
Comparison of Work�ow Scheduling Using

Constraint Programming or Auctions

Research Report 13-01-RR

by

Ferran Torrent-Fontbona

and

Beatriz López

Institute of Informatics and Applications

University of Girona

March 2013

Abstract

Business processes designers take into account the resources that

the processes would need, but, due to the variable cost of certain

parameters (like energy) or other circumstances, this scheduling

must be done when business process enactment. In this report we

formalize the energy aware resource cost, including time and us-

age dependent rates. We also present a constraint programming

approach and an auction-based approach to solve the mentioned

problem including a comparison of them and a comparison of the

proposed algorithms for solving them.

Contents

1 Introduction 1

1.1 Related Work . 2

2 Problem De�nition 4

3 Work�ow Scheduling as Constraint Programming 8

4 Work�ow Scheduling by Auctions 12

4.1 Bidding strategy . 12

4.2 The Winner Determination Problem 13

4.2.1 Branch & Bound . 15

4.2.2 Genetic Algorithms . 17

4.2.3 Simulated Annealing 19

5 Results & Discussion 22

6 Conlusions & Future work 26

i

List of Figures

1.1 Average day hourly energy price of the Spanish production

market in December 2012 according to [3]. 2

2.1 Work�ow example. It illustrates that tasks 2 and 3 have to

start after task 1 is done and task 4 have to start after task 2

is �nished. 4

2.2 Energy pro�le example. There are unallowed zones (usually)

due to physical constraints, and 3 di�erent rates depending

on the energy usage. 6

2.3 Energy pro�le example. Here is an example with 24 time

slots where have to 0 < pt < 250 and the agreed energy usage

depends on time. 6

3.1 Resource area of the problem 9

4.1 Bidtree example. Each level corresponds to a task and they

are ordered into decreasing order of their demand (received

bids). 15

4.2 Relation between the number of nodes explored using increas-

ing order of the tasks (as Figure 4.1) and decreasing order,
Ndec
Ninc

, over 20 di�erent examples 16

4.3 Two point crossover . 18

4.4 Plot of the evolution of the �tness of the best generated chro-

mosome vs. the average �tness of the whole population. The

�tness is computed as 1
cost . 19

ii

4.5 Plot of the solutions explored by SA. We can see the best

solution found since the start of the algorithm, the current

solution where the algorithm stays and the new solutions ex-

plored by the algorithm. We plotted 1
cost to set to zero those

solution with an in�nity cost.) 20

5.1 Elapsed time for solving the scheduling problem by Choco

solver or the WDP by bidtree B&B or GA or SA (median

over 25 runs) . 23

5.2 Percentage of times SA and GA �nd the optimum solution . . 23

5.3 Performance of bidtree B&B, Choco, GA and SA along 150

random problems with 4− 12 tasks each one. 24

5.4 Performance of GA and SA along 250 random problems with

4− 23 tasks each one. 25

iii

Chapter 1

Introduction

Lately some energy supply companies and public institutions are making

important e�orts to start building the future smart grid. One of these ef-

forts is delivering thousands of smart meters that would allow companies

and customers measure their instant energy usage and it would lead to the

application di�erent time-dependent energy rates like the Spanish produc-

tion market rate showed in Figure 1.1. Also, this smart meters would lead

to the application of other strategies to smooth the daily energy usage curve

or to make it more predictable, for example setting reduced prices for those

organizations that keep their energy usage within some bounds.

Moreover, the improvement of energy management to reduce costs and

CO2 emissions has a social impact and also improves the stock market per-

fomance of the organizations [1], though most studies has been focused on

house hold management [5]. To improve the energy management in organiza-

tions we propose the optimization of resource allocation in business process

in order to minimize the costs associated to the energy usage.

This paper proposes a constraint programming method and an auction

based method to perform the scheduling of work�ows considering a time-

dependent (time-dependent rate means that the per-resource-unit cost de-

pends on when the resource is used) and usage-dependent rate for resources

(usage-dependent rate means that the per-resource-unit cost depends on the

1

Figure 1.1: Average day hourly energy price of the Spanish production mar-
ket in December 2012 according to [3].

load of the resource being used)12. We explore heuristic algorithms like Ge-

netic Algorithms (GA) and Simulated Annealing (SA) to deal with some

steps of the auction method because their complexity (NP-hard) due to the

time-dependent and usage-dependent rates. We present an analysis of the

elapsed time and the optimality of the solutions found by each method.

