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Speed of reaction-diffusion fronts in spatially heterogeneous media
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The front speed problem for nonuniform reaction rate and diffusion coefficient is studied by using singular
perturbation analysis, the geometric approach of Hamilton-Jacobi dynamics, and the local speed approach.
Exact and perturbed expressions for the front speed are obtained in the limit of large times. For linear and
fractal heterogeneities, the analytic results have been compared with numerical results exhibiting a good
agreement. Finally we reach a general expression for the speed of the front in the case of smooth and weak
heterogeneities.
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[. INTRODUCTION the front. These studies may be seen as a way to introduce
stochastic heterogeneities in the reaction-diffusion equation
Front propagation modeled by reaction-diffusion equa-through a control parametéd9]. Therefore, the effect of
tions has been applied in many areas of science such as physterogeneities on front propagation is of wide theoretical
ics, biology, ecology, and chemistf¥,2]. Since the pioneer- and practical interest.
ing works by Kolmogorov, Petrovskii, and Piskun@iPP) Our goal in this work is to understand how deterministic
[3] and Fisheif4], both in 1937, this field has been continu- heterogeneities influence the front speed of parabolic
ously growing. The basic phenomena have been described lbgaction-diffusion equations with a monostable reaction
using parabolic reaction-diffusion equations derived undeterm, when either the diffusion coefficient or the reaction
the assumption that the medium in which fronts are movingerm depend on the spatial coordinate. Methods such as mar-
is homogeneous. Although heterogeneities are alwayginal (linean stability [20] and variationa[21] analysis have
present in nature, studies of fronts in heterogeneous medizeen widely used to find the asymptotic speed of a front.
have been much more recent. Some examples are porottwever, both methods do not hold, or at least they should
media, random media, noisy media, ecological patchinesfie adequately generalized, when the reaction-diffusion equa-
etc. tion has an explicit dependence on the spatial coordinate.
Experimental studies have been developed for heterogénstead, we will make use of well-known analytical tech-
neous excitable media. In this context, two-dimensional fronhiques such as singular perturbation analysis and the local
propagation in the photosensitive Belousov-Zhabotinskyspeed approach, both valid for weak heterogeneities, and
modulated reactioni5,6] and patchy medid7] have been geometrical methods for general heterogeneities, in order to
explored. Successful theoretical efforts have been also mads#udy how heterogeneities introduce corrections to the
to understand the phenomenon of front propagation in excitasymptotic front speed, both for pullgé&PP) and pushed
able media. In particular, Xif8] has studied front solutions (but monostablefronts. We will also compare the analytical
for reaction-diffusion equations in periodic and random me-+esults and numerical simulations.
dia[8], and Shigesadet al.[9] have given analytical restric- The methods we employ here have some limitations. Sin-
tions for the existence of propagating fronts in ecologicalgular perturbative analysis may be efficiently compared to
patchy environments. Heterogeneous models have been aleamerical results when the solution to the leading order is
used, via computer simulations, to describe the dynamics dfnown and for reaction-diffusion equations with non-KPP
brain tumors[10]. Moreover, diffusion coefficients depend- kinetic terms. The solution for the lowest order may be found
ing on spatial and temporal coordinates have been recentfpr some particular non-KPP kinetic terms but it is not
proposed to study the formation of Alzheimer’s disease seknown in general, although in those cases numerical solution
nile plaques[11]. Nakamuraetal. [12], have studied may always be calculated. This method requires, of course, a
reaction-diffusion equations when the spatially inhomoge-small parameter present in the model. Therefore, it is neces-
neous reaction rate is much larger than the diffusion coeffisary to assume that the spatial heterogeneities of the media
cient. Keenef13,14], Mitkov et al. [15] and Rotsteiret al.  introduce a small variation in the reaction rate and/or the
[16] have studied bistable-type models in heterogeneous meliffusion coefficient(weak heterogeneitieand the charac-
dia in the context of calcium release wa\dg]. Petrovskii  teristic length of the heterogeneities must be greater than the
has analyzed the case of a spatially periodic environmentharacteristic width of the fron{smooth heterogeneitiges
[18]. Many authors have recently studied the effect of thg22]. On the other hand, the geometrical method we present
external multiplicative noise on the speed and the width ohere, based on Hamilton-Jacobi dynamics, only holds for
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KPP kinetics but, contrary to the previous method, there is g p=e? 0+ [1+ae ,(X)]f(P),

no need to assume either weak or smooth heterogeneities.

