ÍNDEX

1.- INTRODUCCIÓ ... 3
1.1.- Antecedents ... 4
1.2.- Objecte .. 4
1.3.- Especificacions i abast ... 5
2.- SITUACIÓ ACÚSTICA DE L’AVINGUDA DE FRANÇA ... 6
2.1.- Mètode híbrid de treball .. 6
2.2.- Principals punts de problemàtica acústica .. 7
3.- METODOLOGIA DE TREBALL ... 8
3.1.- Elaboració del model digital .. 8
3.2.- Selecció dels punts de mesura ... 11
3.3.- Tipus de mesures .. 18
3.4.- Presa de mesures in situ .. 18
 3.4.1.- Criteris de mesura i metodologia emprada ... 18
 3.4.2.- Mesures de curta durada .. 21
 3.4.3.- Mesures diürnes ... 21
 3.4.4.- Mesures realitzades .. 22
4.- ANÀLISI DE MOBILITAT DE L’AVINGUDA DE FRANÇA 23
4.1.- Interpretació dels resultats experimentals ... 25
5.- MODELITZACIÓ DEL SOROLL DE TRÀNSIT ... 26
5.1.- Passos seguits per crear el model .. 27
5.2.- Dades de partida del flux de trànsit ... 28
5.3.- Paràmetres característics del vial .. 29
5.4.- Potències acústiques de les vies .. 30
6.- VERIFICACIO I CÀLCUL DEL MODEL .. 31
6.1.- Verificació de les mesures de L_{Aeq} .. 31
6.2.- Simulació del model ... 34
6.3.- Resultats de la modelització .. 37
7.- PROPOSTA DE ZONIFICACIÓ ACÚSTICA SEGONS LA LLEI 16/2002 48
 7.1.- Consideracions prèvies ... 48
 7.2.- Anàlisi i simulació de possibles millores .. 55
8.- RESUM DEL PRESSUPOST .. 69
9.- CONCLUSIONS GENERALS ... 70
10.- LLISTAT DE DOCUMENTS .. 72
11.- BIBLIOGRAFIA .. 73

Annex A: TEORIA DEL SOROLL .. 76
A.1.- So i soroll ... 77
A.2.- Nocions Bàsiques .. 78
 A.2.1.- Propagació del so .. 78
 A.2.2.- Atenució del so en l’aire lliure .. 79
 A.2.3.- Les reflexions ... 79
 A.2.4.- Mesurament del soroll i escala decibèlica .. 82
 A.2.5.- Nivell de potència sonora ... 85
 A.2.6.- Freqüència ... 86
 A.2.7.- Corbes de ponderació .. 86
 A.2.8.- Bandes d’octava ... 87

Memòria
A.3. - Paràmetres de mesurament ... 88
 A.3.1. - Nivell sonor equivalent: LAEQ, T .. 89
 A.3.2. - Nivells estadístics: LAN,T .. 89
 A.3.3. - Nivell de contaminació del soroll: NPL .. 90
A.4. - Equips de mesurament ... 91
 A.4.1. - Sonòmetres .. 91
 A.4.2. - Calibradors .. 93
 A.4.3. - Filtres ... 94
 A.4.4. - Enregistradors gràfics i impressores .. 94
A.5. - Càlculs en decibels ... 94
A.6. - Fonts de soroll ... 96
 A.6.1. - Font puntual .. 96
 A.6.2. - Font en línia .. 98
 A.6.3. - Font en superfície .. 98
A.7. - Soroll de trànsit .. 99

Annex B: PUNTS DE MESURA .. 103

Annex C: ESTUDI ECONÒMIC .. 110
1.- INTRODUCCIÓ

Cada cop es dóna més importància a la protecció del medi ambient, ja que aquest és un factor de qualitat de vida. Per tant la població es sensibilitza cada cop més amb determinades inciències ambientals que sense suposar un risc directe per la salut o per el medi, comporten una disminució de la qualitat de vida que desitgem.

El soroll pot incloure's dins d’aquest marc. Sovint hi ha situacions en què la contaminació acústica és un problema agut que necessita d’actuacions directes, tot i que generalment el soroll s’assoca a fenòmens de fons que ocasionen molèsties i incomoditats, situacions que també s’han de corregir.

Ara bé, aquest soroll ambiental és la suma de moltes fons, la qual cosa dificulta l’objectiu de reduir el soroll i exigeix per aconseguir-ho, no només actuacions de les administracions públiques, sinó també un grau de compromís cívic individual molt important.

D’una manera simple es pot definir el soroll com un so no desitjat o molest, d’una manera més completa podem dir que és el conjunt de fenòmens vibratoris aeris, percebuts i integrats pel sistema auditiu, que en determinades circumstàncies pot originar molèsties o fins i tot lesions a l’oïda.

La relació entre soroll i molèstia ha donat lloc que diferents investigadors hagin intentat trobar-hi explicacions diverses que ens permeten entendre els comportaments i com es genera la molèstia respecte al soroll, tant en el pla individual com el col·lectiu.

En situacions en què el soroll de fons és molt baix, hi ha sorolls que són percebuts com a molestos tan sols pel fet que se senten. Altres sorolls són més tolerats si els nivells màxims són esporàdics i no gaire elevats, com és el cas del soroll de trànsit llunyà. També hi ha sorolls que a partir de certs nivells són percebuts com molestos encara que siguin de durada relativament curta, com ara sorolls aguts de motocicletes de petit cubicatge, el pas d’autobusos i camions pesats o de vehicles de recollida de deixalles.

El soroll pot generar interferències que pertorbin el desenvolupament normal de determinades accions com ara el repòs, la lectura, el lleure, etc., i que originin molèsties de grau diferent segons el lloc on es produeixin i la sensibilitat personal dels receptors.

Alguns investigadors remarquen els efectes del soroll sobre la salut. Consideren que les pertorbacions del soroll poden ser un pas cap a la malaltia.
La molèstia en seria un estadi intermedi i a la vegada un senyal d’alarma. El fet d’habituar-se al soroll no es produeix sense un cost a càrrec de l’organisme. Aquest cost és diferent segons cada persona.

Si bé l’exposat fins ara no explica tota la complexitat de la relació entre el soroll i la molèstia, permeten comprendre-la millor i valorar la importància d’emprendre accions per reduir aquest soroll.

1.1.- Antecedents

Donada la importància que va prenent la contaminació acústica, en els últims anys s’han portat a terme diversos estudis d’impacte acústic per avaluar de manera específica, el soroll produït per determinades infraestructures viàries com l’autopista AP-7 i el produït per diferents indústries. Per això s’han realitzat i es continuen realitzant convenis amb poblacions per tal de mesurar l’impacte acústic que sofreixen els veïns.

En el cas que ens ocupa, tractarem el terme municipal de Sarrià de Ter, estudiant tota la longitud de l’antiga N-II, actual Avinguda de França, en el seu pas pel municipi per determinar-ne l’impacte acústic. Cal remarcar que Sarrià de Ter, a part de patir l’Avinguda de França com a important font de soroll, es veu afectada per una remarcable activitat industrial també al pas de l’antiga Nacional-II, per el pas de l’autopista AP-7, pel tren i per una indústria d’extracció d’àrids.

1.2.- Objecte

El projecte de l’estudi d’impacte acústic de l’avinguda de França en el municipi de Sarrià de Ter, té com a principal objectiu mesurar i calcular els nivells de contaminació acústica actuals de l’antiga N-II al seu pas pel municipi, podent posteriorment avaluar l’impacte acústic segons la Llei 16/2002 de protecció contra la contaminació acústica i estudiar possibles accions per tal de minimitzar l’impacte acústic del vial al municipi.
1.3.- Especificacions i abast

El projecte d’estudi de soroll de la població de Sarrià de Ter, té com a objectiu final elaborar el mapa acústic d'impacte de la infraestructura en el seu pas pel terme municipal. El mapa inclourà la informació següent:

- Els nivells de soroll mesurats o calculats
- Els models de càlcul utilitzats
- Les dades d'entrada pel càlcul de soroll.
- L'affectació dels sectors influenciats pel soroll.
- Les zones de sensibilitat acústica atribuïdes.
- Els valors límits d'immissió i els valors límits d'atenció atribuïts a cada zona de sensibilitat acústica.

Amb aquestes dades, s'elaborarà un mapa de mesures acústiques, que seran les preses in situ per tal d'elaborar el mapa de soroll. Aquests mapes contindran la totalitat de Sarrià de Ter, però per tal d'aproximendir en el que ens ocupa, centrem la nostra atenció en l'antiga N-II. Per realitzar la modelització del flux de trànsit, serà necessari buscar dades com podran ser els IMD (Índex Mitjà Diari de vehicles), i dels fluxos de cotxes que en el moment de les mesures in situ, a peu de carretera, s'han comptabilitzat.

Per tal de poder modelitzar el vial de la Avinguda de França, s'han realitzat diverses mesures en un dia típic i representatiu per tal de mostrar les condicions habituals de la zona esmentada.
2.- SITUACIÓ ACÚSTICA DE L’AVINGUDA DE FRANÇA

El present estudi s’orienta a la quantificació de l’impacte acústic degut al trànsit de la Avinguda de França. Per a tal finalitat, l’estudi es basa en l’ús d’un programari de predicción acústica, per tal de determinar els nivells de soroll produïts per les principals fonts de soroll del municipi de Sarrià de Ter, i així mateix, com a comprovació de la fiabilitat de les modelitzacions, s’han realitzat mesures in situ dels receptors més afectats mitjançant un sonòmetre. Així aconseguim una fiabilitat molt més elevada que no pas si ho féssim només amb el model informàtic.

Les mesures realitzades in situ tenen com a finalitat acotar el possible error del model i afinar les dades d’entrada necessàries per la realització dels càlculs a efectuar. Aquest procediment rep el nom de mètode híbrid de treball.

2.1.- Mètode híbrid de treball

Per dur a terme aquest estudi s’ha desenvolupat una metodologia híbrida de treball, ja que combina un programari de predicció acústica amb mesures reals preses segons la legislació i les normatives vigents.

Cal doncs remarcar que els valors de nivells equivalents de sorolls calculats a partir del programari acústic no són els valors reals dels indrets estudiats, sinó que mostren la contribució de la font de soroll estudiada de la zona, al nivell acústic total. Així doncs, en els indrets més allunyats del vial estudiat, hi hauran discrepàncies entre els resultats del mapa de soroll i hipotètiques mesures reals preses in-situ. Òbviament aquestes discrepàncies augmentaran al allunyar-nos del vial i sobretot al trobar obstacles que apantallin els nivells de soroll objecte d’estudi.

El present estudi es centra en el soroll de trànsit de l’Avinguda de França, tal i com ja s’ha esmentat anteriorment, ara bé cal esmentar l’existència d’activitats industrials en aquesta mateixa zona les quals no s’han tingut en compte, i també podrien influir en els nivells de soroll, tot i que els seus efectes sobre la presa de mesures s’intentarà minimitzar.

Cal aclarir que la interferència de fonts no considerades en la mesura, serà més acusada com més lluny es trobi el punt de mesura respecte la font de soroll considerada. No per tenir una potència acústica relativament baixa, una font passa a tenir menys probabilitat
d’interferir, sinó que això depèn de la proximitat al punt de mesura i de la distància d’aquest a la font considerada. D’aquí deduïm la importància que té en acústica ambiental la proximitat de la font al punt de mesura.

2.2.- Principals punts de problemàtica acústica

En el present projecte s’han considerat els principals punts de problemàtica acústica com les fonts principals del municipi de Sarrià de Ter, amb l’objectiu d’identificar-les i controlar-les i avaluar-ne la influència que tenen en el seu entorn. Les fonts principals de problemàtica acústica són les següents:

- **Avinguda de França**: Aquesta transcorre per dins el nucli de Sarrià de Ter, dividint el municipi. És de cabdal importància en aquest projecte donat que és el nostre punt d’estudi i degut al seu elevat volum de trànsit.

- **Autopista AP-7**: Tot i no tenir cap casa habitada a les seves vores, l’alt flux de vehicles que transcorren per aquesta via fa que influeixi en els valors de soroll de les zones properes com poden ser el Pla de l’Horta i Sarrià de Dalt.

- **Indústries d’extracció d’àrids**: Tot i no estar situada a Sarrià, sinó a Girona, com que la separació que hi ha és tan sols el riu, i zona verda, el municipi de Sarrià es veu afectat pel soroll que en provoca l’activitat de la indústria que es dedica a triturar pedra. Així i tot, no s’ha inclòs en el model ja que no interfereix amb la presa de mesures de la font de soroll analitzada, sempre que aquestes es trobin relativament a prop del vial de la Avinguda de França, tal com s’ha realitzat.

- **Tren**: a l’igual que en el cas anterior, cal remarcar que el tren no passa per Sarrià però si que l’afecta pel que fa a l’acústica. Tampoc s’ha tingut en compte ja que aquest tampoc interfereix en les mesures preses prop de la Avinguda de França.
3.- METODOLOGIA DE TREBALL

A continuació descriurem els passos i les tasques que s'han portat a terme per arribar a conèixer els nivells de soroll mitjançant l'elaboració del mapa acústic d'impacte de l'avinguda de França en el seu pas pel terme municipal de Sarrià de Ter.

3.1.- Elaboració del model digital

La primera acció que s'ha dut a terme per tal de digitalitzar el municipi de Sarrià de Ter ha estat la recerca dels mapes que representaven la totalitat del terme municipal. En aquesta tasca ha estat necessària l'adquisició de mapes en format digital de ICC (Institut Català de Cartografia). Cal dir, que els plànols extrets del ICC han estat comprats pel departament de la Universitat de Girona, i s'ha autoritzat el seu ús i manipulació per realitzar els estudis de soroll del Departament d'Enginyeria Mecànica i de la Construcció Industrial.

Per a la realització del model no només és necessària la planta del mapa, sinó que per a la realització del model acústic és necessari un mapa en tres dimensions X, Y i Z, donat que també importarem el relleu. Això fa que la cartografia requerida no sigui només un mapa Raster (mapa sense entitats) sinó que és del tot indispensable un mapa topogràfic amb les entitats entrades. Això significa que cadascuna de les corbes de nivell no és sols una línia sinó que té entrada la seva pròpia alçada.

Per tal de localitzar la cartografia necessària de la base de dades de l'ICC, s'ha utilitzat el tall normalitzat 1:5000, de la zona 296 del tall 1:50.000, tal com es mostra a continuació.
Un cop escollida la zona necessària, en el nostre cas la 296-1-8 tal i com es pot veure marcat en el mapa, es va determinar que, dels múltiples mapes en què està dividida la zona, amb un sol n’hi havia suficient, ja que aquest englobava la totalitat del terme municipal al pas de l’avinguda de França, per tant doncs, les zones que quedaven fora no eren tema d’estudi.
Aquest mapa de la zona és una base topogràfica 1:5000 en 3D creat per l’Institut Cartogràfic de Catalunya (ICC), i respon a l’actualització del Mapa topogràfic de Catalunya v1.5 finalitzat l’any 1995. La principal font d’informació de l’actualització és la restitució fotogramètrica, en estacions fotogramètiques digitals, a partir de fotografies aèries de diverses escales.

El sistema de referència és el sistema oficial anomenat ED50 (European Datum 1950) com a reglamentari pel Decret 2303/1970 i constituït per El·lipsoide Internacional (Hayford 1924) i Datum Postdam (Torre de Helmert).

Les cotes estan referides a la superfície definida pel nivell mitjà del mar a Alacant.

Els vèrtexs geodèsics estan extrets de la base de vèrtexs de la ICC.

El sistema de representació plana és la projecció conforme Universal Transversa de Mercator (UTM), fus 31 (inclusa Catalunya) establerta com a reglamentària pel Decret 2303/1970.

L’equidistància entre les corbes de nivell és de 5 metres, amb corbes de nivell mestres etiquetades cada 25 metres. En zones extremadament planes les corbes de nivell són cada 2,5 metres.

En el cas que ens ocupa, la base topogràfica utilitzada té el codi 296-1-8 en coordenades relatives i 305-96 en coordenades absolutes segons el tall 1:5000 de l’institut català de cartografia.

Una vegada obtinguts els plànols, el següent pas ha estat la seva digitalització. Aquest és un procés pel qual s’identifiquen totes les entitats del plànol perquè a posteriori el simulador sigui capaç de reconèixer aquestes entitats per separat.

Per tal de poder realitzar un bon anàlisi de soroll després de la digitalització del terme municipal de Sarrià de Ter, s’ha seguit un procés de tractament de la informació cartogràfica que ha estat el següent:

- Muntatge inicial dels diferents talls de cartografia respectant en tot moment la georeferenciació de la mateixa.
• Identificació per capes
 Separació i realització de les capes necessàries per a la correcta digitalització i posterior importació al programari de modelització i simulació CADNA. Les diferents capes es detallen a continuació:

 i. Corbes de nivell
 ii. Edificis
 iii. Eixos de carreteres

 Aquesta diferenciació en capes facilita l’elaboració del model de forma que el programari de simulació CADNA té la capacitat de diferenciar cadascuna de les capes amb les característiques que prèviament han estat introduïdes.

• Digitalització d’elements complementaris
 Algunes entitats que no estaven incloses en la cartografia, o que es trobaven no actualitzades, s’han digitalitzat manualment.
 Aquesta digitalització s’ha realitzat sempre utilitzant polilínies com a element definitori de les entitats.
 Per a la digitalització dels edificis les polilínies han estat sempre tancades, en cas contrari, el programari CADNA no els reconeix com a tals.
 Els eixos de les carreteres s’han introduït com a polilínies obertes.

3.2.– Selecció dels punts de mesura

Després d’una primera avaluació del territori i preveient els punts més conflictius en acústica ambiental que presenta la zona, s’ha passat a fer la planificació de la campanya de mesures. Bàsicament s’ha definit un conjunt de mesures al llarg de l’avinguda de França al seu pas per Sarrià de Ter. Aquestes mesures, s’han centrat en punts propers a la font analitzada, és a dir, els punts analitzats són bàsicament a peu de carretera, com marca la normativa a 1,5m de la façana. Es van prendre algunes mesures de segona línia per tal de determinar l’abast del soroll provocat pel trànsit de l’antiga Nacional-II.
Al treballar segons un mètode híbrid que combina la presa de mesures in-situ amb la modelització, la selecció exacte dels punts de mesura perd importància, ja que aquests només s'utilitzen en la verificació del model.

