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Hyperbolic reaction-diffusion equations for a forest fire model

Vicenc Méndez and Josep E. Llebot
Grup de Fsica, Departament de Qieies Ambientals, Facultat de @ieies, Universitat de Girona,
Placa Hospital 6, 17071 Girona, Catalonia, Spain
(Received 5 June 1997

Forest fire models have been widely studied from the context of self-organized criticality and from the
ecological properties of the forest and combustion. On the other hand, reaction-diffusion equations have
interesting applications in biology and physics. We propose here a model for fire propagation in a forest by
using hyperbolic reaction-diffusion equations. The dynamical and thermodynamical aspects of the model are
analyzed in detaillS1063-651X%97)02912-7

PACS numbd(s): 05.70—a, 05.40:+j
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An important problem of our society is the forest fire.
Some important organizations, especially the USDA Forest ) ) ) ) )

Service, have been researching this theme for some[iine WhereF(n)=rf(n) is the reaction term. This equation dif-
Their studies are based in very specific phenomena whicfers from the classical one in the term which includes the
take place in the forest firg2]. relaxation timer. Th!s time descrlpes the delay 'effect in the

On the other hand, recently several papers related witRPPearance of the_ fire Wh_en the first trees be_:gln to burn. On
percolation theory and self-organized criticalitgo0 [3]  the other hand, this equation has the interesting property that
are trying to provide a different dynamical model for the fire it describes traveling fronts which are constrained to propa-
spread. The basic problem of the SOC models is their hargate with a.f|n|te ve!ocny. This and other properties are re-
adaptation to the real problem. A common assumption of€ntly studied by Medez and Camachpd]. In fact, the
them is the incorporation of the reforestation concept in theiStudy of propagation of fronts for parabolic reaction-
restoration rules. This concept is a necessary condition ififfusion equations has a long history going back to the
order for the system to reach self-organization. From thévorks of Fisher [5] and Kolmogorov, Petrovsky, and
practical point of view this is not realistic because it is not Piskunov(KPP) in the 1930's[6].

admissible that burned trees may become green trees at the In Practice, Eq(1) is used to describe the evolution of the
same time that green trees are burning. system between two homogeneous steady states. In the forest

The model we present in this work is not so specific agiré model, both states are, as we shall see, the state corre-

those employed by the ecologists but is more realistic thagPonding to the whole forest green< 0) and the state cor-
the SOC models, because our model may be applied in re&¢Sponding to the whole forest burned=(1). Both states
time and the reforestation concept is not needed. Our aim {812y be connected by a traveling front with a speedathich

to propose a theoretical continuum-deterministic reactionmust fulfill some restrictions. These came initially from the
diffusion model in order to describe the dynamical evolutionlinearized theoryKPP methogl but recently Benguria and
of the fire. Further generalizations of our model could beDepassief7] proposed new restrictions by means of varia-
employed in realistic descriptions of the spread of fire but dional formulation(BD method, for shojtuseful when lin-
connection between the characteristic parameters of oufarization method does not hold. In order that Eq. pre-
model and the experimental data is not yet established. Aients traveling fronts joining=0 andn=1 it is necessary
the moment we focus our attention on a simple model whicrhat[4]

will provide interesting information about dynamics and

nonequilibrium thermodynamics of the forest fire propaga- 2f'(0) ~ 1
tion cll=———"<c<t=— 2
. 1+af'(0) Va
Il. THE MODEL with a=r7<<1 andc is the dimensionless velocity defined

by c=v/\rD. These bounds follow from the linearization

In this section we build up the reactio_n-diffusiqn mode| ethod(often called linear speed selectjorlowever, when
from threg reasonable hypotheses which are mtroduceré:e linearization does not holffor instance, whenf’(0)
gradual_ly in order to analyze the effects of ea<_:h one of them_ 0], it is necessary to resort to another method, such as, for
We d.efm_en as the_ n_ormallzed humber .Of bl.”n'ng trebsas instance, the BD onéalso called variational speed selec-
t_he d!ffu5|on coefficients as the_relaxanon time or the d_elay tion). From this method it follows that

time in the appearance of the fire flux, aRdas the reaction

term between green and burning trees. If we want to inves- | 1
tigate hown changes with time and position, the evolution is cB=____<¢c<C=—, 3
given by the hyperbolic reaction-diffusion equation Val?+1 Ja
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where and we may write the speed in terms of the dimensionless
) speedc=|c| as|v|=|c|\rD. Definingz* =z\r/D, we find
f \/fg_th z* =k* .x* — at*, where
0
g =2—F—"""", 4 _w\/T_ k§+k§_ k§+k§_| 1K
fog(l—af’)dN *“rNp &%k, Wk, Ak