1.1 Related Work

There are few studies focused on the business management considering time

dependent costs, but in [7] authors propose mixed integer programming and

linear programming formulations solving them by Choco solver. Another

work that considers time dependent costs is [8]. The main contribution of

the paper is a new formulation for work�ow scheduling considering time de-

pendent costs and XOR nodes inside the work�ows. Another contribution of

the paper is that they propose solving the scheduling problem using combi-

natorial auctions and they propose a new compact formulation for bids, that

we have used. Nevertheless this two works only consider time-dependent

rates and not usage dependent rates.

Although energy variable costs has not been studied in depth, resource

1In electric terms load is related to the energy consumption
2usage-dependent rate is di�erent from usage-mode used in [8]

2

allocation does. Many studies propose the use of auction mechanism to

perform resource allocation. For example [11] presents a multi-attribute

auction system for business processes scheduling, [2, 12, 4] presents di�er-

ent algorithms and mechanisms for deciding the winner for combinatorial

auctions. We have used some mechanisms presented in these works for

the Branch&Bound (B&B) algorithm like the tasks ordering, but we use

a di�erent bid formulation what avoids we cannot use most of the proposed

mechanisms.

3

Chapter 2

Problem De�nition

In this paper we are dealing with business processes (henceforth work�ows)

that consist of series of tasks which have to be done following a prede�ned

order, therefore a work�ow is an acyclic graph where each tasks can start its

execution once all of its predecessor tasks have �nished. Figure 2.1 shows a

work�ow example where nodes ST and ET indicate the earliest start time

and lastest end time of the work�ow respectively and where task 1 is the

�rst task to be executed. Once it is completed, tasks 2 and 3 can start, and

task 4 can start its execution once task 2 is �nished.

Formally we de�ne ST and ET as the window start time and end time

respectively. So, ET − ST is the maximum execution time of the work-

�ow. We also de�ne the set of tasks T =
{
T1 . . . T‖T‖

}
. Each task Ti =

〈
[
si, si

]
,
[
eti, eti

]
, RQi,PR〉 has an earliest and a latest start time, si, si,

respectively, and an earliest and latest end time, eti, eti, respectively. RQi
are the type of resources required by the task and PR is the matrix which

Figure 2.1: Work�ow example. It illustrates that tasks 2 and 3 have to start
after task 1 is done and task 4 have to start after task 2 is �nished.

4

indicates which are the predecessor tasks or the tasks that must be executed

simultaneously (if there are any). Each task has an associated duration and

an energy usage, but they depend on the resource used. We de�ne the set of

available resources R =
{
R1 . . . R‖R‖

}
. Each resource Rk has an associated

energy usage ei,k, a duration di,k and an additional monetary cost mi,k for

deploying task i.

On the other hand, we are dealing with complex energy contract rates

which include time-dependent prices but also reduced rates for those organi-

zations that keep their energy usage within bounds, so they follow an agreed

energy pro�le. The energy pro�le Σ is characterized by

〈
Pt, Pt, pt, pt, ct, ct, ct, ft, ft

〉
We de�ne Pt and Pt as the minimum and maximum allowed energy usage

at time t respectively, pt and pt as the minimum and maximum agreed energy

usage at time t for reduced rate ct (per-energy-unit cost). Then we also de�ne

ct and ct as the per-energy-costs when pt < pt or pt > pt respectively. We

also consider the possibility that the contracted rate includes extra costs ft
and ft (note that these are not per-energy-unit costs).

Figures 2.2 and 2.3 show two examples of energy pro�les. First Figure

2.2 shows 5 zones depending on the energy usage that consists of two not

allowed zones (for example for physical constraints), an agreed zone (where

to keep the energy usage) which has a reduced rate and two non-agreed zones

that if the energy usage belongs to them, the electric company will apply

augmented rates, ct and ct, or even fees, ft and ft. The second example

shows a 24 time slots rate1 where the energy usage have to be between 0 and

250 energy-units in each time slot and the reduced rate zone depends on the

time slot.

Then there are di�erent costs associated to a scheduling: the makespan

CT is the time needed to perform the scheduling, the energy usage cost CE
is the energy-associated cost and it is related to the energy pro�le Σ, and the

1Smart meters would be able to measure the energy usage every 15 minutes, allowing
companies to use rates with up to 96 time slots per day.

5

Figure 2.2: Energy pro�le example. There are unallowed zones (usually) due
to physical constraints, and 3 di�erent rates depending on the energy usage.

