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Abstract. A model-based approach for fault diagnosis is proposed, where the fault detection is based on checking the consis-
tency of the Analytical Redundancy Relations (ARRs) using an interval tool. The tool takes into account the uncertainty in the
parameters and the measurements using intervals. Faults are explicitly included in the model, which allows for the exploitation of
additional information. This information is obtained from partial derivatives computed from the ARRs. The signs in the residuals
are used to prune the candidate space when performing the fault diagnosis task. The method is illustrated using a two-tank ex-
ample, in which these aspects are shown to have an impact on the diagnosis and fault discrimination, since the proposed method
goes beyond the structural methods.
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1. Introduction

Fault detection and diagnosis is an active area of re-
search because of the increasing demand for preven-
tion, safety, and reduction of both faults and their ef-
fect. This is specially so in industrial processes where
dangerous situations can occur.

One approach to diagnosis is model-based diagno-
sis (MBD), which is based on comparing observations
of the actual behavior of the process and the behavior
of a model of the process. Two research communities
have used the MBD approach in parallel. DX, from the
fields of computer science and artificial intelligence,
has made a contribution, among other approaches, us-
ing the consistency-based logical approach [11,19],
and FDI, from the field of automatic control, has used
the analytical redundancy approach [10,14]. In [9] the
links among concepts from both approaches are clari-
fied.

Models are representations of knowledge about
physical systems. The models used in MBD can be
obtained from physical laws, human experience, data
from the process, or from combination of the above.

*Corresponding author. Joaquim Armengol, Institut d’Informàtica
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Since different levels of abstraction can be needed,
properties such as precision, uncertainty or accuracy
are reduced, increased or even lost. The properties of
the models used in MBD have strong influence on the
diagnosis results [12].

In this paper, models of components defined by a set
of equations, which includes variables, have been used.
Deviations between the actual value of a variable and
the predicted value are used in the fault isolation task.
Deviations are qualitatively expressed by a sign denot-
ing whether the value of a variable is equal to, greater
than, or less than the predicted value and therefore dis-
carding the value of the deviation.

Some work has been carried out in the topic of tak-
ing into account deviations in symptoms (as they are
called in the DX community) or in residuals (as they
are called in the FDI community).

In [13], two approaches were presented: an interval-
based method and a sign-based method. The interval-
based method uses an anticipated dictionary of faults
and gives bounds in measurements to every fault. In the
sign-based method, faults are expressed in terms of de-
viations w.r.t. the nominal values. By studying the sign
of the partial derivatives, the faulty parameters provide
a signed influence of the parameters on each test.

The approach proposed in [8] consists of deriving
semi-automatically, qualitative deviation models from
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quantitative models developed in MatlabTM. The gen-
eral objective is to analyze the behavior in terms of:
(i) how a variable deviates from its nominal value when
a fault occurs, and (ii) how the deviation of the in-
put variables influence the deviation of the output vari-
ables.

Another proposal, described in [5], consists of cre-
ating a fault library containing qualitative information.
Data are obtained from deviations resulting from inter-
val fault detection. Qualitative information about the
deviations is used to create rules for faulty behaviors.

In [6] one approach based on parity equations uses
the sensitivity of each parity equation with respect to a
fault. The fault isolation stage consists of two steps: to
find the degree of the fault and to check the consistency
of the assumed fault from each parity equation. This
approach is restricted to a nominal steady state in a
system, so doing a static diagnosis.

This work is an attempt to improve identification
of faults in the consistency-based and analytical re-
dundancy approaches. The objective is to reduce ade-
quately the set of diagnoses and to minimize the time
required for fault identification. When enough infor-
mation becomes available, additional information ob-
tained from the fault models and their effect on the sys-
tem should be incorporated into the fault isolation task.

In Section 3, we propose a diagnosis reasoning in
which the signs of the partial derivatives are derived
from possible conflicts (as they are called in the DX
community) or analytical redundancy relations (as they
are called in the FDI community). The signs are inte-
grated into the fault signature matrix, to be compared
with the deviations of the residuals calculated using an
interval tool. The interval tool called SQualTrack [3],
described in Section 2, takes into account uncertainty
in models which improves the fault detection task with
regard to nominal predictions results.

