acquired with two

different exposures, an intensity domain approach will find photometric differences

between pixels that do not correspond to real scene structure misalignments. A

gradient domain method is unaffected by this problem since gradient values are not

exposure dependent. The smooth transition around the optimally selected seam is

performed in a narrow strip, ensuring the maximum sharpness possible and avoiding
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double contouring in that region. This smoothing is also performed in the gradient

domain, as it also compensates for the possible different exposures between images.

Finally, an out-of-core blending strategy for very large scale photo-mosaics, i.e. Giga-

photo-mosaics, has been developed and tested with real data, generating images in

excess of 5 GPixel, and having, as the only limitation, the maximum size of the tile

that can be processed in a given amount of RAM.

The approach proposed has been tested in several image sequences in Chapter 5,

each one showing several specific underwater imagery problems. The large number

of images in the sequences and their size lead to high dimension photo-mosaics, i.e.,

Giga-photo-mosaics. This fact has allowed the testing of the effectiveness of the

out-of-core processing strategy proposed. Furthermore, the results obtained by the

approach presented have been compared in selected areas with the results obtained

by some of the most representative state-of-the-art blending methods. Our method

has demonstrated to be as good as, or better than, the state-of-the-art techniques,

outperforming them in many cases.

In the case of the Lucky Strike datasets, full scientific interpretation has been

carried out [4, 90]. The benefits of using blended gigamosaics for interpretation

tasks has been demonstrated in some examples. This imagery provides a view

of the evolution of the hydrothermal system over long geological periods of time,

and can thus be exploited to provide a comprehensive view of the different kinds

of hydrothermal outflow in the Lucky Strike area, their distribution, and their

relative abundances [4, 90], which was not available prior to obtaining these mosaics.

In the case of the shipwreck survey, the photomosaic was the basis for planning

archeological activities subsequently.
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6.2 Contributions

The present work led to some contributions to the state-of-the-art blending

methods and are listed as follows:

• A novel full 2D mosaicing and blending pipeline optimized for large scale

underwater imaging was proposed. The effects of underwater phenomena such

as non-uniform illumination, light attenuation and scattering are compensated

for in an adaptive way, with the main idea being not only to preserve, but also

to emphasize image detail richness.

• An adaptive image enhancement algorithm is used to make fine image details

show up when otherwise indistinct, also providing a continuous and consistent

appearance to the whole mosaic. The enhancement of a given image is deter-

mined by the detail richness of its adjacent ones. A sharp image is selected as

a reference in a given surrounding based on the Total Variation (TV) value,

and the gradients of the neighboring ones are emphasized accordingly.

• The optimal seam finding algorithm, used to determine the most adequate

path for the cut between images, is based on both luminance and gradient

values. This domain combination ensures not only the lowest photometric

differences along the path but also avoids cutting objects, even in the case of

significant exposure differences between neighboring images.

• In order to address the problem of processing large datasets of tens of thou-

sands of MPixel-order images, an out-of-core strategy to independently process

different regions in the final mosaic is proposed. The area corresponding to a

mosaic of large dimensions is divided into a regular grid of tiles, which are then

individually processed, temporarily stored in disk and finally fused together
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to obtain the photo-mosaic image. The appearance consistency between indi-

vidual tiles is ensured thanks to an exposure equalization mechanism and to

the application of an intensity domain blending.

• The full processing pipeline has been designed to use parallel processing in

every step when possible in order to improve the overall performance of the

approach. Several images can be fused simultaneously and different tiles can

be processed in parallel before their fusion into the final mosaic.

6.3 Future Work

Regarding future work, there are still several open problems which will require

the development of new techniques.

On the one hand, it is worth noting that illumination in underwater imagery

provides strong visual clues for the human perception of seafloor relief. This effect

is obvious when visualizing the whole photo-mosaic image, where it becomes more

difficult to perceive the true relief of the underwater terrain. This problem can

be addressed using an image based computer graphics solution if a DEM (Digital

Elevation Model) is available. Overall lighting can be synthetically applied in the

photo-mosaic image taking into account a rough 3D structure of the scene. This

solution is independent of the 3D recovery using SFM techniques because the aim

is not only to determine the terrain relief but also be able to synthetically apply a

global illumination component.

On the other hand, parallax is one of the most difficult issues to solve when

building seamless 2D photo-mosaics. The only way to address the blending on a

strong 3D seabed consists of recovering its 3D structure, using, for instance, SFM

techniques. This is not possible for sparse low-overlapping image sets, thus making
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the blending of a 3D structure extremely challenging.

Furthermore, the different levels of sharpness of neighboring images acquired at

different altitudes are a problem that can be partially addressed using costly image

processing techniques. Image sharpening algorithms can be applied to enhance the

visual quality of poorer images, obviously up to a certain level. This image enhance-

ment, like the contrast enhancement proposed in this work, would be performed in

an adaptive way, depending on the neighboring images context.

Additionally, despite the fact that most of the available image sequences are

gray scale, dealing with colors is another open issue due to the properties of the

underwater medium, specially concerning light spectral absorption. Generating a

blended color photo-mosaic with a realistic global appearance is a challenge for the

near future.

Extending the approach proposed to 3D would represent a significant step for-

ward to provide scientists with the highest quality and most informative seafloor

representations. Detailed reconstructions of selected small areas are feasible if the

image overlap in the interest area is enough. Consequently, adapting the proposed

blending approach and developing new tools to blend the small patches constituting

the 3D reconstructions provides scientists with high quality and precise information

of the selected areas.

Finally, and with a long term perspective, the aim is to develop a tool combining

2D mosaicing with the Digital Elevation Model (DEM) based illumination enhance-

ment and reconstructions of selected 3D structures. This tool should adaptively

show the viewer the optimal view of the imaged scene. At lower zoom levels (viewing

the overall area), the combination of a blended 2D photo-mosaic with a DEM will

provide a textured representation of the scene that is consistent with the DEM from

a cognitive point of view. This is possible thanks to the application of synthetical
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global lighting. At higher zooms, the representation will make the blended (but

not synthetically lighted) mosaic and the local 3D reconstructions stand out. This

transition between zooms will be performed in a smooth way, trying always to offer

to the viewer the most informative representation of the scene possible.
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