. . .
h=—-g’>0 with g(N) an unknown auxiliary(trial) func- In terms of thez* variable we rewrite Eq(6) as

tion. It is interesting to note that both speed selection meth- bN,,+ aN,[1—af’(N)]+ f(N)=0 @)

ods predict the same maximum speed for the frant

=1/\/a. This is, in fact, the speed of the characteristics corwhereN(z*)=n(k-x— at) andb=|k|?—aa? and we have

responding to the hyperbolic nonlinear PDE given by theomitted all the asterisks for notational simplicity. F8k 1

adimensional form of Eq(1). (logistic reaction the linearization theory holdgt]. We find
Our second assumption in this work is to construct arthat in this case it is possible to obtain fire fronts connecting

explicit form for the reaction term in Eq1). This term may n=0 (unstable stajeto n=1 (stable stateevolving in time

be derived taking into account the interaction between thdf its velocity of propagation is restricted to

burning (denoted byB) and the green tredgslenoted byG).

This interaction is described by the irreversible reaction I 2f'(0) <|c|<'5— i ®
L 1+af’(0) Ja
G+pBL(B+1)B,

. ) with a<1 andf’(0)=1. ForB=1 linearization theory is no
wheref (=1) quantifies the number of burning trees neededq,nger valid and we must apply another method. We use the

in order to set fire to a near green tree. This parameter ma¥p " method as an alternative one. Applying this method we

be related, in practice, with the distance between trees ang-i,

the capacity of a green tree to be burnt. So, for greater values

of B it is expected that the speed of the fire front will be | 1
smaller. The parametar is the reaction constant, which is cBP=——<|c]<c=—, 9
inverse to the characteristic reaction time. &ds the quo- val*+1 Va

tient between the relaxation and reaction times. The reactionh | L by Eq(4). Let ¢ v the last
term is given as wherel (g) is given by Eq.(4). Let us now to apply the las

method to a source terfi{N)=N#(1—N). As the auxiliary
F(ne)=rnen§=rn§(1—ns), (5)  functiong(N) must satisfyg’(N) <0 we have, in principle,
a wide range ofy functions to choose. We apply the method
whereng+ng=1 (the total number of trees of the forest is for two specific forms ofy, also used by Benguria and De-
constant and equal to the normalized valyen}, andng the  passier. Taking
number density of green and burning trees, respectively.

N (10

1-N\”
91(N)=
Ill. CONSTRAINTS FOR THE SPEED

OF THE FIRE FRONT )
one can perform the integrals

With these two assumptions we find our two-dimensional
(2D) reaction-diffusion equation. Introducing the new spatial 1 I'[1/2+(B—2v)2]I'(v+1)
and temporal variableg* = (x*,y*)=r/Dx, t*=rt and JO \/fg_thz Ve ['(3/2+ BI2)
a=r7, ng=n. Equation(1) together with Eq(5) is written
as with v<<(B8+1)/2,

n  an an 1
a— +—=V?n+f(n)+af’(n)—, (6) f g(N)AN=T(v+1)I'(1~»)
ot ot ot 0

wheref(n)=nf(1—n) andf’(n)=df/dn. As we are inter- with »<1, and finally

ested in finding traveling fire fronts connecting two homoge-

neous steady states=0 (ng=0,ng=1) andn=1 (ng=1, Jl (N (N)dN= VF(VJr HI(B—v)
ng=0), we introduce the wave variabte= k-x—wt, where 0 g rg+1)
k=(kq,k») is the wave number vector and the frequency.

The phase speed of the fire front is assumed to be the san@®, from Eq.(4) one obtains

that the speed of propagation of the interphase between the

region wheren=1 (all trees are burnédandn=0 (all the lzz\/;F[(,B—Zer 2] (B+1)
trees are greenThis speed is found to be I'[(B+3)/2]

k 1

Tk TR+ (A—»)—arl (B—)

V=

x| e
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with v<<1 andB>1. Taking now IV. ADDITIONAL RESTRICTIONS
FOR THE FIRE FRONT