Figure 2.3: Energy pro�le example. Here is an example with 24 time slots
where have to 0 < pt < 250 and the agreed energy usage depends on time.

6

resource usage cost CR is the cost associated to other resources like machines

or human resources. These costs will depend on the start time of each task

si and the resources used for the execution of them.

The problem consists in given T, R and Σ �nding the start time si for

each task and the resources needed to perform them that optimize the cost.

7

Chapter 3

Work�ow Scheduling as

Constraint Programming

In this chapter we present a MIP formulation in order to solve the work�ow

scheduling by a MIP solver.

For doing so, we followed [7], which propose to partition the entire re-

source area of the problem
[
Pt, Pt

]
× [ST,ET] (see Figure 3.1) with a collec-

tion of (sub)areas that do not overlap. Moreover we added the availability

of lower bound energy usages and higher rates when are not respected (see

Figure 3.1). Thus, the formulation presented in Chapter 2 is followed but

we change the sub-indexes of those parameters related to these areas for

convenience. Each area is de�ned inside a time interval; more than one area

can occupy the same time interval but without overlapping one another ac-

cording to Figure 3.1. Those areas within the same period of time de�ne

di�erent rates according to the energy usage but they must be ordered by

non-decreasing cost yi < yj ⇒ ci < cj . Similarly, but without any other con-

straint, we can state that those areas within the same energy usage interval

de�ne a time-variable rate.

Finally we de�ne M as the number of de�ned areas. Each area Aj has a

�xed initial position xj (time dimension) and yj (energy usage dimension),

width wj and height hj and a per-energy-unit rate cj . We also de�ne aj as

the energy usage inside the jth area (the shadow area in Figure 3.1) and

8

Figure 3.1: Resource area of the problem

a minimum agreed usage bound aj . Moreover each area has another per-

energy-unit rate cj and an extra cost fj when the energy usage aj is lower

than the agreed lower bound aj .

Given the needed formulation we state the constraints of the problem:

∀i 1 ≤ i ≤ ‖T‖ : ST ≤ si ≤ si < si+

‖R‖∑
k=1

zi,kdi,k ≤ si+
‖R‖∑
k=1

zi,kdi,k < ET

(3.1)

∀u ∈ Pr (i) : su +
∑
k

zu,kdu,k < si (3.2)

∀u ∈ Su (i) : si +
∑
k

zi,kdi,k < su (3.3)

∀u ∈ Sm (i) : si = su (3.4)

∀t ST ≤ t < ET : Pt ≤ pt =
∑

∀i|si≤t<si+
∑

k zi,kdi,k

‖R‖∑
k=1

zi,kei,k ≤ Pt (3.5)

9

∀t ST ≤ t < ET :
∑

∀i|si≤t<si+
∑

k zi,kdi,k

‖R‖∑
k=1

zi,k ≤ 1 (3.6)

∀i 1 ≤ i ≤ ‖T‖ :

‖R‖∑
k=1

zi,k = 1 (3.7)

Where zi,k is a binary variable that indicates whether task i is assigned

to resource k.

First we set the time constraints given by the time windows of the work-

�ow and the corresponding task, (3.1) where each task cannot be scheduled

before its earlier start time and has to be completed before its latest end

time. Equations (3.2), (3.3) and (3.4) formalize the constraints given by the

precedence constraints where a task i can not be executed before all its pre-

decessor tasks, Pr (i), have �nished and it has to �nish before its successor

tasks, Sr (i), start. Furthermore task i has to start at the same time as its

simultaneous tasks Sm (i). Equation (3.5) checks that the current energy

usage pt ful�lls the energy pro�le. Equation (3.6) ensures that any resource

is used over its capacity. Note that we can substitute 1 by another num-

ber allowing capacities higher than 1, but for simplicity we set the capacity

of each resource to 1. Finally, equation (3.7) ensures that every task has

assigned a single resource for its execution. 1

Following we de�ne the energy cost based on the energy cost at each

time,

ov (t, pt, Aj) =

max (0,min (yj + hj , pt)− yj) xj ≤ t < xj + wj

0 otherwise
(3.8)

1Note that we are stating that each task has to be executed by a single resource,
however, tasks that need several resources at the same time can be easily considered using
equation (3.4). For example if task Ti needs resource 1 and 2, we can divide it into Ti1

and Ti2 where both have the same start time, si1 = si2.