Per a poder fer un bon estudi de l'impacte acústic s'han de seleccionar els punts de mesura per tal de poder tenir una mesura fiable i representativa de la realitat acústica de cada punt on realitzarem el treball de camp, tal com s'ha comentat la ubicació exacte no és important, però si s'hauran de tenir en compte una sèrie de condicionants:

- **Trànsit en diferents trams de l'avinguda**: Aquest condicionant implica tenir en compte els encreuaments de carrers, els carrils laterals i les glorietes. Permet tenir mesures abans i després de punts crítics, per veure si hi ha percentatges significatius de trànsit que es desvien del vial analitzat.

- **Quantitat de mesures**: S'han de posar els punts de mesura que un cregui necessari per a l'estudi i per a la precisió que es vulgui aconseguir.

- **Característiques del punt de mesura**: S'han d'escollir punts on al darrera de la posició del sonòmetre tinguem o una paret el més regular possible o simplement no hi tinguem cap element. En tot cas, sempre es recomana seguir els preceptes de la llei 16/2002 de protecció contra la contaminació acústica, ja que així les mesures prenen un valor afegit, pel que respecta a l'avaluació de la llei. Tanmateix, en la verificació del model, les mesures no cal que segueixin la llei, tan sols que estiguin fidelment representades. Geometries més senzilles, seran més fàcilment representables en el model.

Aquest condicionant és degut a que a l'hora d'entrar les dades al programa CADNA, com veurem posteriorment, aquest no té en compte els elements que modifiquen les parets ja siguin balcons, finestres, entrades,...

- **Fonts de soroll**: En aquest estudi s'ha d'analitzar el soroll que genera el trànsit rodat, intentant evitar, en la mesura que sigui possible, les altres fonts de soroll per tal d'aconseguir unes mesures netes.
• Selecció de les hores de mesures: Els fluxos horaris de vehicles, tant en vials urbans com interurbans depenen del temps en què s’estudii. Bàsicament es poden diferenciar 3 períodes diferents, el diürn, el nocturn i les hores punta.

La distribució d’aquests períodes depèn estrictament de l’indret a estudiar, però en general es pot acceptar que les ciutats tenen un comportament comú, que fixa aquests períodes en unes hores més o menys determinades, que coincideixen amb els horaris laborals, d’escoles,

És per tant important conèixer quan es realitzen les diferents mesures, per poder interpretar-les i avaluar-les correctament.

Una manera de poder veure quan realitzar les mesures de soroll és mitjançant una mesura de 24 hores on es pugui veure la tendència que segueix el trànsit o emprant distribucions ja estudiades.

En aquest estudí s’han seguit els condicionants anteriors de la següent manera:

• S’ha dividit l’avinguda en 3 trams. Cada tram està delimitat per un encreuament. D’aquesta manera s’assegura que els fluxos horaris són sempre els mateixos en cadascun dels trams determinats. Per tant la situació de les mesures, dins de cada tram no es veurà modificada per diferències de fluxos de trànsit, que per tant es podran avaluar lliurament, sense necessitat d’anàlisis més complexes.

• Depenent de la llargada de cada tram s’ha optat per posar més o menys mesures, en el cas que el tram sigui llarg es posaran més mesures i en cas contrari se’n posaran menys, de manera que quedin ben repartides, en funció del nombre i tamany dels edificis afectats.

En el nostre cas s’ha optat per posar com a mínim tres punts de mesura per cada tram.

Tenint en compte els factors anteriors, la distribució dels tres trams i de les mesures sobre el plànol de l’A-II (antiga N-II) es poden veure en les Figures següents:
Figura 3. – Tram 1 amb els seus punts de mesura.

Figura 4. – Tram 2 amb els seus punts de mesura.
pel fet de ser una zona bastant poblada i conseqüentment amb forces edificis s’ha optat per fer la majoria de les mesures amb una paret al darrera del sonòmetre, ja sigui en edificis com murs. D’aquesta manera es respecten també els preceptes de la llei 16/2002 en la mesura de trànsit a façana dels edificis, tot i que, pel que fa a la modelització del soroll, en principi no s’està subjecte a cap normativa.

S’han situat els punts de mesura de manera que no hi hagi cap font de soroll externa al soroll que provoca el pas del trànsit pel vial, ja que aquest fet pot distorsionar la mesura real.

Per a la selecció de les hores de mesura s’ha utilitzat un gràfic tipus de l’evolució temporal diaria del cabal de trànsit, en aquest cas avaluat en els carrers més transitats de la ciutat de Girona.
Per tal de diferenciar els tres períodes típics de qualsevol vial (periode diürn, nocturn i d'hora punta) s'ha pres la distribució típica de la Figura 6.

Figura 6. Gràfica de flux de trànsit en la mesura de 24 hores a Girona

Tal i com es pot observar en aquesta gràfica de fluxos de trànsit de la Figura 6 existeixen els tres períodes esmentats anteriorment.

Es pot observar com des de les 7:00 hores del matí la tendència és un augment de flux de trànsit fins a les 8:00 hores del matí, a partir d'aquesta hora i fins les 9:00 hores es pot considerar un període d'hora punta, ja que el trànsit és màxim. A partir d'aquí la tendència és a disminuir a partir de les 9:00 hores mantenint-se fins les 12:30 hores, aquest període es considera un període d'horari normal. Igualment que en el cas del matí, llavors des de 12:30 hores fins 13:30 hores hi torna haver una augment de trànsit considerant-se hora punta, i una posterior disminució entre 13:30 fins 16:30 hores.

En el cas de la tarda també es pot dir que es manté aquesta tendència però amb les diferències de que a les 17:00 hores hi ha un lleuger augment de trànsit sense poder-se considerar hora punta (aquest comportament no és comú a tots els carrers i es veu influenciat per l'existència o no d'escoles o equipaments similars), i que el que es pot
considerar com hora punta no queda definit tant clarament com un pic en la gràfica, sinó que l'interval d'hora punta és més llarg, aquest es pot considerar que comença a iniciar-se des de les 18:00 hores, arribant al màxim a les 18:30 i allargant-se fins les 20:00 aproximadament. A partir de les 20:00 hores el trànsit disminueix quedant palès el període d'horari nocturn.

Tot i l'existència dels tres períodes horaris típics d'un vial, el comportament acústic, a grans trets, de les diferents ciutats i carrers sol ser bastant més constant del que hom pot pensar, no obstant, que l'existència d'alguns tipus d'equipaments com escoles o centres comercials poden modificar-los sensiblement.

Si s'observa la gràfica de la Figura 7 que correspon a la mesura realitzada de 24 hores a la ciutat de Girona es pot veure com realment el nivell de soroll no varia entre les hores punta i les hores normal:

![Gràfica de soroll de la mesura de 24 h del c/ Jaume I de Girona.](image)

Figura 7. – Gràfica de soroll de la mesura de 24 h del c/ Jaume I de Girona.

Així i tot, les mesures acústiques realitzades en el present projecte es concentrren a la tarda i es consideraran en períodes d'hora punta i hora “normal”, tal com els descrits a partir de la figura 6.
3.3.- Tipus de mesures

Donades les característiques de la zona, on predomina clarament el soroll produït pel trànsit de l’avinguda de França, respecte el de l’AP-7 o el de les indústries, la tipologia de mesures efectuades han estat mesures d’immissió, tal com es descriuen a la llei 16/2002. La finalitat d’aquesta tipologia de mesures és calcular el nivell sonor existent en un punt durant un període de temps determinat. Típicament en el present projecte les mesures han estat d’un mínim de 10 minuts i els paràmetres que s’han calculat mitjançant el sonòmetre han estat el nivell sonor equivalent en escala de ponderació A i nivells estadístics L10 i L90 entre d’altres. Aquestes mesures són les més típiques en mesura de soroll de trànsit.

Aquest tipus de mesura està dissenyada per avaluar el nivell de soroll total que arriba a un receptor, sigui quines siguin les fonts de soroll que l’afecten. Aquestes són les mesures en què es basa la llei 16/2002.

3.4.- Presa de mesures in situ

3.4.1.- Criteris de mesura i metodologia emprada

Les mesures in situ són molt importants dins de l'estructura del mètode híbrid de treball degut a que serveixen de suport per a la validació del model proposat per a cada àrea d’estudi. S’han realitzat una desena de mesures repartides al llarg de l’avinguda de França al pas pel municipi amb una durada mínima de 10 minuts com a norma general i avaluant-les amb la corba de ponderació A.

Tot i haver fet una prèvia selecció dels punts de mesura, en més d’un cas aquest s’ha hagut de redefinir quan s’ha anat a fer el treball de camp. Això es deu a l’existència d’elements que dificulten o impossibiliten la mesura o la fan poc representativa. Aquests elements poden ser empreses o indústries molt sorolloses properes al punt de mesura, gossos que borden o fins i tot semàfors que podrien fer que el trànsit passés de ser considerat continu a intermitent.

Davant d’aquesta impossibilitat de realitzar la mesura en el punt inicial desitjat, amb un criteri analític, s’ha optat per la realització de la mesura en algun punt proper que representés, en un cert grau, la mesura inicial desitjada.

Per tal d’aconseguir unes mesures homogènies, s’han seguit uns criteris per portar-les a terme:
Les mesures han estat d'un mínim de 10 minuts.
S'ha aplicat l'escala de ponderació tipus A perquè és la recomanada per la llei 16/2002, així com per normatives internacionals com les ISO 1996 i d'altres.
Les mesures s'han realitzat amb la col·locació del sonòmetre en un trípode com el que s'empra en fotografia, d'aquesta manera l'observador no influeix sobre el sonòmetre.
Els paràmetres analítics mesurats en cada una de les mesures, com a mínim han estat \(L_{eq,T}\), \(L_{10}\) i \(L_{90}\). Els percentils 10 i 90 ens donen una idea de la variabilitat de la mesura i complementen la informació del nivell equivalent.
Sempre que ha estat possible les mesures s'han pres entre 1 i 2 metres de la façana més exposada del receptor. L'alçada del sonòmetre ha estat sempre de 1,5 metres tal com especifica la llei 16/2002. En aquestes circumstàncies, La llei determina que als valors obtinguts se'ls pot aplicar la correcció de sostreure entre 3 i 5 dBA, a causa de les reflexions provocades pels edificis. Aquesta correcció es tindrà en compte a l'hora d'avaluar els nivells de soroll, però no en el procés de verificació del model, ja que aquest incorpora efectes de reflexió en el seu algoritme.
Les mesures s'han realitzat sempre mirant que les condicions meteorològiques fossin les representatives de l'indret, i sempre, tal com diu la llei 16/2002, en dies laborables de dilluns a dissabte i mai dies festius o vigílies de festius.
S'han evitat les mesures en dies ventosos, plujosos o quan el ferm dels vials a estudiar estigués mullat.
No s'han dut a terme mesures si la presència de vent era superior a uns 4 m/s, evitant d'aquesta manera distorsions en la presa de mesures.

En ambients molt humits, poden condensar sobre el diafragma del micròfon, petites gotes d'aigua que, per la seva massa, modificarien la resposta. En general, fins a un 90% d'umitat relativa no cal prendre precaucions especials ja que la precisió dels sonòmetres es veu modificada en menys de 0,5 dB. Així doncs, no s'han realitzat o s'han anul·lat totes aquelles mesures en què es preveia una umitat superior al 90%.

Podem dir doncs, que la localització dels punts de mesura, així com les condicions de mesura i la comprovació de l'equip, s'ajusten a la llei 16/2002.

De cada mesura realitzada amb el sonòmetre s'han anotat possibles característiques determinants i influenciables a la mesura realitzada, ja siguin de característiques físiques
pròpies del punt en qüestió, com d'elements a tenir en compte com el pas d'una ambulància, o l’existència d’un carril lateral el soroll del qual ens afecta més que pas el del vial a analitzar. També s’han pres les mesures de distància més rellevants per tal d’adequar el model a la realitat. Aquestes són la distància a l’inici del vial, la distància a l’eix, i la distància a la façana de l’altre costat.

Per cada mesura de soroll s'ha realitzat un informe tipus per tal de plasmar i enregistrar les dades i, d’aquesta manera, obtenir informació que pot ser de gran ajuda en el moment de tractar i avaluar les dades. Tota aquesta informació es troba en forma de fitxes individuals al annex B (annex de mesures). A continuació es mostra una captura de l'estructura d'una fitxa tipus:

<table>
<thead>
<tr>
<th>Codi Mesura</th>
<th>Carrer / Situació</th>
<th>Tram</th>
<th>Amplada aprox.</th>
<th>Dia</th>
<th>Hora inici</th>
<th>Duració mesura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesura</td>
<td>Comptatge Vehicles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{eq}</td>
<td>Duració</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{10}</td>
<td>V. Lleugers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{90}</td>
<td>V. Pesats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Tipus trànsit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observacions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula 1. – Fitxa de mesura
Cal destacar:

- **Equips de mesurament**
 A l'inici de cada sèrie de mesures, s'ha procedit a la calibració del sonòmetre mitjançant el calibrador (ref. CESVA CB-5) per tal d'assegurar l'obtenció dels nivells de soroll correctes.

- **Dades addicionals de la mesura**
 Per a cada mesura s'han especificat:
 - Data en què es realitza la mesura
 - Hora d'inici de la mesura
 - Localització
 - Dades de trànsit, detallant el trànsit total de vehicles, el total de lleugers, i el total de pesats.

3.4.2.- Mesures de curta durada

Es considera mesura de curta durada aquella la duració de la qual és inferior a 30 minuts. Aquestes mesures permeten fer extensius els nivells de soroll mesurats durant un temps curt a períodes de temps molt superiors i obtenir resultats representatius de soroll global similars als que s'obtindrien amb mesures de durada llarga.

3.4.3.- Mesures diürnes

Segons la llei 16/2002, els nivells d'avaluació de la immissió sonora a l'ambient exterior produïda pels mitjans de transport durant l'horari diürn, correspon al període comprès entre les 7h i les 23h. Tanmateix, els nivells d'avaluació de la immissió sonora a l'ambient exterior produïda per les activitats i el veïnat durant l'horari diürn, correspon al període comprès entre les 8h i les 21h.

Per donar uniformitat i coherència a les mesures, en el present projecte les mesures diürnes s'han realitzat principalment durant el període comprès entre les 5 i les 20h.

Tal i com ja s'ha començat anteriorment no només s'han anotat les dades de soroll de les mesures, sinó que també s'han anotat altres dades com el flux de trànsit. Aquest ens ha estat útil per:
• aproximar el nombre de vehicles que hi passaven. Hem agafat les dades relatives a 10 minuts i els hem extrapolat a IMD per tal d’alimentar el nostre model en el CADNA.

• ens ha permès contrastar els valors suposats com a dades de partida amb els que hem pogut calcular a partir del comptatge in situ.

Totes les mesures realitzades ens han permès elaborar el mapa d’impacte acústic de l’avinguda de França (A-2) en el seu pas per la població. En les zones properes a la carretera A-2 es compararan aquests valors mesurats amb els valors que s’han obtingut a través del model de simulació, d’aquesta manera es verifica la bondat del model realitzat a partir de les dades extrapolades de mobilitat.

3.4.4.- Mesures realitzades

En la següent taula es pot observar el valor de les mesures realitzades:

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Tram</th>
<th>Dia</th>
<th>Hora inici</th>
<th>Duració mesura</th>
<th>L_{Aeq}</th>
<th>L_{10}</th>
<th>L_{90}</th>
<th>NPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7/03/06</td>
<td>17:45</td>
<td>10'11''</td>
<td>72,3</td>
<td>75,7</td>
<td>70,4</td>
<td>77,6</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>14/03/06</td>
<td>17:30</td>
<td>10'04''</td>
<td>70,8</td>
<td>73,5</td>
<td>61,9</td>
<td>82,4</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>14/03/06</td>
<td>18:05</td>
<td>10'32''</td>
<td>68,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>14/03/06</td>
<td>18:45</td>
<td>10'04''</td>
<td>69</td>
<td>71,6</td>
<td>63,1</td>
<td>77,5</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>14/03/06</td>
<td>19:10</td>
<td>10'27''</td>
<td>71,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>14/03/06</td>
<td>19:40</td>
<td>6''</td>
<td>56,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>21/03/06</td>
<td>17:30</td>
<td>12'58''</td>
<td>73,3</td>
<td>75,5</td>
<td>68,9</td>
<td>79,9</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>21/03/06</td>
<td>18:00</td>
<td>10'23''</td>
<td>71,8</td>
<td>74,6</td>
<td>64,7</td>
<td>81,7</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>21/03/06</td>
<td>18:45</td>
<td>10'09''</td>
<td>77,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>21/03/06</td>
<td>19:20</td>
<td>10'04''</td>
<td>62,8</td>
<td>65,5</td>
<td>57,9</td>
<td>70,4</td>
</tr>
</tbody>
</table>

Taula 2.- Mesures experimentals

A part dels valors obtinguts en la mesura, que són L_{Aeq}, L_{10} i L_{90}, fent un càlcul ràpid podem obtenir l’índex NPL. Aquest índex NPL (Noise Pollution Level), no és exactament una mesura de soroll, sinó que és un intent de valorar el nivell de molèstia generat pel soroll. Per fer-ho, aquest mètode combina el soroll que hi ha a l’ambient amb la variabilitat d’un soroll, conegut com a clima de soroll (un soroll és més molest quan més variacions presenta).
4.- ANÀLISI DE MOBILITAT DE L’AVINGUDA DE FRANÇA

Per tal de dur a terme l’anàlisi de mobilitat de l’antiga Nacional-II en el seu pas pel municipi de Sarrià de Ter, s’ha utilitzat el paràmetre que permet quantificar el flux de trànsit, el IMD (Intensitat Mitja Diària). Aquesta dada l’hem trobat recollida en una memòria descriptiva d’accessibilitat i mobilitat urbana de l’ajuntament de Girona on consta que al 2002 l’IMD era de 38.586 incloent els dos sentits (Sarrià–Girona i Girona–Sarrià). Per tant després de nosaltres efectuar els càlculs pertinents per arribar a aquesta dada teòrica partint de les mesures de 10 minuts realitzades, arribem a un IMD de 35.187 per a l’últim tram que seria el corresponent a la dada trobada a la memòria abans esmentada.

