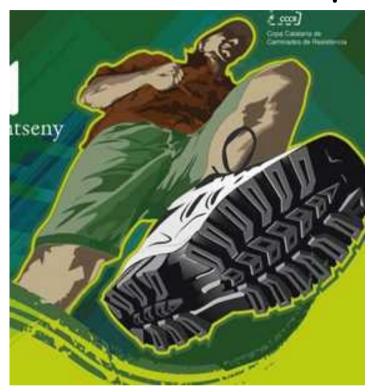


Un modelo de la distribución geográfica de la frecuentación de visitantes en espacios naturales

Agustín Lobo* Cristina Arjona

Institut de Ciències de la Terra "Jaume Almera" CSIC Agustin.Lobo@ictja.csic.es


MOTIVACIÓN

Las Àreas Protegidas tienen dos Misiones que entran en conflicto

A. Lobo y C. Arjona, Modelo de la Distribución de Visitantes en Espacios Protegidos

En el peor de los casos...

MOTIVACIÓN

Para evitar resultados indeseables, es necesaria una Ordenación basada en el conocimiento de:

- Distribución de los Visitantes
 - Distribución de los Valores a conservar
- Impacto potencial de la actividad de los Visitantes en los Valores a conservar

INDICE

- Planteamiento del Problema
- Objetivo
- Modelo VDISP
- Implementación
- Datos necesarios
- Ejemplo de Aplicación: PNRB del Montseny
- Conclusiones
- Perspectivas

PROBLEMA

La Distribución de los Visitantes no puede ser evaluada en todo momento y lugar

(aunque las evaluaciones a partir de la actividad de telefonía móvil devengan factibles, es probable que sólo sean realmente posibles en casos puntuales y sirvan, por tanto, más bien como validaciones)

OBJETIVO

Estimar la Distribución geográfica de los Visitantes a partir de los recuentos en puntos discretos

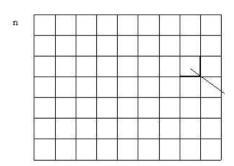
OBJETIVO

Estimar la Distribución geográfica de los Visitantes a partir de los recuentos en puntos discretos

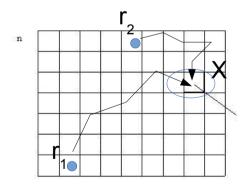
...pero la Distribución geográfica de los Visitantes en un punto dado no es simplemente función de la distancia a los puntos de recuento cercanos, por lo que los métodos comunes de interpolación no son aplicables

VDISP es un modelo de dispersión que extrapola los datos de Presión de Visitantes obtenidos en posiciones discretas a una distribución geográfica continua mediante la formalización cuantitativa de propiedades del movimiento humano y del paisaje.

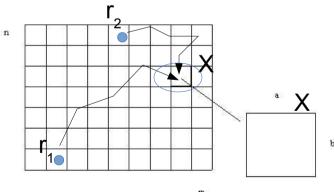
A. Lobo y C. Arjona, Modelo de la Distribución de Visitantes en Espacios Protegidos


MODELO

- 1. El espacio geográfico del área de estudio es representado como un retículo de malla cuadrada Raster
- 2. Para cada celda, la presión de visitantes se estima como la suma del número de visitas que ésta recibe a partir de los visitantes contabilizados en todos los puntos de recuento
- 3. El número de visitas que una celda X recibe desde un centro de recuento r :


$$V = \sum p \times n$$

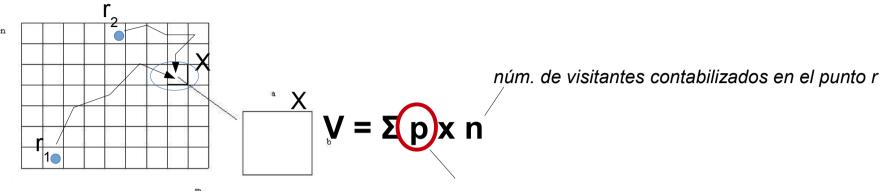
p: probabilidad de que un visitante llegue desde r a X n: núm. de visitantes contabilizados en el punto r


