
Implementing the USB Enumeration Process on
the AT8xC5131/32/22 and AT8xC51SND1

The Universal Serial Bus (USB) has seen enormous success in PC systems and is
replacing the older parallel and serial ports. For a standard serial port, the communi-
cation is directly performed by the application running on the computer. In order to be
Plug-and-Play and Hot-Plug, the USB bus introduces a process that uniquely identi-
fies a device to the Host computer in order for it to learn the capabilities of the device
and to load the appropriate driver. This identification process is called the Enumera-
tion process and uses a standard set of commands described in the Chapter 9 of the
USB specification, “USB Device Framework”.

This application note describes a way to implement the enumeration process on
AT8xC5131/32/22 and AT8xC51SND1 products. The C-source code is available from
the Atmel Web site.

Rev. 4290A–USB–10/03

USB
Microcontrollers

Application Note

2 USB Enumeration Process
4290A–USB–10/03

USB Specification This is an extract from the USB specification version 2.0:

“9.1.2 Bus Enumeration

When a USB device is attached to or removed from the USB, the host uses a process
known as bus enumeration to identify and manage the device state changes necessary.
When a USB device is attached to a powered port, the following actions are taken:

1. The hub to which the USB device is now attached informs the host of the
event via a reply on its status change pipe (refer to Section 11.12.3 for more
information). At this point, the USB device is in the Powered state and the
port to which it is attached is disabled.

2. The host determines the exact nature of the change by querying the hub.

3. Now that the host knows the port to which the new device has been
attached, the host then waits for at least 100 ms to allow completion of an
insertion process and for power at the device to become stable. The host
then issues a port enable and reset command to that port. Refer to Section
7.1.7.5 for sequence of events and timings of connection through device
reset.

4. The hub performs the required reset processing for that port (see Section
11.5.1.5). When the reset signal is released, the port has been enabled. The
USB device is now in the Default state and can draw no more than 100 mA
from VBUS. All of its registers and states have been reset and it answers to
the default address.

5. The host assigns a unique address to the USB device, moving the device to
the Address state.

6. Before the USB device receives a unique address, its Default Control Pipe is
still accessible via the default address. The host reads the device descriptor
to determine what actual maximum data payload size this USB device’s
default pipe can use.

7. The host reads the configuration information from the device by reading
each configuration zero to n-1, where n is the number of configurations. This
process may take several milliseconds to complete.

8. Based on the configuration information and how the USB device will be
used, the host assigns a configuration value to the device. The device is now
in the Configured state and all of the endpoints in this configuration have
taken on their described characteristics. The USB device may now draw the
amount of VBUS power described in its descriptor for the selected configura-
tion. From the device’s point of view, it is now ready for use.

When the USB device is removed, the hub again sends a notification to the host.
Detaching a device disables the port to which it had been attached. Upon receiving the
detach notification, the host will update its local topological information.”

3

USB Enumeration Process

4290A–USB–10/03

The Enumeration process is used by the Host when a device is attached to the USB
bus. This process allows the Host to identify and to manage the device.

• Device identification:

The Host sends standard device requests on the default control endpoint in order to
identify the device and then to load the appropriate driver. The device answers to each
request with the corresponding descriptor tables. The descriptor tables contain all the
information relating to the device: characteristics of the device and number and charac-
teristics of each configuration, interface and endpoint.

The 4 standard descriptor types are:

• The Device descriptor

• The Configuration descriptor

• The Interface descriptor

• The Endpoint descriptor

Other descriptor types can be added corresponding to a specific USB class.

• Device management:

– The host manages the device address, the status and the configurations
using standard requests on the default control endpoint.”

4 USB Enumeration Process
4290A–USB–10/03

Implementation

Descriptor Tables The descriptors tables contain all information about the device required by the Host to
load the appropriate drivers. The descriptor table types are described in the
usb_enumeration.h file.

Device Descriptor The device descriptor table contains the unique identification of the device (Vendor ID,
Product ID and Release Number) and general information about the device. The device
descriptor is sent by the device when the Host sends a GET_DESCRIPTOR request
with a DEVICE Descriptor type.

