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THE ROLE OF THE DELAY TIME IN THE MODELING OF BIOLOGICAL 
RANGE EXPANSIONS 
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Abstract. The time interval between successive migrations of biological species causes 
a delay time in the reaction-diffusion equations describing their space-time dynamics. This 
lowers the predicted speed of the waves of advance, as compared to classical models. It 
has been shown that this delay-time effect improves the modeling of human range expan- 
sions. Here, we demonstrate that it can also be important for other species. We present two 
new examples where the predictions of the time-delayed and the classical (Fisher) ap- 
proaches are compared to experimental data. No free or adjustable parameters are used. 
We show that the importance of the delay effect depends on the dimensionless product of 
the initial growth rate and the delay time. We argue that the delay effect should be taken 
into account in the modeling of range expansions for biological species. 

Key words: Carpodacus mexicanus; delay time; Eurasian Collared-Dove; House Finch; range 
expansions; Streptopelia decaocto; wavefront speed. 

INTRODUCTION 

The spread of biological species is a problem of 
utmost ecological importance. The classical mathe- 
matical formulation of these phenomena is due to 
Fisher (1937). Fisher's model has been applied to hu- 
man range expansions (Ammerman and Cavalli-Sfor- 
za 1984, Rendine et al. 1986) and other species (Hen- 
geveld 1989, Shigesada and Kawasaki 1997). On the 
other hand, individuals reproduce themselves, but it 
takes some time for the subsequent generation to mi- 
grate and reproduce. Fort and M6ndez (1999a, b) 
showed that this implies that Fisher's model should 
be refined. The resulting time-delayed theory has up 
to now been compared to observations only for hu- 
mans (Fort and M6ndez 1999a, Fort 2003, Fort et al. 
2003). 

Time delays have been widely used in biology (e.g., 
in population dynamics) but seldom in the prediction 
of the speed of population expansions. Holmes (1993) 
modeled spatial spread using the telegrapher's equa- 
tion, which she derived under the assumption of a 
correlated random walk. She found negligible changes 
(<8%) to the classical predictions for five species 
(cabbage butterfly, Eurasian Collared-Dove, etc.). She 
did not analyze the delay due to the rest time between 
subsequent migrations (generations). Kot and co- 
workers (Kot 1992, Kot et al. 1996) have derived 
many interesting theoretical results (such as acceler- 
ating invasions and front shapes) using integrodiffer- 
ence equations, which, as discrete-time models, nat- 

urally incorporate a delay. Neubert and Caswell 
(2000) developed a method to determine the speed of 
the wave front for a model resting on integrodiffer- 
ence equations for structured populations. Van den 
Bosch et al. (1990, 1992) developed continuous-time 
age-structured models and applied them to the ex- 
pansion of populations and plant diseases. Thus, pro- 
gress has been made on delay times and biological 
invasions. But the effect of the rest time between suc- 
cessive migrations (generations) has so far been taken 
into account in telegraph-dispersal models, only for 
human expansions. 

Here, we will consider two avian range expansions, 
of Eurasian Collared-Dove Streptopelia decaocto and 
House Finch Carpodacus mexicanus, and compare 
their observed range expansion rates to the predictions 
of both Fisher's equation and the time-delayed tele- 
graph dispersal model developed here. For these birds, 
reproduction does not occur throughout the year; in- 
deed it is episodic and relatively synchronous. There- 
fore, one way to model their spread would be the build- 
ing of a discrete-time model. Clearly, this would be 
necessary if the time scale of measurements were of 
the order of (or lower than) the typical reproduction 
time (i.e., about a year). However, measurements of 
population invasion speeds usually span several de- 
cades. Under those conditions it is a reasonable ap- 
proximation of the use of a continuous model for bird 
reproductive dynamics. 

TIME-DELAYED EXTENSION OF FISHER'S THEORY 

Traditionally Fick's law has been used to establish 
the relation between population flux, J, and the pop- 
ulation density gradient, Ap. This "law" hypothesizes 
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a linear relationship between the two, via a factor 
known as the diffusion coefficient, D: 

J(x, t) = -DVp(x, t). (1) 

In addition to motion, reproduction and mortality 
also contribute to changes in the density of individuals 
at a given point in space. In differential form, this 
corresponds to the well-known equation 

ap (x, t) ap(t -V .J(x, t) + F[p(x, t)] (2) at 
where F[p] is the source term and accounts for the 
births and deaths per unit area. From Eqs. 1 and 2 one 
finds 

ap(x, t) = , t) - DV2p(x, t) + F[p(x, t)]. (3) at 
This is Fisher's equation. It is also known as the par- 
abolic reaction-diffusion equation (PRDE). 