1. El espacio geográfico del área de estudio es representado como un retículo de malla cuadrada Raster

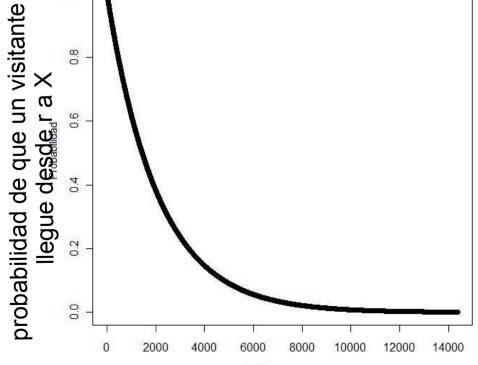
- 1. El espacio geográfico del área de estudio es representado como un retículo de malla cuadrada Raster
- 2. Para cada celda **X**, la presión de visitantes se estima como la suma del número de visitas que ésta recibe a partir de los visitantes contabilizados en todos los puntos de recuento **r**

- 1. El espacio geográfico del área de estudio es representado como un retículo de malla cuadrada Raster
- 2. Para cada celda **X**, la presión de visitantes se estima como la suma del número de visitas **V** que ésta recibe a partir de los visitantes contabilizados en todos los puntos de recuento **r**

3. El número de visitas **V** que una celda **X** recibe desde un centro de recuento **r**:

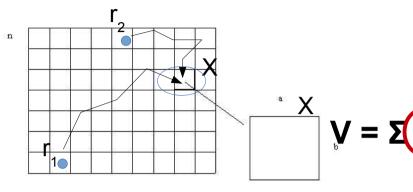

$$V = \Sigma p x n$$

p: probabilidad de que un visitante llegue desde r a X


n: núm. de visitantes contabilizados en el punto r

A. Lobo y C. Arjona, Modelo de la Distribución de Visitantes en Espacios Protegidos

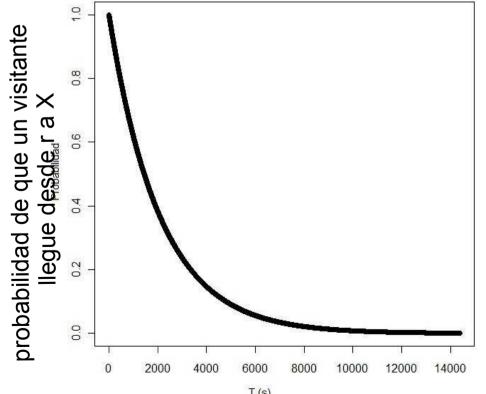
MODELO



probabilidad de que un visitante llegue desde r a X decae exponencialmente con el tiempo de recorrido t

Time (s) from r to X

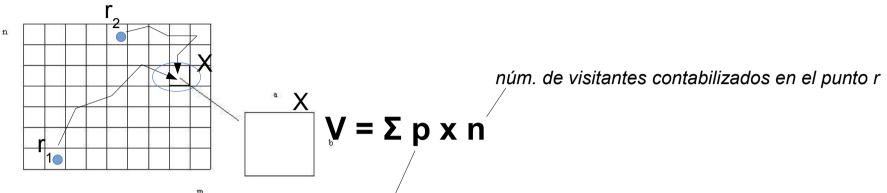
Agusun.Lobo@ictja.csic.es


núm. de visitantes contabilizados en el punto r

probabilidad de que un visitante llegue desde r a X decae exponencialmente con el tiempo de recorrido t

λ parametrizado de forma que menos de 1 de cada 1000 visitantes caminan durante más de 4 h (*Homo sapiens? Var. dominicus vulgaris*)

λ puede utilizarse para definir tipologías de visitantes



Time (s) from r to X

Agusun.Lobo@ictja.csic.es

A. Lobo y C. Arjona, Modelo de la Distribución de Visitantes en Espacios Protegidos

MODELO

probabilidad de que un visitante llegue des de r a X

$$P_0(t) = e^{-\lambda t}$$

Tiempo (s) de recorrido de r a X

Basado en

- Aiteken (1977) y Langmuir (1984) que desarrollaron la "regla de Naismith":
 - 5 km/h en llano +
 - 1 h por cada 600 m en ascenso (pendientes > 5°)
 - 10' por 300 m en descenso suave (pendientes 5°-12°) +
 - 10' por cada 300 m en descenso pronunciado (pendientes > 12°)
- Retardo según el tipo de terreno ("fricción" en terminología de Theobalt 2010)

