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Review

• Concept of error coding
– Add a few extra bits  (enlarges the space of values) that carry 

information about all the bits
– Detect: Simple function to check of entire data+check received 

correctly
» Small subset of the space of possible values

– Correct: Algorithm for locating nearest valid symbol

• Hamming codes
– Selective use of parity functions
– Distance + # bit flips
– Parity: XOR of the bits => single error detection
– SECDED

» databits+p+1 < 2p
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Outline

• Introduce LFSR as fancy counter
• Practice of Cyclic Redundancy Checks

– Burst errors in networks, disks, etc.

• Theory of LFSRs
• Power
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Linear Feedback Shift Registers (LFSRs)
• These are n-bit counters exhibiting pseudo-random behavior.
• Built from simple shift-registers with a small number of xor

gates.
• Used for:

– random number generation
– counters
– error checking and correction

• Advantages:
– very little hardware
– high speed operation

• Example 4-bit LFSR:

Q DQ1Q DQ2Q DQ3Q DQ4

CLK
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4-bit LFSR

• Circuit counts through 24-1 different 
non-zero bit patterns.

• Left most bit determines shiftl or 
more complex operation

• Can build a similar circuit with any 
number of FFs, may need more xor
gates.

• In general, with n flip-flops, 2n-1
different non-zero bit patterns. 

• (Intuitively, this is a counter that 
wraps around many times and in a 
strange way.)

    0 0 0 1 0
xor 0 0 0 0 0
    0 0 0 1 0 0
  xor 0 0 0 0 0
      0 0 1 0 0 0
    xor 0 0 0 0 0
        0 1 0 0 0 0
      xor 1 0 0 1 1
          0 0 0 1 1 0
        xor 0 0 0 0 0
            0 0 1 1 0 0
          xor 0 0 0 0 0
              0 1 1 0 0 0
            xor 1 0 0 1 1
                0 1 0 1 1

Q4 Q3 Q2 Q1

0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001
0001

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

6

Applications of LFSRs

• Performance:
– In general, xors are only ever 2-input and never 

connect in series.
– Therefore the minimum clock period for these 

circuits is:

T > T2-input-xor + clock overhead
– Very little latency, and independent of n!

• This can be used as a fast counter, if the 
particular sequence of count values is 
not important.  

– Example: micro-code micro-pc

• Can be used as a random 
number generator.  

– Sequence is a pseudo-
random sequence:

» numbers appear in a 
random sequence

» repeats every 2n-1 
patterns

– Random numbers useful in:
» computer graphics
» cryptography
» automatic testing

• Used for error detection 
and correction

» CRC (cyclic redundancy 
codes)

» ethernet uses them
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Concept: Redundant Check

• Send a message M and a “check” word C
• Simple function on <M,C> to determine if both 

received correctly (with high probability)
• Example: XOR all the bytes in M and append the 

“checksum” byte, C, at the end
– Receiver XORs <M,C> 
– What should result be?
– What errors are caught?

***

bit i is XOR of ith bit of each byte

8

Example: TCP Checksum

Application
(HTTP,FTP, DNS)

Transport
(TCP, UDP)

Network
(IP)

Data Link

(Ethernet, 802.11b)

Physical
1

2

3

4
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TCP Packet Format

• TCP Checksum a 16-bit checksum, consisting of the 
one's complement of the one's complement sum of the 
contents of the TCP segment header and data, is 
computed by a sender, and included in a segment 
transmission. (note end-around carry)

• Summing all the words, including the checksum word, 
should yield zero
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Example: Ethernet CRC-32

Application
(HTTP,FTP, DNS)

Transport
(TCP, UDP)

Network
(IP)

Data Link

(Ethernet, 802.11b)

Physical
1

2

3

4
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CRC concept 

• I have a msg polynomial M(x) of degree m
• We both have a generator poly G(x) of degree m
• Let r(x) = remainder of M(x) xn / G(x)

– M(x) xn = G(x)p(x) + r(x)
– r(x) is of degree n

• What is (M(x) xn – r(x)) / G(x) ?

• So I send you M(x) xn – r(x) 
– m+n degree polynomial
– You divide by G(x) to check
– M(x) is just the m most signficant coefficients, r(x) the lower m

• n-bit Message is viewed as coefficients of n-degree 
polynomial over binary numbers

n bits of zero at the end

tack on n bits of remainder

Instead of the zeros
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Announcements

• Reading
– XILINX IEEE 802.3 Cyclic 

Redundancy Check (pages 1-3)
– ftp://ftp.rocksoft.com/papers/crc_v3

.txt

• Final on 12/15
• What’s Going on in EECS?