10

∀j 1 ≤ j ≤M : aj =
∑

∀t|ST≤t<ET

ov (t, pt, Aj) (3.9)

Equation (3.8) de�nes the intersection between the energy usage pt and

the area Aj at time t. The global intersection between pt and the area Aj is

called aj as equation (3.9) shows.

As said in Chapter 2, we consider three di�erent costs: the resources

cost, the energy cost and the make span. We de�ne the energy cost of a

schedule as the sum of the energy cost of each area and it depends on the

contracted rate and the energy usage:

CE =


∑M

j=1 ajcj aj ≤ aj∑M
j=1 ajcj + fj aj > aj

(3.10)

Similarly, we de�ne the resources monetary cost as:

CR =

‖T‖∑
i=1

‖R‖∑
k=1

zi,kmi,k (3.11)

Finally, we de�ne the makespan as the maximum end time less the mini-

mum start time or, in other words, the maximum di�erence between a start

time and an end time:

∀i,j 1 ≤ i, j ≤ ‖T‖ : CT = max
i,j

si +

‖R‖∑
k=1

zi,kdi,k − sj

 (3.12)

Note that the variables of the formulated problem are si and zi,k ∀i,k
since they de�ne the schedule and the resources used for the execution of the

tasks.

The problem is de�ned as the minimization of CE or CR or CT .

According to that formulation, the Choco solver is able to �nd the solu-

tion.

11

Chapter 4

Work�ow Scheduling by

Auctions

Resource allocation problem has been widely studied and solved by a large

variety of methods depending on the problem context. Sometimes, there are

involved di�erent agents or organizations in the resource allocation process

which are independent and do not desire to share all their information with

the others. Considering that context, the use of reverse auctions to perform

the resource allocation is an appropriate method, [11, 8, 15, 2], since there

is an organization (auctioneer) that demand a work�ow, with a set of tasks,

to be performed by resource agents that compete to perform the tasks they

are enable to, to increase their utility.

Thus we developed an auction simulator to perform resource allocation

considering that there is only one auctioneer and that each resource agent

manages a set of resources that able it to send bids to perform the auctioned

tasks. Then the auctioneer solves the winner determination problem to set

which tasks perform each agent and when.

4.1 Bidding strategy

The auctioneer sends the requests for proposals (a proposal per task) to the

resource agents. Therefore, each agent can have several tasks Ti . . . Tj to con-

12

sider which led the agent to explore a considerable amount of combinations.

Therefore, the price of each bid could depend on the tasks that the resource

agent (henceforth bidder) would perform, i.e., bid price depends on the other

bids. In that context we used the formulation proposed in [8]1 where each

bid has a set of bid price modi�ers which de�ne the inter-bid dependence and

allow the bidder to compact the possible combinations reducing the mem-

ory usage. Summing up, each bidder can send a set of time-dependent bids

(Bj1 . . . BjNj , where Nj is the number of bids sent by bidder j) together with

three vectors: Me, Mr, Mt:

Bjk =
〈
Ti@tjk : (CEjk, CRjk, CTjk) ,Mejk ,Mrjk ,Mtjk

〉
(4.1)

Where Ti is the ith task, tik is the start time proposed by the bidder,

CEjk the energy cost, CRjk the resource cost and CTjk the estimated du-

ration of the task. Note that in the context presented in Chapter 2, the

cost related to the use of a resource is not usage-dependent and so, Mr is a

vector of zeros as well as Mt. Nevertheless we left them in the formalization

to illustrate that they can be easily added as well as set up energy costs.

4.2 The Winner Determination Problem

We are dealing with combinatorial auctions, therefore the WDP is NP-hard

[2, 8]. Nevertheless, note that we are limiting the independency between bids

as we are using 2D matrices to compute the price of the possible combinations

and so, the set up costs for combinations of three or more bids are the

aggregation of the set up costs of all possible pair of bids. For example

if a bidder sends three bids (we consider only one set up cost vector for

simplicity):

Bj1 = 〈T1@tj1 : (20, 12, 4) , [.,−5, 3]〉 (4.2)

Bj2 = 〈T2@tj2 : (15, 15, 1) , [−5, .,−2]〉 (4.3)

1They propose the formulation in the context of set up costs due to the chain of two
or more tasks, but we extended its use to set the saves/extra costs over the bid prices due
to the energy rates.