An application example is presented in Section 4,
and finally, some conclusions are given at the end of
the paper.

2. Interval dynamic models

One way to detect faults is by comparing the real
system behavior with the predicted behavior obtained
from a model. Then a fault is detected at a time t when
the predicted behavior from the model, yr(t), is differ-
ent from the corresponding measurement, ym(t),

yr(t) �= ym(t). (1)

The consistency of the system behavior with that of
the model can be checked at a time t, by determining
the difference using

r(t) = ym(t) − yr(t), (2)

which is called the residual. When there is no fault, the
value of the residual should be zero.

Unfortunately, most of the time, the residual is
nonzero, and consequently, a continuous detection of
faults occurs. One reason is that in the industrial moni-
toring of processes, the uncertainty is often present be-
cause of the noise in sensors and signals, an imprecise
knowledge of the model parameters or a variation of
the parameters over time.

Continuous-time systems are typically described us-
ing differential equations. Usually, the input, state, and
output variables are sampled as time signals defined
over a time variable, t, which belongs to a discrete set.
All signals are assumed to be sampled synchronously
in a fixed sampling period. It is for this reason that
discrete models are used. One example of this type of
model is shown in Eq. (3), which is an n-th order SISO
(Single Input, Single Output) system, represented by a
difference equation, where u are the inputs, T is the
sampling time, and a and b are the parameters of the
system,

yt =
m+1∑

i=1

aiyt−iT +
p+1∑

j=1

bjut−jT . (3)

When the uncertainty in the variables and in the para-
meters is represented by means of intervals, the result-
ing interval models are less precise but can be accurate.

The prediction of a real-value model produces a tra-
jectory for each output variable which is a curve repre-
senting the evolution of the variable of the system with
time, yr(t). In the case of an interval model, there is
a set of models indeed and hence a set of curves (an
envelope) represents the evolution of each variable [1].
The limits of the envelope are

Yr(t) = [min(yr(t)), max(yr(t))]. (4)

2.1. SQualTrack

To compute the envelope limits, it is necessary to
compute the range of a function in a given parame-
ter space at each prediction step. This is a task re-
lated to global optimization in which the objective is
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Fig. 1. The three zones defined by the internal and external estima-
tions of the exact envelope.

to find the maximum or the minimum value of a func-
tion and the combinations of parameters to obtain this
value. This task usually requires a high computational
effort. Using the SQualTrack [3,20] software package,
results can be obtained at a lower cost by calculating
iteratively external estimations, Yrex(t) ⊇ Yr(t), of the
range of the function, which are closer at each iteration.
After an infinite number of iterations, the exact range
would be calculated, but the algorithm stops when the
external estimation is close enough to detect the fault,
thus saving much computational effort for the detec-
tion of faults. However, if no fault is detected, the algo-
rithm will never stop. This drawback can be overcome
by using an internal estimation, Yrin(t) ⊆ Yr(t), which
is included in the exact envelope. If the measurement is
within this envelope, then the fault, if it exists, will not
be detected, and so the algorithm will stop iterating.

Sometimes a fault exists but the value of a specific
variable can be included in the set of values considered
as normal at least for a period of time due to the dy-
namics of the system, the severity of the fault, etc. In
this case the fault can only be detected with a delay or
even can not be detected.

The internal and external estimations of the exact en-
velope, which are depicted in Fig. 1, define three zones.
The fault detection system guarantees that a fault ex-
ists when the measurement is out of the external enve-
lope (outer zone), so in this way, eliminating any false
alarms. However, if the measurement is in the inter-
mediate zone or in the inner zone there can be missed
alarms.

Actually, the consistency between the interval model
and the real process is performed using interval mea-
surements, which are obtained from the measurements
taking into account the uncertainties (noise, bias. . . ) of
the sensors. Therefore a fault is detected when the in-
terval measurement does not intersect with the external
estimation.