– Towards simulation of a Digital 
Human

– Yelick: Simulation of the Human 
Heart Using the 
Immersed Boundary Method 
on Parallel Machines
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Galois Fields - the theory behind LFSRs
• LFSR circuits performs 

multiplication on a field.
• A field is defined as a set with 

the following:
– two operations defined on it:

» “addition” and “multiplication”
– closed under these operations 
– associative and distributive laws 

hold
– additive and multiplicative identity 

elements
– additive inverse for every element
– multiplicative inverse for every 

non-zero element

• Example fields:
– set of rational numbers
– set of real numbers
– set of integers is not a field 

(why?)

• Finite fields are called 
Galois fields.  

• Example:  
– Binary numbers 0,1 with XOR 

as “addition” and AND as 
“multiplication”.

– Called GF(2).

– 0+1 = 1
– 1+1 = 0
– 0-1 = ?
– 1-1 = ?
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Galois Fields - The theory behind LFSRs
• Consider polynomials whose coefficients come from GF(2).
• Each term of the form xn is either present or absent.
• Examples: 0, 1, x, x2, and x7 + x6 + 1 

= 1·x7 + 1· x6 + 0 · x5 + 0 · x4 + 0 · x3 + 0 · x2 + 0 · x1 + 1· x0 

• With addition and multiplication these form a field:
• “Add”: XOR each element individually with no carry:

x4 + x3 +      + x + 1
+    x4 +     + x2 + x

x3 + x2 + 1 
• “Multiply”: multiplying by xn is like shifting to the left.

x2 + x + 1
×××× x + 1

x2 + x + 1
x3 + x2 + x
x3 + 1
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So what about division (mod)

x4 + x2

x
= x3 + x with remainder 0 

x4 + x2 + 1
X + 1

= x3 + x2 with remainder 1 

x4 + 0x3 +  x2  + 0x  + 1X + 1

x3

x4 +   x3

x3 + x2

+ x2

x3 + x2

0x2 + 0x

+ 0x

0x + 1

+ 0

Remainder 1
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Polynomial division

• When MSB is zero, just 
shift left, bringing in next 
bit

• When MSB is 1, XOR with 
divisor and shiftl

1  0  1  1  0  0  1 0 0 0 01 0 0 1 1

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

serial_in

0  0  0  0  

1  0  0  1  1

0 0  1  0  1

1

0  1  0  1  0

0

1  0  1  0  1
1  0  0  1  1

1

0 0  1  0  0
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CRC encoding

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

serial_in
1  0  1  1  0  0  1 0 0 0 0

0            0             0                 0

0            0             0 1               0  1  1  0  0  1 0 0 0 0
0            0            1   0 1  1  0  0  1  0 0 0 0
0           1             0 1  1  0  0  1 0 0 0 0
1             0            1     1  0  0  1  0 0 0 0
0            1              0 1 0  1  0 0 0 0
1             0 1 0  1  0 0 0 0
0 1 1  0 0 0 0 0

1  0  1  1  0  0  1  1 0  1  0

Message sent:

1 1  0 0 0 0 0
1            0 1 1 0 0
0 1 0 1                 0
1 0 1                 0
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CRC decoding

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

serial_in
1  0  1  1  0  0  1 1 0  1  0

0            0             0                 0

0            0             0 1               0  1  1  0  0  1 1 0  1  0
0            0            1   0 1  1  0  0  1  1 0  1  0
0           1             0 1  1  0  0  1 1 0  1  0
1             0            1     1  0  0  1  1 0  1  0
0            1              0 1 0  1  1 0  1  0
1             0 1 0  1  1 0  1  0
0 1 1  0 1 0  1  0
1 1  0 1 0  1  0
1            0 0 1                 1  0
0 0 0               0  0
0 0 0               0  
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Galois Fields - The theory behind LFSRs
• These polynomials form a 

Galois (finite) field if we take 
the results of this 
multiplication modulo a prime 
polynomial p(x).

– A prime polynomial is one that 
cannot be written as the product 
of two non-trivial polynomials 
q(x)r(x)

– Perform modulo operation by 
subtracting a (polynomial) 
multiple of p(x) from the result.  If 
the multiple is 1, this corresponds 
to XOR-ing the result with p(x).

• For any degree, there exists at 
least one prime polynomial.

• With it we can form GF(2n)

• Additionally, …
• Every Galois field has a primitive 

element, αααα, such that all non-zero 
elements of the field can be 
expressed as a power of αααα.  By 
raising αααα to powers (modulo p(x)), 
all non-zero field elements can be 
formed.

• Certain choices of p(x) make the 
simple polynomial x the primitive 
element.  These polynomials are 
called primitive, and one exists 
for every degree.