/*_____ U S B D E V I C E D E S C R I P T O R ___________________________*/

struct usb_st_device_descriptor

{

 Uchar bLength; /* Size of this descriptor in bytes */

 Uchar bDescriptorType; /* DEVICE descriptor type */

 Uint16 bscUSB; /* Binay Coded Decimal Spec. release */

 Uchar bDeviceClass; /* Class code assigned by the USB */

 Uchar bDeviceSubClass; /* Sub-class code assigned by the USB */

 Uchar bDeviceProtocol; /* Protocol code assigned by the USB */

 Uchar bMaxPacketSize0; /* Max packet size for EP0 */

 Uint16 idVendor; /* Vendor ID */

 Uint16 idProduct; /* Product ID assigned by the manufacturer */

 Uint16 bcdDevice; /* Device release number */

 Uchar iManufacturer; /* Index of manu. string descriptor */

 Uchar iProduct; /* Index of prod. string descriptor */

 Uchar iSerialNumber; /* Index of S.N. string descriptor */

 Uchar bNumConfigurations; /* Number of possible configurations */

};

Configuration Descriptor The following descriptors describe the interfaces and the endpoints used by the
configurations.

/*_____ U S B C O N F I G U R A T I O N D E S C R I P T O R _____________*/

struct usb_st_configuration_descriptor

{

 Uchar bLength; /* size of this descriptor in bytes */

 Uchar bDescriptorType; /* CONFIGURATION descriptor type */

 Uint16 wTotalLength; /* total length of data returned */

 Uchar bNumInterfaces; /* number of interfaces for this conf. */

 Uchar bConfigurationValue; /* value for SetConfiguration resquest */

 Uchar iConfiguration; /* index of string descriptor */

 Uchar bmAttibutes; /* Configuration characteristics */

 Uchar MaxPower; /* maximum power consumption */

};

5

USB Enumeration Process

4290A–USB–10/03

/*_____ U S B I N T E R F A C E D E S C R I P T O R _____________________*/

struct usb_st_interface_descriptor

{

 Uchar bLength; /* size of this descriptor in bytes */

 Uchar bDescriptorType; /* INTERFACE descriptor type */

 Uchar bInterfaceNumber; /* Number of interface */

 Uchar bAlternateSetting; /* value to select alternate setting */

 Uchar bNumEndpoints; /* Number of EP except EP 0 */

 Uchar bInterfaceClass; /* Class code assigned by the USB */

 Uchar bInterfaceSubClass; /* Sub-class code assigned by the USB */

 Uchar bInterfaceProtocol; /* Protocol code assigned by the USB */

 Uchar iInterface; /* Index of string descriptor */

};

/*_____ U S B E N D P O I N T D E S C R I P T O R _______________________*/

struct usb_st_endpoint_descriptor

{

 Uchar bLength; /* Size of this descriptor in bytes */

 Uchar bDescriptorType; /* ENDPOINT descriptor type */

 Uchar bEndpointAddress; /* Address of the endpoint */

 Uchar bmAttributes; /* Endpoint’s attributes */

 Uint16 wMaxPacketSize; /* Maximum packet size for this EP */

 Uchar bInterval; /* Interval for polling EP in ms */

};

In additions, strings and class specific descriptor tables are also defined:

/*_____ U S B M A N U F A C T U R E R D E S C R I P T O R _______________*/

struct usb_st_manufacturer

{

 Uchar bLength; /* size of this descriptor in bytes */

 Uchar bDescriptorType; /* STRING descriptor type */

 Uint16 wstring[USB_MN_LENGTH];/* unicode characters */

};

/*_____ U S B P R O D U C T D E S C R I P T O R _________________________*/

struct usb_st_product

{

 Uchar bLength; /* size of this descriptor in bytes */

 Uchar bDescriptorType; /* STRING descriptor type */

 Uint16 wstring[USB_PN_LENGTH];/* unicode characters */

};

6 USB Enumeration Process
4290A–USB–10/03

/*_____ U S B S E R I A L N U M B E R D E S C R I P T O R _____________*/

struct usb_st_serial_number

{

 Uchar bLength; /* size of this descriptor in bytes */

 Uchar bDescriptorType; /* STRING descriptor type */

 Uint16 wstring[USB_SN_LENGTH];/* unicode characters */

};

/*_____ U S B L A N G U A G E D E S C R I P T O R ______________________*/

struct usb_st_language_descriptor

{

 Uchar bLength; /* size of this descriptor in bytes */

 Uchar bDescriptorType; /* STRING descriptor type */

 Uint16 wlangid; /* language id */

};

/*_____ U S B H I D D E S C R I P T O R _________________________________*/

struct usb_st_hid_descriptor

{

 Uchar bLength; /* Size of this descriptor in bytes */

 Uchar bDescriptorType; /* HID descriptor type */

 Uint16 bscHID; /* Binay Coded Decimal Spec. release */

 Uchar bCountryCode; /* Hardware target country */

 Uchar bNumDescriptors; /* Num. of HID class descriptors to follow */

 Uchar bRDescriptorType; /* Report descriptor type */

 Uint16 wDescriptorLength; /* Total length of Report descriptor */

};