Tot i que la dada no és de l’any 2006, s’ha pres com a referència per comparar amb els resultats de les propies dades de mobilitat obtingudes en les mesures del present projecte. Així doncs, el fet de no disposar de la dada oficial del 2006 no suposa cap problema greu ja que es disposen de mesures de mobilitat propies. Paral·lelament, pel que fa a mesures de mobilitat, la precisió d’aquestes no és vital pel projecte, ja que l’objecte d’estudi és l’impacte acústic, no els fluxes de trànsit i perquè hi hagués un augment de 3dB en el nivell equivalent, haurien de passar el doble de vehicles i per tal que hi hagués una disminució de 3 dB, haurien de passar la meitat dels mateixos. Aquest fet dona un “marge de maniobra” important a l’hora de extrapol·lar un flux mig de trànsit representatiu de l’indret objecte d’estudi.

Per tal d’adaptar aquest paràmetre al manual de bones pràctiques, en el qual es divideix el dia en un període diürn i un de nocturn, s’ha transformat la dada de l’IMD en flux horari mig diürn i flux horari mig nocturn.

Per saber el flux de vehicles que es dóna en mitjana de trànsit en horari diürn, que engloba entre les 7 hores i les 23 hores, s’ha utilitzat l’equació:

\[Nd = \frac{IMD}{17} \]

(Eq. 1)

Per saber el flux de vehicles que es dóna en mitjana de trànsit en horari nocturn, és a dir, entre les 23 hores i les 7 hores, s’ha utilitzat l’equació:

\[Nn = IMD \times 0,009 \]

(Eq. 2)
L'avinguda de França en el seu pas pel municipi de Sarrià de Ter, presenta una entrada - sortida de flux de vehicles, amb tres trams ben diferenciat, separats per glorietes i amb IMDs també significativament diferenciat, ja que hem de tenir en compte que no tots els vehicles passen per tot el llarg de l'avinguda de França al seu pas per Sarrià, n'hi ha que tan sols fan un tram, ja sigui l'inicial o el final, n'hi ha que tan sols en fan dos, i després hi ha els vehicles que si que recorren tota l'avinguda de França al llarg de Sarrià. Això es deu al fet que al llarg de l'antiga N-II, hi ha indústries que poden fer que hi hagi camions i automòbils que circulien tan sols per algun dels trams, hi ha també obres just entre el 2on i el 3er tram i recordar que tots els trams estan units per glorietes cosa que fa que hi hagi trànsit que pugui sortir-se del vial. S'ha de tenir en compte que s'ha considerat 50 Km/h com a velocitat dels vehicles al llarg de la via donat que és la velocitat màxima permesa, i que s'ha deteminat el tipus de trànsit com a fluïd.

Tal i com ja s'ha comentat abans, per dur a terme aquest estudi s'ha desenvolupat una metodologia híbara de treball, ja que combina un programari de predicció acústica amb mesures reals preses segons la legislació i les normatives vigents. A continuació podem veure el valor de les mesures preses, a partir de les quals s'ha calculat l'IMD.

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Tram</th>
<th>dia</th>
<th>Hora inici</th>
<th>Temps mesura (sg)</th>
<th>Vehicles lleugers</th>
<th>Vehicles pesats</th>
<th>%P</th>
<th>Thv</th>
<th>IMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7/03/06</td>
<td>17:45</td>
<td>611</td>
<td>302</td>
<td>26</td>
<td>7.9</td>
<td>1933</td>
<td>32854</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>14/03/06</td>
<td>17:30</td>
<td>604</td>
<td>339</td>
<td>26</td>
<td>7.1</td>
<td>2175</td>
<td>36983</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>14/03/06</td>
<td>18:05</td>
<td>632</td>
<td>341</td>
<td>17</td>
<td>4.7</td>
<td>2039</td>
<td>20392</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>14/03/06</td>
<td>18:45</td>
<td>604</td>
<td>385</td>
<td>9</td>
<td>2.3</td>
<td>2348</td>
<td>23483</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>14/03/06</td>
<td>19:10</td>
<td>627</td>
<td>393</td>
<td>13</td>
<td>3.2</td>
<td>2331</td>
<td>23311</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>14/03/06</td>
<td>19:40</td>
<td>360</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>21/03/06</td>
<td>17:30</td>
<td>778</td>
<td>538</td>
<td>32</td>
<td>5.6</td>
<td>2638</td>
<td>44838</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>21/03/06</td>
<td>18:00</td>
<td>623</td>
<td>503</td>
<td>21</td>
<td>4.0</td>
<td>3028</td>
<td>30279</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>21/03/06</td>
<td>18:45</td>
<td>609</td>
<td>491</td>
<td>24</td>
<td>4.7</td>
<td>3044</td>
<td>30443</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>21/03/06</td>
<td>19:20</td>
<td>604</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula 3. – Trànsit de l’avinguda de França
4.1.- Interpretació dels resultats experimentals

Observant els resultats obtinguts podem arribar a treure’n vàries conclusions:

- si mirem els resultats de nivell acústic podem veure que es tracta d’un nivell de soroll força elevat per les característiques d’aquest vial. Nivells de soroll superiors a 70 dBA es poden considerar uns sorolls elevats i a tenir en compte.

- observant els valors de IMD es pot veure clarament l’existència dels 3 trams preestablerts. Tal i com s’esperava, hi ha diferències significatives en el trànsit per a cada un dels trams, per tant es pot afirmar, tal i com ja s’esperava que els laterals (punt de mesura nº 7) i les glorietes especialment impliquen en el nostre cas una variació del trànsit al llarg de l’avinguda de França.

- si ens fixem en els valors de L_{Aeq}, veiem que no depenen tant de l’hora de la mesura (hora punta o hora normal), com del tram on ens trobem, fet que mostra que per aquest vial en concret, el nivell de soroll es manté més o menys constant durant tot el dia.

- en resum arribem a la conclusió que en el cas que ens ocupa, és indiferent, si es fan les mesures en un tipus d’hora o en un altre, és a dir, abans o després de les 18:00 hores, ja que un cop tractades les dades no es solen tenir variacions significatives en els paràmetres mesurats i calculats. Podem complementar aquesta afirmació si observem el NPL. Tal com hem dit abans aquest valor és indicatiu del nivell de molèstia generat pel soroll, i s’esperaria que fos més alt en hores normals en què hi ha un trànsit més irregular que provoca més variacions. Però si observem els valors que pren el NPL sorprenentment a diferència de l’esperat no pren valors més elevats en hores normals que en hores punta. Això es deu al fet que en el cas que ens ocupa, com ja s’ha dit anteriorment el trànsit del vial no depèn de si és o no hora punta.
5.- MODELITZACIÓ DEL SOROLL DE TRÀNSIT

Per tal de modelitzar l’autovia de França, hem fet ús en el present projecte del programari CADNA, programa que ens permet disposar de valors molt més significatius dels nivells de pressió sonora que es propaguen a les zones properes a l’avinguda de França.

Existeixen molts factors que tenen una influència directa sobre la manera de propagar-se les ones en el medi. Cal dir però, que el programari de simulació CADNA els té en compte. Alguns d’ells són els citats a continuació:

- Reflexions i difraccions deegudes a obstacles, edificis, orografia del terreny, pantalles, etc.
- Absorccions en funció de la tipologia de terreny, del material de les façanes i altres elements.
- Temperatura
- Humitat

El programari informàtic CADNA v3.4.109, permet realitzar previsions dels nivells de pressió sonora en un entorn determinat, i extreure els resultats en format de mapes de soroll detallats. Per fer-ho, disposa d’una sèrie d’eines que permeten introduir, d’una manera aproximada, els elements constructius d’un entorn real, per tal de determinar-ne la geografia. Un cop s’han entrat tots els elements, el programa calcula, mitjançant la discretització de l’espai, els nivells de soroll que arriben a cada cel·la. La mida de la cel·la va determinada per l’usuari.

El programa ens permet veure d’una manera molt ajustada l’impacte acústic en ambients exteriors, després d’haver-li definit un relleu del terreny, edificacions existents, alçada d’aquestes, presència d’elements tipus pantalla o terraplè, i fonts acústiques procedents d’activitats o xarxes de transport. En el darrer cas, el de les fonts de soroll, el CADNA permet simular des dels efectes produïts per una carretera, fins a un tren o bé activitats industrials. En el nostre cas però, donat l’abast de l’estudi sols farem la simulació dels efectes produïts per la carretera.
5.1.- Passos seguits per crear el model

Per dur a terme la modelització amb el programa simulador CADNA s'ha necessitat una digitalització prèvia (veure 3.1). En aquest procés de digitalització s’han tingut en compte diferents entitats del programa:

- Per tal que el programa de modelització reconegui l’orografia del terreny s’han hagut de digitalitzar les corbes de nivell. Així el programa ha pogut situar a l’espai els elements propis del territori estudiat (edificis, carreteres, terraplens, etc). El mateix programari ha interpolat entre dues corbes de nivell per tal de trobar els punts intermitjos.

- Per inserir les cases i edificis, s’ha dibuixat la seva geometria i s’ha determinat el nombre de plantes que conté la construcció, d’aquesta manera es pot aproximar l’alçada de l’edifici en qüestió (per defecte es posen dues plantes de 2,5 metres cadascuna).

- A continuació s’ha introduït l’eix del vial. El primer pas ha estat grafiar el traçat, i seguidament s’ha definit la potència acústica de la font, entrant el nombre de vehicles hora. Per tal que la carretera es trobés a l’alçada del terreny s’ha utilitzat l’ordre “Fit object to DTM” que el que fa és situar-te l’eix del vial a l’alçada del terreny. Això s’ha pogut fer donat que en aquesta via no hi ha cap túnel o terraplenat.

En la següent figura es pot observar una imatge en 3 dimensions del municipi de Sarrià. Aquesta vista d’ocell ens dóna una idea de la situació del traçat de la carretera i del nombre d’edificis que se’n veuen afectats a més de l’orografia del terreny.
5.2.- Dades de partida del flux de trànsit

Per poder realitzar la modelització dels fluxos de trànsit, el programa pot fer ús de diferents variables com a valors de partida, però les més importants són els fluxos de vehicles.

Les dades que s’han emprat per dur a terme la modelització han estat els valors de IMD (Intensitat Mitja Diària de vehicles) i els fluxos de vehicles en horari diür i horari nocturn. Tota aquesta informació ha estat tractada extensament al capítol 4.

A continuació es mostra en format resum les dades que s’han utilitzat per modelitzar el vial de l’avinguda de França.

<table>
<thead>
<tr>
<th>A-II</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IMD</td>
<td>v. pesants (%)</td>
<td>Nd</td>
<td>Nn</td>
</tr>
<tr>
<td>Tram 1</td>
<td>34919</td>
<td>7,5</td>
<td>2054</td>
<td>314</td>
</tr>
<tr>
<td>Tram 2</td>
<td>22396</td>
<td>3,4</td>
<td>1317</td>
<td>202</td>
</tr>
<tr>
<td>Tram 3</td>
<td>35187</td>
<td>4,8</td>
<td>2070</td>
<td>317</td>
</tr>
</tbody>
</table>

Taula 4. – Dades de l’avinguda de França
5.3.- Paràmetres característics del vial

A continuació es detallaran els paràmetres que s’han especificat al programa de simulació CADNA, a part dels IMD citats anteriorment, per tal de modelitzar el vial que ens ocupa. Els paràmetres en qüestió són: velocitat de la via, tipus de superfície i tipus de flux de tràfic.

Val a dir que, un manual de bones pràctiques editat per un grup de treball de la Unió Europea específica que, en el cas de que no es disposi de la velocitat mitja a la qual circulen els vehicles en la via que es vol modelitzar, s’ha de considerar la velocitat màxima de la via en cada tram basant-se en les senyals verticals de velocitat situades en la via.

Així doncs en el cas de l’antiga N-II s’han considerat tres trams en els quals, la velocitat típica de la via s’ha fixat en 50 Km/h, el tipus de superfície s’ha pres segons els resultats acústics del propi model i el tipus de flux de tràfic s’ha determinat com “fluid continu” degut a que no hi ha encreuament de vies sense prioritat, i en el cas que aquestes es trobin presents, aquest encreuament es fa mitjançant una rotonda.
5.4.- Potències acústiques de les vies

Un cop entrades totes aquestes dades al model, el que fa és calcular les potències acústiques de les fonts de soroll. En el cas que ens ocupa la nostra font de soroll serà tractada pel programa com a font lineal ja que es tracta d’una carretera. A la següent figura es poden veure detallades les potències de cada un dels trams en els que hem dividit l’antiga Nacional-II al pas pel municipi de Sarrià de Ter.

Taula 5.- Resum de la potència acústica de les vies
6. VERIFICACIO I CÀLCUL DEL MODEL

6.1. Verificació de les mesures de L_{Aeq}

Aquest apartat tracta de confrontar els valors mesurats a partir del model i els valors mesurats in situ amb el sonòmetre, amb l’objectiu de verificar els resultats obtinguts. La llei 16/2002 no fa referència a la qualitat o marges d’error de les mesures. Així doncs, per donar coherència al projecte, tots els resultats mostrats en el present projecte s’han fet en base a uns estàndards de qualitat que proposa el grup GREFEMA de la Universitat de Girona. Aquests estàndards de qualitat consisteixen en:

- Una diferència de dos decibels o menys entre els valors obtinguts amb el model i les mesures realitzades in situ, es considera com un perfecte reflex del model en front de la realitat.
- Una diferència entre dos i tres decibels es considera un comportament del model en front de la realitat totalment acceptable. Aquest punt vol contemplar el comportament aleatori que mostren, en molts de casos, les fonts de soroll.
- Una diferència de més de tres decibels no és acceptable i s’ha de tornar a estudiar la zona afectada. Aquest fet és significatiu de que alguna hipòtesis no s’està complint o que hi ha alguna font de soroll que no s’ha considerat.

La verificació consta en veure que el valor que dóna el receptor en el model és similar al valor obtingut experimentalment.

Aquesta verificació es fa punt a punt, és a dir, cada receptor (punt de mesura) l’analitzarem independentment de la resta, i els valors de trànsit seran els obtinguts experimentalment per a cada un. La dada que hem d’introduir al model per a cada punt de mesura és el nombre de vehicles per hora Thv (suma del total de vehicles dividit per la durada de la mesura i multiplicat per 3600) i el tant per cent de vehicles pesats comptabilitzats, %P (vehicles pesats dividit pel total de vehicles). En la següent taula veiem els valors que prenen aquestes dades:
A continuació es mostren els resultats obtinguts de les mesures fetes in situ contrastades amb les calculades pel model CADNA.

Taula 6. - Dades per al càlcul teòric de L_{Aeq}

<table>
<thead>
<tr>
<th>MESURA</th>
<th>Tram</th>
<th>Lleugers</th>
<th>Pesats</th>
<th>%P</th>
<th>Thv</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>302</td>
<td>26</td>
<td>7,9</td>
<td>1933</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>339</td>
<td>26</td>
<td>7,1</td>
<td>2175</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>341</td>
<td>17</td>
<td>4,7</td>
<td>2039</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>385</td>
<td>9</td>
<td>2,3</td>
<td>2348</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>393</td>
<td>13</td>
<td>3,2</td>
<td>2331</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>538</td>
<td>32</td>
<td>5,6</td>
<td>2638</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>503</td>
<td>21</td>
<td>4,0</td>
<td>3028</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>491</td>
<td>24</td>
<td>4,7</td>
<td>3044</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Taula 7. – Verificació de les dades mesurades i del model

<table>
<thead>
<tr>
<th>MESURA</th>
<th>L_{Aeq} MESURAT(dBA)</th>
<th>L_{Aeq} CALCULAT(dBA)</th>
<th>DIFERÈNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72,3</td>
<td>70,9</td>
<td>1,4</td>
</tr>
<tr>
<td>2</td>
<td>70,8</td>
<td>71,7</td>
<td>-0,9</td>
</tr>
<tr>
<td>3</td>
<td>68,4</td>
<td>68,9</td>
<td>-0,5</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>70</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>71,7</td>
<td>71,2</td>
<td>0,5</td>
</tr>
<tr>
<td>6</td>
<td>56,7</td>
<td>58</td>
<td>-1,3</td>
</tr>
<tr>
<td>7</td>
<td>73,3</td>
<td>71,2</td>
<td>2,1</td>
</tr>
<tr>
<td>8</td>
<td>71,8</td>
<td>70,2</td>
<td>1,6</td>
</tr>
<tr>
<td>9</td>
<td>77,3</td>
<td>75,2</td>
<td>2,1</td>
</tr>
<tr>
<td>10</td>
<td>62,8</td>
<td>64,1</td>
<td>-1,3</td>
</tr>
</tbody>
</table>

A partir d’aquestes dades es poden extreure les següents conclusions:

- La primera conclusió i segurament la més important és que la diferència dels dos valors obtinguts en cap cas supera els 3 dBA, un valor que es pren en com l’error màxim permès entre el model i les dades reals. Aquest és un límit màxim d’error comunament adoptat en projectes d’acústica.

Es pren 3 dBA ja que aquest és el valor que hi ha d’haver entre dos nivells d’un mateix soroll per tal que una persona que l’estigui sentint però no escoltant atentament, en noti la diferència.
En segon lloc es pot observar que on hi ha les diferències més grans, superant els 2 dBA positius, és en els punts propers a semàfors i rotondes i en el tram de vial més proper a girona, en el qual hi ha més trànsit i per tant un Thv i un L_{Aeq} més elevat.