Fick's law (Eq. 1) implies an instantaneous response 
to a suddenly established population gradient, thus 
neglecting the inertia and other possible additional 
sources of delay when dealing with biological indi- 
viduals. On the other side, when the mean-free-path 
of the individuals (i.e., the average length of the path 
they may follow without change in direction) becomes 
indefinitely long (the so-called ballistic limit in phys- 
ical literature), Fick's law predicts a divergent flux, 
because the diffusion coefficient diverges in this case 
(as it is proportional to the square of the mean-free- 
path). In contrast, the actual maximum possible value 
for the flux of individuals is the maximum individual 
speed times their number density. Both features (in- 
stantaneous response and divergent flux) may be 
avoided if delay effects are included (Jou et al. 2001). 
This delay takes into account the time that the indi- 
viduals need in order to adopt a definite mean speed 
and direction of motion after nonuniformity appears 
in their concentration. Then Fick's law (Eq. 1) is re- 
placed by 

J(x, t + 7) = -DAp(x, t) (4) 

where 7 is the delay time. Again we can make use of 
the balance equation (Eq. 2), which now leads to 

ap(x, t + 7) = DV2p(x, t) + F[p(x, t + 7)] (5) at 

and this equation generalizes Eq. 3. 
We have introduced Eq. 5 in the simplest possible 

way (namely, by invoking the causality principle), but 
Eq. 5 can also be derived by analyzing the random 
motion of individuals with a characteristic mean rest 
time after birth (Fort and M6ndez 1999a). 

Assuming that the delay time 7 is much smaller than 
the typical observation times, we expand Eq. 5 in pow- 
ers of 7. Discarding all terms in which 7 appears to 
second or higher power gives the following: 

a2p (X, t) ap (x, t) 
a7 + = DV2p(x, t) + F[p(x, t)] at2 at 

aF [p(x, t)] 
+ -. (6) at 

Eq. 6 is called the hyperbolic reaction-diffusion 
equation (HRDE), and it is the center of the present 
paper. Note that it relies on keeping terms of Taylor 
expansions up to a higher order than within the classical 
(Fisher or PRDE) frameWork. For the full Eq. 5, Fort 
and M6ndez (1999a) give an implicit formula for the 

speed of fronts for arbitrarily large 7. Here, however, 
we will use Eq. 6 instead of Eq. 5. This makes it pos- 
sible to find an explicit formula for v which is more 
easy to use, and quite accurate in practice (Fort and 

M6ndez 1999b). 
One cannot use the HRDE to make any quantitative 

prediction unless one can estimate the value of the 
delay time 7. A microscopic derivation of the HRDE 
(Eq. 6) (Fort and M6ndez 1999a) has shown that, if T 
is the mean time elapsed between two successive mi- 
grations (i.e., the generation time), then 

T 
7 = -. (7) 2 

The microscopic theory then leads to a diffusion co- 
efficient that is in agreement with previous work by 
many authors, namely, 

D = T (Ax, Ay)A2 dAx dAy - (8) 
4T f 0C f 0C 

4T 

where A2 = Ax2 + Ay2 and A2 is the mean square dis- 
placement per jump (or migration). The function 1(Ax, 
Ay) is the normalized probability distribution for a 
jump of length A. 

We use Eq. 6 not only because of conceptual argu- 
ments, but because it has been derived from a micro- 
scopic theory (Fort and M6ndez 1999a). We stress that 
such an approach is necessary because it is precisely 
the microscopic derivation that makes it possible to 
identify the factor appearing in the first and last terms 
in Eq. 6 as half the mean time interval between sub- 
sequent migrations, T. 