The local speed approach is based in the assumption that for lim ¢=1, lim¢=0. (4)
weak and smooth heterogeneities the speed of the front is X — oo X0

given by the local value of the reaction rdtk and/or the

diffusion coefficientD in each spatial point, i.e., the front In order to study Eqgs(4) we will make a nonrigorous
speed would be=2\U(x)D(x) for KPP kinetics. There- asymptotic analysis. We assume that the domain is divided
fore, fronts withU =D (constant and D =f(x) would have into two regions according to the space scales: a boundary
v=2bf(x), and the same would hold for fronts in media layer region, whose width i©(g), in which ¢ is rapidly

with U=f(x) andD =b. But, as we shall see, in general this varying; and an external region in whiah is almost con-
simple approach is not consistent either with our analyticaktant, i.e., eitherp=0(&") or ¢=1+0(&"2), wheren;

results or with our numerical simulations. andn, are positive real numbers.
In this paper we study first the dynamics of front motion  In order to solve Eq(4) in the outer region we expangl
for the following smooth heterogeneous problems as follows:
dip=dxxp+U(ex)f(), d(X,te)=Do(x,t)+e Dy(X,1)+e2D,y(X,1)+O(3).
©)
drp= [ D(ex)dxp]+ (), ()

By substituting Eq.(5) into Eq. (4) and collecting terms

where the functionf satisfies f(0)=f(1)=0, ¢(x,0) with the same powers of we get

= @(x) where 6(x) is an initial condition that may range

from the Heaviside step functidnp(x,0)=1 for x<0 and _ . _ ; _

¢(x,0)=0 for x>0] to a fully developed frontD andU are f(®o)=0, Xﬂrlq)o L leq)o 0 ®
the dimensionless diffusion coefficient and reaction rate, re-

spectively, ance is a small parameter. Since we expect so- Do (DD + f(P lim ®.= 7
lutions to behave like totally developed fronts, we should % %o (Po) 1t 0 7, (Po), XlToo 1=0, (7

look at them in the asymptotic reginflarge-space and large-
time limit) t—t/e and x—x/e. The scaling considered is gng
equivalent to assuming that the front is totally developed

independent of the way it developed from initial conditions. 1
Equations(1) then become &t@lzﬂqu’ﬁzf"(@o)@%f’(‘Po)sz
— a2
edp=e"0xp+U(X)f (), +o g (X)f (Pg)®,, lim ,=0. (8
X— *x©
edip= e’ D(X)dxp]+ (). (2

. . — - . The solution of Eq(6) is ®,=1 to the left of the bound-
Consistent with the initial conditions and the existence of & v laver andb.—=0 to the riaht of the boundary laver. The
front we require the solution to satisfy lim__¢=1 and yay 0 g y layer.

solutions of Eqs(7) and(8) are®,=0 and®,=0, respec-
lim  _¢=0. tively. Thus, ¢(x,t;e)=0(e®) to the left of the boundary
layer and¢g(x,t;e)=1+0(&®) to the right of the boundary
layer. Note that to the order of magnitude considered here,

Il. NONUNIFORM REACTION . . .
there is no effective difference between the homogeneous

We consider the problem and heterogeneous cases, i.e., there is no difference in the
shape of the front.
edp=2edgyp+U(X) (), In order to study the dynamics in the interior of the
boundary layer we translate E@) to the reference frame of
U(X)=1+ ny(x), (3 the front, i.e., we define the new varialte=[x— S(t)]/e

) ) . , where S(t) represents the position of the front. The deriva-
whered is the amplitude of the heterogeneities andx) is  tives in Eqgs.(2) transform according to
the reactive heterogeneity.

A. Singular perturbation analysis 0y— — —3d,+ 4,
&€

This method of perturbative analysis has been already em-
ployed to study the speed of pulled fronts and it has been 1
shown that the solvability integrals diveri23]. Therefore, O —= g (9)
we will use this method only for non-KPP kinetics. We as- g2
sume §=0(&) (weak heterogeneitigsi.e., S=oe, where
o=0(1) in Eq. (3). Equation(3), together with the corre- where the dot symbol stands for the temporal derivative. We
sponding boundary conditions, becomes expand¢ andSin powers ofe:
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¢(th):¢O(Z)+8¢1(Z!t)+82¢2(zvt)+ T e czd¢0 * czd¢0 d2¢0
, Jlooe Ef((ﬁo)dz:—ﬁwe E d22 dz
S(t)=Sp(t) +eS;(t) +e°Sp(t) + - - - (10)

o d 2
and, in consequence, —cfxecz(g) dz
7u(X)= n(Sot 2o+ Sye -+ )= 7y(So) + 7 So) 2+ Spe N Cz(dqu)Z

i —‘ECLG rrik

Finally one can obtain the first correction to the speed

f(¢)=f(¢o)+f/(¢o)¢18+%f"(¢o)¢582+f’(¢o)¢282

+oon (1D) Si=30cnu(ct).