13

Bj3 = 〈T3@tj3 : (20, 13, 2) , [3,−2, .]〉 (4.4)

These three bids are actually seven combinations of bids: Bj1, Bj2, Bj3,

Bj1 + Bj2, Bj1 + Bj3, Bj2 + Bj3 and Bj1 + Bj2 + Bj3. The set up costs of

the last combination is −5− 2 + 3 = −4.

Given the bids from all the bidders, the autioneer has to decide which

is the most suitable resource agent for each task. The winners depend on

the factor we want to optimize, the energy cost, the resource cost or the

make span. Thus, when we want to minimize the energy costs, the winner

determiniation problem is given by equation (4.5).

argmin


‖T‖∑
i=1

Nb∑
j=1

Nj∑
k=1

CEjk · xijk +

‖T‖∑
l=l,l 6=j

Mejk (l) · xijk · x
p
jl

 (4.5)

where p is the task Bjl refers to, Nb is the number of bidders and xijk
is a binary variable that indicates whether Bjk is the winner bid for task i.

Similarly, when we are optimizing the resource costs and the makespan, the

WDP is given by:

argmin


‖T‖∑
i=1

Nb∑
j=1

Nj∑
k=1

CRjk · xijk +

‖T‖∑
l=1,l 6=j

Mrjk (l) · xijk · x
p
jl

 (4.6)

argmin


‖T‖∑
i=1

Nb∑
j=1

Nj∑
k=1

CTjk · xijk +

‖T‖∑
l=1,l 6=j

Mtjk (l) · xijk · x
p
jl

 (4.7)

Finally, the winner bids, obviously have to respect the constraints given

by the work�ow (start and end times, precendences, etc.) and equation (4.8)

that ensures that each task has not more than one winner bid.

∀i 1 ≤ i ≤ ‖T‖ :

Nb∑
j=1

Nj∑
k=1

xijk ≤ 1 (4.8)

14

Figure 4.1: Bidtree example. Each level corresponds to a task and they are
ordered into decreasing order of their demand (received bids).

As aforementioned, the WDP is a NP-hard problem and we have de-

veloped and analyzed three di�erent methods to solve it: a Branch&Bound

(B&B) algorithm and two heuristics, GA and SA.

4.2.1 Branch & Bound

Given all the bids received by the auctioneer from the bidders, we perform

the search building a tree of bids (henceforth bidtree) and then searching

through it the best combination of bids with a B&B algorithm.

The bidtree is a tree-shaped graph where each node corresponds to a sin-

gle bid. The bidtree is divided by depth levels where each level corresponds

to a single task. Therefore nodes in the same level are not connected and the

tree can not be explored in a horizontal way. Figure 4.1 shows an example

of bidtree where there are three auctioned tasks and two bidders that send

bids B11 . . . B12 and B21 . . . B23. Task T1 has two bids, B11 and B21, T2 has

also two bids, B22 and B23, and T3 has a single bid, B12. Since T3 is the less

bidded task, its bid is the top bid and since T2 is the most bid task, its bids

are the bottom bids. This ordering is highly important since it guarantees

that the resulting tree has the minimum number of nodes.

Figure 4.2 shows the relation Ndec
Ninc

, where Ndec is the number of nodes

explored when the decreasing task order is used and Ninc is the number of

increasing order reduces the number of explored bids. However, there is not

15

Figure 4.2: Relation between the number of nodes explored using increasing
order of the tasks (as Figure 4.1) and decreasing order, Ndec

Ninc
, over 20 di�erent

examples

an exact value for this relation since it depends on the number of bids that

each task has.

Some works, [12, 4], propose also to implement a bid ordering mechanism

(ordering the bids from the same level in a way that the lowest cost bids are

explored �rst, allowing the algorithm to set better bounds) to ensure that

the best combinations would be found in the early iterations. Note that this

mechanism is not suitable in our case, since we have set up costs that depend

on whole combination of bids and, therefore, we cannot prune a branch

before exploring it till the deepest node (unless the set up cost of a pair of

bids is in�nity). Thus, algorithm 1 explores the tree as a depth-�rst-search

algorithm, what allows it to keep in memory only the best branch found and

the current one, pruning only those branches that have incompatible bids

according to the bidtree or due to they use the same resource at the same

time. Note that is not possible to make a fast estimation of the branch due

to the set up costs that would be applied depend on the whole branch.

When the algorithm reaches the deepest node of the branch, it backtracks

to the previous node and expands it, instead of backtracking to the root node

16

and expanding again the branch.