Any measurement belonging to a past time point can
be used as initial state to compute the envelopes at the
current time point. The time interval from this initial
time point to the current one is called time window.
If the window used at each prediction step has always
the same length, then a sliding time window is being
considered [2].

The number of missed alarms is reduced by using
several window lengths simultaneously, as a fault is de-
tected when there is an inconsistency in a time win-
dow. Therefore, this method maximizes the detection
of faults and, at the same time, minimizes the number
of computations required.

The iterative computation of the external and the in-
ternal estimations of the exact envelope is made by a
branch-and-bound algorithm which is very efficient be-
cause it uses the Modal Interval Analysis [21]. More-
over, the use of the Modal Interval Analysis guarantees
that this method does not generate any false alarms. If
there were false alarms, they would indicate that either
the interval model does not represent the system ade-
quately, or that the interval measurements do not rep-
resent the true values of the variables.

This fault detection method has been implemented
in the SQualTrack software package and has been ap-
plied to several real processes [4] within the European
project CHEM [7]. SQualTrack can be used either of-
fline or online.

When a fault is detected, the measured value is ei-
ther larger or smaller than the predicted value. This in-
formation, combined with qualitative information from
the model, is proposed in the following for fault diag-
nosis.

3. Fault diagnosis using the sign of the symptom

Consistency-based diagnosis (CBD) is one of the
most widely used approaches in model-based diagno-
sis within the artificial intelligence community. Possi-
ble conflicts are used for the CBD. Each possible con-
flict represents a subsystem within the system descrip-
tion containing a minimal analytical redundancy which
is capable of becoming a conflict. In [18] a set of pos-
sible conflicts is obtained by an offline analysis of a set
of equations in a model without prior knowledge of the
device fault modes.

Each possible conflict has an associated model, pc,
which is used for fault detection.

In [9,18], it is demonstrated that possible conflicts
and Analytical Redundancy Relations (ARR) are equiv-
alent for a set of given assumptions.
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The elementary analytical relations of a model can
include information on how possible faults can influ-
ence the process. These faults may be represented as
unknown extra inputs acting on the system (additive
faults), or as changes in some plant parameters (multi-
plicative faults) [10].

The constraints in each possible conflict can be
rewritten by including knowledge about the device
fault modes into the model. Additive faults can repre-
sent plant leaks or biases in sensors, for example, and
multiplicative faults can represent clogging or deterio-
ration of plant equipment, for example.

This new model that is associated with each possi-
ble conflict has a computational form (pccomp) and an
internal form (pcint). The computational form is based
on known variables, and the internal form is based on
faults, known variables and parameters. The internal
form is not computable because the value of the fault
is not known, but it does allow to abstract information
about the way in which a fault can act.

Some information is lost when the DX and FDI ap-
proaches are applied to dynamic systems. A binary
codification is used in the results of the fault detec-
tion test associated with a given ARR or possible con-
flict [17]. In particular, the sign of the symptom and the
sensitivity of the symptom with respect to each fault
is not considered. This work proposes to perform this
analysis using the internal form of the residuals.

As in [6], the sensitivity S is an m · n matrix (where
m is the number of possible conflicts, and n is the num-
ber of faults) with the entry sji. The term sji can be
viewed as being the sensitivity of the model associ-
ated with the jth possible conflict, (pcj), with respect
to the ith fault, (fi). Mathematically, this is expressed
as

sji =
∂pcint

j

∂fi
. (5)

The function sji depends on the process measure-
ments and system parameters. Then, the sign of the
sensitivities, sgn(sji), can be inferred for the domain
of the parameters and the measured signals (the func-
tion sgn(sji) takes the value of +1 when sji > 0, −1
when sji < 0, and 0 when sji = 0).

However, in some cases, sgn(sji) can change ac-
cording to the values of the measurements. Therefore,
the corresponding cell of the table of sgn(S) cannot be
completed beforehand without calculating the sensitiv-
ity at each moment.

The possible sign of a fault, f , can be:

– ±1, when f > 0 or f < 0, e.g. the fault is a bias
in a sensor; or

– +1 (when f > 0) or −1 (when f < 0), e.g. the
fault is a leak in a tank.