7

USB Enumeration Process

4290A–USB–10/03

The descriptor tables must be sent in the following order:

Figure 1. Configuration Descriptors

CONFIGURATION
descriptor

bNumInterfaces

First
INTERFACE

descriptor
(0 of bNumInterfaces)

bNumEndpoints

First
ENDPOINT
descriptor

(0 of bNumEndpoints)

Last
ENDPOINT
descriptor

(bNumEndpoints - 1)

Next
INTERFACE

descriptor
(1 of bNumInterfaces)

bNumEndpoints

First
ENDPOINT
descriptor

(0 of bNumEndpoints)

Last
ENDPOINT
descriptor

(bNumEndpoints - 1)

More Interface Descriptors

Interface 0

Interface 1

Specifies how many
interface descriptors
follow

Specifies how many
endpoint descriptors
follow

Specifies how many
endpoint descriptors
follow

More endpoint descriptors

More endpoint descriptors

8 USB Enumeration Process
4290A–USB–10/03

Example of Software
Implementation

The following diagram describes the way to implement the enumeration process. Each
new SETUP packet has to be decoded in order to launch the right process.

Figure 2. Enumeration Process

Wait f or new USB SETUP request

Decode SETUP

Process GET DESCRIPTOR

Process GET CONFIGURATION

Process GET INTERFACE

Process GET STATUS

Process SET ADDRESS

Process SET CONFIGURATION

Process SET INTERFACE

Process SET DESCRIPTOR

Process SET FEATURE

Process CLEAR FEATURE

9

USB Enumeration Process

4290A–USB–10/03

Get Device Descriptor
Process Example

Definition of the Device
Descriptor to Send code struct USB_device_descriptor_st default_device_descriptor =

{ 0x12, DEVICE, 0x1001, 0x0FF, 0xFF, 0x00, 32, VENDOR_ID,

PRODUCT_ID, RELEASE_NUMBER, 0, 0, 0, 1 };

VENDOR_ID, PRODUCT_ID, RELEASE_NUMBER can be easily modified by the
developer. These unique IDs are defined by the final application manufacturer. Refer to
the http:\\www.usb.org web site in order to acquire a referenced vendor ID.

Get Device Descriptor
Process

The algorithm below describes the Get Device Descriptor process. The first step is to
store the Setup parameters. The main parameter in this example is the length of the
data requested by the Host. It indicates the maximum number of bytes the device has to
send. If this number is higher than the descriptor length to send, the device should send
the complete descriptor. If this number is lower than the descriptor length to send, the
device should send the exact number of bytes requested.

The device stores in the default control endpoint FIFO the bytes to send to the host and
set the TXRDY bit. Once the data have been sent, the device clear the TXCMPL bit and
wait to receive the Status from the Host, a OUT Zero Length Packet (ZLP).

If the ZLP occurs before the data have been sent, this means that the Host has can-
celled the control transaction. The following packet will be a new SETUP request.

Figure 1. Device Descriptor Process

Store SETUP parameters

If requested length > descriptor length, data to send = requested length,
else data to send = descriptor length

Write descriptor into the endpoint 0 FIFO

Send FIFO and wait sent

If FIFO sent, wait ZLP f or status
else if cancel f rom host (OUT), return

10 USB Enumeration Process
4290A–USB–10/03

This is the C-code corresponding to the algorithm.

void usb_get_descriptor(void)

{

Uint16 length;

Uchar i;

Uchar descriptor_type;

Uchar code* pbuffer;

ACC = Usb_read_byte();

descriptor_type = Usb_read_byte();

ACC = Usb_read_byte();

ACC = Usb_read_byte();

length = Usb_read_byte();

length |= Usb_read_byte() << 8;

Usb_clear_rx_setup();

Usb_set_DIR();

if (length >= DEVICE_DESCRIPTOR_LENGTH) length = DEVICE_DESCRIPTOR_LENGTH;

pbuffer=(descriptor_type==DEVICE)?

 &my_device_descriptor->bLength:&my_configuration_descriptor.cfg.bLength;

for (i=0;i<length;i++,pbuffer++) Usb_write_byte(*pbuffer);

Usb_set_tx_ready();

while (!Usb_tx_complete() && !Usb_rx_complete());

if (Usb_rx_complete())

 {

 Usb_clear_DIR() ;

 Usb_clear_rx() ;

 return ;

 }

else Usb_clear_tx_complete();

usb_wait_receive();

Usb_clear_DIR() ;

}

11

USB Enumeration Process

4290A–USB–10/03

Clear Feature Process
Example

In this example, only the endpoint 1 feature is supported. Every other Clear Feature is
Stalled.