Analitzant les diferents zones més conflictives, podem trobar una explicació per aquest fet:

- Punt de mesura 7: cal esmentar que aquest punt de mesura, es troba en un tram del vial on hi ha un lateral que pot distorsionar lleugerament la mesura fent-ne augmentar el L_{Aeq} per la curta distància existent entre el punt de mesura i el lateral, el soroll del qual afecta més a la mesura que el soroll del vial principal. Tot i que ja s’ha tingut en compte en el model, pot ser que això continui provocant una petita variació de la realitat amb el model teòric. Cal destacar també l’existència d’un petit pendent en el lateral que també podria fer augmentar el L_{Aeq}, l’augment del qual seria més important com més vehicles pesats passésin, i donat que el percentatge de pesats del lateral està en 13,8, podem afirmar que el L_{Aeq} es veu augmentat pel pendent, pel lateral i pel número de vehicles pesats que hi passen, per tant no té la més minima importància el fet que la diferència entre el L_{Aeq} real i el teòric sigui de les més altes.

- Punt de mesura 9: aquest punt de mesura es veu afectat per un semàfor que pot afectar fent que el trànsit no sigui absolutament continu sinó entre continu i interromput, cosa que tendirà a augmentar el nivell real de soroll, provocant una major diferència amb el valor de L_{Aeq} calculat pel model.

Així doncs, tenint en compte totes les diferències i respectant el signe d’aquestes, si es fa el valor mig de la diferència, resulta que aquesta és de 0,27 dBA, la qual cosa marca una tendència del programa CADNA a donar valors de soroll lleugerament superiors als que reallyment hi ha. Si calculem el valor mig de la diferència en valor absolut ens dóna 1,27. Veiem doncs que els resultats teòrics no s’ajusten amb total exactitud als mesurats.

Per tant la diferència entre les mesures realitzades in situ i les que s’obtenen amb el programa simulador CADNA són acústicament acceptables i compleixen els estàndards de qualitat del grup GREFEMA.
6.2.- Simulació del model

Abans de fer qualsevol simulació, s’han d’entrar els valors generals de cada un dels trams en els quals s’ha dividit el vial, ja que el que ara es pretén és estudiar l’antiga N-II per cada un dels trams en els que l’hem dividida i no pas per cada punt de mesura com fem a la verificació.

Per tant, en primer lloc, modificarem les dades de trànsit que havíem entrat de cada un dels punts de mesura per fer la verificació i entrarem el Thd (trànsit per hora en horari diurn) el qual es calcula fent la mitjana de l’IMD i dividint-la per 17, i el percentatge de vehicles pesats, %P, que es calcula agafant la mitjana de vehicles pesats i dividint-la pel total de vehicles, d’aquesta manera aconseguim tenir una dada de cada tram tot homogeneitzant-les i fent indiferent l’horari en què ha estat feta la mesura, hora punta o hora normal.

Cal destacar que la verificació s’ha realitzat a partir del trànsit real del moment de la mesura, mentre que els resultats finals es calculen a partir del trànsits representatius de tot el període diürn, els quals es troben a partir del càlcul del IMD i que per tant es veuen afectats per l’horari (hora punta o normal) en què s’ha realitzat la mesura.

En la següent taula hi trobem els valors representatius de cada tram:

<table>
<thead>
<tr>
<th>NUMER</th>
<th>TRAM</th>
<th>TIPUS HORARI</th>
<th>IMD</th>
<th>IMD PROMIG</th>
<th>THD</th>
<th>THN</th>
<th>P%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>N</td>
<td>32854</td>
<td>34919</td>
<td>2054</td>
<td>314</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>N</td>
<td>36983</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>P</td>
<td>20392</td>
<td>22396</td>
<td>1317</td>
<td>202</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>P</td>
<td>23483</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>P</td>
<td>23311</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>N</td>
<td>44838</td>
<td>35187</td>
<td>2070</td>
<td>317</td>
<td>4.8</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>P</td>
<td>30279</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>P</td>
<td>30443</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula 8. – Dades per a la simulació del model
La incertesa permesa per al càlcul del mapa serà de 1 dBA.

El mètode de càlcul que es selecciona per al programa és el NMPB-96 Routes (Mètode recomanat per la UE en la modelització de fonts de soroll de trànsit).

Abans de realitzar la modelització pròpiament dita, falten per determinar alguns últims paràmetres al programa simulador CADNA. El programa demana la mida de les cel·les que delimiten l’espai de càlcul. Les simulacions que s’han realitzat en el present projecte oscil·len entre els càlculs de 5 x 5 metres. Val a dir que aquest és un mallat d’una precisió considerable i que per a fer el càlcul, el programa ha tardat aproximadament un dia.

Un altre paràmetre que demana el programa és delimitar l’alçada a la que es vol que es realitzin els càlculs de nivells sonors. En el present projecte i en tots els càlculs s’ha fixat una alçada de càlcul de 4 m tal com recomana la directiva europea de gestió del soroll ambiental. Alhora de representar els mapes de capacitat acústica s’han pres els valors de referència a una alçada de 1,5 m ja que és l’alçada que determina la llei 16/2002, a més a més, també és la mateixa alçada a què s’han fet les mesures in situ.

Dins de la finestra de configuració del càlcul, el programa demana la longitud dels rajos els quals els hem definit a 1 Km i l’ordre de les reflexions que els hem fixat fins a les de 1er ordre, és a dir, a partir de la segona reflexió el programa ja no la té en compte degut a que la seva aportació seria considerada com inexistent. A la següent figura es poden apreciar les configuracions descrites.
En el present projecte s’ha utilitzat una única escala de colors per tal de representar les isòfones en els mapes acústics. Aquesta escala que s’ha pres és la que ve definida pel programa Cadna i es mostra a continuació:
6.3.- Resultats de la modelització

Tot seguit es mostraran alguns dels mapes acústics que s’han calculat a partir del programa simulador CADNA.

És de destacar, que la llei 16/2002, Llei de la Protecció contra la Contaminació Acústica, no específica els colors a emprar en l’elaboració dels mapes. Tanmateix, alguns dels fulletons informatius editats per la Generalitat de Catalunya i el projecte SONICAT, subvencionat pel Departament de Medi Ambient, fan referència al color vermell per zones de sensibilitat acústica baixa, al color groc per zones de sensibilitat acústica moderada i el color verd per a zones de sensibilitat acústica alta. De totes formes, en la fase final d’elaboració del mapa de capacitat acústica de la població ja s’ha tingut en compte aquest fet. Referent a les modelitzacions, per tal de mostrar amb major precisió la diferència entre nivells acústics, s’ha utilitzat l’escala de colors mostrada anteriorment, ja que té un rang més ampli de colors. Degut a la granària, tots aquests plànols esmentats i els mapes de mesures acústiques es troben documentats en el CD adjunt al present projecte, tot i això es detallen alguns dels punts més interessants.

En la figura a continuació es mostra l’impacte acústic de la carretera A-2 al seu pas pel municipi de Sarrià.

![Mapa acústic del municipi de Sarrià en període diürn](image-url)
En realitzar una ampliació del mapa acústic del municipi de Sarrià, s'observa amb millor claredat la influència del nivell sonor a les façanes dels edificis i a les zones properes a la carretera A-2.

Pel que fa referència als edificis de primera línia, veiem que de manera general presenten uns nivells de soroll molt elevats. En el primer tram tenim uns nivells que oscil·len entre 65 i 74 dBA, en el segon, el central els nivells es troben entre 60 i 69 dBA, i en el tercer entre 64 i 73 dBA. Per tant, tal i com ja havíem pogut observar abans, es corrobora un cop més, que els trams més sorolloso són el primer i l’últim. Si ens fixem en el mapa, això queda reflectit en el gruix de la línia blava que es dibuixa al llarg del vial. Com podem observar, en els 2 trams extrems aquesta és més ample que pas en el tram central, la qual cosa indica més soroll. Això es deu al fet que el trànsit no és el mateix per als tres trams, i pel primer i l’últim és per on més circulació hi ha, cosa que ja havíem vist amb el Thv.
Figura 16.- Ampliació del mapa acústic de Sarrià (tram 2) període diurn. Mesures de 1a línia.

Figura 17.– Ampliació del mapa acústic de Sarrià (tram 3) període diurn. Mesures de 1a línia.
S'aprecia com les façanes dels edificis exposats a la carretera A-2 estan sotmeses al llarg del dia en mitjana a uns valors de nivell de pressió sonora d'entre 74 i 60 dBA. Per altra banda, en els edificis de segona línia apantallats pels de primera s'aprecien uns valors de nivell de pressió sonora d'uns 52-55 dBA.

Figura 18. Ampliació del mapa acústic de Sarrià (tram 1) en període diürn. Mesures de 2a línia.
Figura 19.- Ampliació del mapa acústic de Sarrià (tram 2) període diurn. Mesures de 2a línia.

Figura 20.- Ampliació del mapa acústic de Sarrià (tram 3) període diurn. Mesures de 2a línia.
Fàcilment s’observa la diferència en els nivells sonors de les zones més edificades en comparació amb les zones no tant edificades. Les edificacions en línia provoquen un efecte d’apantallament, fent que darrera dels habitatges el nivell sonor sigui considerablement menor que pas a l’altre costat a la mateixa distància on no hi ha habitatges.

Fins ara les imatges mostrades han estat les calculades amb valors d’horari diürn. Tot seguit es mostrarà l’impacte acústic de les carreteres de nit, el programa disposa de 2 variables les quals prenen de partida els diferents valors de flux de vehicles.

Com és d’esperar el flux de nit és molt menor al de dia, i conseqüentment, el soroll produït pel trànsit de vehicles és molt menor. La següent figura mostra el mapa de soroll acústic de la zona de Sarrià en període nocturn.

![Figura 21.- Mapa acústic del municipi de Sarrià en període nocturn.](image)

Ja a primera vista veiem diferències significatives pel que fa a la tonalitat dels colors. Tal i com es dedueix pel color morat que ressegueix el llarg del vial, el nivell de soroll durant la nit és més baix. Recordem que abans aquest venia representat per un color blau fosc el qual indica major nivell de pressió sonora.
Com era d'esperar els valors en període nocturn són inferiors als obtinguts en període diürn. En l'edifici més afectat a primera línia de la carretera A-2, que durant el dia trobem en mitjana uns valors de nivell de pressió sonora entre 70 i 74 dBA, de nit els valors baixen fins a uns 61 a 66 dBA.

Figura 22.- Ampliació del mapa acústic del municipi de Sarrià en període nocturn (tram 1). Mesures de 1a línia.
Figura 23.- Ampliació del mapa acústic del municipi de Sarrià en període nocturn (tram 2). Mesures de 1a línia.

façana a uns 53 dBA

façana a uns 61,3 dBA

Figura 24.- Ampliació del mapa acústic del municipi de Sarrià en període nocturn (tram 3). Mesures de 1a línia.

façana a uns 62,8 dBA

Façana a uns 61,6 dBA
Figura 25.- Ampliació del mapa acústic del municipi de Sarrià en període nocturn (tram 1). Mesures de 2a línia.

façana a uns 36,7 dBA

façana a uns 45,5 dBA
Figura 26.- Ampliació del mapa acústic del municipi de Sarrià en període nocturn (tram 2). Mesures de 2a línia.

Figura 27.- Ampliació del mapa acústic del municipi de Sarrià en període nocturn (tram 3). Mesures de 2a línia.
Comparant doncs el nivell de soroll en el mateix punt de façana de dia i de nit, queden clares les disminucions de soroll, previsibles, degudes al menor flux de trànsit nocturn.

Pel que fa a les mesures de segona línia, cal destacar que com era d’esperar també s’observa una disminució en el nivell de soroll, això es deu al fet que la font està més allunyada i a l’efecte apantallament que provoquen els edificis de primera línia.

Aquí tenim un quadre resum del nivell de soroll que es troba en diferents punts de façana segons sigui de nit o de dia:

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Tram</th>
<th>Horari diurn</th>
<th>Horari nocturn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1a línia</td>
<td>2a línia</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>74</td>
<td>42,8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>65</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>60</td>
<td>54,1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>69</td>
<td>53,7</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>70,9</td>
<td>50,5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>68,8</td>
<td></td>
</tr>
</tbody>
</table>

Taula 9.- Comparació del nivell de soroll en diferents punts segons horari diari i nocturn.

Pel que fa a les diferències degudes al fet de trobar-nos a primera línia o segona línia, cal dir que són més o menys iguals independentment de si estem en horari diurn o nocturn. En mitjana hi ha una disminució d’uns 7 dB en les mesures fetes en horari nocturn respecte les d’horari diurn, tant si estem a 1a com a 2a línia. Cal destacar que és una diferència considerable que porta a pensar en possibles solucions per a disminuir el soroll existent degut al trànsit del vial.
7.- PROPOSTA DE ZONIFICACIÓ ACÚSTICA SEGONS LA LLEI 16/2002

D’acord amb la Llei 16/2002, de protecció contra la contaminació acústica, els ajuntaments han d’elaborar un mapa de capacitat acústica, que estableixi els nivells d’immissió a les zones urbanes, els nuclis de població i, si s’escau, a les zones del medi natural, mitjançant l’establiment de les zones de sensibilitat acústica que determinen els objectius de qualitat.

7.1.- Consideracions prèvies

La normativa vigent que regeix els impactes acústics a Catalunya és la Llei de Protecció Contra la Contaminació Acústica de la Generalitat de Catalunya (Llei 16/2002).

Tal com específica la llei 16/2002, existeixen tres tipus de zones de sensibilitat acústica:

- A, zona de sensibilitat acústica alta: Comprèn els sectors del territori que requereixen una protecció alta contra el soroll.

- B, zona de sensibilitat acústica moderada: Comprèn els sectors del territori que admeten una percepció mitjana de soroll.

- C, zona de sensibilitat acústica baixa: Comprèn els sectors del territori que admeten una percepció elevada del soroll.

Tal com estableix l’article 6 Zones de soroll, punt 2, de la llei 16/2002:

- La zona de soroll comprèn el territori de l’entorn del focus emissor i és delimitada per la corba isòfona, que són els punts del territori on es mesuren els valors límits d’immissió establjerts pels annexos 1 i 2 corresponents a la zona de sensibilitat acústica on hi ha situada la infraestructura.

I l’article 12, règim de les infraestructures, punt 3:
- Per a les infraestructures a què fa referència l'apartat 1 existents a l'entrada en vigor d'aquesta Llei, en cas que sobrepassin els valors límits d'atenció fixats per l'annex 1 per a les zones de sensibilitat acústica baixa, l'administració titular ha d'elaborar, donant audiència a les administracions afectades per la infraestructura, un pla de mesures per tal de minimitzar l'impacte acústic, d'acord amb el que estableix l'article 38.

Així doncs, la zona que quedi compresa dins la isòfona de 65 dBA de dia o la de 55 dBA de nit, escollint la que major territori afecti, serà segons la llei zona B. Les zones llindars a aquesta, amb valors acústics superiors, seran les corresponents a les zones de sensibilitat acústica C.

Tal com també esmenta la Llei 16/2002 de protecció contra la contaminació acústica, els habitatges situats al medi rural els són aplicables els valors límits d'immissió, corresponents a una zona de sensibilitat acústica alta, si compleixen les condicions següents:

a) Estar habitat de manera permanent.
b) Estar aïllats i no formar part d'un nucli de població
c) Ésser en sòl no urbanitzable
d) No estar en contradicció amb la legalitat urbanística

El nostre cas d'estudi és una infraestructura ja existent a l'entrada en vigor de la Llei 16/2002. Per tant, el mateix article número 12 diu que per a les infraestructures ja existents a l'entrada en vigor de la Llei, en cas que sobrepassin els valors d'atenció fixats per l'annex 1 per a les zones de sensibilitat acústica baixa, l'administració titular ha d'elaborar, donant audiència a les administracions afectades per la infraestructura, un pla de mesures per a minimitzar l'impacte acústic.

Els valors límits d'immissió i els valors d'atenció que es fixen en l'annex 1 de la Llei són els següents:
Així doncs, l'Avinguda de França és una infraestructura que complirà la normativa sempre i quan no superi els valors d'atenció per una zona de sensibilitat acústica baixa (zona C); és a dir, 75 dBA de dia i 70 dBA de nit.

Un punt important a esmentar de l'annex 1 és que les mesures realitzades a peu de carrer, han d'estar a una distància d'entre 1 i 2 metres de les façanes i aproximadament a 1,5 metres d'altura. Als valors que s'obtinguin se'ls aplica la correcció de sostreure de 3 a 5 dBA, atenent les característiques de l'edificació de l'indret. Això és degut a que les reflexions provocades pels edificis fan augmentar el nivell de soroll prop d'aquests.

Si analitzem el soroll produït pels vehicles a l'avinguda de França mitjançant la llei amb els valors calculats a partir de la simulació amb el programa CADNA, veiem que segons els valors d'atenció, traient 3 dBA, per ser el cas més desfavorable, no es pot sobrepassar els 78 dBA de dia i 73 dBA en el cas de nit. Si mirem els mapes acústics obtinguts amb el CADNA, veurem que en cap cas es sobrepassen aquests nivells. Per tant, podem afirmar que l'Avinguda de França compleix la normativa vigent tot i tenir uns alts nivells de soroll, entent per alts nivells de soroll els 72 – 75 dB, que ja és un soroll més que considerable.

Pel que fa a la representació del mapa acústic els colors que utilitzarem seran el vermell per zones de sensibilitat acústica baix, el groc per zones de sensibilitat acústica moderada i el verd per zones de sensibilitat acústica alta. La paleta de colors utilitzada és la següent:

Taula 10.- Límits d'immissió i d'atenció segons la Llei 16/2002

<table>
<thead>
<tr>
<th>ZONA DE SENSIBILITAT</th>
<th>VALORS LIMIT D'IMMISSIÓ L_{Ae} en dBA</th>
<th>VALORS D'ATENCIO L_{Ae} en dBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, alta</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>B, moderada</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>C, baixa</td>
<td>70</td>
<td>60</td>
</tr>
</tbody>
</table>
Cal esmentar que és aquí, a la paleta de colors, on hem fet la correcció dels 3 dBA de les reflexions de cares a classificar les zones, per això en lloc de 65, 68 i 75 en el color groc, vermell i verd respectivament, hi trobem nivells de 68, 71 i 78 dBA. Ara bé els nivells que trobem en el mapa són els que realment hi ha.