(17

where  7/(So) =d7,(x)/dx], - and f'(¢o)=df()/ Note that in Eq{(17) there is no dependence on the solution
u ! =% of ¢ but only on the functiony,, .

d¢|¢=¢o' Inse_rting Eqs(10) and(11) into_ Eq.(4) oncg Egs. The speed of the front reads, after inverting the hyperbolic
(9) are taken into account, and collecting terms with equakcgjing,

powers ofe one getdD(1), O(e), andO(&?), respectively:

v(t)=c+ icy,(cte)5+0(5). (18
L(¢o)=0, (12)
Before proceeding with the following order in the expan-

__ i sion it is necessary to solve E@.3). As £,(d¢o/d2)=0 we
£1(91) =~ o (bo) 1(S) = S19260, a3 look for a solution of the form ¢i(z,t)0=(d¢o/dz)
. . +(d¢o/dz)zF(t) in Eq. (13, finding that F(t
Li(2) = —S0,0—$10,1— 51" (o) b3 :ég(é;)u(cg.zT(hl)Js | % (149, findng W

_UWU(SO)f,(¢O)¢l dd) 1

0

—at(do) ni(So)(z+S) + by, (14 $1(z0)= | L+ 5 on(ch)z|. (19

where L= d,,+ Syd,+ f (o) and L= dy,+ Sod,+ ' (o). After substituting Sp=ct, Egs. (17) and (19) into Eg.
Since we assuméo= ¢o(2), Eq.(12) is equivalent to the (14, and applying the solvability condition[24]
homogeneouss=0) parabolic reaction-diffusion equation J~=€“(déo/d2)L1(¢)dz=0 for Eq.(14) we get
translated to the front reference framB:(x—Sot) which co? co
travels at constant speegh. We call Sy=c and therefore S,=— Tnu(ct)2+ aon(ct)+ 777{,(ct)81(t),
Sp=ct where we assum®(0)=0. From the solvability con- (20)
dition for the equation at each order of the expansion we will
obtain the corresponding corrections to the speed of th?\/herenl’,(ct)zdnu(x)/dx|x=ct, S,(t)= Loy, (x)dx [as-

front. The solvability integral condition of Eq(13) is
J7 . WL1(p)dz=0 [24], where i is such thatZI(4)=0,

£I=azz— Soaz+f’(¢o) being the self-adjoint operator of

L4 [24]. It is easy to show thagy=e“d¢,/dz is an eigen-

function ofEI with null eigenvalue. The solvability integral

condition for Eq.(13) may be written as

= de _ do
f_meczd—zo —Uf(d)o)??u(so)—sld—z0 dz=0 (15
so that
o d
onet [ =0t paz
S;=- = 7 (16)
f ecz(%) dz
% dz

The integral in the numerator of E(L6) may be simplified
by using Eq.(12) and integrating by parts

sumingS(0)=0], and

o d 2
f zecz(ﬂ) dz
1 — dz
a=—-+C

2 ° depo\ 2
j ecz(—%) dz
— dz

Note that in this cas8, depends explicitly on the solution of
¢o. In order to compute analytically the second-order cor-
rection of the speed it is necessary to have an analytical
expression for the zeroth order solutigiR(z). Some exact
solutions are known in the literatuf&] for reaction terms of
the form f(¢)=¢9"1(1— ¢9%) for q=1. This source term
has been applied to forest fir¢25,26 and the spread of
microorganism$27]. In this case, the solution for the homo-
geneous case takes the form

(21)

1 1 1
Z)=——F—, C= , b=gc, a=-.
P e g D9 g
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It is easy to check that the integrals involved in Ed$) and
(21) are convergent for anyg. For example, fog=1 we
havef(¢)=¢?(1— ¢), a=1, and the speed of the front is
given by

. 1 o t a? t z
vsp(t):S(t)Iﬁme??u )T T
[t o [t (uz )
+ton, E + mﬂu E f nu(X)dX; e
+0(&?), (22)

where we have made use of Eq$7) and(20).

