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A variational method for Hamiltonian systems is analyzed. Two different varia-
tional characterization for the frequency of nonlinear oscillations is also supplied
for non-Hamiltonian systems. ©1998 American Institute of Physics.
@S0022-2488~98!02702-9#

I. INTRODUCTION

The dynamical study of nonlinear oscillatory systems is often reduced to numerical ca
or to some approximated analytical techniques. Most of them are based in perturbation me1

as for instance the Poincare´–Lindsted method, the averaging~Krylov–Bogoliuvov–Mitropolsky!
method, the Shohat expansion, or the multiscale method, to mention a few. They provide ap
mate solutions as well as the relationship between the frequency of the nonlinear oscillatio
a small parameter~physically identified for the system, as the amplitude of the oscillations!. Other
approximate techniques consist in the qualitative analysis on the phase space by lineariz
differential equation around the fixed points. Periodic or exponential behavior of the system
be predicted after studying the stability of the fixed points.

Many different physical systems reduce to one-dimensional nonlinear ODE of second
which may be studied by using the approximate techniques mentioned above.2,3 An important
property of them is that the frequency depends explicitly on the amplitude of the oscillation
we have mentioned, the perturbative techniques yield to an approximate solution in power
of the amplitude only.

Recently, Benguria and Depassier~BD for short!4 have made use of a variational principle
order to solve the bifurcation problem for second-order nonlinear Hamiltonian systems. The
apply the principle to obtain simple approximate closed formulas for the frequency of l
amplitude oscillations.

In this work we extend this method to other situations. Basically, the method consis
transforming the differential equationü1u5N(u), which may be written in the phase spa
variables (p,u), with p52u8 ~where the prime means differentiation with respect to the varia
t52vt/p! in an integral equation multiplying the differential equation by an auxiliary funct
g(u), and integrating. The variational method provide a lower bound for an integral functi
From the Euler–Lagrange equations for the functional, one may calculate the auxiliary fun
g(u) at a first approximation by takingp(u) from the linear case (N50).

First of all, we generalize this transformation for Hamiltonian systems. We multiply
differential equation bypng and apply the variational method. From this generalization we ob
the first interesting result: the variational characterization depends strongly on the exponenn. In
this sense, we obtain a better fit forn521 than forn50 ~the BD’s case!.

However, as the systems are Hamiltonian, it is possible to find a relationship betweenp and
u in the nonlinear situation. Using it, instead of its linear approach, one can find a new relatio
for g being the variational result for the frequency, always equal to the exact solution. T
shown in three specific and physically interesting cases.

Second, as non-Hamiltonian systems are very often found in practice and arise in
physical systems, we introduce in this work a special analysis for them. Following the same
employed for Hamiltonian systems, one obtains an explicit dependence of the variational c
terization onp(u). For non-Hamiltonian systems it is not possible to obtain a relationship betw
p and u, at least exactly. In consequence, we adopt two ways to proceed. From one han
apply twice the variational method and find two coupled Euler–Lagrange equations, one o
corresponding to the same functional that appears in Hamiltonian systems and the other on
9540022-2488/98/39(2)/954/13/$15.00 © 1998 American Institute of Physics
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new one that containsp(u). The consequent variational characterization does not depend no
p(u). This method also apply for large amplitude. On the other hand, we find for a cla
non-Hamiltonian systems in which the above method does not hold, a perturbative solut
p(u) for small nonlinearities. As a special example we treat the Van der Pol oscillator.

II. VARIATIONAL PRINCIPLES FOR HAMILTONIAN SYSTEMS

In this section we generalize the BD’s method and we show, by using the Duffing osci
as an example, the generality of the principle. Starting from a nonlinear Hamiltonian dyna
system of the form

ü1u5N~u!, with u~0!5a, u̇~0!50, ~1!

this becomes

u91lu5N~u,l!, ~2!

where the prime symbol stands for the differentiation respect to the angular variablet52vt/p, v
being the angular frequency of the nonlinear system~1! andl5(p/2v)2. We restrict our study to
uP(0,a), wherea is the initial amplitude of movement, sou(t51)50. Defining the variable
p52u8.0 we reduce the order of~2!, and it is written as

p
dp

du
1lu5N~u,l!. ~3!