Algorithm 1 BB_expand
Require: bag of bids (bag) grouped by tasks. Tasks ordered by decreasing order of demand.
1: b← choose (bag [0]) "take a bid of the corresponding task-level"
2: branch.add (b)
3: value← evaluate (branch)
4: Aux ← remove_current_task_bids(bag) "removes all bids related to the task done by b.

Next task-level is the �rst."
5: if value <∞∧¬leaf node then
6: BB_expand(Aux)
7: else
8: if value < bestV alue then
9: bestBranch← branch
10: end if

11: end if

12: branch.remove (b) "remove b from the current explored branch"

Note that we are not following the bidtree structure proposed in [2] be-

cause the auctioneer does not receive combinations of bids, it receive indi-

vidual bids and set up costs that he has to consider when a combination of

bids is proposed.

4.2.2 Genetic Algorithms

When there are a lot of tasks, bidders, etc. in the auction the WDP becomes

unfeasible since it is NP-hard. Thus, we decided to analyze the performance

of some metaheuristic methods on solving the WDP.

GAs, [14, 10, 6], exploit the ability of the evolution operators to improve

the equality of a population of solutions generation after generation in order

to �nd the optimum solution to a given problem.

To solve the given WDP with GA we de�ned the chromosomes as strings

of length ‖T‖, the number of tasks of the work�ow. Each slot corresponds to
a task and it is assigned to a bid received by the auctioneer. The algorithm is

initialized (step 1 Algorithm 2) by an amount of new chromosomes (random

combinations of bids) and then they are combined (step 3 Algorithm 2) using

a two point crossover, see Figure 4.3, which greatly expands the possible

o�spring created [6]. The parents are selected using the tournament selection

using 3 candidates that tends to keep more diversity than the roulette wheel

selection giving more chances to the worst chromosomes [6]. This mechanism

17

Figure 4.3: Two point crossover

consists in selecting randomly 3 chromosomes and then choose the best of

them as the �rst parent, then three more chromosomes are selected randomly

and the best is chosen as the second parent. After the children chromosomes

are created, we apply a mutation operator (step 4 Algorithm 2) over them in

order to increase the population diversity. The mutation operator consists

in changing the chromosome's genes (changing the bit assigned to them for

another one randomly selected) for a given probability µ = 0.1. Once we

generated the desire number of new chromosomes we lump together them

with the old chromosomes and apply elitism (step 6 Algorithm 2) in order

to select only the best chromosomes for the next iteration.

Algorithm 2 Genetic Algorithm
Require: bag of bids (bag) grouped by tasks, number of generations Ng = 200, generation = 0,

population size popSize = 100, children chromosomes made at each iteration Nchildren

1: population← initialize_population (bag, popSize)
2: while generation < Ng do

3: Mating: Create Nchildren new chromosomes using tournament selection and two point
crossover

4: Mutation:Apply mutation operator on each new chromosome
5: Add new chromosomes to population
6: Elitism: remove the worst chromosomes from population keeping only the best popSize
7: end while

Figure 4.4 shows the evolution of the �tness of the �ttest chromosome

and the average of the population. Note how elitism always keeps the best

chromosome and how elitism combined with crossover and mutation oper-

ators progressively improves the �tness of the population generating better

chromosomes at each generation.

18

Figure 4.4: Plot of the evolution of the �tness of the best generated chromo-
some vs. the average �tness of the whole population. The �tness is computed
as 1

cost

4.2.3 Simulated Annealing

SA, [13, 9], is a metaheuristic method inspired on a metallurgy technique

that heats and cools the material to move their atoms in order to allow

them achieving lower energy states. SA (see Algorithm 3) tries to iteratively

improve an initial solution with this heating-and-cooling process by selecting

at each iteration a neighbor solution. If the new solution is better that the

old one, then the algorithm moves towards the new solution, otherwise it

moves towards the new solution with a probability of e
vold−vnew

T or stays at

the old solution with a probability 1− e
Cold−Cnew

T , where Cold and Cnew are

the costs of the old and new solution respectively, and T is the temperature

of the algorithm. Thus, when SA �nds a worse solution it has a chance to

move towards it (to make a bad move) in order to avoid getting stacked

on local optimums or �at regions. The temperature of the algorithm T

is progressively reduced, reducing so the chances of bad movements at each

iteration. Figure 4.5 shows the solutions explored by SA, the solutions where

it decides to move or stay and the best solution found since the beginning

19

Figure 4.5: Plot of the solutions explored by SA. We can see the best solu-
tion found since the start of the algorithm, the current solution where the
algorithm stays and the new solutions explored by the algorithm. We plotted
1
cost to set to zero those solution with an in�nity cost.)

at each iteration which is always saved and replaced when a better one is

found.