For the sake of clarity, in this work, faults with a sign
of ±1 or +1 are considered.

A new fault signature matrix can be constructed by
multiplying the sign of the sensitivity by the sign of
the corresponding fault. Then the elements can be:
{0, +1,−1,±1,∓1}.

– 0, if the fault does not affect the possible conflict
– +1, when a fault f > 0 affects the symptom with

a positive sign
– −1, when a fault f > 0 affects the symptom with

a negative sign
– ±1, when the sign of a fault is ±1. If f > 0, the

fault affects the symptom with a positive sign, and
if f < 0, the fault affects the symptom with a
negative sign

– ∓1, when the sign of a fault is ±1. If f > 0,
the fault affects the symptom with a negative sign,
and if f < 0, the fault affects the symptom with a
positive sign.

The diagnostic process will incrementally generate
a set of candidates when a new possible conflict is con-
firmed, without providing a transient erratic diagnosis.
Based on [9], the DX approach follows a row view of
the fault signature matrix, considering each line sepa-
rately corresponding to a confirmed possible conflict,
and isolating the possible conflicts before searching for
a common explanation. A fault signature matrix with
the sign of the symptom helps to discard some diag-
nostics.

SQualTrack guarantees that a fault exists when the
intersection between the interval measurement and the
external envelope is void. Therefore, there are two pos-
sibilities for analyzing the internal and computational
forms of the model associated with a possible conflict:
either the external envelope is greater than the inter-
val measurement, and the sign of the symptom would
be +1, or the external envelope is smaller than the in-
terval measurement, and the sign would be −1. This
can be seen in Fig. 2, where the interval measurement
is shown by the solid lines, and the inner and outer en-
velope are shown by the dotted and dashed lines, re-
spectively.
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Fig. 2. SQualTrack Fault Detection: (a) when the sign of the symp-
tom is −1, and (b) when the sign of the symptom is +1.

4. An application to coupled water tanks

4.1. System description

A well-known dynamical example of a system based
on two coupled water tanks [15] will be used to ex-
plain the obtainment of additional information from
the model for diagnostic reasoning. Figure 3 shows a
schematic drawing of the system.

The system is composed of two tanks, T1 and T2,
a valve, V1, and a controller, PI1, which receives the
current level of T1 as the input, and controls a valve,
V1, which regulates the flow of water to T1.

4.2. Model equations

The system is described by the elementary analytical
relations (EAR) shown in Table 1.

The terms qv , qs1 and qs2 denote the volumetric
flows, x1 and x2 are the heights of the water in tanks
T1 and T2, respectively, and u is the output signal of
the controller. The variables u, qv , qs1, qs2, x1, and x2
are unknown, ũ, x̃1, and x̃2 are known variables ob-
tained from sensors, and k, ks1, ks2, and S are the con-
stant parameters of the system.

This model, which is linearized, has been taken from
[15] and [16]. In this paper, it is used for compar-
ison purpose and to simplify the explanation of the
proposed strategy for fault diagnosis, but notice that
SQualTrack and the proposed method can also be used
for nonlinear models.

All the variables and parameters are considered as
intervals for the consistency test using SQualTrack.

Fig. 3. Diagram of the coupled water tanks system.

Table 1

Elementary analytical relations of the two coupled tanks system

Elementary relations Component

(a) qv = ku Valve

(b) S
dx1
dt = qv − qs1 Upper tank

(c) qs1 = ks1x1 Output pipe upper tank

(d) S
dx2
dt = qs1 − qs2 Lower tank

(e) qs2 = ks2x2 Output pipe lower tank

(f) ũ = u D/A converter

(g) x̃1 = x1 x1 sensor

(h) x̃2 = x2 x2 sensor

4.3. Faults

Nine possible fault scenarios are considered.

– Sensor x1:

∗ f1: an additive fault (bias), with f1 > 0 or f1 <
0.

∗ f2: a multiplicative fault, with f2 > 0.