IMPLEMENTACIÓN

 Raster del Tiempo de Recorrido desde un punto de recuento a todas las celdas: r.walk GRASS 6.4

- Bucle en R: para cada punto de recuento r_{i} spgrass6 (Bivand 2007) permite utilizar instrucciones GRASS 6.4 dentro de scripts de R
 - r.walk -> tiempo de recorrido desde r_i a todas las celdas del raster
 - Producto por número de visitantes n_i contablilizados en r_i -> número de visitas V_i desde r_i
- Suma de todos los raster V_i -> V
- Visualización y exploración interactiva de los resultados en QGIS

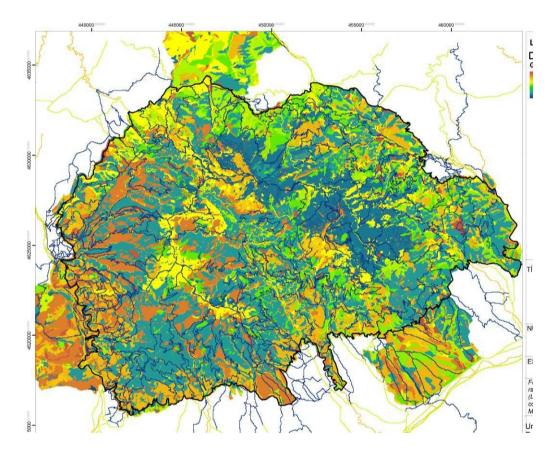
IMPLEMENTACIÓN

Tiempo de recorrido

r.walk GRASS 6.4

$$T = [a * \Delta S] + [b*\Delta H_{uph})] + [c*\Delta H_{dwh}] + [d * \Delta H_{sdwh}] + [l *F]$$

ΔS distancia horizontal ΔH desnivel


a, b, c, d: parametrización de Langmuir 1984 0.72, 6.0, -1.9998 y 1.9998 s/m

"Fricción" dependiente del tipo de cubierta

http://grass.osgeo.org/grass64/manuals/r.walk.html

IMPLEMENTACIÓN

"Fricción" dependiente del tipo de cubierta

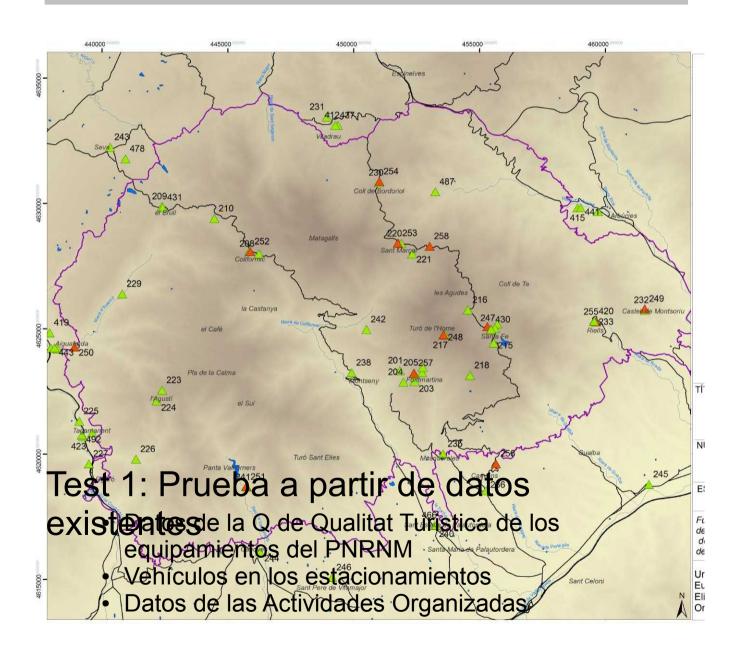
Mapa de cubiertas + Caminos + Red Viaria + Itinerarios de actividades

Valores para las cubiertas modificados de los propuestos por Theobalt (2010) según discusión con el personal del PNRBM pero no comprobados experimentalmente.