For mathematical and numerical simplicity let us illustrate
the above results for the case whergx) =x is linear. Tak-
ing o=1 we have from Eq(22) v(t)=1/y2+te/4+e? and
inverting the hyperbolic scaling we obtain, for O(e ~2),

t
1+ e?+0(ed), (23

1
Usp(t)ZE*‘

where the subscripg P stands for “singular perturbation”
result. For any non-KPP(¢) one has

2

ct
vse(l)=CH| > +a e2+0(ed). (24)
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0.6

10 20

FIG. 1. Comparison of the temporal evolution of the speed of
fronts (in dimensionless unijsbetween the singular perturbation
analytical result given in Eq23) (solid lineg, the local speed ap-
proach(26) (dashed lines and the numerical resultsymbolg for
different values ofe. This is the casen,(x)=x and f=¢?(1
— ¢) for nonuniform reaction rate.

B. Hamilton-Jacobi dynamics

The use of the Hamilton-Jacobi dynamics to study the
front propagation is initially devoted to Freidlif28] who
treated the KPP minimal speed for slowly varying media
using probabilistiqlarge deviatiop approach but also rigor-

The local speed approach assumes that the front positigHS Mathematics has done byr@ar[29] and Evang30].

changes adiabatically in time as the front moves into a regio
where the characteristic parametBrandU change. For the
first of Egs.(1) and for a source termfi(¢) = ¢?(1— ¢) the
speed of the front is locally given by=DU(&ex)/2,
wherex; is the position of the front. To be more specific, let
us take alsay,(x)=x ando=1. In consequence, the depen-
dence of speed of the front on the time is obtained by inte
grating the differential equation

[1+82Xf
2

for the position of the front in dimensionless units. Taking
X:(0)=0 the local speed approach yields, for this case,

de_
dt

(29

1 2

va()=—=+

2

where the subscrigt A stands for “local approach.” In Fig.

1 we compare, for different values of the numerical results
for the front speed of the first equation in Eq4) for
U(ex)=1+dny(ex), ny(x)=x, and ¢(x,0), a Heaviside
function, to the analytical solution®3) and (26). We ob-
serve thatvgp is in better agreement with numerical solu-
tions thanv 5, after an initial transient. This transient is due
to two factors: it takes a certain interval of time for the front
to fully develop and the asymptotic approximation is valid
for n,(x)=0(1).

te

7 (26)

Hlowever, as we will show in the last section, it is not nec-
essary to assume either smooth or weak heterogeneities. We
stress that singular perturbation analygiseceding section
does not yield a fully analytical result for the very important
KPP kineticf(¢)=¢(1— ¢) [1,31] if one needs to go be-
yond first order ind, because the exact unperturbed solution
is unknown and the solvability integrals diverge. In this sec-
tion we determine the temporal evolution of the position of
the reaction front for the logistic case. We replace
¢(xle,tle) in Eq. (3) by an auxiliary field G(x,t)=0
through the exponential transformation

¢(x,t)=e‘G(X")’5. (27)

We expect thato(x,t) tends to a unit step function as
—0. The equalityG(x,t) =0 determines the position of the
front. Substituting Eq(27) into Eq.(2), for the KPP kinetics
f(p)=¢(1—¢), we get, to leading order, the equation (
=0)

4G+ (8,G)2+U(8,x)=0 (28)

for the action functional wher& (5,x) =1+ 67,(x). From
the analogy with the Hamilton-Jacobi equatiofhG
+H(9,G,x)=0, we define the Hamiltonian

H=p2+ 1+ 87y(x),

041105-4
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where p=04,G plays the role of conjugated momenta of

Equation(28) may be solved by using the Hamilton equa-

tions
dx
s dpH=2p,
%:—atz—addZ“, (29
from which we get the differential equation f&(s)
5'((3)4—26%:0 (30
under the boundary conditions
X(s=0)=x,
Xx(s=t)=0. (3D

The solution for the action function&(x,t) is given by

G(x,t)= min ftL[x(s),p(s)]ds, (32

x(s=0)=x,x(s=t)=0 0

whereL[Xx(s),p(s)] is the Lagrangian function defined by

L[X(s),p(s)]1=p(s)x(s)—H. As the Hamiltonian function
does not depend explicitly on the tinmthere exists the
energy integral

X(s)?
7 +1+67[x(s)]=E, (33
and therefore, from Eq32) one has
1t
G(x,t)=—Et+ Ef x(s)?ds. (34
0
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o

o 5 1 15 20 25 30 35 40
t

FIG. 2. Comparison of the temporal evolution of the speed of
fronts (in dimensionless unijsbetween the Hamilton-Jacobi ana-
lytical result given in Eq.(36) (solid lineg, the local speed ap-
proach(38) (dashed lines and the numerical resultsymbolg for
different values ofe. This is the casey,(x)=x and f=¢(1— ¢)
for nonuniform reaction rate.