Multiplying ~3! by png(u), where g(u) is an auxiliary function to be determined such th
g(0)50, and integrating, we obtain

lE
0

a

upng~u!du5E
0

aS pnN~u,l!g~u!1
1

n12
pn12g8~u! Ddu. ~4!

Notice that forn50 we recover the Benguria and Depassier case. We consider now, for a fig
andn.22, the functional

Jg@v#5
~21!n

n12 E
0

a

~v8!n12g8~v !dv5
~21!n11

n12 E
0

1

~v8!n13g8~v !dt, ~5!

defined forv such that it satisfiesv(0)5a, v(1)50, andv8,0 in tP(0,1). Definingf(v,v8)
5(21)n11(v8)n13g8(v)/(n12), the Euler–Lagrange equations forJg may be integrated once t
obtainf2v8 ]f/]v85const, provided thatf does not depend explicitly ont. From the Euler–
Lagrange equation we obtain

~21!n11~ ṽ 8!n13g8~ ṽ !5K.0, ~6!

where ṽ is the value ofv such that for a fixedg, Jg>0 has a unique minimum. The auxiliar
function g may be obtained by integrating~6!. So, onceg is determined, we get

Jg@v#>Jg@ ṽ #5
K~a!

n12
, ~7!

whereK(a) is determined through the boundary condition onṽ. So, we have from~4!, ~5!, and
~7!,

l>

*0
aN~u,l!g~u!du1

K

n12

*0
aupng~u!du

. ~8!
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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This constitutes the result of our first variational principle applied to nonlinear Hamiltonian
cillators. Notice the strong dependence of the variational principle on the exponentn, which we
will show later in a specific example. For values ofn lower than22 this variational principle does
not apply and for the other values the upper bound for the frequency depends explicitly onn.

If we taken50 in ~8!, we recover the Benguria and Depassier situation,4 where~8! reduces
to

l>

*0
aN~u,l!g~u!du1

K

2

*0
aug~u!du

, ~9!

and ~6! is (u8)3g8(u)52K. Takingn521, ~8! becomes

l>

*0
a N~u,l!g~u!

p~u!
du1K

*0
a ug~u!

p~u!
du

, ~10!

and the Euler–Lagrange equation reduces to (u8)2g8(u)5K.
Following Ref. 5, we can also derive, from another variational principle, a new restrictio

the characteristic parameters of the system. Takingn50 in ~4!, we may define the function

c~p!5l f ~u!g1 1
2 p2g8~u!,

whereN(l,u)5l f (u). This function has, for each value ofu, a minimum atpmin50, provided
that g8(u).0. Soc(pmin)5lf(u)g<c(p), and finally

E
0

a

ug~u!du>E
0

a

f ~u!g~u!du. ~11!

This constitutes the second variational principle for Hamiltonian systems. Let us now apply
principles on the Duffing oscillator and the nonlinear pendulum.

A. The Duffing oscillator

It is known that the exact solution for the Duffing oscillator,2

ü1u1du350, with u~ t50!5a, u̇~ t50!50, ~12!

is given by

u~ t,d!5a cn~ tA11da2;k!, ~13!

where cn is the Jacobi elliptic function andk2[da2/2(11da2). The exact expression for th
frequency is then

vex5
p

2
A11da2

1

FS p

2
,kD , ~14!

whereF(k) is called the complete elliptic integral of the first order. Takingn50 in ~8! we recover
the BD situation,4 which yields

vn50<A11
3

4
da2. ~15!
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Let us show in this example and in the following one the dependence of the frequency
value ofn taken in~8!. First, we analyze the linear case, for the Duffing oscillator, and com
the results obtained forn50 and forn521. In this case,~10! leads to

l>
K

*0
a ug~u!

p~u!
du

, ~16!

K andg(u) must be calculated from

~u8!2g8~u!5K. ~17!

In the linear case (N50), corresponding to the linear oscillator, one has (u8)25l(a22u2).
Replacing this in~17!, we obtain

g~u!5 lnS a1u

a2uD , ~18!

as the expression for the auxiliary function. Solving~17! with u(0)5a, u(1)50, one obtains
K5ap2/2. On the other hand, definingx[u/a, one has, from~18!,

E
0

a ug~u!

p~u!
du5

a

Al
E

0

1

lnS 11x

12xD x dx

A12x2
5

ap

Al
.