Si fem una visió general del mapa de capacitat trobem el següent:

Veiem doncs, que els nivells no superen en cap cas els 78 dBA, per tant estem dins els límits dels valors d’atenció.
Ara bé, anem a veure més detalladament què passa per cada tram:

Figura 30. Capacitat acústica de les façanes del tram 1.

Tal i com podem veure el que predomina són les façanes vermelles, amb uns nivells que van des dels 74,4 als 71,7 dBA, i algunes de grogues que oscil·len entre 70,2 i 69,4 dBA.
Figura 31.- Capacitat acústica de les façanes del tram 2.

Tal i com s'observa, aquí el color predominant de façana ja passa a ser groc per les més properes i verd per les més allunyades del vial. Això es deu al fet que ja havíem esmentat que aquest tram és el menys transitat dels tres.

Les façanes grogues es troben a uns nivells d'entre 68 i 69 dBA.
Figura 32.- Capacitat acústica de les façanes del tram 3.

En el tercer tram trobem que predomina el groc sobre el verd i encara amb alguna façana vermella, donat que era un tram força transitat. Els nivells grocs estan entre 69 i 71 dBA i els vermells estan a 73 dBA.

Si l'avinguda de França fos de nova construcció, és a dir posterior a l'entrada en vigor de la llei 16/2002, l'avinguda seria considerada com una zona de sensibilitat acústica moderada, per tant, ara serien els nivells d'immissió i no d'atenció, en els que ens hauríem de fixar per evaluar-ne el nivell de soroll. Veuríem que no podriem sobrepassar els 68 dBA de dia i els 58 dBA de nit, traient 3 dBA per ser el cas més desfavorable, prenent com a classificació...
més adequada per les zones habitades les zones A o B. Puntualment, en zones especialment sorolloses es pot adoptar el límit de zona C.

7.2.- Anàlisi i simulació de possibles millores

Havent vist ja els alts nivells de soroll consequència del trànsit de l’Avinguda de França, estudiarem a continuació possibles canvis o millores per atenuar el soroll. Les accions possibles per reduir-ne el nivell de soroll són:

- l’instal·lació de pantalles acústiques
- canvi d’asfalt sonoreductor o porós
- restricció del pas de vehicles pesats

• Pantalles acústiques

Les pantalles acústiques són elements que es situen al costat d’una infraestructura per tal d’atenuar el soroll que aquesta emet i reduir-ne d’aquesta manera l’impacte acústic tal i com es mostra a la figura. Cal dir però que l’implantació d’aquests elements és inviable pel fet de tractar-se d’una avinguda interior de la ciutat amb les corresponents entrades als edificis, els seus corresponents aparcaments, el negatiu impacte visual, etc.

Figura 33.- Pantalles acústiques.

Per tant aquesta hipòtesi de millora queda descartada per les repercussions esmentades.
• Asfalt porós o sonoreductor

L’asfalt porós és un tipus de paviment pensat per facilitar el drenatge de l’aigua. El seu ús, però, produeix també una millora acústica respecte a l’asfalt normal, ja que degut als porus es redueix el nivell sonor provinent dels vehicles.

La reducció del nivell de soroll que comporta un asfalt porós respecte d’un asfalt convencional, no només augmenta amb el volum de trànsit, sinó que també ho fa amb la velocitat de circulació.

Pel que fa a l’asfalt sonoreductor, no deixa de ser un asfalt porós, però pensat des de bon principi per reduir el soroll. Es tracta d’un aglomerat asfàltic (mescla d’àrids, betum i pols mineral; també s’hi pot incloure cauixú triturat provinent de pneumàtics vells) el qual minimitza dos dels factors bàsics causants del soroll del trànsit rodat: les vibracions del pneumàtic al entrar en contacte amb l’asfalt i el fenòmen de compressió/expansió que sofreix l’aire al circular pel dibuix del pneumàtic. En primer lloc, per les seves característiques supercials, ja que la seva textura fa disminuir les vibracions, i en segon lloc, per les seves característiques estructurals, ja que, en ser un paviment porós, els buits redueixen l’efecte dels fenòmens de compressió/expansió.

L’utilització d’aquest tipus de paviment sonoreductor comporta una reducció del soroll generat pel trànsit rodat.

El problema que presenta l’asfalt sonoreductor és que, al contrari que l’asfalt convencional, necessita feines de manteniment per conservar les seves propietats, ja que els porus que permeten l’absorció del soroll es van tapant al llarg del temps per sorra i brutícia.

Un altre aspecte que també s’ha de tenir en compte en aquest tipus d’asfalt és que té una vida limitada tot i que es fagi un bon manteniment. Per tant, també s’ha d’avaluar els costos que comportarà aquest asfalt, el manteniment i la seva posterior renovació.

En les següents figures es mostra una ampliació de la superfície d’un asfalt normal i d’un asfalt sonoreductor.
Pel que fa a la simulació amb el programa CADNA, cal dir que l’asfalt sonoreductor no està contemplat en el programa, per tant farem la simulació amb l’asfalt porós, amb el que és d’esperar que ja obtinguem variacions significatives.

El mapa acústic de l’Avinguda de França amb asfalt porós és el que s’observa a continuació:
Figura 36.- Mapa acústic del municipi de Sarrià de Ter en període diurn amb asfalt porós.

Mirant el mapa acústic anterior de la situació de l’Avinguda de França amb el tipus d’asfalt porós veiem que els colors no són els mateixos que quan hi havia asfalt normal.

El llarg de tot el vial que ara és de color granatós amb alguna pinzellada de blau, abans era majoritàriament blau, aquest fet significa que el nivell de soroll ha disminuït.

Per comparar-ho d’una manera més detallada, podem observar les dues ampliacions següents, la primera amb asfalt normal i la segona amb asfalt porós.
En aquest cas la diferència entre els dos casos és de 3,5 dB aproximadament. Si fem el mapa acústic de la diferència podrem observar la disminució general que resulta del canvi d’asfalt.
Per a realitzar aquest mapa de diferències en primer lloc s’hauran d’assignar els colors per a cada interval de nivell sonor.

L’escala cromàtica entrada al programa CADNA és la següent:

![Escala cromàtica](image)

Figura 39.- Escala cromàtica de diferències entrada al programa Cadna

Un cop ja entrada l’escala cromàtica anterior, podem procedir al càlcul del mapa que reflexa la diferència del nivell de soroll deguda al canvi d’asfalt. El mapa queda de la següent manera:
Figura 40.- Mapa de la diferència del nivell de soroll deguda al canvi d’asfalt (tram1)

Figura 41.- Mapa de la diferència del nivell de soroll deguda al canvi d’asfalt (tram 2)
Veiem que el color dominant en tots tres trams és el vermell, si bé, amb presència d’algun taronja i algun granatós, per tant la diferència deguda al canvi d’asfalt oscil·la entre 2,5 i 3,5 dB. Pel que fa als tres trams no hi ha diferències significatives, la disminució del nivell de soroll és aproximadament la mateixa per a tots tres.

Cal destacar que a primera línia el color dominant és el granatós (disminució d’aproximadament 3,5 dB), a segona línia hi tenim el vermell (disminució d’uns 3 dB) i ja darrera els edificis de segona línia hi tenim el taronja (disminució d’uns 2,5 dB). D’aquí es
dedueix que, tal i com era d’esperar, les diferències més significatives les trobarem com més propers ens trobem al vial.

Quant a la millora que obtindriem si l’asfalt fos del tipus sonoreductor, tot i no poder-ho simular amb el Cadna, podem veure’n dades d’un altre cas real per fer-nos-en una idea de l’abast que això suposaria. És el cas de Barcelona, una de les ciutats europees amb més paviment sonoreductor. Segons dades del seu ajuntament, la utilització d’aquest tipus d’asfalt als carrers de la ciutat suposa una reducció del soroll ambiental d’entre 2 i 3 dB, reducció que pot arribar als 4 i 5 dB en carrers amb volum de trànsit alt, cas del vial que ens ocupa.

- Restricció del pas de vehicles pesats

La restricció del pas de vehicles pesats comporta tenir una ruta alternativa per aquest tipus de vehicles. El problema és la inexistència d’una ruta alternativa viable. Tot i que la hipòtesi és certament inviable, en farem l’anàlisi per veure quins serien els resultats.

El mapa acústic resultant d’aquesta hipòtesi és el següent:

Figura 43. Mapa del nivell de soroll a l’Avda. de França sense el pas de vehicles pesats.
A simple vista no hi ha diferències signifficatives respecte el mapa on si que es contemplava el pas de vehicles pesats, per tant per evaluar-ne la diferència del nivell de soroll, calcularem el mapa de diferències, és a dir la diferència de nivell de soroll que hi haurà si contemplem que hi passen vehicles pesats i si els descartem.

Figura 44.- Mapa del nivell de soroll a l’Avda. de França sense el pas de vehicles pesats.

Ara si que podem apreciar, com disminueix el nivell de soroll. Veiem que al llarg del primer tram el color dominant és el morat, és a dir el fet que no passéssin vehicles pesats provocaria una disminució d’uns 3,5 dB, mentres que en el segon i el tercer la disminució pren uns valors d’entre 3 i 2,5 dB.
Figura 45.- Ampliació del mapa de nivell de soroll sense el pas de vehicles pesats (tram 1).

Figura 46.- Ampliació del mapa de nivell de soroll amb el pas de vehicles pesats (tram 1)
Comparant doncs els dos gràfics anteriors, veiem tal i com ja havíem dit que les diferències de nivell de soroll en el primer tram oscil·len al voltant dels 3,5 dB.

Si comparem doncs, els valors del nivell de soroll del segon tram amb i sense vehicles pesats trobem aquests valors:

Figura 47.- Ampliació del mapa de nivell de soroll amb el pas de vehicles pesats (tram 2)

Figura 48.- Ampliació del mapa de nivell de soroll sense el pas de vehicles pesats (tram 2)

En aquest segon tram la diferència que hi trobem està al voltant dels 2,5 dB tal i com ja preveiem.
Figura 49.- Ampliació del mapa de nivell de soroll amb el pas de vehicles pesats (tram 3)

Figura 50.- Ampliació del mapa de nivell de soroll sense el pas de vehicles pesats (tram 3)

En el tercer tram la diferència que trobem està al voltant dels 2,8 dB.
Per tant, en qualssevol dels tres trams la disminució del nivell de soroll és considerable si fem circular els vehicles pesats per un vial alternatiu.

Veiem doncs que de les tres modificacions proposades per a disminuir el nivell de soroll, la més efectiva seria aquesta última, tot i que no és del tot viable. Cal dir però que la opció del
canvi d’asfalt no és gens dolent si tenim en compte que implicava una disminució de 2,5 – 3,5 dB, i pel cas que ens ocupa seria la més adequada.
8.- RESUM DEL PRESSUPOST

El pressupost de realització d’aquest projecte suma la quantitat de QUATRE MIL SET-CENTS VINT I VUIT EUROS AMB SEIXANTA CÈNTIMS (4.728,60€), sumant el 12% de benefici industrial i el 16% d’IVA, s’obté un pressupost final de SIS MIL CENT QUARANTA–TRES AMB SEIXANTA-NOU CÈNTIMS (6.143,69€).

Srta. Alba Ramió Bach

Girona, a 12 de juny de 2006
9.- CONCLUSIONS GENERALS

- El model generat amb el programa CADNA simula correctament la realitat de l’Avinguda de França. Si mirem les diferències entre els valors obtinguts per simulació i els valors reals mesurats veiem que aquestes són mínimes.

- L’Avinguda de França és una infraestructura construïda amb anterioritat a l’entra en vigor al Juliol del 2002 de la Llei de Protecció Contra la Contaminació Acústica de la Generalitat de Catalunya (Llei 16/2002), per la qual cosa els valors de soroll generats per aquesta entren dins els límits permesos per aquesta Llei.

- Aquesta infraestructura, tot i complir amb la normativa vigent, presenta uns nivells acústics molt elevats, que si fos de nova construcció (posterior al Juliol del 2002) els nivells de soroll estarien per sobre els límits permesos per la Llei 16/2002. En cas de considerar els límits d’immisió establerts per la llei, en general aquests també es complirien, però puntualment, si que existirien edificis que es trobarien per sobre o al límit d’aquests nivells.

- Les zones més crítiques són tots els edificis situats a primera línia de l’Avinguda, aquests són els que reben més directament l’impacte acústic que emet l’infraestructura. Per contra, el nivell acústic a què estan sotmesos els edificis de segona línia i els més allunyats, disminueix significativament.

- Les mesures de millora que es podrien aplicar a l’Avinguda de França per tal de reduir el soroll són l’aplicació d’asfalt sonoreductor o asfalt porós (disminució d’uns 3 dBA aproximadament), la restricció del pas de vehicles pesats (disminució d’uns 3 dBA aproximadament) o la combinació d’aplicació d’asfalt porós i restricció de vehicles pesats.

- La restricció del pas de vehicles pesats és una millora poc probable pel fet de no disposar de rutes alternatives.

- Les millores que es poden aplicar en aquesta infraestructura és cert que produeixen una millora acústica, no obstant, els nivell de soroll que hi haurien continuarien sent molt
elevats i per sobre dels límits permesos per la Llei 16/2002 per a infrastructures de nova construcció.

Srta. Alba Ramió Bach

Girona, a 12 de juny de 2006
10.- LLISTAT DE DOCUMENTS

Aquest projecte està format per la següent relació de documents:

1. MEMÒRIA

2. ANNEXES
 2.1.- Annex A: Teoria del soroll
 2.2.- Annex B: Punts de mesura
 2.3.- Annex C: Pressupost
11.- BIBLIOGRAFIA

- Ajuntament de Barcelona
 Fitxa de sostenibilitat 15: Paviment sonoreductor

- Buna, B.
 Some Characteristics of Noise from Single Vehicles

- CADNA
 CADNA 3.5 User Manual
 Datakustik GmbH. Greifenberg; 2005.

- CESVA
 Manual de usuario SC-30 (sonòmetre)
 DICESVA, S.L. Barcelona; 2000.

- Crocker, Malcom J.
 Handbook of Acoustics.

- Ford, R.D.
 Physical assessment of transportation noise

- Generalitat de Catalunya
 Llei de protecció contra la contaminació acústica

- Generalitat de Catalunya
 Ordre de 30 de juny de 1999, per la qual es regula
 El control metrològic sobre els instruments destinats a mesurar els nivells de so audible

- Julià Riera, Narcís
 Caracterització acústica de vehicles segons les
condicions d’operació (Julià Riera, Narcís).
Universitat de Girona. Projecte final de carrera.
Convocatòria de Gener del 2005.

- Llnaires, J.
 Acústica arquitectònica y urbanística (Llnaires J.,
 Llopis A., Sancho J.)
 Universitat Politècnica de València, Servei de
 Publicacions. València; 1996.

- Marquès Thomas, Lluís
 Elaboració del mapa acústic de trànsit de la ciutat
 de Girona (Marquès Thomas, Luís).
 Universitat de Girona. Projecte final de carrera.
 Convocatòria 2005.

- Querol i Noguera, J.M.
 Manual de mesurament i avaluació del soroll
 Generalitat de Catalunya, Departament de Medi

- WG-AEN
 Good practice guide for strategic noise mapping
 and the production of associated data on noise
 exposure, Version 1 European Commission
 Working Group Assessment of Exposure to
Annex A: TEORIA DEL SOROLL
Annex A: TEORIA DEL SOROLL

A.1.- So i soroll

El soroll és el conjunt de fenòmens vibratoris aèris, percebuts i integrats pel sistema auditiu, que en determinades circumstàncies pot originar molèsties, o fins i tot lesions, a l’oïda. Aquest fenòmen està format per tres aspectes fonamentals:

- **Aspecte físic**: és el que permet fer mesuraments, càlculs, prediccions i que pot controlar-se per mitjà del coneixement de les lleis de la física acústica i del coneixement dels materials.

- **Aspecte fisiològic**: és en el que intervenen multitud de paràmetres que afecten la percepció del so, com pot ser el llindar específic de cada persona, l’edat, possibles malalties que puguin afectar l’oïda o inclús el sexe del subjecte.

- **Aspecte psicofisiològic**: és en aquest aspecte on entra la noció de molèstia. La percepció d’un soroll comporta un grau de molèstia que ve modificat per factors ben diversos com ara el tipus d’activitat desenvolupada pel receptor, la relació que manté amb l’emissor, la durada del soroll, la naturalesa de l’activitat que genera el soroll, l’estat psicològic o anímic del receptor, etc.

En aquest treball ens ocuparem bàsicament del primer aspecte del soroll (aspecte físic), intentant mesurar i caracteritzar el soroll de l’entorn del municipi de Sarrià de Ter.

La complexitat de la relació entre soroll i molèstia ha donat lloc a que diferents investigadors hagin intentat trobar-hi explicacions diverses. Aquestes explicacions ens permeten d’entendre o de copsar millor els comportaments i com es genera la molèstia respecte el soroll.
Diferents accions possibles a emprendre per reduir el soroll són:

- L’ús de les unitats, dels paràmetres i de les tècniques adequades per determinar i
 avaluar el soroll d’una manera representativa, per tal que un fenomen de tipus
 subjectiu com és el grau de molèstia pugui ser correlacionat amb eines i mètodes
 objectius.

- La planificació del territori ha de permetre prevenir al màxim possible la interferència
 d’espais d’usos no compatibles.

- L’establiment de reglamentacions i ordenances de soroll que permetin d’evitar
 situacions de conflicte i en tot cas reduir-ne la durada.

- El control de nivells, projectes acústics, comprovació d’aïllaments i muntatges
 d’instal-lacions és també una manera d’evitar i reduir molèsties.

- La sensibilització i educació personal i col·lectiva n’és també una part important ja
 que se situa a un nivell on el comportament pot derivar en actes molestos o no.