[1
X(t)=8t°+2t\/1+ §5Zt2

and theexactrelationship for the speed after inverting the
hyperbolic scaling is

Cdx 4g25%°+6
R N P

for any 6. For weak inhomogeneitiess&1) one has forr
=1, in Eq.(36),

(36)

vpy(t)=2+2te?+1t2%*+0(&?), 37

which holds only fort<O(e2). The subscripHJ stands
for “Hamilton-Jacobi” result.

Let us now detail the calculations of two specific and ~The local speed approach for the KPP kinetics yields
simple choices ofy, where Eq.(30) has exact solution. The =2vDU(ex;) and the differential equation for the position
first one is7,(x)=x as in the preceding section. In this caseof the front is

Eq. (30) yields, together with conditiong31),
SX
X(8)=Xx— 8%~ — +ost, for O=s=<t

and
2

X
PN U I
E=1+3x0+ 10+ .

Finally, from Eq.(34)

2

X
G(x,t)=—t—ﬁ52t3—%xt5+4—t. (35

The position of the front given b (x,t)=0 is

dxg

EIZ\/].-F 82Xf,

which after integrating under the initial conditio(0)=0
may be written as
ULA(t):2+2t82. (38)

In Fig. 2 we compare Eq$36) and(38) with the numerical
solution for the first equation in Eq1) for different values
of . After the initial transient, we observe, in general, good
agreement. Howeven,; is in better agreement with nu-
merical solutions tham », after the initial transient.

Another case with exact solution ig,(x)=x2. In this
case the Hamiltonian is the same as for the simple harmonic
oscillator. Equatior(30) with Eq. (31) yields
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cos(z\/gt) erogeneity in the coefficient of diffusion does not affect the
X(s)=x| cog2/8s)— —————sin(2/8s)| for O<s<t.  solution at least untiD(&%). Thus ¢(x,t;s)=0(e°) to the
sin(2/4t) left of the boundary layer ang(x,t;e)=1+0(&3) to the

right of the boundary layer.

The energy integral and action functional are In order to study the dynamics of E¢42) inside the

Sx2 boundary layer we substitute Eq9)—(11) into Eq.(42) and
=1+—— collect terms with equal powers ef We obtain Eq(12) for
Sir?(24/at) the lowest order, and
2 .
Gix b=t YOCCOS2V0D) L4(61)= 0,00 15(So) ~ S10,
2sin(2./6t)
. . 1
and the position of the front is given by L1(h3)=—S,0,¢p0— S19,1— Ef"(d)o)dﬁ
_ [ 2sin2yaY — 0 70(S0)zabr— T (So) (24 S1) 8260
X(t)= \/3005(2\/?%)' (39
— o np(Sy) 9,0+ drhs

From Eq.(39) one can see that the position as well as the
speed of the front takes the infinite value just when for first and second orders, respectively. From the solvability
= w/4/5. However, for weak heterogeneitié8<1) one has  conditions and assuming= ¢o(z) one hasS,=c constant

viy(1) =2+ 41252+ 76/%%* 52+ 0(8%), (40

v<vk2|)ch _dloes not have singularities but is valid only for 312500770(0'0,
<O(s 7).

If we assume weak heterogeneiti@s<1) we can approxi-
mate the speed of the front for any genepék). Details of c o, ,
the calculations are given in the appendix. It is important to 2~ — §02”D(Ct - 3 (€t + — = np(ct) np(ch),
note that Eq(A7) is, up to§ order, equal to Eq(18) for the
KPP kinetic term where=2 but differs for higher orders. doo
For 7,(x)=x andx?, from Eq. (A7) we recover Eqs(37) P1(z,t)= a4z
and (40), respectively.

20_2

1
1- > np(ct)oz

1. NONUNIFORM DIFEUSION The speed of the front is finally given by

We consider now the problem

1 C o
vse(t)=C+ 5 Canp(Cs+| — gonp(ct)®~ 5 np(ct)

S&t(ﬁ:gz’?x[D(X)(gx‘ﬁ]‘Ff((ll’)v 2
D(X)=1+ 679p(X), (41 c?o? )
+—— mo(ct) 7p(ct) g2+ 0(&3). (43
where§is the amplitude of the heterogeneities apglx) is

the heterogeneity function in diffusion. In this case, the local

speed approach yields the same speed as for nonuniform rg-'s very Interesting to notg that, in this case, up to second
action rate if7p(x) = 7,(x). As we will see below, this re- order ine the speed correction does not depend on the solu-
u " l

sult is in disagreement with the singular perturbative and th&on of do. For 75(x)=x, o=1, and general non-KPP ki-
Hamilton-Jacobi results. netic term one has, far<O(e ),