– Sensor x2:

∗ f3: an additive fault (bias), with f3 > 0 or f3 <
0.

∗ f4: a multiplicative fault, with f4 > 0.

– D/A converter:

∗ f5: an additive fault (bias), with f5 > 0 or f5 <
0.

– Tank T1 and its output pipe:
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Table 2

Extended model including faults for the two coupled tanks system

Elementary relationships

(a) qv = ku

(b) Sẋ1 = qv − qs1 − f6

(c) qs1 = ks1x1(1 − f7)

(d) Sẋ2 = qs1 − qs2 − f8

(e) qs2 = ks2x2(1 − f9)

(f) ũ = u + f5

(g) x̃1 = x1(1 − f2) + f1

(h) x̃2 = x2(1 − f4) + f3

Table 3

Possible conflicts of the system

a b c d e f g h

pc1 1 1 1 0 0 1 1 0

pc2 0 0 1 1 1 0 1 1

∗ f6: a constant leak, with f6 > 0.
∗ f7: a clogging fault in the output pipe, with

f7 > 0.

– Tank T2 and its output pipe:

∗ f8: a constant leak in tank T2, with f8 > 0.
∗ f9: a clogging fault in the output pipe, with

f9 > 0.

4.4. Model with faults

Extending the model to include faults provides the
relationships shown in Table 2.

4.5. Consistency-based diagnosis

Two different possible conflicts were obtained [15]
with the structural analysis, which are minimal with re-
spect to the set of constraints used in the model (Ta-
ble 3). The columns of the table correspond to the el-
ementary analytical relation described in Table 1. The
number “1” indicates that the corresponding EAR is
involved in a pc.

The computational forms of the models associated
with the possible conflicts are

pccomp
1 = S ˙̃x1 − kũ + ks1x̃1, (6)

pc
comp
2 = S ˙̃x2 − ks1x̃1 + ks2x̃2, (7)

and the corresponding internal forms are:

Table 4

Influence of the faults in possible conflicts

f1 f2 f3 f4 f5 f6 f7 f8 f9

pc1 1 1 0 0 1 1 1 0 0

pc2 1 1 1 1 0 0 1 1 1

Table 5

Sign of the sensitivity of a symptom with respect to each fault

f1 f2 f3 f4 f5 f6 f7 f8 f9

pc1 −1 +1 0 0 +1 +1 −1 0 0

pc2 +1 −1 −1 +1 0 0 +1 +1 −1

pcint
1 = −f1ks1 + f2kũ + f5k + f6 − f7ks1x̃1

− f2f6 − f2f5k + f1f7ks1, (8)

pcint
2 = f1ks1 − f2(S ˙̃x2 + ks2x̃2) − f3ks2

+ f4ks1x̃1 + f7ks1x̃1 + f8 − f9ks2x̃2

− f2f8 − f4f8 + f2f4f8 − f1f4ks1

− f1f7ks1 + f1f4f7ks1 + f2f3ks2

+ f3f9ks2 − f2f3f9ks2 − f4f7ks1x̃1

+ f2f9ks2x̃2. (9)

In this work, only single faults are considered,
fifj = 0, ∀i �= j, and so some terms in the internal
forms can be simplified.

pcint
1 = −f1ks1 + f2kũ + f5k + f6 − f7ks1x̃1,

(10)

pcint
2 = f1ks1 − f2(S ˙̃x2 + ks2x̃2) − f3ks2

+ f4ks1x̃1 + f7ks1x̃1 + f8 − f9ks2x̃2.

(11)

By inspecting the internal forms, the structure of the
influence of the faults in the residuals can be concluded
to be as shown in Table 4. A number “1” in row j and
column i of the table denotes that fault i influences the
possible conflict j ideally.