- Finalment en situacions on hi ha consolidats nivells de soroll i de molèstia elevats és
 on caldrà emprendre accions de reducció del soroll per millorar la situació existent.

A.2. – Nocions Bàsiques

A.2.1.- Propagació del so

El so és una vibració mecànica que es propaga en un medi, gas, líquid o sólid, capaç de ser
percebuda per l’òïda.

El medi en el qual es propaguen les ones sonores ha de tenir massa i elasticitat. Per tant, el
so no es propaga en el buit. El soroll es propaga per un medi aeri segons la següent
equació, depenent només de la densitat de l’aire i la pressió atmosfèrica:
\[
 c = \sqrt{\frac{1.4 \cdot P_s}{\rho}} \quad (m/s)
\]

(Exprés 3)

On:
\(P_s \): Pressió Atmosfèrica (Pa).
\(\rho \): Densitat de l’aire (kg/m\(^3\))

Anomenem transmissió aèria la propagació del so a través de l’aire. La transmissió per estructura es defineix com la propagació d’ones des de la font sonora a través dels elements sólids o líquids que la suporten o estan en contacte amb ella.

A.2.2.- Atenuació del so en l’aire lliure

A més a més de la distància, altres elements modifiquen la propagació de les ones sonores en l’aire lliure: les reflexions degudes al tipus de terreny, les atenuacions degudes a edificis que s’interposen entre la font sonora i el receptor, la vegetació i les condicions atmosfèriques.

Les ones sonores reflectides en superfícies de terreny dures o poc poroses, com l’asfalt, els paviments o els estanys, en combinar-se amb l’ona directa que arriba de la font sonora al receptor, poden donar lloc a fenòmens d’interferència i es poden produir reduccions de nivells a freqüències determinades. Aquests fenòmens depenen de l’angle de reflexió i de la diferència de recorreguts entre l’ona reflectida i la directa.

Les reflexions degudes a edificis incrementen el nivell de l’ona sonora directa. Si l’edifici s’interposa entre la font sonora i el receptor, hi ha reducció de soroll per l’efecte pantalla.

A.2.3.- Les reflexions

Un dels altres fenòmens que modifiquen la propagació de les ones sonores en l’aire lliure és l’efecte de les reflexions.
Les ones sonores reflectides en superfícies de terreny dures o poc poroses, com l’asfalt, els paviments o les aigües de rius o llacs, en combinar-se amb l’ona directa que arriba de la font sonora al receptor, poden donar lloc a fenòmens d’interferència i es poden produir augments de nivells a freqüències determinades. De la mateixa manera, un sòl mullat o una làmina d’aigua, augmenten el nivell de la reflexió. Aquests fenòmens depenen de l’angle de reflexió i de la diferència de recorreguts entre l’ona reflectida i la directa (Figura 46).

Els terrenys tous i porosos com l’herba, la pinassa o la neu, també modifiquen el nivell resultant de les ones directes i reflectides; però en aquest cas disminuint-les, donat que es produeix un repartiment espacial de l’energia acústica.

A la Figura 51 s’aprecia gràficament el que s’ha descrit anteriorment per una superfície reflectora dura, des del punt de vista acústic. Si des del focus emissor “F”, situat a una altura “d” sobre el nivell del terra, es dibuixa el seu simètric i s’uneix mitjançant una recta aquest punt simètric amb el punt de tall de l’ona sonora incident amb el terra, “B” i la perllonguem, obtindrem l’ona sonora reflectida que incidirà en el receptor “R”; de tal manera que en aquest punt receptor s’incrementarà la pressió sonora rebuda directament (F, R), amb la reflectida (F, B, R).

Havent descrit aquest efecte, s’entendrà que les reflexions degudes a edificis incrementen el nivell de l’ona sonora directa. De fet, quan es parla d’un nivell sonor mesurat a l’exterior d’un edifici, s’ha de tenir en compte l’augment de pressió sonora deguda a reflexions que, generalment, s’assumeix que és de +3dBA.
Difraccions del so

La difracció és un fenòmen que es produeix quan en la propagació d’una ona, aquesta troba un obstacle o una obertura de dimensions comparables a les de la seva longitud d’ona.

La difracció és característica del moviment ondulatori i permet discernir si un fenòmen és o no de naturalesa ondulatòria.

A les següents figures es poden observar diferents casos de difracció:

![Figura 52.- Difracció del so (1)](image)

a) Quan un front d’ones sonores emeses per un focus llunyà xoca contra un obstacle com el dibuixat (una paret que finalitza en el punt “P” -vista en planta- ; o una barrera acústica que la seva part superior és el punt “P” -vista en secció-) a partir de del seu extrem; s’originen dos nous fronts, el superior similar a l’original i un altre secundari amb origen a “P” la propagació del qual és de tipus cilíndric.

b) Quan un front d’ones sonores emeses per un focus llunyà xoca contra un obstacle com el dibuixat (una paret amb una petita obertura o una finestra relativament petita)
“P”, a partir d’aquest punt s’origina un nou front la propagació del qual és de tipus esfèric.

A la Figura 53 es poden observar dos casos més de difracció.

a) Similar al de la Figura 52, permet un aclariment al presentar-lo en una escala més gran, doncs si bé en la part superior (propera al punt “P”) es produeix el “front secundari” esmentat, quan més ens anem separant vertical i horitzontalment d’aquesta zona s’origina una debilitació (zona d’ombra).

b) Quan la petita obertura es perllonga mitjançant un “passadís”, a partir d’aquest punt s’origina un nou front la propagació del qual és semblant a la de les ones planes.

A.2.4.- Mesurament del soroll i escala decibèlica

La magnitud que s’utilitza per avaluar la pertorbació de l’estat d’equilibri del medi on es propaga l’ona sonora és la pressió sonora, que és la variació de pressió per sobre i per sota de la pressió atmosfèrica.

Per mesurar la pressió sonora s’utilitza el sistema d’unitats internacional (SI): newtons per m2 (N/m2) o pascals (Pa). 1 N/m2 equival a 1 Pa.
Les pressions sonores són molt petites comparades amb la pressió atmosfèrica, que és de 101.300 N/m². El llindar d’audició, és a dir, el nivell mínim de pressió sonora d’un so perquè sigui audible, és de 0,00002 N/m². El llindar del dolor, en què la pressió sonora és tan elevada que arriba a fer mal al timpà, és d’uns 20N/m².

Veiem doncs, que l’escala de pressions sonores a què el nostre sistema auditiu és sensible comprèn valors que guarden una relació d’1:10⁻⁶ entre el més gran i el més petit. Per la qual cosa, la utilització d’una escala lineal és inadequada.

D’altra banda, l’oïda humana no respon linealment als estímulos que rep, sinó que més aviat ho fa de manera logarítmica. Per exemple, en doblar la pressió sonora (estímul) no es dobla la sensació sonora.

Per ambdues raons exposades, és convenient utilitzar una escala logarítmica dels valors de la pressió sonora per mesurar el soroll i avaluar-ne la molèstia.

L’escala logarítmica es construeix de manera que el 0 es correspon amb el llindar de percepció (0,00002 N/m²).

Dividint cadascun dels valors de pressió sonora entre 0,00002 N/m², i després aplicant logaritmes, s’obté una escala en què:

El llindar d’audició es correspon amb:

\[
\log \left(\frac{0,00002}{0,00002} \right) = 0 \text{ en l’escala logarítmica}
\]

\[
\log \left(\frac{20}{0,00002} \right) = 6 \text{ en l’escala logarítmica}
\]

D’aquesta manera, l’escala de 0,00002 N/m² a 20 N/m² queda comprimida a valors entre el 0 i el 6.

L’escala que s’usa és una escala més operativa en què aquests valors s’han multiplicat per 20. Aquesta escala logarítmica s’anomena escala decibèlica i s’expressa en decibels (dB).

Així doncs, els nivells de pressió sonora (Lp) s’expressen en dB, relatiu a la pressió del llindar d’audició anomenada pressió de referència.
Per tant: 0,00002N/m² es correspon amb 0 dB 20N/m² es correspon amb el valor:

20 log (P/0,00002) en l'escala decibèlica.

En aquesta escala, la decibèlica, 1 dB representa un canvi en la sensació sonora igual en tota l'escala i es correspon amb el canvi més petit que l'oïda mitjana pot apreciar.

Un augment de 6 dB equival a doblar la pressió sonora, però per produir un so de sonoritat doble és necessari un augment de 10 dB.

Qualsevol dels sons que percebem habitualment és comprès en un nivell de pressió sonora entre 0 dB i 120 dB, tal i com es mostra a continuació:

<table>
<thead>
<tr>
<th>dBA</th>
<th>N/m²</th>
<th>NATURALS</th>
<th>HUMANS</th>
<th>DANYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>20.000</td>
<td>Missils</td>
<td></td>
<td>Greu dany auditiu</td>
</tr>
<tr>
<td>160</td>
<td>2.000</td>
<td>Llançament coet especial</td>
<td>Esclat sònic</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>630</td>
<td>Explosió barrinada, aviò</td>
<td>Erupció volcànica</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>200</td>
<td>Enclairar-se reactar, canó</td>
<td>Cascada d'aigua</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>63</td>
<td>Martell pneumàtic, concert de rock, màxim veu humana</td>
<td>Perill de sordes temporal, mal de cap, nàusees</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>20</td>
<td>Serra mecànica, discoteca</td>
<td>Tractor, despertador, conversa a 15 cm</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>6,3</td>
<td>Hracà</td>
<td>Botzina de cotxe, arma de foc</td>
<td>Sensació d'aclaparament</td>
</tr>
<tr>
<td>100</td>
<td>2</td>
<td>Tempesta forta</td>
<td>Túnel de tren, estació de metro, moto amb silenciador.</td>
<td>Possible cansament</td>
</tr>
<tr>
<td>90</td>
<td>0,63</td>
<td>Tempesta</td>
<td>Tràfic, grans magatzems, restaurant, TV, ràdio</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0,2</td>
<td>Ones del mar</td>
<td>Aire condicionat, conversa normal, botiga</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>0,063</td>
<td>Pluja</td>
<td>Ràdio baixa, oficina, teatre</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0,02</td>
<td>Raucar de granota</td>
<td>Parlar baix, casa de pagès, jardí</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0,0063</td>
<td>Ruixim</td>
<td>Xiuixueig, dormitori, biblioteca</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0,002</td>
<td>Piular d'un ocell</td>
<td>Relotge, estudi d'emissora, hospital</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0,00063</td>
<td>Brisa</td>
<td>Ordinador, nit al camp, murmuri a 1m</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0,0002</td>
<td>Moviment de fulles</td>
<td>Llindar d'audició</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,000063</td>
<td>Vol d'un mosquito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,00002</td>
<td>Llindar d'audició</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula11.- Nivells de pressió sonora
A.2.5- Nivell de potència sonora

A tota font sonora se li pot associar una potència sonora, definida com l’energia sonora que emet per unitat de temps. És a dir, és una propietat fonamental i exclusiva de la font i que la caracteritza en termes absoluts.

La potència sonora d’una font produeix en un punt determinat una pressió sonora que depèn de molts factors, com són la distància del punt a la font, el condicionament de la sala, etc.

La potència sonora d’una font s’expressa en vats (W).

Les potències sonores poden ser menys d’una cent milionèsima de W si es tracta de la veu a cau d’orella; de 10.000 W en el cas d’un gran coet a l’espai.

A causa d’aquesta diversitat de valors, s’imposa també la utilització d’una escala logarítmica per expressar les potències sonores i es defineix el nivell de potència sonora com:

\[L_W = 10 \log \left(\frac{W}{W_0} \right) \text{ dB} \]
\[(\text{Eq. 4}) \]

\(L_W \) = nivell de potència sonora en dB
\(W \) = potència sonora en vats
\(W_0 \) = potència sonora referida a 10-12 vats

El nivell de potència sonora expressa la totalitat d’energia sonora en dB que una font determinada pot radiar, mentre que el nivell de pressió sonora representa el nivell del so en un punt concret de l’espai a una distància determinada de la font o en un punt determinat d’un recinte.
A.2.6.- Freqüència

El so i el soroll són el resultat de la combinació de tons purs d’ones de diferents freqüències. Les anàlisis d’un so o d’un soroll per freqüències tenen per finalitat descriure la contribució de tons diferents per saber-ne la composició.

Un to pur com el que dóna l’excitació d’un diapasó té un nombre d’oscil·lacions per segon ben determinat com, per exemple, la nota musical la, que correspon a 440 cicles/s, és a dir, a una freqüència de 440 oscil·lacions/s. La unitat del nombre d’oscil·lacions és l’hertz, que se simbolitza amb Hz. 1 Hz correspon a una oscil·lació per segon.

A.2.7.- Corbes de ponderació

El nostre sistema auditiu és capaç, en termes generals, de captar freqüències entre 20 i 20.000 Hz, però la resposta de la nostra oïda no és lineal. L’oïda humana filtra o atenua més els tons greus o freqüències baixes que els aguts o freqüències altes.

Per simular una corba d’atenuació semblant a la corba de resposta de l’oïda, es va adoptar, internacionalment, una corba o filtre anomenat A que incorporen els equips de mesurament del so.

![Figura 54. – Carbes de ponderació A, B i C, en el rang audible per l’home.](image)
D’aquesta manera, l’equip interpreta el so que li arriba semblantment a com ho fa l’oïda.

Fins no fa gaire s’utilitzaven també altres tipus de corbes de ponderació anomenades B, C i D. Avui en dia estan en desús, tot i que algunes d’elles es fan servir puntualment com, per exemple, la D en el cas de mesurament del soroll produït per avions.

Alguns equips de mesura de so inclouen comandaments que permeten fer lectures lineals, és a dir, sense corbes de ponderació, amb resposta totalment plana o lineal entre 10 Hz i 20000 Hz o, fins i tot, entre 1 Hz i 70000 Hz. L’aplicació principal és enregistra el so o les vibracions en un suport magnètic o digital, sense introduir modificacions al so original, per tal de poder fer anàlisis posteriors. En aquest cas escriurem, per exemple, 76 dB Lin.

Sempre que es facin lectures amb la corba de ponderació A, o amb d’altres, cal indicar-ho clarament. Una forma, per exemple, és posar 76 dBA, si aquests 76 dB han estat mesurats o calculats amb la corba A. Però és millor escriure LpA 76, d’acord amb les normes de la “International Standard Organization” (ISO), que són, a més, les que utilitza la Unió europea (UE).

A.2.8.- Bandes d’octava

El mesurament del soroll global amb el filtre de ponderació A permet resoldre la major part de mesuraments, però a vegades és necessari conèixer el seu espectre per freqüències.

En general, s’entén que les freqüències inferiors a 250 Hz són les freqüències baixes de l’espectre o sons greus; les d’entre 500 i 1000 Hz són freqüències mitjanes o sons mitjans, i les de més de 1000 Hz són freqüències agudes o sons aguts. Però aquesta divisió és encara massa àmplia per disposar d’una anàlisi acurada de la descomposició del so en freqüències.

Per analitzar l’espectre del camp audible entre 20 i 20000 Hz aquest s’ha de dividir en deu bandes de freqüències. Cada una d’aquestes bandes són consecutives, ocupen una amplada de freqüències de l’espectre anomenat banda d’octava i cada banda s’anomena pel valor de la freqüència central. Aquest valor està normalitzat i com a característica cada un d’aquests valors és el doble de l’anterior i la meitat del precedent.
Pel que fa al soroll ambiental i quan sigui necessari fer un anàlisi per freqüències, en general és suficient analitzar el nivell a cada banda d’octava entre la dels 63 Hz i els 4000 Hz.

A continuació es mostra el valor central de cada una de les bandes d’octava de l’espectre audible, juntament amb l’atenuació en dB que li correspon a cada banda d’octava, de la corba de ponderació A.

Taula 12.- Bandes d’octava i atenuació del filtre A al centre de la banda

<table>
<thead>
<tr>
<th>CENTRE DE BANDA (Hz)</th>
<th>ATENUACIÓ CORBA A (dBA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,5</td>
<td>-39,4</td>
</tr>
<tr>
<td>63</td>
<td>-26,2</td>
</tr>
<tr>
<td>125</td>
<td>-16,1</td>
</tr>
<tr>
<td>250</td>
<td>-8,6</td>
</tr>
<tr>
<td>500</td>
<td>-3,2</td>
</tr>
<tr>
<td>1.000</td>
<td>0</td>
</tr>
<tr>
<td>2.000</td>
<td>+1,2</td>
</tr>
<tr>
<td>4.000</td>
<td>+1</td>
</tr>
<tr>
<td>8.000</td>
<td>-1,1</td>
</tr>
<tr>
<td>16.000</td>
<td>-6,6</td>
</tr>
</tbody>
</table>

A.3. -Paràmetres de mesurament

Per mesurar sorolls continus, és a dir, amb poca variació temporal com, per exemple, el soroll d’un ventilador, el paràmetre de mesura és LpA, però hi ha molts sorolls amb una gran variació temporal, fet que ha originat d’altres paràmetres més descriptius. Es mostren els d’aplicació més general.
A.3.1.- Nivell sonor equivalent: LAeq, T

Els sorolls molt variables, com ara el soroll de trànsit i molts sorolls industrials, fluctuen de tal manera que cal amitjar-ne l'energia sonora per expressar-ne, amb fiabilitat i amb una sola xifra, el nivell de pressió sonora. El paràmetre que s'utilitza és el nivell sonor equivalent o LAeq, T. Aquest paràmetre permet referir un soroll variable, en un interval T, al nivell de pressió sonora equivalent al d'un soroll continu. Si un soroll de trànsit mesurat durant 1 h dona LAeq, 1h 74, vol dir que l'energia sonora d'aquest soroll és equivalent a la d'un soroll continu de 74 dBA, durant 1h.

L'equip de mesura integra l'energia sonora durant el temps que dura el mesurament; per tant, el resultat obtingut és el resultat durant un temps de mesurament determinat, que cal expressar bé sigui explícitament o mitjançant el símbol corresponent. Per exemple, si el mesurament és durant 1h s'expressa LAeq, 1h; si es fa referència a 24h seguides de mesurament, s'expressa LAeq, 24h, i si és durant un interval com per exemple de les 7 h del matí a les 22h, s'expressa LAeq, 7-22h.