Agustin.Lobo@ictja.csic.es

DATOS

- 1. "Fricción" dependiente del tipo de cubierta
- 2. Modelo digital de elevaciones
- 3. Recuentos de visitantes
 - 3.1. Posiciones de los puntos de recuento
 - 3.2. Número de visitantes contabilizados

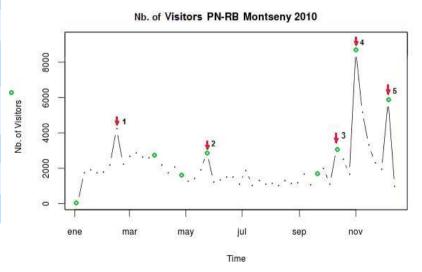

EJEMPLO DE APLICACIÓN

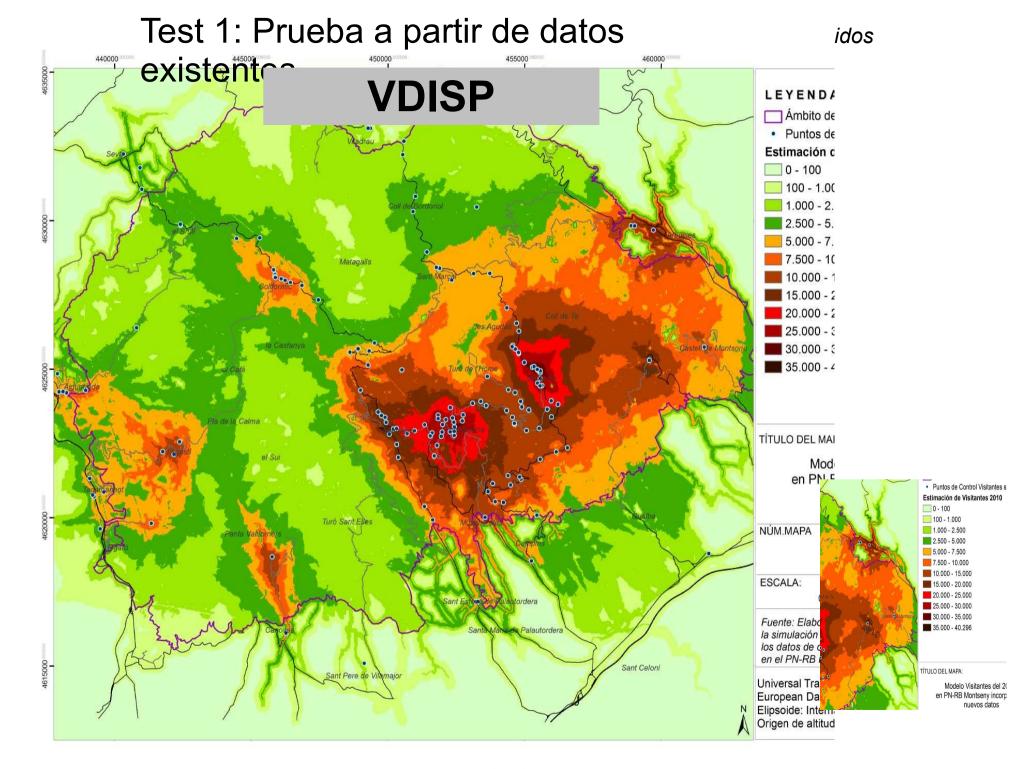
Parque Natural y Reserva de la Biosfera del Montseny PNRM

Recuentos de visitantes

- Test 1: Prueba a partir de datos existentes. Integración de:
 - Datos de la Q de Qualitat Turistica de los equipamientos del PNRNM
 - Vehículos en los estacionamientos
 - Datos de las Actividades Organizadas
- Test 2: Prueba de recuento de vehículos