Finally, from ~16! we find l>(p/2)2, which is the same result obtained by BD.4 For the
nonlinear case (NÞ0), we find a different result, as we show in turn. The main differe
between the casesn521 andn50 is that, to solve the latter, one does not need the relation
betweenp and u, while for n521 this is necessary. For the Duffing oscillator, we find,
making use of the Hamiltonian as a constant of motion, that

p5Ala2S 11
da2

2
DA~12x2!~sx211!, ~19!

wheres[da2/(21da2). From ~10! and defining the following integrals:

I 1~s!5E
0

1

lnS 11x

12x
D x dx

A~12x2!~sx211!
,

I 1~s!5E
0

1

lnS 11x

12x
D x3 dx

A~12x2!~sx211!
,

we obtain

l>S p2

2 D S 11
da2

2 D 1

~ I 11da2 I 2!2 . ~20!

The integralsI 1 and I 2 may be calculated, after some integrations by parts, in terms of
complete elliptic integral of the second kind, and we find finally for the frequency that

vn521<
2

p
A11da2ES p

2
,A s

s11D . ~21!

In Fig. 1 we represent the exact valuevex given by~14!, the BD solutionvn50 given by~15!
in solid lines, and the new approachvn521 given by ~21! in dashed lines. As one can see, t
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Downloaded 30 Apr
latter is a slightly better result than the BD solution. So, we have shown the dependence
frequency on the value ofn. Applying now the second variational method~11! to the Duffing
equation, and taking the BD method we find the following restriction:

24

3a2 <d.

For d.0 the second variational method does not add any additional information, but ford,0
this may be understood3 as a bound ford, that is,d<4/3a2. For d,0 we have that

vn50<A12
3

4
da2.

The frequency has real value ifd<4/3a2, which coincides with the result obtained by usin
the second variational method.

B. The nonlinear pendulum

We study with some detail another very known nonlinear dynamical system namel
nonlinear pendulum. First of all we show that then521 case may lead us to the exact solutio
Later, we apply the BD approach to this solution. As it is widely known, the equation for
nonlinear pendulum is given by

FIG. 1. The frequency of the Duffing oscillator obtained by the BD method~vn50 , solid lines!, the new variational
method~vn521 , dashed lines! versus the numerical exact solution~vex , solid line!.
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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ü1
g

l
sin~u!50, with u~ t50!5a, u̇~ t50!50. ~22!

Defining againt52vt/p and

l[S p

2 D 2 g

l
, ~23!

and taking into account the conditionsu(t50)5a andu(t5p/2v)50, ~22! is written as

u91l sin~u!50, with u~t50!5a, u8~t51!50.

The exact solution2 is given by

vex5
p

2
Ag

l

1

FS p

2
,sinS a

2 D D . ~24!

Let us now to apply then521 approach. The variational method leads to

l>
K

*0
a g~u!

p~u!
sin~u!du

, ~25!

with

~u8!2g85K. ~26!

As ~22! may be integrated once, we get

p~u!5A2l@cos~u!2cos~a!#. ~27!

So, omitting overall multiplicative constants we identify

g8~u!5
1

cos~u!2cos~a!
,

and integrating, we find for the auxiliary function

g~u!5
1

sin~a!
lnF sin~a!tanS u

2D112cos~a!

sin~a!tanS u

2D211cos~a!
G . ~28!

The value ofK is found to be

K52F2S p

2
,sinS a

2D D , ~29!

from ~26!. Calculating the integral in~25!, we obtain

E
0

a g~u!

p~u!
sin~u!du5

2

Al
FS p

2
,sinS a

2D D ,

after some integrations by parts. Finally, from~23!, ~25!, and~29!, one gets
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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vn521<
p

2
Ag

l

1

FS p

2
,sinS a

2D D ,

which coincides within the exact result. If we had made some approximations, as, for ins
take forg(u) or p(u) the same value as for the linear oscillator, the final result had not been
to the exact one. We show this now forn50. Equation~8! writes in the BD case,

l>S p

2 D 2

1
4

pa3 E
0

a uN~u,l!du

A12u2/a2
, ~30!

where we takeN(u,l)5l(u2sin(u)). Calculating the integral in~30! and from the definition of
l, one obtains

vn50<Ag

l
A2

a
J1~a!, ~31!

whereJ1(a) is the Bessel function of the first kind. BecauseJ1(a) alternates the sign, we mus
restrict the solution given by~31! to those values ofa such thatJ1(a) is positive. For small values
of a this condition requiresa&3. Precisely this condition may be recovered from the sec
variational principle. Takingf (u)5u2sin(u) and~28! we find from~11! J1(a)>0. In Fig. 2 we
plot the exact solution and the variational solution for the BD’s method.