According to Eqs. 6 and 7, the density of individuals 
per unit area, p(x, t), evolves according to the HRDE: 

Ta2p(x, t) ap (x, t) 
- 

X 
+ t= DV2p(x, t) + F[p(x, t)] 2 at2 at 

TaF[p(x, t)] + 2 (9) 2 at 

with the diffusion coefficient given by Eq. 8. Eq. 9 has 
the same form as the reaction-telegraph equation in 
Holmes (1993). However, in the case considered by 
Holmes (1993), the following expressions for the pa- 
rameters T and D were used: 
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1 y2 THolmes DHolmes 
h 2h 

Although the derivations in the present paper and in 
Holmes (1993) lead to the same equation (Eq. 9), they 
have been made in very different contexts because we 
do not assume a correlated random walk. Consequently, 
the meaning of the parameters T and D is rather dif- 
ferent. Holmes's model assumes that individuals per- 
form steps in one dimension whose lengths in space, 
yh, and in time, X, are always the same (y is the or- 
ganism velocity), and then, the macroscopic delay 
terms in Eq. 9 come from the characteristic time to 
reverse direction, i.e., 1/X. In contrast, in our model, 
which holds in two dimensions, the steps can have 
different lengths and the delay time is due to the as- 
sumption of a characteristic time interval T during 
which newborn individuals do not disperse (Fort and 

M6ndez 1999a). 
In the limit in which the effect of the delay time is 

neglected (T -+ 0), Eq. 9 becomes Fisher's equation 
Eq. 3. It is well known that Fisher's equation allows 
instantaneous response and divergent flux. Time-de- 
layed equations such as Eq. 9 were long ago introduced 
in the physics literature (Jou et al. 2001) to get around 
this problem. We must mention that this problem is 
also solved in the context of methods that rest on in- 

tegrodifference equations by making use of dispersal 
kernels with finite support (Neubert and Caswell 2000). 
That approach in terms of multiple life stages, each 
with their own life traits and dispersal, has more gen- 
erality than the approach we take in this paper. How- 
ever, Eq. 9 has advantages over integrodifference equa- 
tions in some situations. First, dispersal kernels can be 
applied only if the dispersion histogram of the species 
considered is known. In contrast, the diffusion coef- 
ficient (Eq. 8) can be estimated even if the dispersion 
histogram is not known (Lubina and Levin 1988), al- 
though it is true that its uncertainty increases in turn. 
Second, it is easier to estimate invasion speeds from 

Eq. 9, because a simple, explicit analytic expression 
for the speed can be applied. 

M6ndez and Camacho (1997) and M6ndez, Fort and 

Farjas (1999) show that the asymptotic (t 
-- 

oc) speed 
of the wavefront solutions to Eq. 9 is given by 

v = (10) T 
1 + -F'(0) 

where F'(0) = dF/dp ,=0 is the intrinsic rate of popu- 
lation growth and conditions v2 < 2D/T and F'(O)T/2 
< 1 must be satisfied (M6ndez et al. 1999). In the limit 
T - 0, Eq. 10 becomes Fisher's result, namely, 

vo = 2F'(0)D. (11) 

In the next sections, we compare the predictions of 
Eqs. 10 and 11 to observation of range expansions of 
Eurasian Collared-Doves and House Finches. 

COMPARISON TO OBSERVATIONS 

House Finch 

In this section, we shall deal with the range expan- 
sion of the House Finch (Carpodacus mexicanus) in 
northern America, which has been taking place since 
1940. First of all, we will compute the necessary pa- 
rameters in order to make quantitative predictions. 
Then, we will apply Eqs. 10 and 11 to predict the speed 
of the invasion and compare their results to the cor- 

responding observations. 
Although it is not strictly necessary to do so, for the 

sake of clarity we assume that the source terms in Eqs. 
9 and 3 make up a logistic function, namely, 

F(p) ap(1 
-(12) 

where a = dF/dp ,p=0 
= F'(0) is the intrinsic growth 

rate and 
pmax 

is the carrying capacity. Then, the front 
advance speed (Eq. 10) can be written as 

2ViaD 
v = (13) aT 

1+- 
2 

and Fisher's speed reads 

v = 2/a--D. (14) 

We stress that Eq. 13 is the same result for the velocity 
as that appearing in Holmes (1993) provided that the 

expression above for THolmes and DHolmes are used instead 
of our parameters T and D, and that conditions v2 < 
2DHolmes/THolmes and aTHolmes/2 < 1 (mentioned below Eq. 
10) are satisfied. 