• For example, x4 + x + 1 is primitive.  
So αααα = x is a primitive element and 
successive powers of αααα will 
generate all non-zero elements of 
GF(16).  Example on next slide.
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Galois Fields – Primitives
αααα0 =                        1
αααα1 =                 x
αααα2 =         x2

αααα3 = x3

αααα4 =                x + 1
αααα5 =         x2 + x
αααα6 = x3 + x2

αααα7 = x3 + x + 1
αααα8 =         x2 + 1
αααα9 = x3 + x
αααα10 =         x2 + x + 1
αααα11 = x3 + x2 + x
αααα12 = x3 + x2 + x + 1
αααα13 = x3 + x2 + 1
αααα14 = x3 + 1
αααα15 =                       1

• Note this pattern of 
coefficients matches the bits 
from our 4-bit LFSR example.

• In general finding primitive 
polynomials is difficult.  Most 
people just look them up in a 
table, such as:

α4 = x4 mod x4 + x + 1
= x4 xor x4 + x + 1
= x + 1
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Primitive Polynomials
x2 + x +1
x3 + x +1
x4 + x +1
x5 + x2 +1
x6 + x +1
x7 + x3 +1
x8 + x4 + x3 + x2 +1
x9 + x4 +1
x10 + x3 +1
x11 + x2 +1

x12 + x6 + x4 + x +1
x13 + x4 + x3 + x +1
x14 + x10 + x6 + x +1
x15 + x +1
x16 + x12 + x3 + x +1
x17 + x3 + 1
x18 + x7 + 1
x19 + x5 + x2 + x+ 1
x20 + x3 + 1
x21 + x2 + 1

x22 + x +1
x23 + x5 +1
x24 + x7 + x2 + x +1
x25 + x3 +1
x26 + x6 + x2 + x +1
x27 + x5 + x2 + x +1
x28 + x3 + 1
x29 + x +1
x30 + x6 + x4 + x +1
x31 + x3 + 1
x32 + x7 + x6 + x2 +1Galois Field Hardware

Multiplication by x ⇔⇔⇔⇔ shift left
Taking the result mod  p(x)  ⇔⇔⇔⇔ XOR-ing with the coefficients of p(x)

when the most significant coefficient is 1.
Obtaining all 2n-1 non-zero ⇔⇔⇔⇔ Shifting and XOR-ing 2n-1 times.
elements by evaluating xk

for k = 1, …, 2n-1
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Building an LFSR from a Primitive Poly
• For k-bit LFSR number the flip-flops with FF1 on the right.
• The feedback path comes from the Q output of the leftmost FF.
• Find the primitive polynomial of the form xk + … + 1.
• The x0 = 1 term corresponds to connecting the feedback directly to the D 

input of FF 1.
• Each term of the form xn corresponds to connecting an xor between FF n

and n+1.
• 4-bit example, uses x4 + x + 1

– x4 ⇔⇔⇔⇔ FF4’s Q output

– x ⇔⇔⇔⇔ xor between FF1 and FF2

– 1 ⇔⇔⇔⇔ FF1’s D input

• To build an 8-bit LFSR, use the primitive polynomial x8 + x4 + x3 + x2 + 1 and 
connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

Q DQ1Q DQ2Q DQ3Q DQ4

CLK

Q DQ4Q DQ5Q DQ6Q DQ7

CLK

Q DQ3 Q DQ2 Q DQ1Q8
Q D
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Generating Polynomials

• CRC-16: G(x) = x16 + x15 + x2 + 1
– detects single and double bit errors
– All errors with an odd number of bits
– Burst errors of length 16 or less
– Most errors for longer bursts

• CRC-32: G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11

+ x10 + x8 + x7 + x5 + x4 + x2 + x  + 1
– Used in ethernet
– Also 32 bits of 1 added on front of the message 

» Initialize the LFSR to all 1s
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POWER

24

Motivation

• Portable devices: 
– handhelds, laptops, phones, MP3 players, cameras, … all need to run 

for extended periods on small batteries without recharging 
– Devices that need regular recharging or large heavy batteries will lose 

out to those that don’t.

• Power consumption important even in “tethered”
devices.  
– System cost tracks power consumption:

» power supplies, distribution, heat removal
– power conservation, environmental concerns

• In a span of 10 years we have gone from designing without 
concern for power consumption to (in many cases) designing 
with power consumption as the primary design constraint!

Why should a digital designer care about power consumption?
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Battery Technology

• Battery technology has moved very slowly
– Moore’s law does not seem to apply

• Li-Ion and NiMh still the dominate technologies
• Batteries still contribute significant to the weight 

of mobile devices

Toshiba Portege
3110 laptop - 20%

Handspring 
PDA - 10%Nokia 61xx -

33%
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Basics
• Power supply provides energy for charging and discharging wires 

and transistor gates.  The energy supplied is stored and dissipated 
as heat.