EJEMPLO DE APLICACIÓN

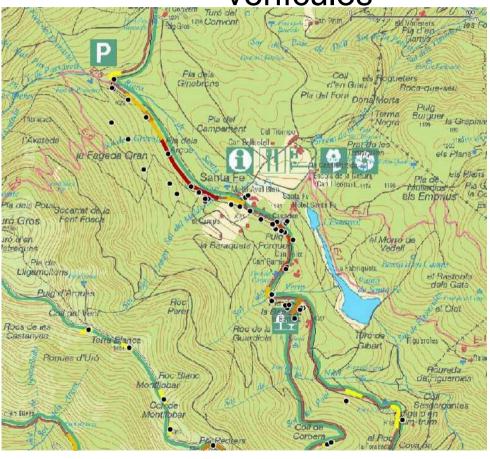



EJEMPLO DE APLICACIÓN

Test 1: Integración de datos existentes

TIPO DE PRV	ACRONIMO	Nº de PRV	TOTAL	MEDIA	% TOTAL
Actividades Programadas	ACT	16	5378	336	2.64
Áreas de Descanso	AE	1	890	890	0.44
Aparcamientos	AP	12	73431	6119	36.05
Alojamiento Rural	AR	2	1139	570	0.56
Camping	С	1	4493	4493	2.21
Centro de Información	CI	6	48413	8069	23.77
Dispositivo de Información Personalizada	DIP	2	11177	5589	5.49
Equipamientos de Educación Ambiental	EN	4	14020	3505	6.88
Museos	M	3	21126	7042	10.37
Punto de Información	PI	8	23541	2943	11.56
Centro de Investigación	R	1	91	91	0.04

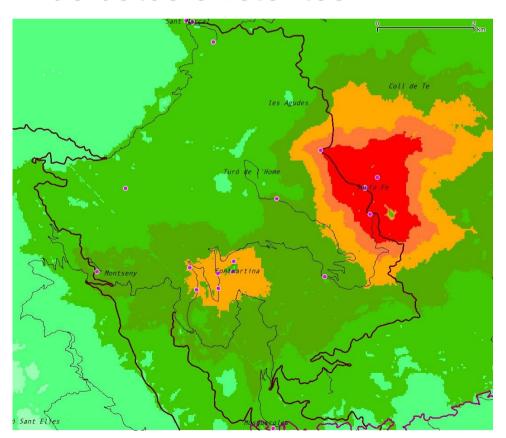
210821 visitantes "contabilizados" en 2010