Bird reproductive dynamics.-The first parameter 
we must estimate is a. We note from Eq. 12 that for 
small population sizes (P = 0), the global population 
size P changes according to 

dP 
S- aP. (15) 

Note that here we are dealing with the total population 
P, and not with the population density at a given lo- 

cality p(x, t), so diffusive effects can be neglected. (The 
first term on the right-hand-side of Eqs. 9 and 3 cor- 

responds to individuals incoming and/or outgoing from 
the system, and thus does not apply if we consider the 
whole continent, within which all individuals move.) 
This point is quite important in practice, because it 
means that in order to determine the value of a one 
should make use of the whole-survey data and not only 
those of a restricted range. In the later case, the pop- 
ulation change would be also affected by dispersal (first 
term in the right-hand side of Eqs. 9 and 3). Moreover, 
local climatology and geography can yield different 
reproductive dynamics. Thus, in contrast to previous 
work (Veit and Lewis 1996), we shall use whole-survey 
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3.2 - 

3.0 

- 2.8 

2.6 a = 0.020 + 0.003 yr-1 

0 5 10 15 20 25 

t (yr) 

FIG. 1. House Finch survey-wide population numbers (P, 
measured in counts per party hour) vs. time (USGS 2001). 
In order to estimate the intrinsic growth rate a we used the 
logarithmic plot and removed points far away from the ex- 
ponential phase (large times), which implied a decrease in 
the regression coefficient of the linear fits. 

data below. We stress that this applies only to the initial, 
exponential stage of population growth. 

Eq. 15 can easily be integrated to yield the following 
temporal evolution of the total population size: 

P(t) = Poea' (16) 

(if P -- 0) where PO = P(0). 
From the observed population numbers (Fig. 1), we 

can estimate in a simple way the value of a, making 
use of Eq. 16. We have done so by fitting a straight 
line to the logarithms of the observed data (USGS, 
2001) for the total population vs. time. The slope of 
the fitted line gives the value of a (Fig. 1.), namely a 
= 0.020 

_+ 
0.003 yr-1 (mean ? 1 SE). 

Estimation of the delay time.-The parameter T ap- 
pearing in Eqs. 9 and 13 is the mean time interval 
elapsed between two successive migrations (Fort and 

M6ndez 1999a). Thus T may be estimated as the time 
needed for a newborn individual to grow into an adult 
and reproduce. When the adult age is reached, indi- 
viduals leave the paternal territory and fly to new plac- 
es. The value of this time has been estimated from 
observations to lie between 1.5 and 2 yr (Hochachka 
and Dhondt 2000), so we shall take as a typical value 
1.75 yr. In fact, values of T between 1.5 and 2 yr do 
not change the results we will derive below. 

Dispersal.-The diffusion coefficient can be esti- 
mated from Eq. 8. To determine the value of A2 we use 
the histogram in Fig. 2. From these data, we can es- 
timate the mean-squared displacement as 

A2 = 7 
A2fi (17) 

where Ai are the observed distances and 
fi 

their re- 

spective observed frequencies (Ci fi = 1). From Eq. 17 
and Fig. 2, we get A2 = (71 + 13) X 103 km2 and so 

0.4 

0.3 

S0.2 

0.0- 
i.i- 0 100 200 300 400 500 600 700 800 

Displacement, A (km) 

FIG. 2. House Finch annual dispersal histogram (from the 
data in Veit and Lewis [1996]). In agreement with our single- 
species model, we include adults as well as juveniles. Note 
that a time interval of one year, which is the value for the 
data shown, corresponds roughly to the time required by a 
newborn individual to turn into an adult (Hochachka and 
Dhondt 2000), i.e., roughly to parameter T in our model. 

A2/T = (41 + 9) X 103 km2/yr, which leads us to the 
diffusion coefficient: 

D = (10.1 + 2.4) X 103 km2/yr. (18) 

Prediction of the front speed and comparison to the 
observed value.-Now that we have estimated the nec- 
essary parameter values, we can compute the front 

speed predicted by the time-delayed model, Eq. 9. This 
yields v = 28 + 4 km/yr. The observed speed, vexp = 
28 + 1 km/yr (Okubo 1986), agrees rather well with 
the value predicted above (Fig. 3). Fig. 4 shows the 
values of the parameters a and A2/T that are compatible 
with the observed speed. Many combinations of these 

400 

300 
v = 28 km/yr 

. 