The signs of sji are shown in Table 5. For example,
the sensitivity of the possible conflict pc1 with respect
to the fault f7 is:

s17 =
∂pcint

1

∂f7
= −ks1x̃1. (12)

Since ks1 > 0 and x̃1 > 0, the sign of s17 is −1.
The sign of the model associated with a possible

conflict by considering the possible variation in the
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Table 6

Possible conflicts and their related fault modes using the sign of the
symptom

f1 f2 f3 f4 f5 f6 f7 f8 f9

pc1 ∓1 +1 0 0 ±1 +1 −1 0 0

pc2 ±1 −1 ∓1 +1 0 0 +1 +1 −1

Table 7

Diagnosis using and not using signs

Symptoms Diagnosis Diagnosis

sgn(pc1) sgn(pc2) using signs

+1 +1

f1, f2, f7

–

+1 −1 f1, f2

−1 +1 f1, f7

+1 0
f1, f2, f5, f6, f7

f1, f2, f5, f6

−1 0 f1, f5, f7

0 +1
f1, f2, f3, f4, f7, f8, f9

f1, f3, f4, f7, f8

0 −1 f1, f2, f3, f9

sign of each fault is analyzed for each case in Table 6.
For example, for pc1 and f1, if f1 is positive, then the
symptom of pc1 will be negative. Consequently, if f1
is negative, then the symptom of pc1 will be positive.
This behavior is reflected in the table using ∓1.

4.6. Diagnosis results

Table 7 shows the sets of possible diagnostics ob-
tained using the DX approach when the sign of the
residuals is used, and when it is not used. The signs
help with discarding some diagnostics, and so the sets
are reduced.

4.7. Simulation results

A faulty scenario involving a clogging fault in the
output pipe of T1, f7, is considered. The values of the
variables are represented by intervals to take into ac-
count any associated uncertainty in the measurements.
The parameters of the model are also taken as intervals
for the same reason.

The discrete forms of the possible conflicts are
used in SQualTrack. Then, the computational forms of
pc

comp
1 and pc

comp
2 are introduced as follows.

x̃1(k) = x̃1(k − 1) − T

S
(−kũ(k − 1) + ks1x̃1(k − 1)),

(13)

x̃2(k) = x̃2(k − 1) − T

S
(−ks1x̃1(k − 1)

+ ks2x̃2(k − 1)). (14)

Fig. 4. SQualTrack Fault Detection using pc1 corresponding to fault
f7 beginning at sample 200. The fault is detected from sample 221.

Fig. 5. SQualTrack Fault Detection using pc2 corresponding to fault
f7 beginning at sample 200. The fault is detected from sample 214.

Figures 4 and 5 show a window from SQualTrack
for the models of pc1 and pc2, respectively.

The upper graphs show the envelopes of the output
variable (the inner envelope in dotted lines, and the
outer envelope in dashed lines), and the interval mea-
surements in solid lines.

The lower graphs indicate a “1” when a fault is de-
tected.

In all the graphs, the time is expressed in samples,
and the sample time is 10 s. The fault begins at sample
200. For the pc2 case, the fault is detected from sample
214, and for the pc1 case, the fault is detected from
sample 221.
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Table 8

Diagnostics for the fault scenario

Sample 214 221

Symptoms
sgn(pc1) = 0 sgn(pc1) = −1

sgn(pc2) = +1 sgn(pc2) = +1

Diagnosis f1 ∨ f2 ∨ f3 ∨ f4 ∨ f7∨ f1 ∨ f2 ∨ f7

∨f8 ∨ f9

Diagnosis
f1 ∨ f3 ∨ f4 ∨ f7 ∨ f8 f1 ∨ f7

using signs

Table 8 illustrates the diagnostics obtained either by
considering or not the signs corresponding at the times
in which each symptom appear.

5. Conclusions

In this work, knowledge about signs obtained from
partial derivatives in a quantitative model, is suggested
to improve the task of diagnosis. The advantages of the
interval tool can be exploited to evaluate the consis-
tency between a model and a system for fault diagno-
sis.

The residual signs have been analyzed directly in
consistency relations and this information has been in-
tegrated in the fault signature matrix.

By comparing the fault signature matrix with the
qualitative deviation resulting from the interval detec-
tion tool, the set of diagnoses has been reduced.

Future work will consist of analyzing multiple fault
deviations, the magnitude of the deviations, and the
sensitivity of faults in conflicts.
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