2
A. Singular perturbation analysis vep(t)=c+ 82+O(83), (44)

2 2

As in the preceding section, we assufeoe in Eq. (41)
whereo=0(1) and we assume the existence of an outer and

. . . after inverting the hyperbolic scaling. In Fig. 3 we compare
a boundary layer region. Equ_a_ltlc(nl), together with the Eq. (44) for f= ¢2(1- ¢) and Eq.(26) with the numerical
corresponding boundary conditions, becomes

solution of the second equation in Ed$) with D(ex)=1
d7p + 6np(ex) and np(x)=x for different values ofe. In this
& dyp=8" dyxp+&° ax X T M (X)dxxp |+ f(#), casev , is in slightly better agreement with numerical solu-
tions thanvgp, contrary to the previous case.
lim ¢=1, lim¢=0. (42
X— = X— B. Hamilton-Jacobi dynamics
In order to solve Eq(42) in the outer region we use The Hamilton-Jacobi equation for proble@l), to lead-
expansion(5). We can easily see that the effect of the het-ing order(e=0), with a KPP kinetic term is

041105-6
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FIG. 3. Comparison of the temporal evolution of the speed of
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speed

FIG. 4. Comparison of the temporal evolution of the speed of

fronts (in dimensionless uniisbetween the singular perturbed ana- ¢ons (in dimensionless unitsbetween the Hamilton-Jacobi ana-

lytical result given in Eq(44) for c=1/y2 (solid lineg, the local
speed approact26) (dashed lines and the numerical resul{sym-
bolg) for different values ofe. This is the caseyp(x)=x and f
= ¢?(1— ¢) for nonuniform diffusion coefficient.

9G+[1+ 7p(X)](9,G)%+1=0.

The Hamilton equations are

dx
g5 = %H=2[1+ 8mp(x)]1p,

d
d—zz —dH=— 5p2%i;. (45)
The equation fox(s) is
Me)- 2(1+66X;3j<<s>]> LI
the corresponding integral energy is
X(s)?
T+ omolx(e]) 1T 0
and the action functional is
G(x,t)=—Et+ 1Jti((;)zds. (48
2)o1+ 6mp[X(s)]

lytical result given in Eq.(49) (solid lineg, the local speed ap-
proach(38) (dashed lines and the numerical resultsymbolg for
different values of. This is the caseyp(x)=x and f=¢(1— ¢)
for nonuniform diffusion coefficient.

1
E=1+ 52—t2(\/1+ Sx—1)2,

and from Eq.(48) one gets

G(x,t)= %(\/1+ Sx—1)°—t.

Therefore the speed is given, in an exact form, by

vpi(t)=2+2t8e (49
after inverting the hyperbolic scaling. Note first of all that
this result is equal to that obtained from the local speed ap-
proach. As in Sec. Il, note that the result obtained in this
section is essentially a leading order approximation while the
result obtained in Sec. Il Ais a®(&) approximation.

In Fig. 4 we compare Eqg49) (taking §=¢) and (38)
with the numerical result of the second equation in Eds.

In this case the agreement between both analytical methods
and the numerical results is not so good as for nonuniform
reaction rate.

From the local speed approach the speed for a given de-
pendence of the reaction rate on the spatial coordinate and
constant diffusion coefficient is equal to the speed when the
reaction rate is constant and the diffusion coefficient depends
on the spatial coordinate with the same functional depen-

Let us now be more specific for the two cases where EQqence as the above reaction rate. We have checked numeri-

(46) has exact solution. First we takg,(x) =x. From Egs.
(31) and(46) one has

2
X(s)=x+ %( Vi+ ax—1)2—§(1+ SX— 1+ 6%)

for 0<=s=<t,

cally for some values o that the speed for the linear de-
pendence of the reaction rate is not equal, although very
similar, to the speed for the linear dependence of the diffu-
sion coefficient.