200 

100oo 

A 100 

1950 1955 1960 1965 1970 
t (yr) 

FIG. 3. Linear fit of experimental data (Okubo 1986) to 
estimate the speed of the range expansion of the House Finch, 

Vexp-. 
The first two data points have been removed because 

they correspond to early times, when the initial population 
has not reached the saturation value, and therefore the front 
speed is not yet the asymptotic one. 
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0.04 , 
\\ - v = 28 km/yr 

S-.-...-- .v = 27 km/yr 
I0.03 -\ ---- v = 29 km/yr 

0.02 

0.01 

0.00 
1 2 3 4 5 6 7 8 9 10 

A2/T (104 km2/yr) 

FIG. 4. Results from applying the time-delayed model 
(Eq. 13) to the House Finch expansion. The shaded regions 
correspond to the possible ranges of the parameter values, 
according to independent observations. The outer curves limit 
the predicted values for the front speed. It is seen that the 
theory predicts, for many of the possible values of the pa- 
rameters, a speed that is within the observed range (28 1 1 
km/yr). No free or adjustable parameters have been used. 

parameters, obtained from the observations in Figs. 1 
and 2 (shaded areas in Fig. 4), yield a range expansion 
speed consistent with that observed (Fig. 3). 

Eurasian Collared-Dove 

We now turn our attention to the range expansion of 
Eurasian Collared-Dove (Streptopelia decaocto Friv.) 
into Europe. Using the same method as for the House 
Finch, the graph of survey-wide data for the dove 
(USGS 2001) allows us compute a = 0.29 ? 0.02 yr-' 
(see Fig. 5). Van Den Bosch et al. (1992: Tables 3 and 
4) report: T = 1.81 ? 0.73 yr and A2 = (36 ? 10) x 
103 km2. Thus, D = 5026 ? 2400 km2/yr, and the speed 
(Eq. 13) predicted by HRDE is v = 60 + 19 km2/yr, 
whereas the classical speed (Eq. 14) is vTro = 76 ? 19 
km2/yr. Van Den Bosch et al. (1992) also report that 
the observed velocity of the Eurasian Collared-Dove 
population expansion is Vexp 

= 44 ? 3 km2/yr. Note 
that the time-delayed model gives a range for the front 

speed compatible with observations, whereas Fisher's 
model does not. Fig. 6 shows the values of the param- 
eters a and A2/T that are compatible with the observed 
speed for the Eurasian Collared-Dove expansion. 

DIscusSION 

In this paper we have shown that the House Finch 
and Eurasian Collared-Dove invasion speeds can be 

explained (Figs. 4 and 6) by a simple time-delayed 
model. Our model provides an analytical result (Eq. 
10), which reduces to Fisher's classical value (Eq. 11) 
in the appropriate limit. It is interesting to point out 
that several other models have been put forward in 
connection with the House Finch invasion. Veit and 
Lewis (1996) made use of a discrete-time model with 

5 

4 

3 

a = 0.29 + 0.02 yr- 

0 2 4 6 8 
t (yr) 

FIG. 5. Eurasian Collared-Dove survey-wide population 
numbers (P) vs. time t (USGS 2001). In order to estimate the 
intrinsic growth rate a we used the logarithmic plot and re- 
moved points far away from the exponential phase (large 
times) that implied a decrease in the regression coefficient of 
the linear fits. 

two stages (adults and juveniles) and, in contrast to Eq. 
12, they did not consider a logistic growth term. Their 
focus was fundamentally different from ours: their pur- 
pose was to explain the initial acceleration of the in- 
vasion, so they do not derive a simple formula for the 
speed over long periods. Shigesada and Kawasaki 
(1997) took into account the habitat preference of the 
House Finch in some regions. Theirs is also a very 
interesting, more detailed approach, which uses the ob- 
served range expansion speed as an input parameter. 
In contrast, we have predicted its value from theory 
and seen that it is close to that observed. 