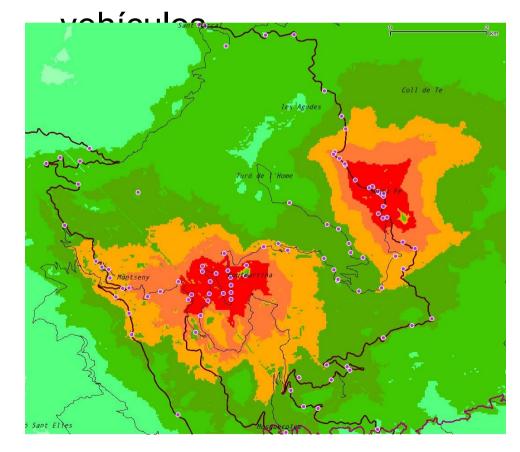


VDISP: EJEMPLO DE APLICACIÓN

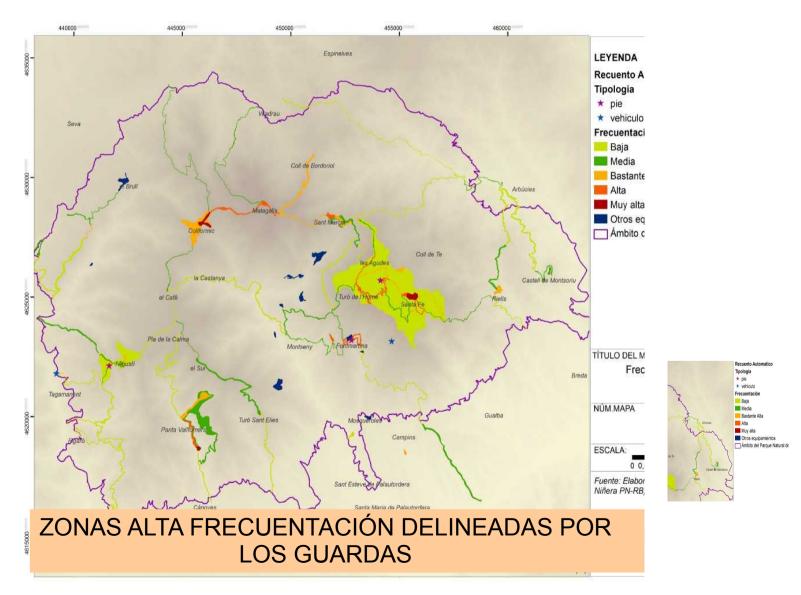
Test 2: Prueba de recuento de

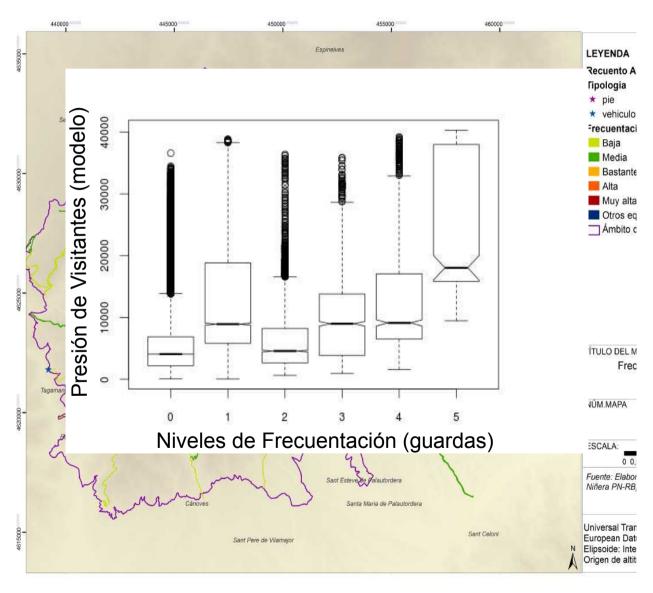
vehículos




VDISP: EJEMPLO DE APLICACIÓN

COMPARACIÓN DE LAS 2 EJECUCIONES


Test 1: A partir Integración de datos existentes


Test 2: A partir de la Prueba de recuento de

VDISP: EJEMPLO DE APLICACIÓN "VALIDACIÓN"

VDISP: EJEMPLO DE APLICACIÓN "VALIDACIÓN"

CONCLUSIONES

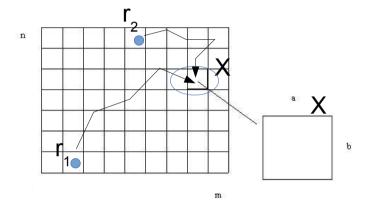
- El modelo VDISP basado en la dispersión de visitantes a partir de los puntos de recuento produce resultados coherentes con la apreciación subjetiva pero experta de los guardas en el ámbito del PNRB del Montseny en 2010.
- VDISP es muy dependiente de la adecuada distribución de los puntos de recuento y de la calidad de éstos.
- La prueba de recuento de vehículos indica que estos datos son más fáciles de colectar y más

PERSPECTIVAS

- Los resultados de VDISP pueden combinarse con los mapas de Espacios de especial relevancia para Conservación para detectar aquellas zonas que sufren una excesiva frecuentación.
- VDISP puede utilizarse para simular el efecto del ordenamiento y limitación del estacionamiento de vehículos
- VDISP-2 incluirá un Mapa de Atractivos para considerar movimientos en dirección a zonas específicas.

Gracias por su atención...

Con la colaboración y financiación de:



A. Lobo y C. Arjona, Modelo de la Distribución de Visitantes en Espacios Protegidos

A. Lobo y C. Arjona, Modelo de la Distribución de Visitantes en Espacios Protegidos

MODELO

- 1. El espacio geográfico del área de estudio es representado como un retículo de malla cuadrada Raster
- 2. Para cada celda, la presión de visitantes se estima como la suma del número de visitas que ésta recibe a partir de los visitantes contabilizados en todos los puntos de recuento
- 3. El número de visitas que una celda X recibe desde un centro de recuento r :

$$V = p \times n$$

p: probabilidad de que un visitante llegue desde r a X n: núm. de visitantes contabilizados en el punto r