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Epidemic models with an infected-infectious period
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The introduction of an infective-infectious period on the geographic spread of epidemics is considered in
two different models. The classical evolution equations arising in the literature are generalized and the exis-
tence of epidemic wave fronts is revised. The asymptotic speed is obtained and improves previous results for
the Black Death plagu¢S1063-651X98)01403-2
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[. INTRODUCTION individuals. We assume that the infectious members have a
disease-induced mortality ratel, where 1& is the life ex-
Geographic spread of epidemics was studied by a pioneepectancy. The evolution equations for the susceptible and
ing work of Noble[1], but it is less understood and less well infectious populations take the form
studied than its temporal evolution. However, recent works
such as[2] and[3], for instance, propose new approaches au 9?U
taking into account the role of cross-diffusion or a variable at
population size. Here we consider a simple(Sisceptible-
infectious model that leads to a very good velocity of spreadynereU=(S,1)T, andf=(fs,f,) is given by
of epidemics in accordance with the experimental results ob-
tained for the Black Death catastrophic plague pandemic. fs=—rS(x,t)1(x,t),
This model is compared with a model of three species.
Our main assumption is to consider a characteristic ime
of delay in the appearance of the infectious members, which

measures the period between the infected-infectious transllr_wtroducmg the dimensionless variables

tion. When a susceptible population is infected, there is a rS
t*=rSgt, andx*= VFX’

fi=rS(x,t— )l (x,t—7)—al(x,t).

time 7>0 during which the infectious agents develop within 1*=1/S,, S*=9S,,

the susceptible individual organisms and it is only after that

time that the infected population becomes itself infectious @)

(or infective. The corresponding model mechanisms for the, here s, s a representative population, the evolution equa-
development and spatial spread of the disease are phenogys, system is

enologically derived. The traveling wave analysis of the

model is carried out and the asymptotic velocity for an in- 39S S
fectious solitary wave is found and it is compared with the —=—1(x,t)S(x,t) + 5
older results of Noble. Jt X
al 92
Il. THE FIRST MODEL —=—+S(x,t—a)l(x,t—a)—A\l, 2)
ot (9)(2

The SI model consists of only two populations, infectious

I(x,t) and susceptibl&(x,t), which interact. We model the \yherea= 7rS, and we have omitted the asterisks for nota-

spatial dispersal of the density of infectious individuand  tjonal simplicity. The dimensionless paramekeis given by
the density of susceptible individua&by simple diffusion

and consider the infectious and susceptible populations to be a

described by the same diffusion coefficiént. We consider A= E-

the transition rate from susceptible to infected to be propor-

tional to rSl, wherer is a constant parameter. This meansWe look for traveling wave solutions, in the usual way by
thatrS is the number of susceptible individuals who catchsettingz=x—ct in Eq. (2) wherec is the wave speed, which
the disease from each infectious unit. The susceptible menmust be determined. This will represent a wave of constant
bers who catch the disease become infected members, @fRape traveling in the positive direction. Substituting this
intermediate stage between susceptible and infectious. Aftefito Eq. (2) yields the ordinary differential system fo(z)

a period 7, infected members become infectious and mayand S(z),

transmit the disease. The parameteneasures the transmis-

sion efficiency of the disease from infectious to susceptible S'+¢cS —-1S=0, (3)
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Ill. THE SECOND MODEL

o A second model which takes into account the infected-
infectious period may be developed by including a third spe-
where we have expanded in Taylor series the termsies. LetS(x,t) be the number density of susceptible mem-
S(x,t—a) andl(x,t—a) by assumingS and| infinitely de-  bers, 1(x,t) the number density of infected members, and
rivable. The only homogeneous steady state iS@hereS  1(x,t) the number density of infectious members. We as-
may be any positive real value. The problem consists of findsume in this section that the infected members have an in-
ing the range of values of such that a solution exists with fectious transition raté/ - wherer is the characteristic time
positive wave speed and non-negative andS such thafl]  of transition from infected to infectious or the infected-
infectious period and assume that all the susceptible mem-
I(==)=1(*)=0 and 0<S(—=)<S(x)=1. bers who catch the disease become infected members. By
assuming Ficks’s law for the diffusive spread of members,
we get the following set of equations:

I”+c|’—)\l+( >

(ca)n dn “ (ca)" d"S
n=o0 n!