We now turn to the relevance of the time-delayed 
model (Eqs. 9 and 10) as compared to Fisher's model 
(Eqs. 3 and 11). First we notice that for the House 
Finch expansion analyzed in the previous section, the 

0.5 
-v = 44 km/yr 

0.4 \------ v = 41 km/yr- 

- v = 47 km/yr 
0.3 

S0.2- 

S0.1- 

0.0 
0 1 2 3 4 5 

A2/T (104 km2/yr) 

FIG. 6. Results from applying the time-delayed model 
(Eq. 13) to the Eurasian Collared-Dove expansion. See Fig. 
4 for explanation of shaded areas and curves. 
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TABLE 1. Comparison between the time-delayed and Fisher's models for range expansions 
of several biological species. 

Preindustrial House Finch Eurasian Collared-Dove 
farmers (Fort and (Carpodacus (Streptopelia 

Parameter M6ndez 1999a) mexicanus) decaocto Friv.) 
T (yr) 25 1.75 

_ 
0.25 1.81 + 0.73 

D (km2/yr) 15.44 10 100 ? 2400 5026 ? 2400 
a (yr-1) 0.032 0.020 ? 0.003 0.29 ? 0.02 
VT-o (km/yr) 1.41 28 ? 4 76 ? 19 
v (km/yr) 1.00 28 ? 4 60 ? 19 
(vTro - v)/(v) 

aT/2 (%) 41 1.8 ? 0.4 26 ? 11 
Vexp (km/yr) 1.0 ? 0.2 28 + 1 44 _ 3 

Note: All values stated with an error term are mean ? 1 SE. 

speed predicted in the framework of the classical theory 
due to Fisher (Eq. 11) is different from the time-delayed 
prediction (Eq. 10, used above) by only -2%. This is 
due to the small value of the product of the delay time 
T and the initial growth rate a, which is much lower 
than unity in this specific example. In fact, if we com- 
pare Eq. 10 to Eq. 11, it is easy to show that (vTro - 

v)/v = (F'(0)T)/2. Therefore, for this particular species, 
Fisher's model provides a relatively adequate frame- 
work (provided that the parameter values are carefully 
evaluated, as done in the present paper). However, the 
validity of Fisher's approximation breaks down for oth- 
er species. In some cases, such as human populations, 
T is much higher and the correction of the time-delayed 
model, as compared to Fisher's, is -40% (Table 1: 
column 1). In other cases, including the Eurasian Col- 
lared-Dove, a can be much larger. As shown in the last 
column in Table 1, this happens for the dove: in contrast 
to Fisher's model, our time-delayed theory then pro- 
vides a range for the speed that is consistent with the 
experimental value. To the best of our knowledge, this 
is the first time that such an important correction has 
been derived for a nonhuman species. Therefore, in 
order to progress toward the unification of the theory 
of range expansions, it is in general necessary to take 
into account the role of the delay time. We stress that 
Holmes (1993) finds negligible corrections for all spe- 
cies she studied simply because the effect she analyzed 
(namely, correlations in direction of motion between 
subsequent steps) is completely different from ours 
(i.e., a rest time between subsequent migrations). This 
is why the value of T for the House Finch in Holmes 
(1993) is different from ours. The value of a is also 
different because Holmes (1993) used life table data 
instead of whole-survey numbers (Fig. 1 in the present 
paper). Besides, the value of D in Holmes (1993) is 
different, because it is based on an equation in Holmes 
(1993: Eq. 19), which in fact holds in diffusion, not in 
reaction-diffusion systems, and for a very specific ini- 
tial condition (see its derivation in Shigesada and Ka- 
wasaki 1997, Section 3.2). 

Here, we have presented an example of each of the 
three distinct possible situations (Table 1): (1) in some 

cases, aT/2 is much smaller than unity and Fisher's 
model is a fair approximation (e.g., when dealing with 
the House Finch expansion). In other cases, this is not 
so, either because (2) a is much larger (e.g., in the 
Eurasian Collared-Dove expansion), or (3) because T 
is larger (e.g., in human population expansions). Thus, 
whenever the value of the product a x T is high enough 
(say, a x T > 0.2), the delay effect should be taken 
into account since it will induce an important change 
to Fisher's prediction. Therefore, it seems essential to 
take Eq. 9 into account in future studies of biological 
range expansions. 
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