L'expressió que calcula el nivell sonor equivalent, partint d'intervals de temps de soroll continu o variable, és la següent:

\[\text{LAeq} = 10 \log \left(\frac{1}{N} \sum 10^{\text{Li}/10} \right) \]

(Eq. 5)

Essent \(X_i \): la fracció de temps al nivell \(L_i \), i \(\sum X_i = 1 \)

A.3.2.- Nivells estadístics: LAN,T

En acústica, s'anomenen paràmetres estadístics els nivells sonors que han estat ultrapassats durant un percentatge determinat de temps de mesurament. Per exemple, LA10 72 vol dir que, durant el 10 % del temps d'observació, els nivells de soroll sobrepassen els 72 dBA. El nivell LA90 46 significa que durant el 90 % del temps, els nivells de soroll sobrepassen els 46 dBA. El nivell LA90 d'un soroll és conegut com el nivell de soroll de fons. El nivell de soroll de fons, obtingut amb el LA90, o estimat per altres procediments, és de molta utilitat en avaluar soroll ambiental.
Els paràmetres estadístics més emprats són els següents: LA1, LA10, LA50, LA90 i LA99, però pot utilitzar-se qualsevol dels compresos entre LA0,1 i LA99,9, segons les necessitats i el tipus de sonòmetre de què es disposa.

Els nivells LA1 i LA10 posen de manifest la importància de les puntes de soroll, durant el temps de mesurament. Com més elevats son aquests paràmetres, respecte per exemple LAeq, més nivells alts puntuals són presents durant el mesurament.

A.3.3. - Nivell de contaminació del soroll: NPL

Aquest índex NPL (Noise Pollution Level), no és exactament una mesura de soroll, sinó que és un intent de valorar el nivell de molèstia generat pel soroll. Per fer-ho, aquest mètode combina el soroll que hi ha a l’ambient amb el grau de regularitat del soroll (un soroll és més molest quan més variacions presenta).

Per calcular el NPL s’han d’haver fet les mesures prèvies amb corba de ponderació A.

La definició bàsica és la següent:

\[
NPL = L_{eq,T} + 2,56 \cdot \sigma
\] \hspace{1cm} (Eq. 6)

\[
NPL = \text{nivell de contaminació del soroll (dBA)}
\]

\[
L_{eq,T} = \text{nivell sonor equivalent (dBA)}
\]

\[
\sigma = \text{desviació estàndard dels nivells instantànis}
\]

Aquest procediment de mesura de la molèstia del soroll és molt utilitzat als EUA.

Per altra banda, hi ha una altra manera d’obtenir el valor de NPL sense haver d’utilitzar el valor de \(\sigma \). Aquesta manera és la següent:
NPL = L_{eq,T} + \alpha \cdot (L_{10} - L_{90}) \quad (Eq. 7)

NPL = nivell de contaminació de soroll (dBA)
L_{eq,T} = nivell sonor equivalent (dBA)
\alpha = 1 \text{ segons 'D.W. Robinson, 1969'}
L_{10} = nivell estadístic 10 (dBA)
L_{90} = nivell estadístic 90 (dBA)

A.4.- Equips de mesurament

A.4.1.- Sonòmetres

El sonòmetre és l’eina imprescindible per mesurar el nivell de soroll que hi ha en un moment determinat i per verificar amb garanties el compliment de normatives i d’ordenances de sorolls. El mesurament correcte del soroll és d’una importància cabdral per les conseqüències que se’n poden derivar. Cal tenir coneixement de la precisió i de les limitacions dels instruments i de les tècniques de mesurament.

Els elements principals d’un sonòmetre són: micròfon, un pre–amplificador, un amplificador i un dispositiu de lectura analògica o digital. El sonòmetre processa els nivells de soroll a mesura que els rep i els mostra successivament o a intervals determinats per facilitar-ne la lectura.

Micròfons

La majoria de micròfons tenen la sensibilitat màxima a incidència frontal, quan el so arriba perpendicular al diafragma del micròfon; per tant, es recomana orientar el micròfon cap a la font de soroll, si es coneix d’on procedeix el so.

Si es disposa d’un sonòmetre equipat amb micròfon de resposta màxima a incidència aleatòria, el micròfon s’ha d’orientar en un angle de 90° respecte a la direcció de la font de soroll.
Temps d'integració

Els dos temps d'integració fonamentals dels sonòmeters són el fast o ràpid, que té una constant de 125 ms i l'slow o lent, que la té d’1 s. Altres temps d'integració de què disposen alguns sonòmeters són l’impuls i el pic, el darrer dels quals s’utilitza en avaluacions de risc de sordesa en l’exposició a sorolls impulsius en llocs de treball.

El temps d'integració que cal emprar són els que les ordenances i les normatives especifiquin, però és imprescindible fer constar en l’expressió del resultat de nivell de soroll el temps d'integració utilitzat.

Tipus de sonòmeters

Una característica de qualsevol sonòmetre o equip de mesuraments és el grau de precisió. Normes nacionals i internacionals classifiquen els sonòmeters segons el seu grau de precisió. La norma CEI 651, de la Comissió Electrotècnica Internacional, els classifica en quatre tipus: els sonòmeters de tipus 0, típicament per a ús en la botòria d'acústica; els de tipus 1, coneguts també com a sonòmetre de precisió; els de tipus 2, sonòmeters per a aplicacions generals, i els de tipus 3, sonòmeters que permeten tan sols una apreciació de nivell. Per a usos d’enginyeria, de verificació d’ordenances i de control de soroll ambiental, es recomana d'utilitzar sonòmeters de tipus 1 o de tipus 2 i rebutjar l’ús dels de tipus 3.

Cada cop es fa més difícil classificar els sonòmeters per les seves funcions, ja que hi ha una oferta d’equips amplia que facilita unes prestacions o combinació de prestacions molt variables. Com a tendència general, s’observa que molts sonòmeters són cada cop més interactius amb l’ordinador i d’aquesta manera s’aprofiten els avantatges d’un equip de mesura petit, autònom i de bona precisió amb una capacitat d’anàlisi i memòria molt gran com és la d’un ordinador.

Sonòmetre bàsic

El sonòmetre bàsic conté, com a mínim, el filtre A i els temps d'integració fast i slow. La gamma de mesura és de 25 o 30 dBA fins als 120 o 130 dBA. És un equip de maneig simple. En alguns, s’hi afegeix una retenció de lectura de nivell màxim, que és necessària en el mesurament d’emissió de soroll de vehicles individuals i útil en la lectura de sorolls impulsius.
Sonòmetres integradors

Els sorolls de trànsit o el de les indústries que emeten nivells de soroll variable es mesuren amb sonòmetres que disposen de lectura de nivell de soroll equivalent LAeq,T. Aquests sonòmetres s’anomenen integradors ja que integren les variacions o fluctuacions d’energia sonora i calculen com a resultat el nivell de soroll equivalent.

Els sonòmetres integradors solen incloure les prestacions del sonòmetre bàsic. Alguns sonòmetres integradors permeten també mesurar el LAE.

Sonòmetres estadístics

Alguns tipus de sonòmetres s’anomenen estadístics perquè faciliten dades de nivells que han estat ultrapassats durant un percentatge determinat del temps de mesurament. Hi ha sonòmetres que mesuren els nivells següents: LA1, LA10, LA50, LA90 i LA99 i, fins i tot, tots els compresos entre LA0,1 i LA99,9. Tots aquests equips disposen de memòria, porten un rellotge intern i poden programar-se per començar a mesurar i aturar-se en un temps prefixat. Una vegada recollida la informació, es pot transmetre a un ordinador i utilitzar-la o tractar-la amb el programa adequat.

A.4.2. Calibradors

L’única manera de poder assegurar la fiabilitat de l’instrument de mesurament és amb el seu calibratge periòdic. Per calibrar amb garantia suficient l’estat general d’un sonòmetre s’utilitzen calibradors acústics portàtils i molt manejables. El calibratge complet de l’equip, tan sols el poden fer el fabricant de l’equip o els laboratoris especialitzats. El calibrador acústic genera un so estable a un nivell i a una freqüència que venen indicades en l’aparell. Per calibrar el sonòmetre s’ha de mantenir en posició vertical, el calibrador s’ha d’acoblar al micròfon. L’accionament amb un petit tornavís sobre el dispositiu d’ajust del sonòmetre permet d’ajustar la lectura del sonòmetre al nivell patró que el calibrador genera. La major part de calibradors operen a la freqüència de 1000 Hz; per tant, pot calibrar-se amb la corba de ponderació A sense haver de fer correccions per a aquest concepte.
El llibre d’instruccions del calibrador indica el nivell patró, la freqüència, les correccions per temperatura i per pressió atmosfèrica i la precisió de calibratge. La precisió n’acostuma a ser de ± 0,2 a ± 0,3 dB.
És convenient calibrar el sonòmetre abans i després de cada mesura o series de mesures. D’aquesta manera, es pot assegurar que si el calibratge inicial i el final són correctes també ho seran les lectures intermèdies. Els calibradors són susceptibles de variacions en el transcurs del temps. Per consegüent, n’és recomanable una revisió anual.

A.4.3.- Filtres

Hi ha sonòmetres que porten filtres de banda d’octava o d’un terç d’octava. Alguns sonòmetres els porten ja incorporats, i també hi ha models que disposen de filtres que es poden acoblar al sonòmetre a voluntat.
La lectura es fa successivament per a cada una de les bandes de freqüència. Alguns equips mostren en pantalla totes les bandes de freqüència d’octava o de terç d’octava alhora, en un diagrama de barres que mostra les variacions de nivell per freqüència en temps real.

A.4.4.- Enregistradors gràfics i impressores

En ocasions és convenient visualitzar o guardar un registre de les dades que es van mesurant. La sortida en corrent continu o altern d’un sonòmetre pot acoblar-se a equips que enregistren el nivell de pressió sonora amb una ploma sobre una cinta de paper calibrada en decibels, la velocitat de sortida de la qual pot guardar-se.
També de vegades és útil abocar directament en impressores les dades numèriques dels nivells emmagatzemats en la memòria d’alguns tipus de sonòmetres.

A.5.- Càlculs en decibels

Moltes vegades és necessari efectuar operacions amb decibels; per exemple: sumar el nivell de soroll de dues o més fonts, restar del nivell de soroll d’una font sonora altres fonts
sonores, restar del nivell de soroll d’una font sonora el soroll de fons, conèixer el nivell de la potència sonora total de dues fonts o més màquines o calcular el resultat en dBA d’unes analisis per bandes d’octava.

Com que es tracta d’unitats logarítmiques, no es poden sumar ni restar aritmèticament; per tant, 37 dB mes 35 dB no fan 72 dB, sinó que cal la formula següent:

\[L_x = 10 \log \left(\sum 10^{L_i/10} \right) \quad (Eq. 8) \]

En què X pot ser qualsevol dels paràmetres expressats en decibels: pressió, potència, etc.

Si s’entra a analitzar una mica la fórmula es veuen, essencialment, tres coses interessants:

- En cas de tenir vàries fonts i una ser molt més important que les altres, el resultat final és molt semblant a la font més important. Per exemple, si es tenen tres fonts, una de 80 dBA, una de 65 dBA i una de 60 dBA, el resultat de la suma és de 80,18 dBA (canvi més petit que la òïda humana pot apreciar és d’1 dBA). Per tant, a la pràctica, les fonts de 65 dBA i de 60 dBA són despreciables.

- En cas de tenir dues fonts iguals, el nivell s’incrementa en 3 dBA. Per exemple, si hi ha dues fonts de 60 dBA cadascuna, s’obté un nivell de pressió sonora de 63 dBA. És a dir, que doblar el nombre de fonts de soroll de les mateixes característiques només suposa un increment de 3 dBA.

- En cas d’haver de solucionar un problema originat per sorolls de vàries fonts, sempre s’haurà de començar actuant sobre la font més important. Per exemple, si hi ha dues fonts de 85 i 80 dBA, es té un nivell total de 86,19 dBA. Si es deixa la font de 85 dBA com estava i s’aconsegueix reduir la de 80 dBA fins als 60 dBA, el nivell total serà de 85,01 dBA, havent-se reduït només en 1,18 dBA. És a dir, que s’ha aconseguit una reducció insignificant. De fet, la reducció mínima que s’ha d’assolir per tal que es pugui començar a apreciar és d’uns 3 dBA.

Per a fer el càlcul de la resta de decibels utilitzarem la mateixa fórmula, però restant. És a dir, si volem calcular quan serien 41.1 dB menys 36 dB, farem:

\[L_{pA} = 10 \log \left(10^{41.1/10} - 10^{36/10} \right) = 39.5 \]
A.6.- Fonts de soroll

Les dimensions i les formes de les fonts de soroll influeixen en la manera en què el soroll es distribueix en l'espai.

Un emissor, com per exemple una sola màquina, un sol vehicle o un altaveu, és una font puntual i a efectes de càlcul es considera que la seva energia sonora està concentrada en un punt. Si la font emissora és constituïda per fonts puntuals múltiples al llarg d'una línia com per exemple, fileres de vehicles en una carretera o una autopista, s'anomena font lineal. I si la font pren forma d'una superfície com, per exemple, un gran finestral d'una nau industrial, en què el soroll de la indústria és radiat a l'exterior a través dels vidres, s'anomena font de superfície.

A.6.1.- Font puntual

És una font sonora que situada en un espai obert, en l'aire lliure i sense obstacles radia so amb la mateixa energia sonora en totes direccions, és a dir omnidireccionalment. L'energia sonora que radia aquest tipus de font es propaga en ones esfèriques que s'atenuen proporcionalment amb la distància. Per tant el nivell sonor serà inversament proporcional al quadrat de la distància, en altres paraules, cada dop que es duplica la distància, el nivell de pressió sonora és atenuat en 6 dB.

Figura 55. Atenuació del nivell de pressió d'una font puntual en relació a la distància.
Per poder fer càlculs senzills però suficientment acurats, la major part de situacions reals de màquines s’assimilen a aquest model de font puntual i omnidireccional.

Tant si es coneix el nivell de potència sonora de la font com si se’n coneix el nivell de pressió sonora a una determinada distància, es poden calcular els nivells de soroll a altres distàncies.

Si es coneix la potència sonora (LW) d’una font, les relacions que permeten calcular el nivell de pressió sonora (LP) a una determinada distància r i en l’aire lliure són les següents:

\[
LP = LW - 20 \log r - 11 \quad \rightarrow \quad \text{font puntual en l’aire (avions)} \quad (Eq. 9)
\]

\[
LP = LW - 20 \log r - 8 \quad \rightarrow \quad \text{font puntual sobre una superfície reflectora} \quad (Eq. 10)
\]

Aquesta última fórmula és la que cal aplicar en tots els casos en què la font es troba sobre una superfície més o menys reflectora, com una terrassa, una façana o un paviment de ciment.

Si no es coneix la potència sonora LW d’una font, però es disposa d’un sonòmetre, es pot mesurar el nivell de pressió sonora Lp1 a una distància determinada r1 i calcular-ne el nivell sonor Lp2 a una altra distància r2, mitjançant la relació següent:

\[
Lp2 = Lp1 - 20 \log \left(\frac{r2}{r1} \right) \quad (Eq. 11)
\]

Si \(r2/r1 = 2 \), és a dir, cada vegada que es dobla la distància entre el receptor i la font sonora, l’atenuació és de:

\[
20 \log 2 = 6 \text{ dB}
\]
A.6.2.- Font en línia

En aquest cas, la font sonora situada sobre una superfície dura radia en forma de mig cilindre i cada vegada que, a partir d’una certa distància, ens n’allunyem el doble, el nivell de pressió sonora es redueix en 3 dB.

En el cas de les carreteres, les autopistes i les fonts en línia similars, si es consideren altres factors de propagació com ara interferències amb el terra proper més o menys absorbent, es pot estimar que l’atenuació és la següent:

És a dir, cada vegada que es dobla la distància a la font sonora, l’atenuació del so és de 4,2 dB.

Un criteri generalitzat és que sempre que es fa referència a un nivell de soroll calculat a l’exterior dels edificis, el nivell que s’ha de donar en dBA ha de tenir en compte les reflexions del mateix edifici, ja que aquest nivell és el que mesurarà un sonòmetre. L’increment de nivell a causa d’aquestes reflexions es considera de l’ordre de 3 dBA. Si el punt de recepció és un parc o un jardí, sense reflexions properes, no caldrà afegir al càlcul els 3 dBA. Tampoc no caldrà afegir-los-hi si el mesurament es fa al centre d’un balcó o d’una finestra oberts de bat a bat, i si el punt de mesurament és a menys de 3,5 m d’un canto de l’edifici.

A.6.3.- Font en superfície

Aquest tipus de fonts són les menys usuals. En realitat són models de fonts sonores que es poden generar idealment en un laboratori. Generalment, aquest tipus de fonts s’obvien i es solen assimilar a fonts puntuals, utilitzant les formulacions pròpies d’aquestes. Malgrat això, en ocasions es consideren sons generats a partir de superfícies planes, com ara finestres, com a fonts en superfície. La seva propagació segueix una direcció única.

L’atenuació és de 0 dB al doblar-se la distància respecte la font sonora.

A la pràctica però, aquest model només és aplicable a distàncies curtes, i per tant la llei d’atenuació citada anteriorment es compleix fins a distàncies relacionades directament amb
la secció de la font emissora (quant més gran són les dimensions de la font sonora, a més distància es pot aplicar l’esmentada llei.

El que en realitat succeeix és que a partir d’una certa distància, la propagació és en línia, i després es converteix en puntual. Aquest procés es pot veure a la figura 50.

![Figura 56.- Atenuació de les ondes sonores](image)

En aquest cas, a distàncies curtes el nivell és el mateix. A partir d’una certa distància, la propagació és en línia, i després es converteix en puntual.

Per determinar el nivell de soroll es pot considerar la superfície reduïda a un punt.

A.7.- Soroll de trànsit

En el conjunt del soroll ambiental, el soroll de trànsit en representa el 80 % del total.