Solutions are equal to the chromosomes explained in the previous sub-

section. They are strings where each slot corresponds to a task of the auc-

tioned work�ow and each slot has assigned a single bid. When the algorithm

selects a neighbor solution from another solution, it assigns a probability of

being changed to each bid of the solution. This probability is proportional to

an estimation of its contribution to the cost of the solution. Thus, cheaper

bids has less chances of being changed.

20

Algorithm 3 Simulated Annealing
Require: bag of bids (bag) grouped by tasks, To = 1000, δ = 0.99, Tf = 3.5× 10−15

1: set an initial solution s randomly
2: Cold ← evaluate (s)
3: sbest ← s
4: Cbest ← Cold

5: T ← To
6: while T > Tf do

7: snew ← neighbor_solution (s, bag)
8: Cnew ← evaluate (snew)
9: r ← random number between 0 and 1

10: if Cnew < Cold ∨ r < e
Cold−Cnew

T then

11: Cold ← Cnew

12: s← snew

13: if Cold < Cbest then

14: Cbest ← Cold

15: sbest ← s
16: end if

17: end if

18: T ← T × δ
19: end while

20: return sbest

21

Chapter 5

Results & Discussion

In previous chapters we de�ned the scheduling problem and we presented

di�erent methods for solving it. Here we present the results obtained by the

di�erent presented methods.

Figure 5.1 shows us the elapsed time by Choco solver to solve the schedul-

ing problem and the elapsed time by bidtree B&B, GA and SA to solve the

WDP. We can state that since the constraint programming problem and the

WDP are NP-hard, Choco and bidtree B&B solve them into an exponential

time. However, B&B solves the problem faster than Choco what makes us

think that solving the scheduling problem by auctions plus bidtree B&B is

more e�cient than using Choco. Moreover, the auctions mechanism o�ers

other advantages. For example we can model the participation of several

independent agents or organizations which do not want to share all the in-

formation.

On the other hand, Figure 5.1 shows that the elapsed time by SA and GA

does not grows up exponentially with the number of auctioned tasks. This

makes them, a priori, suitable methods for solving big problems. However,

if we focus on Figure 5.2 we notice that GA and SA are not able to �nd,

always, the optimum solution (as we expected) since they are not complete

optimization algorithms. Also the chances SA or GA have to achieve the op-

timum solution decrease according the number of auctioned tasks increases.

Therefore, there is a trade-o� between time and quality. This trade-o� is

22

Figure 5.1: Elapsed time for solving the scheduling problem by Choco solver
or the WDP by bidtree B&B or GA or SA (median over 25 runs)

Figure 5.2: Percentage of times SA and GA �nd the optimum solution

23

Figure 5.3: Performance of bidtree B&B, Choco, GA and SA along 150
random problems with 4− 12 tasks each one.

also represented on Figure 5.3 that shows the probability of achieving the

optimal solution given an amount of time. Furthermore it illustrates that

GA and SA never have 100% of chances to achieve the best solution, but

bidtree does if enough time is given.

To compare the performance of GA and SA we extended the experimen-

tation with longer work�ows (from 4 to 23 tasks each work�ow). Glancing

at Figure 5.4, which shows the cumulative probability of getting a feasible

solution given an amount of time, we can state that GA has a faster con-

vergence than SA, but both have similar probability of achieving a feasible

solution. Moreover, when both algorithms �nd a feasible solution, 20.09% of

times GA's solution is better than SA's, and 12.36% of times SA's solution is

better than GA's. The other times, both achieves the same solution. There-

fore, focusing on the quality of the given solution, both algorithms perform

similarly, with a light advantage of GA in scenareos with longer work�ows.

But in time terms, GA has a faster convergence which means it is faster.

24

Figure 5.4: Performance of GA and SA along 250 random problems with
4− 23 tasks each one.