i=o n! dz"

By linearizing Eg.(3) about the steady state and setting
S=9(%)=1 we obtain

"+cv’ —u=0, 2
o @ B _p”3 s
at '
u’+cu’ )\u+2 y ,
n=o a7 a A 1.
. —=D—+rSl— -, (8
whereu=| andv=S—-S. The second equation for EQ}) is Jt IX T
uncoupled fronv and may be analyzed separately. Its char-
acteristic equation is dl 5 22 | 1T
_— —— + —
wP+cu—\+erca=0, (5) gt gx? T

Since we requir¢(z) —0 with 1(2)>0, 1(2) cannot oscillate  Using now the dimensionless variablél we obtain(we
aboutl =0, otherwisel (z) <0 for somez and therefore we omit asterisks for notational simplicity
must have real values fqr. In order to have two real solu-

tions for Eq.(5) it is necessary that the restriction S 4°S |
, 2 at  ox? ’
e Ca2 )\ + — (6)
4 o
al o4l 1.
be fulfilled. E— ﬁ+r5|— a|, (9)
Application to the Black Death plague ol & 1
In dimensional terms, the speed of the traveling waves, a a2 M+ g' :
say, is given by
If we fix the reference frame onto the moving front by usin
Vinin=2rSeDc. (7) g y using

the transformatiorz=x—ct, we obtain

In order to apply our model to the experimental results, we
must know the value of. This value could be related to the
incubation period of the disease but we have not yet estab-
lished a direct correspondence.

In order to analyze our results we take the same approxi-
mate values for the parameters used by Noble. The suscep-
tible population density is assumed to &g~ 50/miles?, the 1.
diffusion coefficient isD~ 10" miles?/yr, the transmission I"+cl’ =M+ 1=0.
coefficient isr~0.4 miles’/yr, and the life expectancy is

about 3.5 weeks, sa~15/yr. With these parameters we analogously to the previous model the homogeneous steady

obtain that the speed for the classical cage Q) is 447.2
miles/yr, somewhat greater than the experimental results sftate s 6, ls’ s)=(1,0,0). Defining the new variables

200-400 mileslyr quoted by Langé#]. If we take the U= =S-1, w=I, andu=I and linearizing about the steady
infected-infectious period of two weeks € 0.822), which ~ State, one obtains

seems to be reasonable, the asymptotic spe¥g,is where

c fulfills the equality in Eq.(6) as may be shown by using
the steepest descent method of Kolmogorov. This yields, af-
ter numerical calculation, 281.7 miles/yr, which lies entirely
within the experimental range.

S'+cS —1S=0, (10)

o Lo
I"+cl'—-1+Ssl=0,
a
(11)

v"+cv’'—u=0,

1
W"+CW’—5W+ u=0, (12
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1
u’+cu’ —Au+ aw:o.

We define now the vectdd= (v,w,u)" so that Eq(12) can
be rewritten in the form
U”+cl-U +A-U=0, (13

wherel is the unity matrix and

O 0 -1
1
0o —- 1
A= a
1
0 — -—X
a

By linearizing A we obtain the following characteristic poly-
nomial

1 1
wl w?+u S +5()\—1) =0. (14

In order to have real values in E@L3) it is necessary that

( 1\?2 4 1
A N2 +=—r=Z
a a a

with A<1. Note that the constraiit<<1 is recovered both
from Noble’s work and from the first model.
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Application to the Black Death plague
In dimensional units the asymptotic velocity has the form

a 1\2 4 a 1
V= v2rSeb \/ (a‘rrso) TS, 1S, WS

Taking the same characteristic values of Noble and assuming
7=2 weeks, we geV¥=339.5 miles/yr which lies entirely in
the experimental range 200—400 miles/yr.

We have shown with these two models that the introduc-
tion of an infected-infectious period, which is reasonable
from the practical point of view, of two weeks, leads us to a
speed of the disease propagation which lies entirely in the
experimental range. In both models the speed of the disease
is lower than in the classical modek£0) due to the
infected-infectious period. Murrajb] excuses the bad theo-
retical result by arguing that the classical modak(Q) is
extremely simple and does not take into account the non-
uniformity in population density, the stochastic elements,
and so on. The fact is that, with a simple extension of the
classical model, we are able to obtain two better results tak-
ing into account the infective-infectious period, which is also
invoked in a recent work6].
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