1
gz(N)=f f(x)dx (11 In this section we derive restrictions coming from the
N shape of the fire front. These are considered as restrictions on
Ny in terms ofa and 8. If the fire spreads as a monotonic
plane wave front there must exist an inflection point. Let
312 No=N(x=y=t=0)=N(z=0) be the initial number of
burning trees which generates the spread of the fire. If we
force z=0 to be the inflection point, by rescaling the origin
of z, we obtain from Eq(7)

one finds

fl\/fg_thz g“lf(x)dx
0 0

1 1
fog(N)dN:foN“N)dN’ aN,(z=0)[1—-af' (Ng)]+f(Ng)=0. (13

1 1 ) Definingp= —N,, it is easy to see thgi>0 for —o<z<
J Q(N)f'(N)dNZJ f(N)<dN. +o if the front is assumed, as in the literature, monotoni-
0 0 cally increasing withz, and p reaches its maximum value

So, from Eq(4) we find jUSt forz=0. So, from Eq(13)

1 ¥ f(No)
< = 14
4 “Of(N)dN} P=Pmax ol 1-af (Ny)] (14

=3 _
fl[Nf(N)—af(N)z]dN with
0

Using the explicit form for the source term, we find after F'(No)<1/a. (19

some algebra, On the other hand, introducing in Eq. (7) and integrating

4 1 we find
| -
3V(B+1)(B+2)

ajlp[l—af’(N)]dN= flf(N)dN. (16)
(26+3)(B+3)(28+1) 0 0

“@BT1)(B+1)(2B+3)-alB+2)(B13)’

From Egs.(14) and(16) we write the first additional restric-

(12 tion as
As |, and as a consequencéBD), depend onB we may 1 f(No)
conclude that the minimum velocity necessary to make the f f(N)dANs —————. 17
existence of traveling wave fronts possible is constrained to 0 1-af’(No)

the needed number of burning trees. In order to appreciate i
this effect we evaluate, for =1 andg@=2 by using Egs. In terms of the source term, E¢L7) becomes the first re-

(9) and (12) obtaining striction
NA(1—N
C(BD)(ﬁ: 1): g) \/6 0( 0) = 1 (18)
] 95-2a L—alpNE =B+ UNE] (BT DI(BT2)
and with 8>1 and 0<Ny<1 and from Eq.(15) the second re-
striction is
(BD)(g_o :E) \/§
T B=2)= g 51 4 1
BNG = (B+1ING<_. (19)

For anya one concludes (8=1)>c (B=2) and the pos-
sible speed of the front may be lower fgr>1 than for8  These restrictions must be viewed as conditionsNgnin

=1, as is expected because a great number of needed buigyyer to have a monotonically increasing fire front in terms

ing trees might decrease the speed of the fire propagatiogs the characteristics parameterand g of the forest. Let us
Another interesting feature of the BD method is the maxi-pow specialize Eqs(18) and (19) for B=1. The second

mum value forc{® . As 1(g) takes different values for each restriction (19) is fulfilled if a<1. The first restrictior(18)
trial function chosen thehe[00) and it is easy to show  |eads us to

T= Max [gm)| ——=—
“‘”(m

3—a—+a’+3 3—a++a’+3
. 5 <Ng=< 5 .
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A sufficient condition in order for the first restriction to be In order to have a monotonically decreasing front vatitis

fulfilled for any a is 1/2— J3/6< No=<2/3. necessary that the characteristic valoes are real, and this
On the other hand, the steepness of the fropljg,, and, is fulfilled for

therefore, the width of the frorit is the inverse of the steep-

ness. So, we may define o« 2
=1> 15
k|]” 1+a
L= 1 —c 1—-af'(No) (20) which is exactly the same restriction coming from the linear-
~ K|Pmax f(Ng) ization theory for the logistic case. On the other hand, both

values ofm.. are negative, that isl(z— +) =0 is fulfilled

For the classical caseaE0), L=c/f(No) and takingN, if and only if a<1 and c<1ia. For 3=<N=<1, f(N)=1
=1/2 and the logistic source3= 1) one recovert =4c for ~—N and Eq.(7) is
the 1D model. In our case

bd2N+ N1+ +1—-N=0
4zt traTTne
L= {1-al NE~~ (B+ LN}
NA(1—No) 0 0L which has the solution

. . . . N(z)=1+B,e"+?+B,e"-~
It is expected that for an increasing value®f(fixing a, c, @) ! 2
andN, previously the width be a monotonically increasing ag N(z— —=)=1 is fulfilled only forn. >0, it is necessary

function, so the spatial region of mixed states between 0 ang,5; B,=0. On the other hand, it is necessary thfz=0)
1 must increase with the needed burning trees. To guarantees /> and this implies that '

this behavior we impose thdt_/dB>0. However, it is easy

to prove, after some algebra, that a sufficient conditiori_for 1
to be a monotonically increasing function wigh is thata A1+A2=§,
<1 and O<Np<1.
B._ 1
1= 5