From the singular perturbative analysis and the Hamilton-
Jacobi methods we can conclude that for the problems

dip=dxxp+[1+ onu(ex) () and 0t¢:‘9x{[1
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+onp(ex) 1oy P+ 1(d) with non-KPPf(¢), such thatf(0) 28— T T T T T T
=f(1)=0, whered, <1 (weak and smooth heterogene- 2-00'."'""""""']j"'tf"n"'n‘"D"m"‘u"'D"'U"D"'Er"u"'m'"D"'l:r"D"
ities) and 7, p(X) is a continuous and derivable function, the ] a ” 0=0

speed of the front has the formal solution il I ]

1.50 -
v(t)=c+3Cnyp(cte) 5+0(5?), ] ]
1.25 —
for t<O(e~ 1) wherec is the asymptotidconstankt speed
for the homogeneous probled¢=d,p+Tf(P). If 7 is l ]
an increasing/decreasing function of space, the front is 0754 © .
accelerated/decelerated. ) o=1 0=2

speed

1.00 4 .

0.50 - A\C""o- \ i
i N 9"0-~@. o
SRR T /- NN R
IV. FRACTAL MEDIA i I AN
1 Tl AN ACA L AL A AL A L]
In this section we illustrate the advantages of using the 0.00 0 20 40 60 80 100 120 140 180 180 200
Hamilton-Jacobi method for dealing with heterogeneous me- t

dia. In particular, we get an exact expression for the front . .
speed propagation in fractal media. The reaction-diffusion FIG. 5. Comparison of the temporal evolution of the speed of
process in a fractal may be described by the equation for thisonts (in dimensionless uniisderived from the Hamilton-Jacobi

probability density of O’Shaughnessy and Procaddd] method (52) (dashed lingswith numerical solutions of Eq(50)
coupled to a KPP kinetic term (symbols for fractal media. Fory=0 one recovers the Fisher re-

sult. We have takeD=U=d=1.

1
o= ﬁ(?r(Drdflf(’ﬁr(zS)JrUdJ(l—¢), (500  happen if using the local a_p'proach, we have not as;umed
r weak or smooth heterogeneities because we have applied the

. . . . ) . Hamilton-Jacobi method.
whered is the dimension of the fractah) is an index which

is O for the classical normal situatigiuclidean medig and
D is a kind of diffusion coefficient. After taking into account V. CONCLUSIONS
the hyperbolic scaling—r/e and t—t/e and the field

We have studied how deterministic heterogeneities influ-
G®(r,t)=—¢elng(r,t), one has from Eq(50),

ence the front speed of parabolic reaction-diffusion equations
e 146 1B ~e B —0 o2 where the reaction term and/or the diffusion coefficient de-
—aGT=—e D=1 0)r 9rG* e Dr1(4,G") pend on the spatial coordinates. We have derived analytic
—e9Dr %, G+ U. (51) expressions for the speed of fronts that are valid for initially

fully developed fronts or for more general initial conditions

The first and third terms in the right-hand side of Ef1) in the asymptotic limit. The singular perturbative analysis
have the same order of magnitude and in the asymptotic limiand the geometrical method of Hamilton-Jacobi have been
(¢—0) both terms may be neglected in front of the seconcemployed to find the speed of the fronts propagating in de-
term and in consequence, the Hamilton-Jacobi for the fronterministic heterogeneous media. The singular perturbative

propagation in a fractal media is analysis has been used when spatial heterogeneities are weak
) ) (6<1) and smooth£<1) and may be successfully applied
G+ (elr)’D(4,G*)*+U=0, only for fronts with non-KPP kineticgpushed fronts The

. . . _ expressions obtained for the speed are power series of
whereG(r,t)=lim__ /G*(r,t). Proceeding as in the above \yhere secular terms appear and in consequence are not uni-

sections one has formly valid in time. However, for the simplest case of linear
heterogeneities these expressions have been compared to nu-
p2+0 merical solutions exhibiting a good agreement.
G(r,t)= —— ————Ut The Hamilton-Jacobi method we used here only holds for
tDe’( 2+ 6)

fronts with KPP kinetics(pulled fronts. However, this
and the exact expression for the speed of the front, once thr(TaJethOd allows us to work without assuming either smooth or
hyperbolic scaling is inverted, is ' weak heterogene{tles. We have cor_n_pareq the resu]ts for the
' simplest case of linear heterogeneities with numerical solu-
1/(2+ 6) tions and a good agreement is found again. Exact solution for
' (52) the speed of fronts traveling in fractal media is obtained and
compared to numerical solutions. We have found an excel-
lent agreement and it has been shown both analytically and
which describes a decelerated front. In Fig. 5 we compare theumerically that the front is decelerated.
exact result52) with the results of the numerical solutions  Finally, the local speed approach has been compared with
of Eqg. (50) for different values offd. We stress that in the above analytical methods and numerical solutions. For
this case of physical interest, in contrast to what wouldnonuniform diffusion coefficient this approach slightly im-