• If a differential amount of charge dq is given a differential increase in 
energy dw, the potential of the charge is increased by:

• By definition of current:
dqdwV /=

dtdqI /=

dtdwP /≡ Power: Rate of work being done w.r.t time.
Rate of energy being used.

IVP
dt
dq

dq
dw

dtdw ×==×=/

�
∞−

=
t

Pdtw total energy

Units: tEP ∆= Watts = Joules/seconds

A very practical
formulation!

If we would like
to know total energy
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Basics

• Warning! In everyday language, the term 
“power” is used incorrectly in place of “energy.”

• Power is not energy.

• Power is not something you can run out of.

• Power can not be lost or used up.

• It is not a thing, it is merely a rate.

• It can not be put into a battery any more than 
velocity can be put in the gas tank of a car.
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Metrics

• One popular metric for microprocessors is: MIPS/watt
– MIPS, millions of instructions per second.

» Typical modern value?
– Watt, standard unit of power consumption.

» Typical value for modern processor?
– MIPS/watt is reflective of the tradeoff between performance and 

power.  Increasing performance requires increasing power.
– Problem with “MIPS/watt”

» MIPS/watt values are typically not independent of MIPS
• techniques exist to achieve very high MIPS/watt values, but at very low absolute 

MIPS (used in watches)

» Metric only relevant for comparing processors with a similar 
performance.

– One solution, MIPS2/watt. Puts more weight on performance.

How do we measure and compare power consumption?
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Metrics

• How does MIPS/watt relate to energy?
• Average power consumption = energy / time

MIPS/watt = instructions/sec / joules/sec = instructions/joule

– therefore an equivalent metric (reciprocal) is energy per operation 
(E/op)

• E/op is more general - applies to more than processors
– also, usually more relevant, as batteries life is limited by total energy 

draw.
– This metric gives us a measure to use to compare two alternative

implementations of a particular function.
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Power in CMOS

C

pullup
network

pulldown
network

Vdd

GND

10

i(t)

v(t)
t0 t1

v(t)

Vdd
Switching Energy:

energy used to
switch a node

Energy supplied Energy dissipatedEnergy stored

Calculate energy 
dissipated in pullup:

222 2121

)()()()()(

1

0

1

0

1

0

1

0

1

0

dd

t

t

t

t dddddd

t

t dd

t

t dd

t

tsw

cVcVcVdvvcdvcV

dtdtdvcvVdttivVdttPE

=−=⋅−=

=⋅−=⋅−==

� �

���

An equal amount of energy is dissipated on pulldown.
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Switching Power
• Gate power consumption:

– Assume a gate output is switching its output at a rate of:

1/f

Pavg

clock f

f⋅α

swavg ErateswitchingtEP ⋅=∆=  

221 ddavg cVfP ⋅⋅= α

221 ddavgavgavg VcfnP ⋅⋅⋅= α
• Chip/circuit power consumption:

activity factor clock rate

Therefore:

number of nodes (or gates)

(probability of switching on 
any particular clock period)
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Other Sources of Energy Consumption
• “Short Circuit” Current:

• Junction Diode Leakage:

• Device Ids Leakage:

Vout

Vin

Vin

I

I

VoutVin

I

V

Diode
Characteristic

Ioff

Vout=VddVin=0

Ids

Vgs
Vth

10-20% of total chip power

~1nWatt/gate
few mWatts/chip

Transistor drain regions
“leak” charge to substrate.

Transistor s/d conductance
never turns off all the way.
~3pWatts/transistor.  ~1mWatt/chip
Low voltage processes much worse.
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Controlling Energy Consumption

• Largest contributing component to CMOS power 
consumption is switching power:

• Factors influencing power consumption:
n: total number of nodes in circuit

αααα: activity factor (probability of each node switching)

f: clock frequency (does this effect energy consumption?)

Vdd: power supply voltage

• What control do you have over each factor? 
• How does each effect the total Energy? 

What control do you have as a designer?

221 ddavgavgavg VcfnP ⋅⋅⋅= α
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Power / Cost / Performance

• Parallelism to trade cost for performance.  As we trade 
cost for performance what happens to energy?

4 EMUL + 3 EADD + EWIRES 2 EMUL + 3 EADD + EWIRES 2 EMUL + 3 EADD + EMUXES + ECNTL +  EWIRES

• The lowest energy consumer is the solution that 
minimizes cost without time multiplexing operations.

xx xx

+
+

+

0.2 mt1 0.2 mt2 0.4 proj0.2 mt3

grade

x

+

+

0.2

mt1 mt2 0.4 proj

mt3

grade

x

+ acc1 = mt1 + mt2;
acc1 = acc1 + mt3;
acc1 = 0.2 x acc1;
acc2 = 0.4 x proj;
grade = acc1 + acc2;

controller

ALU

mt1  mt1
mt3  proj

acc1
acc2