V. EXACT SOLUTIONS

We derive in this section exact solutions for the non-Only one constant remains to be determined. This is done
linear differential equatior(7). First of all we try to find imposing that both curves must have the same slope, that is,
solutions for the logistic reaction. Followiri@], we assume (dN/dz),_, must be equal for both solutions. This restric-
an initial valueN(z=0)=1/2 and a logistic reaction term of tion becomes

the form
1
1 Am,+Am_==-n,.
N, OsNs > 2
f(N)= 1 Solving the set of equations for the integration constants we
1-N, §$N<1, get
with the conditiondN(z— —»)=1 andN(z— +)=0. For 5 5 5 5
0<N={, f(N)=N and Eq.(7) is written as A Ve (1+a)°—4+2c—yc(1-a)°+4
1_ L
4c*(1+a)?—4
bdZN + N 1 +N=0
Jc?(1+a)?—4—2c+c?(1-a)’+4
. . . . A2:
which is linear and has a solution of the form 4~/cz(1+a)2—4
N(z)=AeM+*+Ae™-2 and the solution is written as
—c(1-a)+Vc2(1+a)2-4 z —c(1-a)—Vci(1+a)2-4z 750
A€ 2(1-acd) k+Aze 2(1-acd) K, '
N(z)= 1 i \Paaidz (2D
1--€ 2(1—ac2) E, z<0.

2
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FIG. 1. Exact solution corresponding to E@1) for k=1, ¢ FIG. 2. Comparative plot between exact solutions@er1 and
=1.8, anda=1/4. B=2 for a=1/3,c= 3, k=1/y/3, andNy=1/2.
In Fig. 1 we plot fork=1, c=1.8, anda=1/4 the solution VI. NONEQUILIBRIUM THERMODYNAMICS
(21). OF THE FIRE FRONT

Now, we may also find exact solutions when the fire front The steady states=0,1 are thermodynamical equilib-
travels with the maximum spe¢d =1/\a. In this situation, iy states. So, the fire front joins both equilibrium states,
Eq. (7) and this connection may be considered as a thermodynamical

A _ transport or a nonequilibrium process. In this sense we study
N [1-af (N)]+f(N)=0 SO : . - .
ol (N)J+HN) in this section the thermodynamical description of the fire

submitted to the restrictioff (N) <1/a, may be integrated to Propagation. The extended irreversible thermodynari¢s

yield provides a thermodynamical interpretation when the entropy
density for the burning trees depends on the classical vari-
(-2l a dN ables as well as the dissipative fluxes. The consequent Gibbs
e 20le=1(N)%exp — F(N) |’ (22 equation is integrated to yield
wherez, is an integration constant to be determined from the (b)_ (b) 1 ¢
initial conditions. For our source term, E(®2) reduces to S =Seq T 5T _bJ'J’
2T p(b)
z— 2, AL

T R G \) Ly ) Y —— where s&) is the local-equilibrium entropy densityf; the
=1 (B—j)NF™ temperature,) the burning tree fluxu a kind of chemical
potential, and¢ a parameter that will be identified later.

For the logistic source=1) this solution leads us to Moreover we have from the Gibbs equation

z=275+ aln[N3"1(1-N)3+1],

where zy=2a«aln2 for N(z=0)=1/2. For =2 the corre- an® - T
sponding solution is J
@ and
z=2o+ aln[N**"H(1-N)*" ]+ T
astP bJ
Both cases may be depicted in Fig. 2. We can appreciate that EX (b): - nT
n

the width of the front for8=2 is greater than foB=1.
Only for =1 anda=1/3 one can find an exact and invert-

. . From the particle balance equation fof¥)
ible solution such as

an(®

1 1
N(z)=1+ ze¥2— 2 (e ige™™ (23 TV I=F(n®) (24

with Ng=1/2. and the balance equation fsf®



The physical volume element contains two subsystems. On
one hand the burning trees—which are the foci of our
attention—and, on the other hand, the media where these
trees spread—which are the green trees. What must be posi-
tive definite is the total entropy production, that is, the en-
tropy production of the whole forest(V = o(®) + ¢(9, Thus

we have
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1V.J8=qgb 2.0 T T T T [ Tt T T 7
at ’ !
whereJ® = — 4 J/T is the entropy flux and® the entropy N ~ _
production as usual. It follows that P
! \
f— /’ \ -
! A
O'(b>:__ V/L+i§ _E 12 - l: ‘\ ]
T n(b) L?t T ' ,/ T [T
L N2 P v .