When the Clear Feature addressed to the endpoint 1 is received, the firmware clears the
Stall request on this endpoint and resets this endpoint in order to reset the data toggle.
The endpoint status is also reset. This status is returned to the host during the Get Sta-
tus transaction.

The following C-code is an example of this implentation.

void usb_clear_feature (void)

{

 if (bmRequestType == ZERO_TYPE)

 {

 Usb_clear_RXSETUP();

 Usb_set_STALLRQ();

 while (!(Usb_STALL_sent()));

 Usb_clear_STALLRQ();

 }

 if (bmRequestType == INTERFACE_TYPE)

 {

 Usb_clear_RXSETUP();

 Usb_set_STALLRQ();

 while (!(Usb_STALL_sent()));

 Usb_clear_STALLRQ();

 }

 if (bmRequestType == ENDPOINT_TYPE)

 {

 if (Usb_read_byte() == 0x00)

 {

 ACC = Usb_read_byte(); /* dummy read */

 switch (Usb_read_byte()) /* check wIndex */

 {

 case ENDPOINT_1:

 {

 Usb_select_ep(EP_IN);

 if(Usb_STALL_requested()) { Usb_clear_STALLRQ(); }

if(Usb_STALL_sent()) { Usb_clear_STALLED(); }

 UEPRST = 0x02;

 UEPRST = 0x00;

 Usb_select_ep(EP_CONTROL);

 endpoint_status[EP_IN] = 0x00;

 Usb_clear_RXSETUP();

 Usb_set_TXRDY();

 while (!(Usb_tx_complete()));

 Usb_clear_TXCMPL();

 break;

 }

case ENDPOINT_0:

 {

 Usb_clear_RXSETUP();

12 USB Enumeration Process
4290A–USB–10/03

 Usb_set_TXRDY();

 while (!(Usb_tx_complete()));

 Usb_clear_TXCMPL();

 break;

 }

 default:

 {

 Usb_clear_RXSETUP();

 Usb_set_STALLRQ();

 while (!(Usb_STALL_sent()));

 Usb_clear_STALLRQ();

 break;

 }

 }

 }

 }

}

13

USB Enumeration Process

4290A–USB–10/03

How to use the Atmel
Enumeration
Functions

Polling Mode The usb_enumeration_process function manages a control transaction that occurs on
the default control endpoint. This function has to be called each time a new setup has
been detected.

if (Usb_endpoint_interrupt())

 {

 Usb_select_ep(EP_CONTROL);

 if (Usb_setup_received()) { usb_enumeration_process(); }

}

Interrupt Mode In this mode, the USB interrupt has to be enabled. The firmware should enable the End-
point 0 interrupt generation. In the interrupt management, the firmware checks if a new
Setup occurs on the defau l t con t ro l endpo in t . Be fo re ca l l i ng the
usb_enumeration_process function, the firmware disables the endpoint 0 interrupt gen-
eration in order for the usb_enumeration_process function to manage the Control
transaction until the end. Once the control transaction is complete, the firmware enables
the endpoint 0 interrupt generation.

void USB_interrupt_process(void) interrupt IRQ_USB

{

if (Usb_endpoint_interrupt())

 {

 Usb_select_ep(EP_CONTROL);

 if (Usb_setup_received())

{ Usb_disable_ep_int(EP_CONTROL);

usb_enumeration_process();

Usb_enable_ep_int(EP_CONTROL);}

}

}

}

Testing the
Enumeration
Implementation

The http:\\www.usb.org web site distributes a free software to test the chapter 9 imple-
mentation. This software tests the standard transactions described in the chapter 9 of
the USB specification.

 Printed on recycled paper.

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.

Atmel Corporation Atmel Operations

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

4290A–USB–10/03

© Atmel Corporation 2003. All rights reserved. Atmel® and combinations thereof are the registered trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be the trademarks of others.

	USB Specification
	Implementation
	Descriptor Tables
	Device Descriptor
	Configuration Descriptor

	Example of Software Implementation
	Get Device Descriptor Process Example
	Definition of the Device Descriptor to Send
	Get Device Descriptor Process

	Clear Feature Process Example

	How to use the Atmel Enumeration Functions
	Polling Mode
	Interrupt Mode

	Testing the Enumeration Implementation