DU

—ol =
vO=2 g
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proves the singular perturbative method and yields the same 1. Nonuniform reaction rate
result found with the Hamilton-Jacobi method. However, for The first step is to solve E430) under Eq.(31) by using

nonu.niform rea.ction. rate_both singular p.erturbativ'e anc#egular perturbation analysis. By substituting the expansion
Hamilton-Jacobi are in better agreement with numerical M85 (5) =xXo(S) + 6%4(S) + 62%,(S) + O(8%) into Eq. (30) one

sults than the local speed approach. hasky(s) =0 for the lowest order,
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APPENDIX: WEAK HETEROGENEITIES IN d“n[xo(s)]

Xo(S) = — 2X4(S) (A2)

HAMILTON-JACOBI DYNAMICS dx?

In this appendix we develop the calculations to obtain the
speed of fronts for weak heterogeneitie8<1) for both  for the second order. From Eq81) Xo(0)=X, Xo(t)=0 and
nonuniform reaction and nonuniform diffusion. X;(0)=x;(t)=0 fori=1 one obtains for &s<t,

Xo(S)=Xx—x9lt,

2t 2ts [x L, 2P (X L
xl(s)=;f ﬂu(X_XS/t)dS_FL u(X")dx +?f nu(x")dx’,

4t4 X L, 8trx L 4¢3
xz(s)z—Fnu(x—xs/t)f 7u(X")dXx _FJ (X" )dx J’ nu(x—xs/t)ds+anu(x—xs/t)

3 X

4t 6t° [, 8t%s o
—Fr;u(x—xs/t)f r;u(x—xs/t)ds+Ff nu(x—xs/t)ds+F fo 7u(X")dx

2

6t3s [x 8t4 x 6t* (x
~ nu(x—xs/t)ds——sf nu(x’)dx'+—4f na(x")dx". (A3)
x* Jo X X

The energy integral33) reads

x2S (x )
E_1+4_t2+ ;fo 7]u(X )dX +O(5) (A4)

and from Eq.(34),

X 2 X
Jnu(x')dx’ —XJOnﬁ(x’)dx’}+O(53). (A5)

x? stx oot
G(X,t)=a—t—y‘[ nu(X")dx' + & F .

0

The positionx=x(t) of the front comes fromG(x,t)=0 which has to be solved, by using the expansigh)=xq(t)
+ 8%4(t) + 8°%,(t) + O(8%), to obtain

2

S (2t S 2t 1 (a2t 1[ ret
X(t)=2t+—f nu(X’)dX’+—{nu(2t)f nu(X’)dX’+—f nﬁ(X’)dX’——U 7y(X")dx’
2 0 4 0 2 0 t 0

2
] +0(8°% (AB)

and the speed is

041105-9
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2te }
f 7u(X")dx’
0

+0(68°% (A7)

2
nu(Zts)fﬁS 3 1dxp,
- (X)) dx’' + 477u(2ts)+ 5 dx

1 2te
v(t)=2+ 89, (2te) + 52[48%2“0 7u(X")dxX’

X=2te

once the hyperbolic scaling is inverted.

2. Nonuniform diffusion coefficient

Proceeding analogously as in the preceding section the perturbed solution (#6Ei§. given by

Xo(S) =x—xglt,

1 (x
(5= 5¢ | motx-xsdst = [ “o0xrax = 5 [ oxiax,

X

2t
S X

XZ(S):EWD(X_XS/t)jO 7p(x")dx’ __77D(X XS/t)J 7p(X )dX——nD(X XS/t)f 7p(x—xs/t)ds

3x 3s
8tj nD(x xs/t)ds— StJ 77D(X ydx’ + BJ 770 (x")dx, (A8)

for 0<s<t, and the energy integral and the action functional are

x2 5fx RS 2 3x [(x, 5
E=1+—+ x")dx' + 67 — f x")dx’ +—f x")dx' |+0 ,
a2 X 7p(X") X4( 0 7p(X) 16:2J0 7p(X") (6°)
X2 8t [x 5 t3( [x 2 3 o5
G(x,t)——t+ﬂ+ xf 7p(X")dX + & F( fo 7p(X")dx 16t D(x )dx' | +0(68%). (A9)
Finally, from the temporal derivative of the position of the front givenGy 0 one gets
1d 2te 1
(1) =2+ 7p(2ts) 5+ 62 = —2 f po(x)dxX — = n2(2te) |+0(5%). (A10)
2 dx w=2ts? 0 4
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