¢ 2
+__
KT L) at

- +gl9=0.

(e _ 2.
7 T

(25

. o FIG. 3. Comparative plot between the exact solutig8) and
The entropy production of the forest may be split into to e corresponding solution for the entropy production of the forest.

contributions: that concerning the diffusion process?")
and that corresponding to the reaction proc Introducing the dimensionless entropy production and flux

o* = olkkg andJ* = J/7/D, respectively, we may write the

@n__ 3 [y, 4 ¢ =0 entropy production of the burning trees @snitting all the
R S I YTIRFTS R asterisk}
J2 n(b) JZ
wF (b) = —§(n®)| n® S D
o= _ ?Jro(g);o_ o an® f(n )[n 1+In 5 o |’

If we assume that the entropy production of the reaction is

The first equation is fulfilled by requiring the linear relation |
zero because the burning and green trees have the same en-

¢ 93 tropy production but with different sign, the entropy of the
—| Vu+ 0 7t =AJ (26)  forest is positive definite and equal to
n
JZ
with A a positive scalar quantity. We defire= ¢/ An® and o= o (28)
an

D=(du/on®)/A. So from Eq.(26) one finds the transport

equation . . .
Let us now compute the explicit solution for this entropy

93 production for a specific situation. First of all we must cal-

r—+J=—-DVn®, (27)  culate the fluxJ. Starting from Eq.(27) and definingY(z)
at _ - L .
=k-J we may rewrite Eq(27) in dimensionless form as
From Eq.(27) and the balance equation for the burning trees dy 1 dN
number density(24) one obtains Eq(1). Thus, we have FErvA ad_
zZ aa z

shown that extended irreversible thermodynani€l§’) pro-
vides hyperbolic reaction-diffusion equations for the forest
fire as well as the thermodynamics quantities of the connecf
ing process.

Let us now analyze in detail the nonequilibrium thermo-

nd this may be integrated to yield

dynamics of the fire propagation. As is shown[#, sto-

chastic and EIT descriptions coincide for small fluxes. In

order to calculate the chemical potentialwe use the sto-
chastic description and we expand up to second orddr in
From the stochastic description for the entropy denfiily

we find
1/(9s®
ke

o J-J
o) "
3

1+1 !
"o

2
Y= aN+—e2pf Ne 2Pdp+Ce?P,
Va 3 p

wherep=3z/2«a after integration by parts an@ is an inte-
gration constant such that—0 whenp— * . The entropy
production is given then by

Y2
s=[kPo=—.

Using the explicit solutior(23) we find
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J3 always an increasing function of the necessary number of
Y(z2)=— E( g3y gegz’“) burning trees3 for the ignition of a neighboring green tree,
if the front is stable §<1). Exact solutions are found but
V3 1 these are expressedlds- N(z) only for the logistic reaction
+— 1+ —e3z’2“> Je37e 1 ged72, term
36 2 :
Nonequilibrium thermodynamics for the connecting pro-
In Fig. 3 we plotX, in front of p together withN. We observe cess between two equilibrium states were also studied. We
that the entropy production reaches significant values in thealculated explicitly the entropy production of the forest and
step of the front, so, the thermodynamical region of interesthe burning trees flux. The entropy production of the forest is
is that of aroundz=0 because it is there where the nonequi-always positive and has two interesting properties: it has, in

librium processes take place. addition to the burning tree flux, a solitionlike form and
reaches a maximum value just in the step of the front as
VIl. CONCLUSIONS expected.

A hyperbolic reaction-diffusion equation for the forest fire
propagation is studied as a model. To analyze the dynamical
behavior of the fire front propagations, we use conventional
tools, such as linearization and BD methods in order to find We acknowledge the support of the program Formacio
information about the speed of the front. Moreover, we havale Personal Investigador under Grant No. CLI95-1867 and
derived two additional restrictions coming from the shape ofthe Spanish Ministry of Education and Science under Grant
the fire front. These are established as conditions on the inNo. PB94-0718. The Statistical Physics Group of the Au-
tial number of burning treekll, which generates the spread thonomous University of Barcelona is also acknowledged for
of the fire front, in terms of characteristics of the forest suchthe use of research facilities and we especially thank Profes-
asa and 8. We also study the width of the froht which is  sor D. Jou and Professor J. Casasizez.
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