25

Chapter 6

Conlusions & Future work

In this work we stated the scheduling problem when time-dependent costs

are present and we proposed solving it by a constraint programming model

and an auction mechanism. We solved the constraint programming model

by Choco solver and the winner determination problem using a bidtree

branch&bound algorithm, genetic algorithms and simulated annealing. We

have seen that the auction mechanism present some advantages like it is

able to model the problem when there are several independent organizations

involved in the problem solving. Moreover, the results we have presented

demonstrate that the use of auctions with the bidtree branch&bound algo-

rithm is more e�cient than solving the constraint programming model with

Choco. However, the elapsed time by Choco and the branch&bound algo-

rithm for solving both problems grows up exponentially with the number

of tasks the problem has. Then its use is tied up to the dimensionality of

the problem. Furthermore, we apply two heuristic methods for solving the

winner determination problem, genetic algorithms and simulated annealing.

The results showed us that this algorithms can be used to solve big problems,

however they do not �nd always the optimal solution, and their chances for

doing so decrease as the complexity of the problem grows up.

Given the results presented in this work, it would be interesting to analyze

how the lack of optimality of the solutions found by the heuristic algorithms

a�ects the resource agents behavior. We also presented di�erent di�erent

26

target functions depending on what is desired to optimize (energy costs,

resource costs, makespan), thus it would be interesting to complement this

work studying multi attribute auctions.

Acknowledgments.

This research project has been partially funded through BR-UdG Scholarship

of the University of Girona granted to Ferran Torrent-Fontbona.

Give special thanks to Albert Pla for sharing his auction simulator.

27

Bibliography

[1] Indranil Bose and Raktim Pal. Do green supply chain management

initiatives impact stock prices of �rms? Decision Support Systems,

52(3):624�634, 2 2012.

[2] John Collins, Güleser Demir, and Maria Gini. Bidtree ordering in

ida combinatorial auction winner-determination with side constraints.

Agent-Mediated Electronic Commerce IV. Designing Mechanisms and

Systems, 2531:17�33, 2002.

[3] Red Eléctrica de España. BoletÃ­n mensual diciembre 2012, 14th

February 2013 2013.

[4] Laureano F. Escudero, Mercedes Landete, and Alfredo MarÃ­n. A

branch-and-cut algorithm for the winner determination problem. Deci-

sion Support Systems, 46(3):649�659, 2009.

[5] Sebastian Gottwalt, Wolfgang Ketter, Carsten Block, John Collins, and

Christof Weinhardt. Demand side management - a simulation of house-

hold behavior under variable prices. Energy Policy, 39(12):8163�8174,

12 2011.

[6] Randy L. Haupt and Sue Ellen Haupt. Practical genetic algorithms.

Wiley-Interscience, 2004.

[7] Simonis Helmut and Tarik Hadzic. A Resource Cost Aware Cumula-

tive, pages 76�76�89. ecent Advances in Constraints. Springer Berlin,

Heidelberg, lecture notes in computer science edition, 2011.

28

[8] Beatriz Lopez, Aditya Ghose, Bastin Tony Roy Savarimuthu, Mariusz

Nowostawski, Michael Winiko�, and Stephen Crane�eld. Energy-aware

optimisation of business processes. 2012.

[9] Sean Luke. Essentials of metaheuristics. Lec-

ture notes, George Mason University.Free access:

http://cs.gmu.edu/ sean/book/metaheuristics/(last visited:

2011.11.16), 2009.

[10] Mitchell Melanie. An introduction to genetic algorithms. Cambridge,

Massachusetts London, England, Fifth printing, 1999.

[11] Albert Pla, Beatriz Lopez, and Javier Murillo. Multi-attribute auc-

tion mechanism for supporting resource allocation in business process

enactment. STAIRS 2012, pages 228�228�239, 2012.

[12] Tuomas Sandholm, Subhash Suri, Andrew Gilpin, and David Levine.

Cabob: A fast optimal algorithm for winner determination in combina-

torial auctions. Management Science, 51(3):374�390, 2005.

[13] F. Torrent-Fontbona, V. Muñoz, and B. Lopez. Solving large immobile

location-allocation by a�nity propagation and simulated annealing. ap-

plication to select which sporting event to watch. Expert Systems with

Applications, (0), 2013.

[14] Ferran Torrent-Fontbona. Decision support methods for global opti-

mization. Master's thesis, University of Girona, 2012.

[15] M. Wieczorek, S. Podlipnig, R. Prodan, and T. Fahringer. Applying

double auctions for scheduling of work�ows on the grid. In 2008 SC - In-

ternational Conference for High Performance Computing, Networking,

Storage and Analysis, SC 2008. Institute of Computer Science, Austria,

15th-21st November 2008.

29