C. Systems of the form ü 1au n50

We consider now kinds of dynamical systems, which, in their linear approximation (N50) do
not reduce to linear oscillators. These systems may also be treated as the previous ones.
apply the variational methods and we compare the solution with the exact one. We mak
mathematical simplicity the analysis by using the particular case6 n53. It is known that this
system describes periodic oscillations.2 The system may be integrated once by using the sa
initial conditions as in previous examples. Hence, we get, after using the independent varit,

p~u!5Aal

2
Aa42u4, ~32!

and this one may be integrated once again to get

vex5
p

2
aAa

1

FS p

2
,

1

&

D . ~33!

Applying the first variational method~10! ~with n521! one obtains

al>
K

*0
a

u3g~u!

p~u!
du

~34!

where (u8)2g85K. So, the auxiliary functiong(u) is given by

g~u!5
1

2
lnS a1u

a2uD1arctanS u

aD , ~35!

andK by
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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K~a!5aF2S p

2
,

1

&

D .

The integral involved in~34! is given by

E
0

a u3g~u!

p~u!
du5a2A 2

al E
0

1 x3 dx

A12x4 F1

2
lnS 11x

12xD1arctan~x!G5
a2

Aal
FS p

2
,

1

&

D .

Using the previous calculations, we may write~34! in terms of the frequency by

vn521<
p

2
aAa

1

FS p

2
,

1

&

D ,

where the equality gives the exact result~33!. On the other hand, we may also apply the BD
method to this case. Taking in~2! N5l(u2u3) and n50 is ~8! we find K5(p/2)3a3 and the
auxiliary function is given by

FIG. 2. The frequency of the nonlinear pendulum obtained by the BD method~vn50 , dashed lines!, versus the numerical
exact solution~vex , solid line!.
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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g~u!5
u

A12u2/a2
. ~36!

We finally find for the frequency

vn50<
a

2
A3a. ~37!

Calculating numericallyvn521(5vex) we find vex50.847aAa andvn50<0.866aAa. We
may observe the good agreement between the exact and the BD’s solutions.

III. DYNAMICAL SYSTEMS DEPENDING ON THE FIRST DERIVATIVE

We extend here the variational principles found in the first section to nonlinear dyna
systems that contains explicitly the termu̇ and powers of it. Some of them are Hamiltonia
systems, that is, they have a first integral, and others are dissipative, such as the Van de
equation. We focus our attention to systems of the form

ü1e f ~u!u̇n1u50. ~38!

This equation may be written as

p
dp

du
1lu1el~22n!/2f ~u!pn50. ~39!

By using the change of variablest52vt/p and the definition ofl, we may arrive to

l>

e~21!n11l~22n!/2*0
a f ~u!g~u!pndu1

K

2

*0
aug~u!du

, ~40!

with (u8)3g8(u)52K. Notice that in the variational method given by~40! we must know the
explicit expression ofp(u) and this is only possible if the system admits a first integration
general, one must use a new approach to~40!. In this sense, we derive two new ways to proce
one of them consists in applying the variational method on the functional of the numerator o~40!
but this method only holds if*(u).0 for any uP(0,a), the other one consists in making
perturbative expansion on the phase space in order to find an approximate solution forp(u). Let
us illustrate the first way.

From ~40! we define the functional

Jg* @v#5~21!n11E
0

a

f ~v !g~v !pn dv5E
0

1

f ~v !g~v !~v8!n11 dt, ~41!

where v is such that satisfiesv(0)5a, v(1)50, and v8,0 in tP(0,1). Defining f(v,v8)
5 f (v)g(v)(v8)n11, we get from the Euler–Lagrange equations,

n f~ ṽ !g~ ṽ !~ ṽ 8!n115K* ~42!

where ṽ is the value ofv such that for a fixedg, Jg>0 has a unique minimum. Notice tha
f ( ṽ )>0 is required for anyṽP(0,a), and this is not possible for the Van der Pol’s equation.
onceg is determined from (ṽ 8)3g8( ṽ)52K, we get

Jg@v#>Jg@ ṽ #5
K* ~a!

n
, ~43!

andK* (a) may be calculated from~42!. Thus, from~40!, we get the variational restriction
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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l>

el~22n!/2
K*

n
1

K

2

*0
aug~u!du

. ~44!