És, per tant, la font generadora de molèstia més important en el medi.

En la contaminació sonora produïda pel trànsit els elements bàsics que intervenen en l’explicació del fenomen són també: els focus emissors, el medi atmosfèric o camí de propagació i els receptors.
Sobre la seqüència, lògica emissor - medi - receptor, ha d’establir-se l’avaluació dels impactes i l’adopció de mesures preventives o correctores per minimitzar el soroll que emet el trànsit dels vehicles a motor.

Els nivells de soroll que l’emissor produeix depenen d’aspectes diversos com: la potència sonora del motor del vehicle, l’estat del tub d’escapament, la manera de conduir, la velocitat de circulació, el nombre de vehicles que circulen en una via determinada, el tipus de via i de ferm, etc.

En el camí de propagació, hi intervenen la distància dels vehicles als edificis receptors, la presència d’elements reflectors o d’obstacles, el tipus de superfície que hi ha entre emissor i receptor, etc.

Forma part del receptor en el cas d’edificis, el grau d’aïllament acústic de finestres, balcons i les persones que reben el soroll.

Per analitzar el trànsit com una font d’emissió de soroll, es pot prendre, d’una banda, el conjunt de vehicles que circulen per una via determinada i, d’una altra, els vehicles de manera individual.

Pel que fa al conjunt de vehicles o font en línia, se’n determina el nivell de soroll mitjançant mesuraments, tenint en compte les parts mecàniques i el dispositiu d’escapament.

Indicadors de trànsit

El nivell de soroll de trànsit urbà i interurbà ve definit d’acord amb els indicadors següents:

- el nombre de vehicles lleugers que circulen per unitat de temps
- el nombre de vehicles pesats per unitat de temps
- la velocitat de circulació
- el pendent de la via
- el tipus de ferm
- les reflexions dels edificis a cada banda de la via
Es consideren vehicles pesats els camions, els autocars, els autobusos i els tractors, i vehicles lleugers els turismes, les furgonetes, els minibusos, les motocicletes i els ciclomotors.

La intensitat mitjana diària de vehicles (IMD) és l'indicador que expressa el trànsit d'una via.

L'IMD es calcula a partir del nombre total de vehicles anual que circulen per una via i es pot obtenir mitjançant el seu comptat o bé de les dades enregistrades per l'administració responsable de la via.

En fer enregistraments per obtenir l'IMD cal tenir en compte d'evitar el comptat en períodes de vacances escolars, el dia anterior i posterior als ponts, festius i en dies amb esdeveniments esportius o culturals importants. Es recomana de comptar els vehicles en dimarts, dimecres o dijous.

Perquè les dades siguin utilitzables per fer càlculs o prediccions de nivell de soroll, els equips utilitzats han de permetre desglossar el nombre dels vehicles lleugers dels pesats. El nombre de vehicles se sol expressar en forma de percentatge sobre l'IMD o sobre el nombre de vehicles per hora, durant el dia i durant la nit.

A partir de l’IMD es poden definir els indicadors sobre el nombre de vehicles lleugers o pesats/h, que circulen durant el dia (Nd), durant la nit (Nn) i en hora punta (Hp).

L’Nd és el valor resultant de l’expressió següent:

\[Nd = \frac{IMD}{17} \quad \text{(Eq. 12)} \]

Aquest flux de vehicles representa una mitjana del trànsit horari entre les 7h i les 22h, en situacions d’una circulació urbana densa, i es prendrà com a referència mentre no ho justifiquin situacions molt particulars. Aquest flux horari sol ser aconseguit o sobrepassat unes sis hores al dia.

L’Nn pren com a referència:

\[Nn = IMD \times 0,009 \quad \text{(Eq. 13)} \]
En hores punta el flux màxim de vehicles per hora (Hp) depèn de la grandària de la població. Una relació que es correspon a l’anterior situació general de circulació urbana densa és la següent:

\[Hp = \frac{IMD}{10} \]
\text{(Eq. 14)}

I en poblacions de menys de 100.000 habitants:

\[Hp = \frac{IMD}{8} \]
\text{(Eq. 15)}

Si no es disposa de dades en les grans vies urbanes en projecte, es prendrà una circulació mitjana Nd de 600 vehicles/h i per via de circulació. La velocitat apropiadament per fer els càlculs és de 50 Km/h i sinó la màxima autoritzada.

En aquestes vies urbanes, si no es disposa d’estimacions precises, es pot prendre com a percentatge de vehicles pesats el següent:

- Percentatge de vehicles pesats de dia = 10 %
- Percentatge de vehicles pesats de nit = 5 %

En vies perifèriques i autopistes el percentatge de vehicles pesats és molt més superior i oscil·la entre el 15 % i el 20 % o més.

En situacions singulars com ara:

- Circulació nocturna per cinturons de grans ciutats
- Vies d’unió entre poblacions molt grans
- Accessos a aeroports, en hores punta molt definides
- Zones industrials amb itineraris d’elevat trànsit pesant
- Itineraris amb fort trànsit estacional o de cap de setmana, com poden ser zones del litoral o pistes d’esquí a l’hivern.
- Vies d’accés a zones universitàries o a zones amb grans camps d’esport

És recomanable fer el comptat de vehicles entre 15 i 30 minuts distingint-los per categories.
Annex B: PUNTS DE MESURA
Annex B: PUNTS DE MESURA

En aquest annex es poden veure les fitxes omplertes en el moment de fer les mesures.

Aquestes fitxes corresponen a cada mesura identificada amb el seu codi. Contenen tota la informació referent a la mesura, tal com situació, dia i hora en què ha estat feta, cotes del punt de mesura a l'eix del vial, a la façana del davant, a l'inici del vial, mesures preses, observacions que hi ha hagut, ...

L'apartat d'observacions inclou aspectes que han pogut succeir en l'interval de la mesura, és a dir, el pas d'alguna ambulància, alguna moto molt sorollosa, pitades d'algun vehicles, pas de tractors, etc. Per tant en aquest apartat hi trobarem incidències que poden haver influït en la mesura.

El fet que hi hagi mesures amb observacions, no implica necessàriament que la mesura s'hagi hagut de repetir. Sols s'hauria procedit a efectuar la mesura de nou en el cas que els resultats no haguéssin estat coherents amb la verificació, fet que posaria de manifest que la observació ha estat realment una interferència i ha fet desviar els resultats de la mesura.

A continuació es mostren les fitxes de totes les mesures realitzades.
<table>
<thead>
<tr>
<th>Codi Mesura</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrer / Situació</td>
<td>Avinguda de França, nº 242</td>
</tr>
<tr>
<td>Tram</td>
<td>1</td>
</tr>
<tr>
<td>Amplada aprox.</td>
<td>17m a l’eix del vial, 3,25 m els 2 carrils d’un sentit.</td>
</tr>
<tr>
<td>Dia</td>
<td>07/03/2006</td>
</tr>
<tr>
<td>Hora inici</td>
<td>17:45 hores</td>
</tr>
<tr>
<td>Duració mesura</td>
<td>10’11”</td>
</tr>
</tbody>
</table>

Mesura vs Comptatge Vehicles

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{eq}</td>
<td>72,3</td>
</tr>
<tr>
<td>L_{10}</td>
<td>75,7</td>
</tr>
<tr>
<td>L_{90}</td>
<td>70,4</td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>--</td>
</tr>
<tr>
<td>Duració</td>
<td>10’11’</td>
</tr>
<tr>
<td>V. Lleugers</td>
<td>302</td>
</tr>
<tr>
<td>V. Pesats</td>
<td>26</td>
</tr>
<tr>
<td>Tipus trànsit</td>
<td>fluid</td>
</tr>
</tbody>
</table>

Taula 13.- Fitxa de la mesura número 1

<table>
<thead>
<tr>
<th>Codi Mesura</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrer / Situació</td>
<td>Avinguda de França, nº 208</td>
</tr>
<tr>
<td>Tram</td>
<td>1</td>
</tr>
<tr>
<td>Amplada aprox.</td>
<td>17 m a l’eix del vial, 38 m amplada total.</td>
</tr>
<tr>
<td>Dia</td>
<td>14/03/2006</td>
</tr>
<tr>
<td>Hora inici</td>
<td>17:30 hores</td>
</tr>
<tr>
<td>Duració mesura</td>
<td>10’ 4”</td>
</tr>
</tbody>
</table>

Mesura vs Comptatge Vehicles

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{eq}</td>
<td>70,8</td>
</tr>
<tr>
<td>L_{10}</td>
<td>73,5</td>
</tr>
<tr>
<td>L_{90}</td>
<td>61,9</td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>Lateral, distància punt mesura a inici lateral 8 metres.</td>
</tr>
<tr>
<td>Duració</td>
<td>10’ 4”</td>
</tr>
<tr>
<td>V. Lleugers</td>
<td>339</td>
</tr>
<tr>
<td>V. Pesats</td>
<td>26</td>
</tr>
<tr>
<td>Tipus trànsit</td>
<td>fluid</td>
</tr>
</tbody>
</table>

Taula 14.- Fitxa de la mesura número 2
Taula 15.- Fitxa de la mesura número 3

Codi Mesura	4
Carrer / Situació	Avinguda de França, davant recuperacions Auladell
Tram	2
Amplada aprox.	17 m a l'eix del vial, 7m a l'eix de l'inici del carril
Dia	14/03/2006
Hora inici	18:45 hores
Duració mesura	10’ 4”

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{eq}</td>
<td>69</td>
</tr>
<tr>
<td>L_{10}</td>
<td>71,6</td>
</tr>
<tr>
<td>L_{90}</td>
<td>63,1</td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>Soroll industrial de fons poc perceptible</td>
</tr>
<tr>
<td>Duració</td>
<td>10’ 4”</td>
</tr>
<tr>
<td>V. Lleugers</td>
<td>385</td>
</tr>
<tr>
<td>V. Pesats</td>
<td>9</td>
</tr>
<tr>
<td>Tipus trànsit</td>
<td>fluid</td>
</tr>
</tbody>
</table>

Taula 16.- Fitxa de la mesura número 4

Codi Mesura	3
Carrer / Situació	Avinguda de França, nº 183 (davant Torres)
Tram	2
Amplada aprox.	22 m a l'eix del vial, 13 m al principi del vial, 76 m a paret nau.
Dia	14/03/2006
Hora inici	18:05 hores
Duració mesura	10’ 32”

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{eq}</td>
<td>68,4</td>
</tr>
<tr>
<td>L_{10}</td>
<td></td>
</tr>
<tr>
<td>L_{90}</td>
<td></td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>--</td>
</tr>
<tr>
<td>Duració</td>
<td>10’ 32”</td>
</tr>
<tr>
<td>V. Lleugers</td>
<td>341</td>
</tr>
<tr>
<td>V. Pesats</td>
<td>17</td>
</tr>
<tr>
<td>Tipus trànsit</td>
<td>fluid</td>
</tr>
</tbody>
</table>
Codi Mesura 5

<table>
<thead>
<tr>
<th>Carrer / Situació</th>
<th>Avinguda de França, davant Aplitec (altra costat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tram</td>
<td>2</td>
</tr>
<tr>
<td>Amplada aprox.</td>
<td>8m a l'inici del vial, 15 m a l'eix del vial</td>
</tr>
<tr>
<td>Dia</td>
<td>14/03/2006</td>
</tr>
<tr>
<td>Hora inici</td>
<td>19:10 hores</td>
</tr>
<tr>
<td>Duració mesura</td>
<td>10’ 27”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{eq}</td>
<td>71,7</td>
</tr>
<tr>
<td>L_{10}</td>
<td></td>
</tr>
<tr>
<td>L_{90}</td>
<td></td>
</tr>
<tr>
<td>Tipus d'asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>--</td>
</tr>
</tbody>
</table>

Taula 17.- Fitxa de la mesura número 5

Codi Mesura 6

<table>
<thead>
<tr>
<th>Carrer / Situació</th>
<th>Dr. Josep Trueta, nº 23 (mesura de segona línia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tram</td>
<td>1</td>
</tr>
<tr>
<td>Amplada aprox.</td>
<td></td>
</tr>
<tr>
<td>Dia</td>
<td>14/03/2006</td>
</tr>
<tr>
<td>Hora inici</td>
<td>19:40 hores</td>
</tr>
<tr>
<td>Duració mesura</td>
<td>6’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{eq}</td>
<td>56,7</td>
</tr>
<tr>
<td>L_{10}</td>
<td></td>
</tr>
<tr>
<td>L_{90}</td>
<td></td>
</tr>
<tr>
<td>Tipus d'asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>--</td>
</tr>
</tbody>
</table>

Taula 18.- Fitxa de la mesura número 6
Codi Mesura 7

<table>
<thead>
<tr>
<th>Carrer / Situació</th>
<th>Avinguda de França, davant Merk-Mueble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tram</td>
<td>3</td>
</tr>
<tr>
<td>Amplada aprox.</td>
<td>23 m a l’eix del vial, 16 m al principi del carril.</td>
</tr>
<tr>
<td>Dia</td>
<td>21/03/2006</td>
</tr>
<tr>
<td>Hora inici</td>
<td>17:30 hores</td>
</tr>
<tr>
<td>Duració mesura</td>
<td>12’ 58”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{A_{eq}}$</td>
<td>73,3</td>
</tr>
<tr>
<td>L_{10}</td>
<td>75,5</td>
</tr>
<tr>
<td>L_{90}</td>
<td>68,9</td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Observacions

Ambulància, lateral (25 lleugers i 4 pesats ja inclosos)

Taula 19.- Fitxa de la mesura número 7

Codi Mesura 8

<table>
<thead>
<tr>
<th>Carrer / Situació</th>
<th>Avinguda de França, costat Balti, davant Galerias Tresillo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tram</td>
<td>3</td>
</tr>
<tr>
<td>Amplada aprox.</td>
<td>20 m a l’eix del vial, 13 m a l’inici del carril</td>
</tr>
<tr>
<td>Dia</td>
<td>21/03/2006</td>
</tr>
<tr>
<td>Hora inici</td>
<td>18:00 hores</td>
</tr>
<tr>
<td>Duració mesura</td>
<td>10’ 23”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{A_{eq}}$</td>
<td>71,8</td>
</tr>
<tr>
<td>L_{10}</td>
<td>74,6</td>
</tr>
<tr>
<td>L_{90}</td>
<td>64,7</td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Observacions

presència d’un gos (no borda)

Taula 20.- Fitxa de la mesura número 8
Codi Mesura	9
Carrer / Situació	Avinguda de França
Tram	3
Amplada aprox.	11 m a l’eix del vial, 4 m al principi del carril
Dia	21/03/2006
Hora inici	18:45 hores
Duració mesura	10’ 09”

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>La<sub>eq</sub></td>
<td>77,3</td>
</tr>
<tr>
<td>L<sub>10</sub></td>
<td></td>
</tr>
<tr>
<td>L<sub>90</sub></td>
<td></td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>mesura feta a 1 m de la paret del darrera (en el mapa no hi és)</td>
</tr>
</tbody>
</table>

Taula 21.- Fitxa de la mesura número 9

Codi Mesura	10
Carrer / Situació	Avinguda de França, costat Reine S.A. descampat
Tram	1
Amplada aprox.	40 m a l’eix del vial, i 65 m a la façana edifici del darrera.
Dia	21/03/2006
Hora inici	19:20 hores
Duració mesura	10’ 4”

<table>
<thead>
<tr>
<th>Mesura</th>
<th>Comptatge Vehicles</th>
</tr>
</thead>
<tbody>
<tr>
<td>La<sub>eq</sub></td>
<td>62,8</td>
</tr>
<tr>
<td>L<sub>10</sub></td>
<td>65,5</td>
</tr>
<tr>
<td>L<sub>90</sub></td>
<td>57,9</td>
</tr>
<tr>
<td>Tipus d’asfalt</td>
<td>Normal</td>
</tr>
<tr>
<td>Observacions</td>
<td>--</td>
</tr>
</tbody>
</table>

Taula 22.- Fitxa de la mesura número 10
Annex C: ESTUDI ECONÒMIC
Annex C: ESTUDI ECONÒMIC

<table>
<thead>
<tr>
<th>CODI</th>
<th>DESCRIPCIÓ</th>
<th>UNITAT</th>
<th>QUANTITAT</th>
<th>PREU UNITARI</th>
<th>IMPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>O001</td>
<td>Treball previ (tractament de la cartografia, tipus trànsit, ...)</td>
<td>h</td>
<td>10</td>
<td>20 €/h</td>
<td>200,00 €</td>
</tr>
<tr>
<td>O002</td>
<td>Treball de camp (mesures)</td>
<td>h</td>
<td>13</td>
<td>30 €/h</td>
<td>390,00 €</td>
</tr>
<tr>
<td>O003</td>
<td>Digitalització de la cartografia de Sarrià</td>
<td>h</td>
<td>5</td>
<td>25 €/h</td>
<td>125,00 €</td>
</tr>
<tr>
<td>O004</td>
<td>Simulació, interpretació i anàlisi d’alternatives</td>
<td>h</td>
<td>50</td>
<td>50 €/h</td>
<td>2.500,00 €</td>
</tr>
<tr>
<td>O005</td>
<td>Lloguer sonòmetre</td>
<td>dies</td>
<td>3</td>
<td>10 €/dia</td>
<td>30,00 €</td>
</tr>
<tr>
<td>O006</td>
<td>Amortització del programa CADNA (hores de càlcul)</td>
<td>h</td>
<td>150</td>
<td>5 €/h</td>
<td>750,00 €</td>
</tr>
<tr>
<td>O007</td>
<td>Quilometratge</td>
<td>km</td>
<td>140</td>
<td>0,24 €/km</td>
<td>33,60 €</td>
</tr>
<tr>
<td>O008</td>
<td>Redacció del projecte</td>
<td></td>
<td></td>
<td></td>
<td>700,00 €</td>
</tr>
</tbody>
</table>

SUMA 4.728,60 €

12 % BENEFICI INDUSTRIAL 567,43 €

SUMA 5.296,03 €

IVA (16 %) 847,36 €

IMPORT TOTAL 6.143,69 €