Taking the auxiliary functiong given in the linear casee50 @Eq. ~36!#, Eq. ~44! becomes

l>S p

2 D 2

1
4e

pa3 l~22n!/2
K*

n
. ~45!

Let us to apply this variational method to the specific case

ü1eu2u̇1u50, with u~ t50!5a, u̇~ t50!50. ~46!

In this case,f (u)5u2 andn51. From~42! we obtainK* 5p2a5/32, and from~45!,

vvar<
2b1Ab214

2
, with b5

a2e

4
. ~47!

In Fig. 3 we plot the exact numerical solution for the frequency versus its variational sol
~47!. We develop now the second variational method for the specific situation in whichf ,0 for

FIG. 3. The frequency of a non-Hamiltonian oscillator given in~46! obtained by the variational method~vvar , dashed
lines!, versus the numerical exact solution~vex , solid line!.
 2013 to 84.88.138.106. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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someuP(a,0). Starting from~40! the problem is to find an expression forp(u). As a first
approximation, we may take the expression forp given by the linear case. In this approach w
obtain

l>S p

2 D 2

1
4e~21!n11

pa2 lE
0

a

u~a22u2!~n21!/2f ~u!du. ~48!

A better approach may be obtained by the perturbative solution in the phase space. S
perturbatively~39! for small e, we get

p~u!5p0~u,l!1ep1~u,l!1O~e2!,

where

p0~u,l!5Al~a22u2!,

p1~u,l!52
l~52n!/2

Aa22u2
E

a

u

~a22z2!2f ~z!dz.

So, the variational method yields

l>S p

2
D 2

2
4e

pa2 E
0

a u f~u!~p01ep1!n

Aa22u2
du. ~49!

Both approaches are applied as an illustration to the Van der Pol oscillator.
Takingn51 andf (u)5u221 in ~38!, we recover the well-known differential for the Van d

Pol oscillator,

ü1e~u221!u̇1u50, ~50!

with the initial conditionsu(t50)5a, u̇(t50)50. It is known that~50! presents a limit cycle for
a52. Thus, we study the periodic behavior, and the frequency, in particular, of~50! near of the
limit cycle given bya52. In the first approximation~assumingg and p are given by the linear
case,e50!, given by~48! we find for the frequency

v1<A12
2e

p
. ~51!

Using the second approximation, that is,p given up to first order ine, we obtain

p1~u!52Al
u

4
~42u2!,

and finally

v2<A12
2e

p
1

e2

4
. ~52!

We may solve numerically the Van der Pol’s equation for differente and obtainvex. We plot in
Fig. 4 the exact numerical solution and thev2 solution for the frequency.

IV. CONCLUSIONS

A variational principle applied to Hamiltonian systems has been developed by Benguri
Depassier.4 In this paper we extend their method along the following new lines:

~i! The initial transformation, for Hamiltonian systems, which transforms the differen
equation in an integral equation, is generalized by introducing an exponentn. The final variational
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restriction that relates the frequency with the amplitude, depends strongly onn. The variational
method proposed by BD only holds forn.22. A second variational method is also applied
Hamiltonian systems and it supplies new constraints between the characteristic parame
volved in the system. We have specified the results to some selected systems as the
oscillator, the nonlinear pendulum, and systems of the formü1aun50. Better fits those obtained
by the method of BD, to the exact solution for the frequency have been discovered.

~ii ! The variational principle is also applied to systems with an explicit dependence on th
time derivative. Some of them are Hamiltonian, and they may be exactly characterized. Oth
non-Hamiltonian and we may proceed in two different ways. First, we have proposed a
variational method that is applied to two different functionals in order to avoid the exp
dependence onp(u). This method does not hold for systems withf ,0 for someuP(0,a). So, we
develop an approximate variational method for them. The results are not as good as those o
for Hamiltonian systems, but they may be understood as upper bounds on the frequenc
approximation consists in finding a perturbative solution forp and the results fit very well for
weak nonlinearities.
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FIG. 4. The frequency of the Van der Pol oscillator obtained by the variational method~v2 , dashed lines!, versus the
numerical exact solution~vex , solid line!.
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